timekeeping.c 65.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/sched/clock.h>
21
#include <linux/syscore_ops.h>
22 23 24 25
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
26
#include <linux/stop_machine.h>
27
#include <linux/pvclock_gtod.h>
28
#include <linux/compiler.h>
29

30
#include "tick-internal.h"
31
#include "ntp_internal.h"
32
#include "timekeeping_internal.h"
33

34 35
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
36
#define TK_CLOCK_WAS_SET	(1 << 2)
37

38 39 40 41 42 43 44 45 46
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

47
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48
static struct timekeeper shadow_timekeeper;
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};
85

86 87 88
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

89 90
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
91 92
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
93 94
		tk->xtime_sec++;
	}
95 96 97 98
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
99 100
}

101 102 103 104 105
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
106
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
107 108 109
	return ts;
}

110
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
111 112
{
	tk->xtime_sec = ts->tv_sec;
113
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
114 115
}

116
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
117 118
{
	tk->xtime_sec += ts->tv_sec;
119
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
120
	tk_normalize_xtime(tk);
121
}
122

123
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
124
{
125
	struct timespec64 tmp;
126 127 128 129 130

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
131
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
132
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
133
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
134
	tk->wall_to_monotonic = wtm;
135 136
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
137
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
138 139
}

140
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
141
{
142
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
143 144
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
static inline u64 tk_clock_read(struct tk_read_base *tkr)
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

165
#ifdef CONFIG_DEBUG_TIMEKEEPING
166 167
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

168
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
169 170
{

171
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
172
	const char *name = tk->tkr_mono.clock->name;
173 174

	if (offset > max_cycles) {
175
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
176
				offset, name, max_cycles);
177
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
178 179
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
180
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
181 182 183 184
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
185

186 187
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
188 189 190
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
191
			tk->last_warning = jiffies;
192
		}
193
		tk->underflow_seen = 0;
194 195
	}

196 197
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
198 199 200
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
201
			tk->last_warning = jiffies;
202
		}
203
		tk->overflow_seen = 0;
204
	}
205
}
206

207
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
208
{
209
	struct timekeeper *tk = &tk_core.timekeeper;
210
	u64 now, last, mask, max, delta;
211
	unsigned int seq;
212

213 214 215 216 217 218 219 220 221
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
222
		now = tk_clock_read(tkr);
223 224 225 226
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
227

228
	delta = clocksource_delta(now, last, mask);
229

230 231 232 233
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
234
	if (unlikely((~delta & mask) < (mask >> 3))) {
235
		tk->underflow_seen = 1;
236
		delta = 0;
237
	}
238

239
	/* Cap delta value to the max_cycles values to avoid mult overflows */
240
	if (unlikely(delta > max)) {
241
		tk->overflow_seen = 1;
242
		delta = tkr->clock->max_cycles;
243
	}
244 245 246

	return delta;
}
247
#else
248
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
249 250
{
}
251
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
252
{
253
	u64 cycle_now, delta;
254 255

	/* read clocksource */
256
	cycle_now = tk_clock_read(tkr);
257 258 259 260 261 262

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
263 264
#endif

265
/**
266
 * tk_setup_internals - Set up internals to use clocksource clock.
267
 *
268
 * @tk:		The target timekeeper to setup.
269 270 271 272 273 274 275
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
276
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
277
{
278
	u64 interval;
279
	u64 tmp, ntpinterval;
280
	struct clocksource *old_clock;
281

282
	++tk->cs_was_changed_seq;
283 284 285
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
286
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
287

P
Peter Zijlstra 已提交
288 289 290 291
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

292 293 294
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
295
	ntpinterval = tmp;
296 297
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
298 299 300
	if (tmp == 0)
		tmp = 1;

301
	interval = (u64) tmp;
302
	tk->cycle_interval = interval;
303 304

	/* Go back from cycles -> shifted ns */
305
	tk->xtime_interval = interval * clock->mult;
306
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
307
	tk->raw_interval = interval * clock->mult;
308

309 310 311
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
312
		if (shift_change < 0) {
313
			tk->tkr_mono.xtime_nsec >>= -shift_change;
314 315
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
316
			tk->tkr_mono.xtime_nsec <<= shift_change;
317 318
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
319
	}
P
Peter Zijlstra 已提交
320

321
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
322
	tk->tkr_raw.shift = clock->shift;
323

324 325
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
326
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
327 328 329 330 331 332

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
333
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
334
	tk->tkr_raw.mult = clock->mult;
335
	tk->ntp_err_mult = 0;
336
	tk->skip_second_overflow = 0;
337
}
338

