timekeeping.c 45.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25

26
#include "tick-internal.h"
27
#include "ntp_internal.h"
28
#include "timekeeping_internal.h"
29

30 31
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
32
#define TK_CLOCK_WAS_SET	(1 << 2)
33

34
static struct timekeeper timekeeper;
35 36
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
static seqcount_t timekeeper_seq;
37
static struct timekeeper shadow_timekeeper;
38

39 40 41
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

42 43 44
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

45 46 47 48 49 50 51 52 53 54 55
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
56
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
57 58 59 60 61
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
62
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
63
	tk_normalize_xtime(tk);
64
}
65

66 67 68 69 70 71 72 73 74 75 76 77 78 79
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
80
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
81 82 83 84 85 86 87 88 89 90 91
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

92
/**
93
 * tk_setup_internals - Set up internals to use clocksource clock.
94
 *
95
 * @tk:		The target timekeeper to setup.
96 97 98 99 100 101 102
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
103
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
104 105
{
	cycle_t interval;
106
	u64 tmp, ntpinterval;
107
	struct clocksource *old_clock;
108

109 110
	old_clock = tk->clock;
	tk->clock = clock;
111
	tk->cycle_last = clock->cycle_last = clock->read(clock);
112 113 114 115

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
116
	ntpinterval = tmp;
117 118
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
119 120 121 122
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
123
	tk->cycle_interval = interval;
124 125

	/* Go back from cycles -> shifted ns */
126 127 128
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
129
		((u64) interval * clock->mult) >> clock->shift;
130

131 132 133 134
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
135
			tk->xtime_nsec >>= -shift_change;
136
		else
137
			tk->xtime_nsec <<= shift_change;
138
	}
139
	tk->shift = clock->shift;
140

141 142
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
143 144 145 146 147 148

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
149
	tk->mult = clock->mult;
150
}
151

152
/* Timekeeper helper functions. */
153 154 155 156 157 158 159 160 161 162 163 164 165 166

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
u32 (*arch_gettimeoffset)(void);

u32 get_arch_timeoffset(void)
{
	if (likely(arch_gettimeoffset))
		return arch_gettimeoffset();
	return 0;
}
#else
static inline u32 get_arch_timeoffset(void) { return 0; }
#endif

167
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
168 169 170
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
171
	s64 nsec;
172 173

	/* read clocksource: */
174
	clock = tk->clock;
175 176 177 178 179
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

180 181
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
182

183 184
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
185 186
}

187
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
188 189 190
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
191
	s64 nsec;
192 193

	/* read clocksource: */
194
	clock = tk->clock;
195 196 197 198 199
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

200 201 202
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

203 204
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
205 206
}

207 208
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

209
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
210
{
211
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
212 213 214 215 216 217 218 219 220 221 222
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;
	int ret;

223
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
224
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
225
	update_pvclock_gtod(tk, true);
226
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
227 228 229 230 231 232 233 234 235 236 237 238 239 240

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

241
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
242
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
243
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
244 245 246 247 248

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

249
/* must hold timekeeper_lock */
250
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
251
{
252
	if (action & TK_CLEAR_NTP) {
253
		tk->ntp_error = 0;
254 255
		ntp_clear();
	}
256
	update_vsyscall(tk);
257
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
258

259
	if (action & TK_MIRROR)
260
		memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
261 262
}

263
/**
264
 * timekeeping_forward_now - update clock to the current time
265
 *
266 267 268
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
269
 */
270
static void timekeeping_forward_now(struct timekeeper *tk)
271 272
{
	cycle_t cycle_now, cycle_delta;
273
	struct clocksource *clock;
274
	s64 nsec;
275

276
	clock = tk->clock;
277
	cycle_now = clock->read(clock);
278
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
279
	tk->cycle_last = clock->cycle_last = cycle_now;
280

281
	tk->xtime_nsec += cycle_delta * tk->mult;
282

283 284
	/* If arch requires, add in get_arch_timeoffset() */
	tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
285

286
	tk_normalize_xtime(tk);
287

288
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
289
	timespec_add_ns(&tk->raw_time, nsec);
290 291 292
}

