timekeeping.c 65.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/syscore_ops.h>
21 22 23 24
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
25
#include <linux/stop_machine.h>
26
#include <linux/pvclock_gtod.h>
27
#include <linux/compiler.h>
28

29
#include "tick-internal.h"
30
#include "ntp_internal.h"
31
#include "timekeeping_internal.h"
32

33 34
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
35
#define TK_CLOCK_WAS_SET	(1 << 2)
36

37 38 39 40 41 42 43 44
enum timekeeping_adv_mode {
	/* Update timekeeper when a tick has passed */
	TK_ADV_TICK,

	/* Update timekeeper on a direct frequency change */
	TK_ADV_FREQ
};

45 46 47 48 49 50 51 52 53
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

54
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
55
static struct timekeeper shadow_timekeeper;
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};
92

93 94 95
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

96 97
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
98 99
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
100 101
		tk->xtime_sec++;
	}
102 103 104 105
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
106 107
}

108 109 110 111 112
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
113
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
114 115 116
	return ts;
}

117
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
118 119
{
	tk->xtime_sec = ts->tv_sec;
120
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
121 122
}

123
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
124 125
{
	tk->xtime_sec += ts->tv_sec;
126
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
127
	tk_normalize_xtime(tk);
128
}
129

130
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
131
{
132
	struct timespec64 tmp;
133 134 135 136 137

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
138
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
139
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
140
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
141
	tk->wall_to_monotonic = wtm;
142 143
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
144
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
145 146
}

147
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
148
{
149
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
150 151
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
static inline u64 tk_clock_read(struct tk_read_base *tkr)
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

172
#ifdef CONFIG_DEBUG_TIMEKEEPING
173 174
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

175
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
176 177
{

178
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
179
	const char *name = tk->tkr_mono.clock->name;
180 181

	if (offset > max_cycles) {
182
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
183
				offset, name, max_cycles);
184
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
185 186
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
187
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
188 189 190 191
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
192

193 194
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
195 196 197
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
198
			tk->last_warning = jiffies;
199
		}
200
		tk->underflow_seen = 0;
201 202
	}

203 204
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
205 206 207
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
208
			tk->last_warning = jiffies;
209
		}
210
		tk->overflow_seen = 0;
211
	}
212
}
213

214
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
215
{
216
	struct timekeeper *tk = &tk_core.timekeeper;
217
	u64 now, last, mask, max, delta;
218
	unsigned int seq;
219

220 221 222 223 224 225 226 227 228
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
229
		now = tk_clock_read(tkr);
230 231 232 233
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
234

235
	delta = clocksource_delta(now, last, mask);
236

237 238 239 240
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
241
	if (unlikely((~delta & mask) < (mask >> 3))) {
242
		tk->underflow_seen = 1;
243
		delta = 0;
244
	}
245

246
	/* Cap delta value to the max_cycles values to avoid mult overflows */
247
	if (unlikely(delta > max)) {
248
		tk->overflow_seen = 1;
249
		delta = tkr->clock->max_cycles;
250
	}
251 252 253

	return delta;
}
254
#else
255
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
256 257
{
}
258
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
259
{
260
	u64 cycle_now, delta;
261 262

	/* read clocksource */
263
	cycle_now = tk_clock_read(tkr);
264 265 266 267 268 269

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
270 271
#endif

272
/**
273
 * tk_setup_internals - Set up internals to use clocksource clock.
274
 *
275
 * @tk:		The target timekeeper to setup.
276 277 278 279 280 281 282
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
283
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
284
{
285
	u64 interval;
286
	u64 tmp, ntpinterval;
287
	struct clocksource *old_clock;
288

289
	++tk->cs_was_changed_seq;
290 291 292
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
293
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
294

P
Peter Zijlstra 已提交
295 296 297 298
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

299 300 301
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
302
	ntpinterval = tmp;
303 304
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
305 306 307
	if (tmp == 0)
		tmp = 1;

308
	interval = (u64) tmp;
309
	tk->cycle_interval = interval;
310 311

	/* Go back from cycles -> shifted ns */
312
	tk->xtime_interval = interval * clock->mult;
313
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
314
	tk->raw_interval = interval * clock->mult;
315

316 317 318
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
319
		if (shift_change < 0) {
320
			tk->tkr_mono.xtime_nsec >>= -shift_change;
321 322
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
323
			tk->tkr_mono.xtime_nsec <<= shift_change;
324 325
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
326
	}
P
Peter Zijlstra 已提交
327