339
/* Timekeeper helper functions. */
340 341

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
342 343
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
344
#else
345
static inline u32 arch_gettimeoffset(void) { return 0; }
346 347
#endif

348
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
349
{
350
	u64 nsec;
351 352 353 354 355 356 357 358

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

359
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
360
{
361
	u64 delta;
362

363
	delta = timekeeping_get_delta(tkr);
364 365
	return timekeeping_delta_to_ns(tkr, delta);
}
366

367
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
368
{
369
	u64 delta;
370

371 372 373
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
374 375
}

376 377
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
378
 * @tkr: Timekeeping readout base from which we take the update
379 380 381 382
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
383
 * Employ the latch technique; see @raw_write_seqcount_latch.
384 385 386 387 388 389
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
390
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
391
{
392
	struct tk_read_base *base = tkf->base;
393 394

	/* Force readers off to base[1] */
395
	raw_write_seqcount_latch(&tkf->seq);
396 397

	/* Update base[0] */
398
	memcpy(base, tkr, sizeof(*base));
399 400

	/* Force readers back to base[0] */
401
	raw_write_seqcount_latch(&tkf->seq);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
439
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
440 441 442 443 444 445
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
446
		seq = raw_read_seqcount_latch(&tkf->seq);
447
		tkr = tkf->base + (seq & 0x01);
448 449
		now = ktime_to_ns(tkr->base);

450 451
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
452
					tk_clock_read(tkr),
453 454
					tkr->cycle_last,
					tkr->mask));
455
	} while (read_seqcount_retry(&tkf->seq, seq));
456 457 458

	return now;
}
459 460 461 462 463

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
464 465
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
466 467 468 469 470 471
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);


502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 */
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_real);

		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tk_clock_read(tkr),
					tkr->cycle_last,
					tkr->mask));
	} while (read_seqcount_retry(&tkf->seq, seq));

	return now;
}

/**
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 */
u64 ktime_get_real_fast_ns(void)
{
	return __ktime_get_real_fast_ns(&tk_fast_mono);
}
533
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
534

535 536 537 538 539 540 541 542 543 544 545 546 547
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
548
	struct tk_read_base *tkr = &tk->tkr_mono;
549 550

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
551 552
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
553
	tkr_dummy.base_real = tkr->base + tk->offs_real;
554
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
555 556 557

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
558
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
559
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
560 561
}

562 563
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

564
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
565
{
566
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
567 568 569 570 571 572 573
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
574
	struct timekeeper *tk = &tk_core.timekeeper;
575 576 577
	unsigned long flags;
	int ret;

578
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
579
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
580
	update_pvclock_gtod(tk, true);
581
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
582 583 584 585 586 587 588 589 590 591 592 593 594 595

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

596
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
597
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
598
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
599 600 601 602 603

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

604 605 606 607 608 609
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
610
	if (tk->next_leap_ktime != KTIME_MAX)
611 612 613 614
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

615 616 617 618 619
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
620 621
	u64 seconds;
	u32 nsec;
622 623 624 625 626 627 628 629

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
630 631
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
632
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
633

634 635 636 637 638
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
639
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
640 641 642
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
643 644

	/* Update the monotonic raw base */
645
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
646 647
}

648
/* must hold timekeeper_lock */
649
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
650
{
651
	if (action & TK_CLEAR_NTP) {
652
		tk->ntp_error = 0;
653 654
		ntp_clear();
	}
655

656
	tk_update_leap_state(tk);
657 658
	tk_update_ktime_data(tk);

659 660 661
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

662
	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
663
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
664
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
665 666 667

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
668 669 670 671 672 673 674 675
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
676 677
}

678
/**
679
 * timekeeping_forward_now - update clock to the current time
680
 *
681 682 683
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
684
 */
685
static void timekeeping_forward_now(struct timekeeper *tk)
686
{
687
	u64 cycle_now, delta;
688

689
	cycle_now = tk_clock_read(&tk->tkr_mono);
690 691
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
692
	tk->tkr_raw.cycle_last  = cycle_now;
693

694
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
695

696
	/* If arch requires, add in get_arch_timeoffset() */
697
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
698

699

700 701 702 703 704 705
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
706 707 708
}

/**
709
 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
710 711
 * @ts:		pointer to the timespec to be set
 *
712
 * Returns the time of day in a timespec64 (WARN if suspended).
713
 */
714
void ktime_get_real_ts64(struct timespec64 *ts)
715
{
716
	struct timekeeper *tk = &tk_core.timekeeper;
717
	unsigned long seq;
718
	u64 nsecs;
719

720 721
	WARN_ON(timekeeping_suspended);

722
	do {
723
		seq = read_seqcount_begin(&tk_core.seq);
724

725
		ts->tv_sec = tk->xtime_sec;
726
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
727