/**
293
 * __getnstimeofday - Returns the time of day in a timespec.
294 295
 * @ts:		pointer to the timespec to be set
 *
296 297
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
298
 */
299
int __getnstimeofday(struct timespec *ts)
300
{
301
	struct timekeeper *tk = &timekeeper;
302
	unsigned long seq;
303
	s64 nsecs = 0;
304 305

	do {
306
		seq = read_seqcount_begin(&timekeeper_seq);
307

308
		ts->tv_sec = tk->xtime_sec;
309
		nsecs = timekeeping_get_ns(tk);
310

311
	} while (read_seqcount_retry(&timekeeper_seq, seq));
312

313
	ts->tv_nsec = 0;
314
	timespec_add_ns(ts, nsecs);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
EXPORT_SYMBOL(__getnstimeofday);

/**
 * getnstimeofday - Returns the time of day in a timespec.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
void getnstimeofday(struct timespec *ts)
{
	WARN_ON(__getnstimeofday(ts));
335 336 337
}
EXPORT_SYMBOL(getnstimeofday);

338 339
ktime_t ktime_get(void)
{
340
	struct timekeeper *tk = &timekeeper;
341 342 343 344 345 346
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
347
		seq = read_seqcount_begin(&timekeeper_seq);
348 349
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
350

351
	} while (read_seqcount_retry(&timekeeper_seq, seq));
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
370
	struct timekeeper *tk = &timekeeper;
371
	struct timespec tomono;
372
	s64 nsec;
373 374 375 376 377
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
378
		seq = read_seqcount_begin(&timekeeper_seq);
379
		ts->tv_sec = tk->xtime_sec;
380
		nsec = timekeeping_get_ns(tk);
381
		tomono = tk->wall_to_monotonic;
382

383
	} while (read_seqcount_retry(&timekeeper_seq, seq));
384

385 386 387
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec);
388 389 390
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

J
John Stultz 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

/**
 * timekeeping_clocktai - Returns the TAI time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void timekeeping_clocktai(struct timespec *ts)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long seq;
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
407
		seq = read_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
408 409 410 411

		ts->tv_sec = tk->xtime_sec + tk->tai_offset;
		nsecs = timekeeping_get_ns(tk);

412
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
413 414 415 416 417 418 419 420

	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsecs);

}
EXPORT_SYMBOL(timekeeping_clocktai);


421 422 423 424 425 426 427 428 429 430 431 432 433 434
/**
 * ktime_get_clocktai - Returns the TAI time of day in a ktime
 *
 * Returns the time of day in a ktime.
 */
ktime_t ktime_get_clocktai(void)
{
	struct timespec ts;

	timekeeping_clocktai(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL(ktime_get_clocktai);

435 436 437 438 439 440 441 442 443 444 445 446 447
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
448
	struct timekeeper *tk = &timekeeper;
449 450 451 452 453 454
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
455
		seq = read_seqcount_begin(&timekeeper_seq);
456

457 458
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
459
		ts_real->tv_nsec = 0;
460

461 462
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
463

464
	} while (read_seqcount_retry(&timekeeper_seq, seq));
465 466 467 468 469 470 471 472

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

473 474 475 476
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
477
 * NOTE: Users should be converted to using getnstimeofday()
478 479 480 481 482
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

483
	getnstimeofday(&now);
484 485 486 487
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
488

489 490 491 492 493 494
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
495
int do_settimeofday(const struct timespec *tv)
496
{
497
	struct timekeeper *tk = &timekeeper;
498
	struct timespec ts_delta, xt;
499
	unsigned long flags;
500

501
	if (!timespec_valid_strict(tv))
502 503
		return -EINVAL;

504 505
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
506

507
	timekeeping_forward_now(tk);
508

509
	xt = tk_xtime(tk);
510 511 512
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

513
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
514

515
	tk_set_xtime(tk, tv);
516

517
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
518

519 520
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
521 522 523 524 525 526 527 528

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

529 530 531 532 533 534 535 536
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
537
	struct timekeeper *tk = &timekeeper;
538
	unsigned long flags;
539 540
	struct timespec tmp;
	int ret = 0;
541 542 543 544