328
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
329
	tk->tkr_raw.shift = clock->shift;
330

331 332
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
333
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
334 335 336 337 338 339

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
340
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
341
	tk->tkr_raw.mult = clock->mult;
342
	tk->ntp_err_mult = 0;
343
	tk->skip_second_overflow = 0;
344
}
345

346
/* Timekeeper helper functions. */
347 348

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
349 350
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
351
#else
352
static inline u32 arch_gettimeoffset(void) { return 0; }
353 354
#endif

355
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
356
{
357
	u64 nsec;
358 359 360 361 362 363 364 365

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

366
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
367
{
368
	u64 delta;
369

370
	delta = timekeeping_get_delta(tkr);
371 372
	return timekeeping_delta_to_ns(tkr, delta);
}
373

374
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
375
{
376
	u64 delta;
377

378 379 380
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
381 382
}

383 384
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
385
 * @tkr: Timekeeping readout base from which we take the update
386 387 388 389
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
390
 * Employ the latch technique; see @raw_write_seqcount_latch.
391 392 393 394 395 396
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
397
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
398
{
399
	struct tk_read_base *base = tkf->base;
400 401

	/* Force readers off to base[1] */
402
	raw_write_seqcount_latch(&tkf->seq);
403 404

	/* Update base[0] */
405
	memcpy(base, tkr, sizeof(*base));
406 407

	/* Force readers back to base[0] */
408
	raw_write_seqcount_latch(&tkf->seq);
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
446
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
447 448 449 450 451 452
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
453
		seq = raw_read_seqcount_latch(&tkf->seq);
454
		tkr = tkf->base + (seq & 0x01);
455 456
		now = ktime_to_ns(tkr->base);

457 458
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
459
					tk_clock_read(tkr),
460 461
					tkr->cycle_last,
					tkr->mask));
462
	} while (read_seqcount_retry(&tkf->seq, seq));
463 464 465

	return now;
}
466 467 468 469 470

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
471 472
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
473 474 475 476 477 478
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);


509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
/*
 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 */
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_real);

		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tk_clock_read(tkr),
					tkr->cycle_last,
					tkr->mask));
	} while (read_seqcount_retry(&tkf->seq, seq));

	return now;
}

/**
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 */
u64 ktime_get_real_fast_ns(void)
{
	return __ktime_get_real_fast_ns(&tk_fast_mono);
}
540
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
541

542 543 544 545 546 547 548 549 550 551 552 553 554
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
555
	struct tk_read_base *tkr = &tk->tkr_mono;
556 557

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
558 559
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
560
	tkr_dummy.base_real = tkr->base + tk->offs_real;
561
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
562 563 564

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
565
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
566
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
567 568
}

569 570
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

571
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
572
{
573
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
574 575 576 577 578 579 580
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
581
	struct timekeeper *tk = &tk_core.timekeeper;
582 583 584
	unsigned long flags;
	int ret;

585
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
586
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
587
	update_pvclock_gtod(tk, true);
588
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
589 590 591 592 593 594 595 596 597 598 599 600 601 602

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

603
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
604
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
605
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
606 607 608 609 610

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

611 612 613 614 615 616
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
617
	if (tk->next_leap_ktime != KTIME_MAX)
618 619 620 621
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

622 623 624 625 626
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
627 628
	u64 seconds;
	u32 nsec;
629 630 631 632 633 634 635 636

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
637 638
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
639
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
640

641 642 643 644 645
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
646
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
647 648 649
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
650 651

	/* Update the monotonic raw base */
652
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
653 654
}

655
/* must hold timekeeper_lock */
656
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
657
{
658
	if (action & TK_CLEAR_NTP) {
659
		tk->ntp_error = 0;
660 661
		ntp_clear();
	}
662

663
	tk_update_leap_state(tk);
664 665
	tk_update_ktime_data(tk);

666 667 668
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

669
	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
670
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
671
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
672 673 674

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
675 676 677 678 679 680 681 682
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
683 684
}

685
/**
686
 * timekeeping_forward_now - update clock to the current time
687
 *
688 689 690
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
691
 */
692
static void timekeeping_forward_now(struct timekeeper *tk)
693
{
694
	u64 cycle_now, delta;
695

696
	cycle_now = tk_clock_read(&tk->tkr_mono);
697 698
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
699
	tk->tkr_raw.cycle_last  = cycle_now;
700

701
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
702

703
	/* If arch requires, add in get_arch_timeoffset() */
704
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
705

706

707 708 709 710 711 712
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
713 714 715
}