728
	} while (read_seqcount_retry(&tk_core.seq, seq));
729

730
	ts->tv_nsec = 0;
731
	timespec64_add_ns(ts, nsecs);
732
}
733
EXPORT_SYMBOL(ktime_get_real_ts64);
734

735 736
ktime_t ktime_get(void)
{
737
	struct timekeeper *tk = &tk_core.timekeeper;
738
	unsigned int seq;
739
	ktime_t base;
740
	u64 nsecs;
741 742 743 744

	WARN_ON(timekeeping_suspended);

	do {
745
		seq = read_seqcount_begin(&tk_core.seq);
746 747
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
748

749
	} while (read_seqcount_retry(&tk_core.seq, seq));
750

751
	return ktime_add_ns(base, nsecs);
752 753 754
}
EXPORT_SYMBOL_GPL(ktime_get);

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

772 773
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
774
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
775 776 777 778 779 780 781 782
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
783
	u64 nsecs;
784 785 786 787 788

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
789 790
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
791 792 793 794 795 796 797 798

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = ktime_add(tk->tkr_mono.base, *offset);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return base;

}
EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

838 839 840 841 842 843 844 845
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
846
	u64 nsecs;
847 848 849

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
850 851
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
852 853 854 855 856 857 858

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

859
/**
860
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
861 862 863 864
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
865
 * in normalized timespec64 format in the variable pointed to by @ts.
866
 */
867
void ktime_get_ts64(struct timespec64 *ts)
868
{
869
	struct timekeeper *tk = &tk_core.timekeeper;
870
	struct timespec64 tomono;
871
	unsigned int seq;
872
	u64 nsec;
873 874 875 876

	WARN_ON(timekeeping_suspended);

	do {
877
		seq = read_seqcount_begin(&tk_core.seq);
878
		ts->tv_sec = tk->xtime_sec;
879
		nsec = timekeeping_get_ns(&tk->tkr_mono);
880
		tomono = tk->wall_to_monotonic;
881

882
	} while (read_seqcount_retry(&tk_core.seq, seq));
883

884 885 886
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
887
}
888
EXPORT_SYMBOL_GPL(ktime_get_ts64);
889

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

938 939 940 941 942 943 944 945 946 947 948 949
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

950 951 952 953 954 955 956 957 958 959
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
960 961
	u64 nsec_raw;
	u64 nsec_real;
962
	u64 now;
963

964 965
	WARN_ON_ONCE(timekeeping_suspended);

966 967
	do {
		seq = read_seqcount_begin(&tk_core.seq);
968
		now = tk_clock_read(&tk->tkr_mono);
969 970
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
971 972 973 974 975 976 977 978 979 980 981 982
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
983

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1020 1021
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1034
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1084
static bool cycle_between(u64 before, u64 test, u64 after)
1085 1086 1087 1088 1089 1090 1091 1092
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1093 1094
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1095
 * @get_time_fn:	Callback to get simultaneous device time and
1096
 *	system counter from the device driver
1097 1098 1099
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1100 1101 1102 1103 1104 1105 1106 1107 1108
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1109
				  struct system_time_snapshot *history_begin,
1110 1111 1112 1113
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1114
	u64 cycles, now, interval_start;
1115
	unsigned int clock_was_set_seq = 0;
1116
	ktime_t base_real, base_raw;
1117
	u64 nsec_real, nsec_raw;
1118
	u8 cs_was_changed_seq;
1119
	unsigned long seq;
1120
	bool do_interp;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1140 1141 1142 1143 1144 1145
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1146
		now = tk_clock_read(&tk->tkr_mono);
1147 1148 1149 1150 1151 1152 1153 1154 1155
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1169 1170 1171 1172 1173 1174

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1175
		u64 partial_history_cycles, total_history_cycles;
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1201 1202 1203 1204
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1205 1206 1207 1208
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1209
 * NOTE: Users should be converted to using getnstimeofday()
1210 1211 1212
 */
void do_gettimeofday(struct timeval *tv)
{
1213
	struct timespec64 now;
1214

1215
	getnstimeofday64(&now);
1216 1217 1218 1219
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1220

1221
/**
1222 1223
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1224 1225 1226
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1227
int do_settimeofday64(const struct timespec64 *ts)
1228
{
1229
	struct timekeeper *tk = &tk_core.timekeeper;
1230
	struct timespec64 ts_delta, xt;
1231
	unsigned long flags;
1232
	int ret = 0;
1233

1234
	if (!timespec64_valid_strict(ts))
1235 1236
		return -EINVAL;

1237
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1238
	write_seqcount_begin(&tk_core.seq);
1239