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

545 546
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
547

548
	timekeeping_forward_now(tk);
549

550 551
	/* Make sure the proposed value is valid */
	tmp = timespec_add(tk_xtime(tk),  *ts);
552
	if (!timespec_valid_strict(&tmp)) {
553 554 555
		ret = -EINVAL;
		goto error;
	}
556

557 558
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
559

560
error: /* even if we error out, we forwarded the time, so call update */
561
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
562

563 564
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
565 566 567 568

	/* signal hrtimers about time change */
	clock_was_set();

569
	return ret;
570 571 572
}
EXPORT_SYMBOL(timekeeping_inject_offset);

573 574 575 576 577 578 579 580 581 582 583 584

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
	struct timekeeper *tk = &timekeeper;
	unsigned int seq;
	s32 ret;

	do {
585
		seq = read_seqcount_begin(&timekeeper_seq);
586
		ret = tk->tai_offset;
587
	} while (read_seqcount_retry(&timekeeper_seq, seq));
588 589 590 591 592 593 594 595

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
596
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
597 598
{
	tk->tai_offset = tai_offset;
599
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
600 601 602 603 604 605 606 607 608 609 610
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;

611 612
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
613
	__timekeeping_set_tai_offset(tk, tai_offset);
614
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
615 616
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
617
	clock_was_set();
618 619
}

620 621 622 623 624
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
625
static int change_clocksource(void *data)
626
{
627
	struct timekeeper *tk = &timekeeper;
628
	struct clocksource *new, *old;
629
	unsigned long flags;
630

631
	new = (struct clocksource *) data;
632

633 634
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
635

636
	timekeeping_forward_now(tk);
637 638 639 640 641 642 643 644 645 646 647 648 649 650
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
			old = tk->clock;
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
651
	}
652
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
653

654 655
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
656

657 658
	return 0;
}
659

660 661 662 663 664 665 666
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
667
int timekeeping_notify(struct clocksource *clock)
668
{
669 670 671
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
672
		return 0;
673
	stop_machine(change_clocksource, clock, NULL);
674
	tick_clock_notify();
675
	return tk->clock == clock ? 0 : -1;
676
}
677

678 679 680 681 682 683 684 685 686 687 688 689 690 691
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
692

693 694 695 696 697 698 699 700
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
701
	struct timekeeper *tk = &timekeeper;
702 703 704 705
	unsigned long seq;
	s64 nsecs;

	do {
706
		seq = read_seqcount_begin(&timekeeper_seq);
707 708
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
709

710
	} while (read_seqcount_retry(&timekeeper_seq, seq));
711 712 713 714 715

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

716
/**
717
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
718
 */
719
int timekeeping_valid_for_hres(void)
720
{
721
	struct timekeeper *tk = &timekeeper;
722 723 724 725
	unsigned long seq;
	int ret;

	do {
726
		seq = read_seqcount_begin(&timekeeper_seq);
727

728
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
729

730
	} while (read_seqcount_retry(&timekeeper_seq, seq));
731 732 733 734

	return ret;
}

735 736 737 738 739
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
740
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
741 742
	unsigned long seq;
	u64 ret;
743

J
John Stultz 已提交
744
	do {
745
		seq = read_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
746

747
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
748

749
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
750 751

	return ret;
752 753
}

754
/**
755
 * read_persistent_clock -  Return time from the persistent clock.
756 757
 *
 * Weak dummy function for arches that do not yet support it.
758 759
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
760 761 762
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
763
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
764
{
765 766
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
767 768
}

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

784 785 786 787 788
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
789
	struct timekeeper *tk = &timekeeper;
790
	struct clocksource *clock;
791
	unsigned long flags;
792
	struct timespec now, boot, tmp;
793 794

	read_persistent_clock(&now);
795

796
	if (!timespec_valid_strict(&now)) {
797 798 799 800
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
801 802
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
803

804
	read_boot_clock(&boot);
805
	if (!timespec_valid_strict(&boot)) {
806 807 808 809 810
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
811

812 813
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
814 815
	ntp_init();

816
	clock = clocksource_default_clock();
817 818
	if (clock->enable)
		clock->enable(clock);
819
	tk_setup_internals(tk, clock);
820

821 822 823
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
824
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
825
		boot = tk_xtime(tk);
826