/**
716
 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
717 718
 * @ts:		pointer to the timespec to be set
 *
719
 * Returns the time of day in a timespec64 (WARN if suspended).
720
 */
721
void ktime_get_real_ts64(struct timespec64 *ts)
722
{
723
	struct timekeeper *tk = &tk_core.timekeeper;
724
	unsigned long seq;
725
	u64 nsecs;
726

727 728
	WARN_ON(timekeeping_suspended);

729
	do {
730
		seq = read_seqcount_begin(&tk_core.seq);
731

732
		ts->tv_sec = tk->xtime_sec;
733
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
734

735
	} while (read_seqcount_retry(&tk_core.seq, seq));
736

737
	ts->tv_nsec = 0;
738
	timespec64_add_ns(ts, nsecs);
739
}
740
EXPORT_SYMBOL(ktime_get_real_ts64);
741

742 743
ktime_t ktime_get(void)
{
744
	struct timekeeper *tk = &tk_core.timekeeper;
745
	unsigned int seq;
746
	ktime_t base;
747
	u64 nsecs;
748 749 750 751

	WARN_ON(timekeeping_suspended);

	do {
752
		seq = read_seqcount_begin(&tk_core.seq);
753 754
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
755

756
	} while (read_seqcount_retry(&tk_core.seq, seq));
757

758
	return ktime_add_ns(base, nsecs);
759 760 761
}
EXPORT_SYMBOL_GPL(ktime_get);

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

779 780
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
781
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
782 783 784 785 786 787 788 789
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
790
	u64 nsecs;
791 792 793 794 795

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
796 797
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
798 799 800 801 802 803 804 805

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = ktime_add(tk->tkr_mono.base, *offset);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return base;

}
EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

845 846 847 848 849 850 851 852
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
853
	u64 nsecs;
854 855 856

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
857 858
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
859 860 861 862 863 864 865

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

866
/**
867
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
868 869 870 871
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
872
 * in normalized timespec64 format in the variable pointed to by @ts.
873
 */
874
void ktime_get_ts64(struct timespec64 *ts)
875
{
876
	struct timekeeper *tk = &tk_core.timekeeper;
877
	struct timespec64 tomono;
878
	unsigned int seq;
879
	u64 nsec;
880 881 882 883

	WARN_ON(timekeeping_suspended);

	do {
884
		seq = read_seqcount_begin(&tk_core.seq);
885
		ts->tv_sec = tk->xtime_sec;
886
		nsec = timekeeping_get_ns(&tk->tkr_mono);
887
		tomono = tk->wall_to_monotonic;
888

889
	} while (read_seqcount_retry(&tk_core.seq, seq));
890

891 892 893
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
894
}
895
EXPORT_SYMBOL_GPL(ktime_get_ts64);
896

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

945 946 947 948 949 950 951 952 953 954 955 956
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

957 958 959 960 961 962 963 964 965 966
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
967 968
	u64 nsec_raw;
	u64 nsec_real;
969
	u64 now;
970

971 972
	WARN_ON_ONCE(timekeeping_suspended);

973 974
	do {
		seq = read_seqcount_begin(&tk_core.seq);
975
		now = tk_clock_read(&tk->tkr_mono);
976 977
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
978 979 980 981 982 983 984 985 986 987 988 989
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
990

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1027 1028
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1041
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1091
static bool cycle_between(u64 before, u64 test, u64 after)
1092 1093 1094 1095 1096 1097 1098 1099
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1100 1101
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1102
 * @get_time_fn:	Callback to get simultaneous device time and
1103
 *	system counter from the device driver
1104 1105 1106
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1107 1108 1109 1110 1111 1112 1113 1114 1115
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1116
				  struct system_time_snapshot *history_begin,
1117 1118 1119 1120
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1121
	u64 cycles, now, interval_start;
1122
	unsigned int clock_was_set_seq = 0;
1123
	ktime_t base_real, base_raw;
1124
	u64 nsec_real, nsec_raw;
1125
	u8 cs_was_changed_seq;
1126
	unsigned long seq;
1127
	bool do_interp;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1147 1148 1149 1150 1151 1152
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1153
		now = tk_clock_read(&tk->tkr_mono);
1154 1155 1156 1157 1158 1159 1160 1161 1162
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1176 1177 1178 1179 1180 1181

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1182
		u64 partial_history_cycles, total_history_cycles;
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1208 1209 1210 1211
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1212 1213 1214 1215
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1216
 * NOTE: Users should be converted to using getnstimeofday()
1217 1218 1219
 */
void do_gettimeofday(struct timeval *tv)
{
1220
	struct timespec64 now;
1221