1240
	timekeeping_forward_now(tk);
1241

1242
	xt = tk_xtime(tk);
1243 1244
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1245

1246 1247 1248 1249 1250
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1251
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1252

1253
	tk_set_xtime(tk, ts);
1254
out:
1255
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1256

1257
	write_seqcount_end(&tk_core.seq);
1258
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1259 1260 1261 1262

	/* signal hrtimers about time change */
	clock_was_set();

1263
	return ret;
1264
}
1265
EXPORT_SYMBOL(do_settimeofday64);
1266

1267 1268 1269 1270 1271 1272
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
1273
static int timekeeping_inject_offset(struct timespec64 *ts)
1274
{
1275
	struct timekeeper *tk = &tk_core.timekeeper;
1276
	unsigned long flags;
1277
	struct timespec64 tmp;
1278
	int ret = 0;
1279

1280
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1281 1282
		return -EINVAL;

1283
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1284
	write_seqcount_begin(&tk_core.seq);
1285

1286
	timekeeping_forward_now(tk);
1287

1288
	/* Make sure the proposed value is valid */
1289 1290
	tmp = timespec64_add(tk_xtime(tk), *ts);
	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1291
	    !timespec64_valid_strict(&tmp)) {
1292 1293 1294
		ret = -EINVAL;
		goto error;
	}
1295

1296 1297
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1298

1299
error: /* even if we error out, we forwarded the time, so call update */
1300
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1301

1302
	write_seqcount_end(&tk_core.seq);
1303
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1304 1305 1306 1307

	/* signal hrtimers about time change */
	clock_was_set();

1308
	return ret;
1309
}
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
1336
		struct timespec64 adjust;
1337 1338 1339 1340 1341 1342 1343

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}
1344

1345
/**
1346
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1347 1348
 *
 */
1349
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1350 1351
{
	tk->tai_offset = tai_offset;
1352
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1353 1354
}

1355 1356 1357 1358 1359
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1360
static int change_clocksource(void *data)
1361
{
1362
	struct timekeeper *tk = &tk_core.timekeeper;
1363
	struct clocksource *new, *old;
1364
	unsigned long flags;
1365

1366
	new = (struct clocksource *) data;
1367

1368
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1369
	write_seqcount_begin(&tk_core.seq);
1370

1371
	timekeeping_forward_now(tk);
1372 1373 1374 1375 1376 1377
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1378
			old = tk->tkr_mono.clock;
1379 1380 1381 1382 1383 1384 1385
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1386
	}
1387
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1388

1389
	write_seqcount_end(&tk_core.seq);
1390
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1391

1392 1393
	return 0;
}
1394

1395 1396 1397 1398 1399 1400 1401
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1402
int timekeeping_notify(struct clocksource *clock)
1403
{
1404
	struct timekeeper *tk = &tk_core.timekeeper;
1405

1406
	if (tk->tkr_mono.clock == clock)
1407
		return 0;
1408
	stop_machine(change_clocksource, clock, NULL);
1409
	tick_clock_notify();
1410
	return tk->tkr_mono.clock == clock ? 0 : -1;
1411
}
1412

1413
/**
1414
 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1415
 * @ts:		pointer to the timespec64 to be set
1416 1417 1418
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1419
void ktime_get_raw_ts64(struct timespec64 *ts)
1420
{
1421
	struct timekeeper *tk = &tk_core.timekeeper;
1422
	unsigned long seq;
1423
	u64 nsecs;
1424 1425

	do {
1426
		seq = read_seqcount_begin(&tk_core.seq);
1427
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1428
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1429

1430
	} while (read_seqcount_retry(&tk_core.seq, seq));
1431

1432 1433
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1434
}
1435
EXPORT_SYMBOL(ktime_get_raw_ts64);
1436

1437

1438
/**
1439
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1440
 */
1441
int timekeeping_valid_for_hres(void)
1442
{
1443
	struct timekeeper *tk = &tk_core.timekeeper;
1444 1445 1446 1447
	unsigned long seq;
	int ret;

	do {
1448
		seq = read_seqcount_begin(&tk_core.seq);
1449

1450
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1451

1452
	} while (read_seqcount_retry(&tk_core.seq, seq));
1453 1454 1455 1456

	return ret;
}

1457 1458 1459 1460 1461
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1462
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1463 1464
	unsigned long seq;
	u64 ret;
1465

J
John Stultz 已提交
1466
	do {
1467
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1468