827
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
828
	tk_set_wall_to_mono(tk, tmp);
829 830 831

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
832
	tk_set_sleep_time(tk, tmp);
833

834 835
	memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));

836 837
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
838 839 840
}

/* time in seconds when suspend began */
841
static struct timespec timekeeping_suspend_time;
842

843 844 845 846 847 848 849
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
850 851
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
852
{
853
	if (!timespec_valid_strict(delta)) {
854
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
855 856 857
					"sleep delta value!\n");
		return;
	}
858
	tk_xtime_add(tk, delta);
859 860
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
861
	tk_debug_account_sleep_time(delta);
862 863 864 865 866 867 868 869 870 871 872 873 874 875
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
876
	struct timekeeper *tk = &timekeeper;
877
	unsigned long flags;
878

879 880 881 882 883
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
884 885
		return;

886 887
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
888

889
	timekeeping_forward_now(tk);
890

891
	__timekeeping_inject_sleeptime(tk, delta);
892

893
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
894

895 896
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
897 898 899 900 901

	/* signal hrtimers about time change */
	clock_was_set();
}

902 903 904 905 906 907 908
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
909
static void timekeeping_resume(void)
910
{
911
	struct timekeeper *tk = &timekeeper;
912
	struct clocksource *clock = tk->clock;
913
	unsigned long flags;
914 915 916
	struct timespec ts_new, ts_delta;
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
917

918
	read_persistent_clock(&ts_new);
919

920
	clockevents_resume();
921 922
	clocksource_resume();

923 924
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
925

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = clock->read(clock);
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
		cycle_now > clock->cycle_last) {
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

		ts_delta = ns_to_timespec(nsec);
		suspendtime_found = true;
	} else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
		suspendtime_found = true;
966
	}
967 968 969 970 971

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
972
	tk->cycle_last = clock->cycle_last = cycle_now;
973
	tk->ntp_error = 0;
974
	timekeeping_suspended = 0;
975
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
976 977
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
978 979 980 981 982 983

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
984
	hrtimers_resume();
985 986
}

987
static int timekeeping_suspend(void)
988
{
989
	struct timekeeper *tk = &timekeeper;
990
	unsigned long flags;
991 992
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
993

994
	read_persistent_clock(&timekeeping_suspend_time);
995

996 997 998 999 1000 1001 1002 1003
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1004 1005
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
1006
	timekeeping_forward_now(tk);
1007
	timekeeping_suspended = 1;
1008 1009 1010 1011 1012 1013 1014

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1015
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
1028 1029

	timekeeping_update(tk, TK_MIRROR);
1030 1031
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1032 1033

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1034
	clocksource_suspend();
1035
	clockevents_suspend();
1036 1037 1038 1039 1040

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1041
static struct syscore_ops timekeeping_syscore_ops = {
1042 1043 1044 1045
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1046
static int __init timekeeping_init_ops(void)
1047
{
1048 1049
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1050 1051
}

1052
device_initcall(timekeeping_init_ops);
1053 1054 1055 1056 1057

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
1058 1059
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
1072
	 * here.  This is tuned so that an error of about 1 msec is adjusted
1073 1074
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
1075
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1076 1077 1078 1079 1080 1081 1082 1083
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
1084 1085
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
1110
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1111
{
1112
	s64 error, interval = tk->cycle_interval;
1113 1114
	int adj;

1115
	/*
1116
	 * The point of this is to check if the error is greater than half
1117 1118 1119 1120 1121
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
1122 1123
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
1124
	 * larger than half an interval.
1125
	 *
1126
	 * Note: It does not "save" on aggravation when reading the code.
1127
	 */
1128
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1129
	if (error > interval) {
1130 1131
		/*
		 * We now divide error by 4(via shift), which checks if
1132
		 * the error is greater than twice the interval.
1133 1134 1135
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1136 1137 1138 1139
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1156

1157 1158
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1159 1160
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1161 1162
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
1163
	}
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1213 1214 1215 1216
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1217

1218
out_adjust:
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1233 1234 1235 1236
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1237 1238
	}

1239 1240
}

1241 1242 1243 1244 1245 1246 1247 1248
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1249
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1250 1251
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1252
	unsigned int clock_set = 0;
1253 1254 1255 1256 1257 1258 1259 1260 1261