1469
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1470

1471
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1472 1473

	return ret;
1474 1475
}

1476
/**
1477
 * read_persistent_clock -  Return time from the persistent clock.
1478 1479
 *
 * Weak dummy function for arches that do not yet support it.
1480 1481
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1482 1483 1484
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1485
void __weak read_persistent_clock(struct timespec *ts)
1486
{
1487 1488
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1489 1490
}

1491 1492 1493 1494 1495 1496 1497 1498
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1499
/**
1500 1501
 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
 *                                        from the boot.
1502 1503
 *
 * Weak dummy function for arches that do not yet support it.
1504 1505
 * wall_time	- current time as returned by persistent clock
 * boot_offset	- offset that is defined as wall_time - boot_time
1506 1507 1508 1509
 * The default function calculates offset based on the current value of
 * local_clock(). This way architectures that support sched_clock() but don't
 * support dedicated boot time clock will provide the best estimate of the
 * boot time.
1510
 */
1511 1512 1513
void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
				     struct timespec64 *boot_offset)
1514
{
1515
	read_persistent_clock64(wall_time);
1516
	*boot_offset = ns_to_timespec64(local_clock());
1517 1518
}

1519 1520 1521 1522 1523 1524
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1525 1526 1527 1528 1529
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1530
	struct timespec64 wall_time, boot_offset, wall_to_mono;
1531
	struct timekeeper *tk = &tk_core.timekeeper;
1532
	struct clocksource *clock;
1533
	unsigned long flags;
1534

1535 1536 1537 1538 1539 1540 1541
	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
	if (timespec64_valid_strict(&wall_time) &&
	    timespec64_to_ns(&wall_time) > 0) {
		persistent_clock_exists = true;
	} else {
		pr_warn("Persistent clock returned invalid value");
		wall_time = (struct timespec64){0};
1542
	}
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552
	if (timespec64_compare(&wall_time, &boot_offset) < 0)
		boot_offset = (struct timespec64){0};

	/*
	 * We want set wall_to_mono, so the following is true:
	 * wall time + wall_to_mono = boot time
	 */
	wall_to_mono = timespec64_sub(boot_offset, wall_time);

1553
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1554
	write_seqcount_begin(&tk_core.seq);
1555 1556
	ntp_init();

1557
	clock = clocksource_default_clock();
1558 1559
	if (clock->enable)
		clock->enable(clock);
1560
	tk_setup_internals(tk, clock);
1561

1562
	tk_set_xtime(tk, &wall_time);
1563
	tk->raw_sec = 0;
1564

1565
	tk_set_wall_to_mono(tk, wall_to_mono);
1566

1567
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1568

1569
	write_seqcount_end(&tk_core.seq);
1570
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1571 1572
}

1573
/* time in seconds when suspend began for persistent clock */
1574
static struct timespec64 timekeeping_suspend_time;
1575

1576 1577 1578 1579 1580 1581 1582
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1583
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1584
					   struct timespec64 *delta)
1585
{
1586
	if (!timespec64_valid_strict(delta)) {
1587 1588 1589
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1590 1591
		return;
	}
1592
	tk_xtime_add(tk, delta);
1593
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1594
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1595
	tk_debug_account_sleep_time(delta);
1596 1597
}

1598
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1634
/**
1635 1636
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1637
 *
1638
 * This hook is for architectures that cannot support read_persistent_clock64
1639
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1640
 * and also don't have an effective nonstop clocksource.
1641 1642 1643 1644
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1645
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1646
{
1647
	struct timekeeper *tk = &tk_core.timekeeper;
1648
	unsigned long flags;
1649

1650
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1651
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1652

1653
	timekeeping_forward_now(tk);
1654

1655
	__timekeeping_inject_sleeptime(tk, delta);
1656

1657
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1658

1659
	write_seqcount_end(&tk_core.seq);
1660
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1661 1662 1663 1664

	/* signal hrtimers about time change */
	clock_was_set();
}
1665
#endif
1666

1667 1668 1669
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1670
void timekeeping_resume(void)
1671
{
1672
	struct timekeeper *tk = &tk_core.timekeeper;
1673
	struct clocksource *clock = tk->tkr_mono.clock;
1674
	unsigned long flags;
1675
	struct timespec64 ts_new, ts_delta;
1676
	u64 cycle_now;
1677

1678
	sleeptime_injected = false;
1679
	read_persistent_clock64(&ts_new);
1680

1681
	clockevents_resume();
1682 1683
	clocksource_resume();

1684
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1685
	write_seqcount_begin(&tk_core.seq);
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1699
	cycle_now = tk_clock_read(&tk->tkr_mono);
1700
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1701
		cycle_now > tk->tkr_mono.cycle_last) {
1702
		u64 nsec, cyc_delta;
1703

1704 1705 1706
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
					      tk->tkr_mono.mask);
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1707
		ts_delta = ns_to_timespec64(nsec);
1708
		sleeptime_injected = true;
1709 1710
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1711
		sleeptime_injected = true;
1712
	}
1713

1714
	if (sleeptime_injected)
1715 1716 1717
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1718
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1719 1720
	tk->tkr_raw.cycle_last  = cycle_now;

1721
	tk->ntp_error = 0;
1722
	timekeeping_suspended = 0;
1723
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1724
	write_seqcount_end(&tk_core.seq);
1725
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1726 1727 1728

	touch_softlockup_watchdog();

1729
	tick_resume();
1730
	hrtimers_resume();
1731 1732
}

1733
int timekeeping_suspend(void)
1734
{
1735
	struct timekeeper *tk = &tk_core.timekeeper;
1736
	unsigned long flags;
1737 1738
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1739

1740
	read_persistent_clock64(&timekeeping_suspend_time);
1741

1742 1743 1744 1745 1746 1747
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1748
		persistent_clock_exists = true;
1749

1750
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1751
	write_seqcount_begin(&tk_core.seq);
1752
	timekeeping_forward_now(tk);
1753
	timekeeping_suspended = 1;
1754

1755
	if (persistent_clock_exists) {
1756
		/*
1757 1758 1759 1760
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1761
		 */
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1775
	}
1776 1777

	timekeeping_update(tk, TK_MIRROR);
1778
	halt_fast_timekeeper(tk);
1779
	write_seqcount_end(&tk_core.seq);
1780
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1781

1782
	tick_suspend();
M
Magnus Damm 已提交
1783
	clocksource_suspend();
1784
	clockevents_suspend();
1785 1786 1787 1788 1789

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1790
static struct syscore_ops timekeeping_syscore_ops = {
1791 1792 1793 1794
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1795
static int __init timekeeping_init_ops(void)
1796
{
1797 1798
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1799
}
1800
device_initcall(timekeeping_init_ops);
1801 1802

/*
1803
 * Apply a multiplier adjustment to the timekeeper
1804
 */
1805 1806
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
1807
							 s32 mult_adj)
1808
{
1809
	s64 interval = tk->cycle_interval;
1810

1811 1812 1813
	if (mult_adj == 0) {
		return;
	} else if (mult_adj == -1) {
1814
		interval = -interval;
1815 1816 1817 1818
		offset = -offset;
	} else if (mult_adj != 1) {
		interval *= mult_adj;
		offset *= mult_adj;
1819
	}
1820

1821 1822 1823
	/*
	 * So the following can be confusing.
	 *
1824
	 * To keep things simple, lets assume mult_adj == 1 for now.
1825
	 *
1826
	 * When mult_adj != 1, remember that the interval and offset values
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 */
1868
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1869 1870 1871 1872 1873
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1874
	tk->tkr_mono.mult += mult_adj;
1875
	tk->xtime_interval += interval;
1876
	tk->tkr_mono.xtime_nsec -= offset;
1877 1878 1879
}

/*
1880 1881
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
1882
 */
1883
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1884
{
1885
	u32 mult;
1886

1887
	/*
1888 1889
	 * Determine the multiplier from the current NTP tick length.
	 * Avoid expensive division when the tick length doesn't change.
1890
	 */
1891 1892 1893 1894 1895 1896
	if (likely(tk->ntp_tick == ntp_tick_length())) {
		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
	} else {
		tk->ntp_tick = ntp_tick_length();
		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
				 tk->xtime_remainder, tk->cycle_interval);
1897
	}
1898

1899 1900 1901 1902 1903 1904 1905 1906
	/*
	 * If the clock is behind the NTP time, increase the multiplier by 1
	 * to catch up with it. If it's ahead and there was a remainder in the
	 * tick division, the clock will slow down. Otherwise it will stay
	 * ahead until the tick length changes to a non-divisible value.
	 */
	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
	mult += tk->ntp_err_mult;
1907

1908
	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1909

1910 1911 1912
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1913 1914
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1915 1916
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1917
	}
1918 1919 1920 1921 1922 1923 1924

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
1925 1926 1927
	 * Now, since we have already accumulated the second and the NTP
	 * subsystem has been notified via second_overflow(), we need to skip
	 * the next update.
1928
	 */
1929
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1930 1931 1932 1933
		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
							tk->tkr_mono.shift;
		tk->xtime_sec--;
		tk->skip_second_overflow = 1;
1934
	}
1935 1936
}

1937 1938 1939
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1940
 * Helper function that accumulates the nsecs greater than a second
1941 1942 1943 1944
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1945
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1946
{
1947
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1948
	unsigned int clock_set = 0;
1949