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1262 1263 1264 1265
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1266

1267 1268 1269 1270 1271
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

1272 1273
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1274
			clock_set = TK_CLOCK_WAS_SET;
1275
		}
1276
	}
1277
	return clock_set;
1278 1279
}

1280 1281 1282 1283 1284 1285 1286 1287 1288
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1289
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1290 1291
						u32 shift,
						unsigned int *clock_set)
1292
{
T
Thomas Gleixner 已提交
1293
	cycle_t interval = tk->cycle_interval << shift;
1294
	u64 raw_nsecs;
1295

1296
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1297
	if (offset < interval)
1298 1299 1300
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1301
	offset -= interval;
1302
	tk->cycle_last += interval;
1303

1304
	tk->xtime_nsec += tk->xtime_interval << shift;
1305
	*clock_set |= accumulate_nsecs_to_secs(tk);
1306

1307
	/* Accumulate raw time */
1308
	raw_nsecs = (u64)tk->raw_interval << shift;
1309
	raw_nsecs += tk->raw_time.tv_nsec;
1310 1311 1312
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1313
		tk->raw_time.tv_sec += raw_secs;
1314
	}
1315
	tk->raw_time.tv_nsec = raw_nsecs;
1316 1317

	/* Accumulate error between NTP and clock interval */
1318 1319 1320
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1321 1322 1323 1324

	return offset;
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;
1344
	tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
1345 1346 1347 1348 1349 1350 1351
}
#else
#define old_vsyscall_fixup(tk)
#endif



1352 1353 1354 1355
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1356
void update_wall_time(void)
1357
{
1358
	struct clocksource *clock;
1359 1360
	struct timekeeper *real_tk = &timekeeper;
	struct timekeeper *tk = &shadow_timekeeper;
1361
	cycle_t offset;
1362
	int shift = 0, maxshift;
1363
	unsigned int clock_set = 0;
J
John Stultz 已提交
1364 1365
	unsigned long flags;

1366
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1367 1368 1369

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1370
		goto out;
1371

1372
	clock = real_tk->clock;
J
John Stultz 已提交
1373 1374

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1375
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1376 1377
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1378 1379
#endif

1380
	/* Check if there's really nothing to do */
1381
	if (offset < real_tk->cycle_interval)
1382 1383
		goto out;

1384 1385 1386 1387
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1388
	 * that is smaller than the offset.  We then accumulate that
1389 1390
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1391
	 */
1392
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1393
	shift = max(0, shift);
1394
	/* Bound shift to one less than what overflows tick_length */
1395
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1396
	shift = min(shift, maxshift);
1397
	while (offset >= tk->cycle_interval) {
1398 1399
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1400
		if (offset < tk->cycle_interval<<shift)
1401
			shift--;
1402 1403 1404
	}

	/* correct the clock when NTP error is too big */
1405
	timekeeping_adjust(tk, offset);
1406

J
John Stultz 已提交
1407
	/*
1408 1409 1410 1411
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1412

J
John Stultz 已提交
1413 1414
	/*
	 * Finally, make sure that after the rounding
1415
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1416
	 */
1417
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1418

1419
	write_seqcount_begin(&timekeeper_seq);
1420 1421
	/* Update clock->cycle_last with the new value */
	clock->cycle_last = tk->cycle_last;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
	 * memcpy under the timekeeper_seq against one before we start
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1433
	timekeeping_update(real_tk, clock_set);
1434
	write_seqcount_end(&timekeeper_seq);
1435
out:
1436
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1437 1438
	if (clock_set)
		clock_was_set();
1439
}
T
Tomas Janousek 已提交
1440 1441 1442 1443 1444

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1445
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1446 1447 1448 1449 1450 1451 1452 1453
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1454
	struct timekeeper *tk = &timekeeper;
1455
	struct timespec boottime = {
1456 1457 1458 1459
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1460
	};
1461 1462

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1463
}
1464
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1465