1950
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1951 1952
		int leap;

1953
		tk->tkr_mono.xtime_nsec -= nsecps;
1954 1955
		tk->xtime_sec++;

1956 1957 1958 1959 1960 1961 1962 1963 1964
		/*
		 * Skip NTP update if this second was accumulated before,
		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
		 */
		if (unlikely(tk->skip_second_overflow)) {
			tk->skip_second_overflow = 0;
			continue;
		}

1965 1966
		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1967
		if (unlikely(leap)) {
1968
			struct timespec64 ts;
1969 1970

			tk->xtime_sec += leap;
1971

1972 1973 1974
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1975
				timespec64_sub(tk->wall_to_monotonic, ts));
1976

1977 1978
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1979
			clock_set = TK_CLOCK_WAS_SET;
1980
		}
1981
	}
1982
	return clock_set;
1983 1984
}

1985 1986 1987 1988 1989 1990 1991 1992 1993
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1994 1995
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
1996
{
1997
	u64 interval = tk->cycle_interval << shift;
1998
	u64 snsec_per_sec;
1999

Z
Zhen Lei 已提交
2000
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2001
	if (offset < interval)
2002 2003 2004
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2005
	offset -= interval;
2006
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2007
	tk->tkr_raw.cycle_last  += interval;
2008

2009
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2010
	*clock_set |= accumulate_nsecs_to_secs(tk);
2011

2012
	/* Accumulate raw time */
2013 2014 2015 2016
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2017
		tk->raw_sec++;
2018 2019 2020
	}

	/* Accumulate error between NTP and clock interval */
2021
	tk->ntp_error += tk->ntp_tick << shift;
2022 2023
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2024 2025 2026 2027

	return offset;
}

2028 2029 2030 2031
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2032
void update_wall_time(void)
2033
{
2034
	struct timekeeper *real_tk = &tk_core.timekeeper;
2035
	struct timekeeper *tk = &shadow_timekeeper;
2036
	u64 offset;
2037
	int shift = 0, maxshift;
2038
	unsigned int clock_set = 0;
J
John Stultz 已提交
2039 2040
	unsigned long flags;

2041
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2042 2043 2044

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2045
		goto out;
2046

J
John Stultz 已提交
2047
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2048
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2049
#else
2050
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2051
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2052 2053
#endif

2054
	/* Check if there's really nothing to do */
2055
	if (offset < real_tk->cycle_interval)
2056 2057
		goto out;

2058
	/* Do some additional sanity checking */
2059
	timekeeping_check_update(tk, offset);
2060

2061 2062 2063 2064
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2065
	 * that is smaller than the offset.  We then accumulate that
2066 2067
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2068
	 */
2069
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2070
	shift = max(0, shift);
2071
	/* Bound shift to one less than what overflows tick_length */
2072
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2073
	shift = min(shift, maxshift);
2074
	while (offset >= tk->cycle_interval) {
2075 2076
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2077
		if (offset < tk->cycle_interval<<shift)
2078
			shift--;
2079 2080
	}

2081
	/* Adjust the multiplier to correct NTP error */
2082
	timekeeping_adjust(tk, offset);
2083

J
John Stultz 已提交
2084 2085
	/*
	 * Finally, make sure that after the rounding
2086
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2087
	 */
2088
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2089

2090
	write_seqcount_begin(&tk_core.seq);
2091 2092 2093 2094 2095 2096 2097
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2098
	 * memcpy under the tk_core.seq against one before we start
2099 2100
	 * updating.
	 */
2101
	timekeeping_update(tk, clock_set);
2102
	memcpy(real_tk, tk, sizeof(*tk));
2103
	/* The memcpy must come last. Do not put anything here! */
2104
	write_seqcount_end(&tk_core.seq);
2105
out:
2106
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2107
	if (clock_set)
2108 2109
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2110
}
T
Tomas Janousek 已提交
2111 2112

/**
2113 2114
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2115
 *
2116
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2117 2118 2119 2120 2121 2122
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2123
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2124
{
2125
	struct timekeeper *tk = &tk_core.timekeeper;
2126
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2127

2128
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2129
}
2130
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2131

2132 2133
unsigned long get_seconds(void)
{
2134
	struct timekeeper *tk = &tk_core.timekeeper;
2135 2136

	return tk->xtime_sec;
2137 2138 2139
}
EXPORT_SYMBOL(get_seconds);

2140
void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2141
{
2142
	struct timekeeper *tk = &tk_core.timekeeper;
2143 2144 2145
	unsigned long seq;

	do {
2146
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2147

2148
		*ts = tk_xtime(tk);
2149
	} while (read_seqcount_retry(&tk_core.seq, seq));
2150
}
2151
EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2152