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1477
	struct timekeeper *tk = &timekeeper;
1478
	struct timespec tomono, sleep;
1479
	s64 nsec;
1480 1481 1482 1483 1484
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1485
		seq = read_seqcount_begin(&timekeeper_seq);
1486
		ts->tv_sec = tk->xtime_sec;
1487
		nsec = timekeeping_get_ns(tk);
1488 1489
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1490

1491
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1492

1493 1494 1495
	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1516 1517 1518 1519 1520 1521
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1522 1523 1524
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1525
}
1526
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1527

1528 1529
unsigned long get_seconds(void)
{
1530 1531 1532
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1533 1534 1535
}
EXPORT_SYMBOL(get_seconds);

1536 1537
struct timespec __current_kernel_time(void)
{
1538 1539 1540
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1541
}
1542

1543 1544
struct timespec current_kernel_time(void)
{
1545
	struct timekeeper *tk = &timekeeper;
1546 1547 1548 1549
	struct timespec now;
	unsigned long seq;

	do {
1550
		seq = read_seqcount_begin(&timekeeper_seq);
L
Linus Torvalds 已提交
1551

1552
		now = tk_xtime(tk);
1553
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1554 1555 1556 1557

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1558 1559 1560

struct timespec get_monotonic_coarse(void)
{
1561
	struct timekeeper *tk = &timekeeper;
1562 1563 1564 1565
	struct timespec now, mono;
	unsigned long seq;

	do {
1566
		seq = read_seqcount_begin(&timekeeper_seq);
L
Linus Torvalds 已提交
1567

1568 1569
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1570
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1571 1572 1573 1574 1575

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1576 1577

/*
1578
 * Must hold jiffies_lock
1579 1580 1581 1582 1583 1584
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1585 1586

/**
1587 1588
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1589 1590
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1591
 * @sleep:	pointer to timespec to be set with time in suspend
1592
 */
1593 1594
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1595
{
1596
	struct timekeeper *tk = &timekeeper;
1597 1598 1599
	unsigned long seq;

	do {
1600
		seq = read_seqcount_begin(&timekeeper_seq);
1601 1602 1603
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
1604
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1605
}
T
Torben Hohn 已提交
1606

1607 1608 1609 1610 1611
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1612
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1613 1614
 *
 * Returns current monotonic time and updates the offsets
1615
 * Called from hrtimer_interrupt() or retrigger_next_event()
1616
 */
1617 1618
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1619
{
1620
	struct timekeeper *tk = &timekeeper;
1621 1622 1623 1624 1625
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1626
		seq = read_seqcount_begin(&timekeeper_seq);
1627

1628 1629
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1630

1631 1632
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1633
		*offs_tai = tk->offs_tai;
1634
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1635 1636 1637 1638 1639 1640 1641

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1642 1643 1644 1645 1646
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1647
	struct timekeeper *tk = &timekeeper;
1648 1649 1650 1651
	unsigned long seq;
	struct timespec wtom;

	do {
1652
		seq = read_seqcount_begin(&timekeeper_seq);
1653
		wtom = tk->wall_to_monotonic;
1654
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
1655

1656 1657
	return timespec_to_ktime(wtom);
}
1658 1659
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

1660 1661 1662 1663 1664
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1665
	struct timekeeper *tk = &timekeeper;
1666
	unsigned long flags;
1667
	struct timespec ts;
1668
	s32 orig_tai, tai;
1669 1670 1671 1672 1673 1674 1675
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1687 1688
	getnstimeofday(&ts);

1689 1690 1691
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);

1692
	orig_tai = tai = tk->tai_offset;
1693
	ret = __do_adjtimex(txc, &ts, &tai);
1694

1695 1696
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1697
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1698
	}
1699 1700 1701
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1702 1703 1704
	if (tai != orig_tai)
		clock_was_set();

1705 1706
	ntp_notify_cmos_timer();

1707 1708
	return ret;
}
1709 1710 1711 1712 1713 1714 1715

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1716 1717 1718 1719 1720
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);

1721
	__hardpps(phase_ts, raw_ts);
1722 1723 1724

	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1725 1726 1727 1728
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1729 1730 1731 1732 1733 1734 1735 1736
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1737
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1738
	do_timer(ticks);
1739
	write_sequnlock(&jiffies_lock);
1740
	update_wall_time();
T
Torben Hohn 已提交
1741
}