2153
void ktime_get_coarse_ts64(struct timespec64 *ts)
2154
{
2155
	struct timekeeper *tk = &tk_core.timekeeper;
2156
	struct timespec64 now, mono;
2157 2158 2159
	unsigned long seq;

	do {
2160
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2161

2162 2163
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2164
	} while (read_seqcount_retry(&tk_core.seq, seq));
2165

2166
	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2167 2168
				now.tv_nsec + mono.tv_nsec);
}
2169
EXPORT_SYMBOL(ktime_get_coarse_ts64);
2170 2171

/*
2172
 * Must hold jiffies_lock
2173 2174 2175 2176 2177 2178
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2179

2180
/**
2181
 * ktime_get_update_offsets_now - hrtimer helper
2182
 * @cwsseq:	pointer to check and store the clock was set sequence number
2183
 * @offs_real:	pointer to storage for monotonic -> realtime offset
2184
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2185
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2186
 *
2187 2188 2189 2190
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2191
 * Called from hrtimer_interrupt() or retrigger_next_event()
2192
 */
2193
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2194
				     ktime_t *offs_boot, ktime_t *offs_tai)
2195
{
2196
	struct timekeeper *tk = &tk_core.timekeeper;
2197
	unsigned int seq;
2198 2199
	ktime_t base;
	u64 nsecs;
2200 2201

	do {
2202
		seq = read_seqcount_begin(&tk_core.seq);
2203

2204 2205
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2206 2207
		base = ktime_add_ns(base, nsecs);

2208 2209 2210
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
2211
			*offs_boot = tk->offs_boot;
2212 2213
			*offs_tai = tk->offs_tai;
		}
2214 2215

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2216
		if (unlikely(base >= tk->next_leap_ktime))
2217 2218
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2219
	} while (read_seqcount_retry(&tk_core.seq, seq));
2220

2221
	return base;
2222 2223
}

2224
/**
2225
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2226
 */
2227
static int timekeeping_validate_timex(struct timex *txc)
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		/*
		 * Validate if a timespec/timeval used to inject a time
		 * offset is valid.  Offsets can be postive or negative, so
		 * we don't check tv_sec. The value of the timeval/timespec
		 * is the sum of its fields,but *NOTE*:
		 * The field tv_usec/tv_nsec must always be non-negative and
		 * we can't have more nanoseconds/microseconds than a second.
		 */
		if (txc->time.tv_usec < 0)
			return -EINVAL;
2265

2266 2267
		if (txc->modes & ADJ_NANO) {
			if (txc->time.tv_usec >= NSEC_PER_SEC)
2268 2269
				return -EINVAL;
		} else {
2270
			if (txc->time.tv_usec >= USEC_PER_SEC)
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}


2290 2291 2292 2293 2294
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2295
	struct timekeeper *tk = &tk_core.timekeeper;
2296
	unsigned long flags;
2297
	struct timespec64 ts;
2298
	s32 orig_tai, tai;
2299 2300 2301
	int ret;

	/* Validate the data before disabling interrupts */
2302
	ret = timekeeping_validate_timex(txc);
2303 2304 2305
	if (ret)
		return ret;

2306
	if (txc->modes & ADJ_SETOFFSET) {
2307
		struct timespec64 delta;
2308 2309 2310 2311 2312 2313 2314 2315 2316
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2317
	getnstimeofday64(&ts);
2318

2319
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2320
	write_seqcount_begin(&tk_core.seq);
2321

2322
	orig_tai = tai = tk->tai_offset;
2323
	ret = __do_adjtimex(txc, &ts, &tai);
2324

2325 2326
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2327
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2328
	}
2329 2330
	tk_update_leap_state(tk);

2331
	write_seqcount_end(&tk_core.seq);
2332 2333
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2334 2335 2336
	if (tai != orig_tai)
		clock_was_set();

2337 2338
	ntp_notify_cmos_timer();

2339 2340
	return ret;
}
2341 2342 2343 2344 2345

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2346
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2347
{
2348 2349 2350
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2351
	write_seqcount_begin(&tk_core.seq);
2352

2353
	__hardpps(phase_ts, raw_ts);
2354

2355
	write_seqcount_end(&tk_core.seq);
2356
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2357 2358
}
EXPORT_SYMBOL(hardpps);
2359
#endif /* CONFIG_NTP_PPS */
2360

T
Torben Hohn 已提交
2361 2362 2363 2364 2365 2366 2367 2368
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2369
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2370
	do_timer(ticks);
2371
	write_sequnlock(&jiffies_lock);
2372
	update_wall_time();
T
Torben Hohn 已提交
2373
}