1222
	getnstimeofday64(&now);
1223 1224 1225 1226
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1227

1228
/**
1229 1230
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1231 1232 1233
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1234
int do_settimeofday64(const struct timespec64 *ts)
1235
{
1236
	struct timekeeper *tk = &tk_core.timekeeper;
1237
	struct timespec64 ts_delta, xt;
1238
	unsigned long flags;
1239
	int ret = 0;
1240

1241
	if (!timespec64_valid_strict(ts))
1242 1243
		return -EINVAL;

1244
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1245
	write_seqcount_begin(&tk_core.seq);
1246

1247
	timekeeping_forward_now(tk);
1248

1249
	xt = tk_xtime(tk);
1250 1251
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1252

1253 1254 1255 1256 1257
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1258
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1259

1260
	tk_set_xtime(tk, ts);
1261
out:
1262
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1263

1264
	write_seqcount_end(&tk_core.seq);
1265
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1266 1267 1268 1269

	/* signal hrtimers about time change */
	clock_was_set();

1270
	return ret;
1271
}
1272
EXPORT_SYMBOL(do_settimeofday64);
1273

1274 1275 1276 1277 1278 1279
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
1280
static int timekeeping_inject_offset(struct timespec64 *ts)
1281
{
1282
	struct timekeeper *tk = &tk_core.timekeeper;
1283
	unsigned long flags;
1284
	struct timespec64 tmp;
1285
	int ret = 0;
1286

1287
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1288 1289
		return -EINVAL;

1290
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1291
	write_seqcount_begin(&tk_core.seq);
1292

1293
	timekeeping_forward_now(tk);
1294

1295
	/* Make sure the proposed value is valid */
1296 1297
	tmp = timespec64_add(tk_xtime(tk), *ts);
	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1298
	    !timespec64_valid_strict(&tmp)) {
1299 1300 1301
		ret = -EINVAL;
		goto error;
	}
1302

1303 1304
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1305

1306
error: /* even if we error out, we forwarded the time, so call update */
1307
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1308

1309
	write_seqcount_end(&tk_core.seq);
1310
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1311 1312 1313 1314

	/* signal hrtimers about time change */
	clock_was_set();

1315
	return ret;
1316
}
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
1343
		struct timespec64 adjust;
1344 1345 1346 1347 1348 1349 1350

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}
1351

1352
/**
1353
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1354 1355
 *
 */
1356
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1357 1358
{
	tk->tai_offset = tai_offset;
1359
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1360 1361
}

1362 1363 1364 1365 1366
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1367
static int change_clocksource(void *data)
1368
{
1369
	struct timekeeper *tk = &tk_core.timekeeper;
1370
	struct clocksource *new, *old;
1371
	unsigned long flags;
1372

1373
	new = (struct clocksource *) data;
1374

1375
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1376
	write_seqcount_begin(&tk_core.seq);
1377

1378
	timekeeping_forward_now(tk);
1379 1380 1381 1382 1383 1384
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1385
			old = tk->tkr_mono.clock;
1386 1387 1388 1389 1390 1391 1392
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1393
	}
1394
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1395

1396
	write_seqcount_end(&tk_core.seq);
1397
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1398

1399 1400
	return 0;
}
1401

1402 1403 1404 1405 1406 1407 1408
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1409
int timekeeping_notify(struct clocksource *clock)
1410
{
1411
	struct timekeeper *tk = &tk_core.timekeeper;
1412

1413
	if (tk->tkr_mono.clock == clock)
1414
		return 0;
1415
	stop_machine(change_clocksource, clock, NULL);
1416
	tick_clock_notify();
1417
	return tk->tkr_mono.clock == clock ? 0 : -1;
1418
}
1419

1420
/**
1421
 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1422
 * @ts:		pointer to the timespec64 to be set
1423 1424 1425
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1426
void ktime_get_raw_ts64(struct timespec64 *ts)
1427
{
1428
	struct timekeeper *tk = &tk_core.timekeeper;
1429
	unsigned long seq;
1430
	u64 nsecs;
1431 1432

	do {
1433
		seq = read_seqcount_begin(&tk_core.seq);
1434
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1435
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1436

1437
	} while (read_seqcount_retry(&tk_core.seq, seq));
1438

1439 1440
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1441
}
1442
EXPORT_SYMBOL(ktime_get_raw_ts64);
1443

1444

1445
/**
1446
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1447
 */
1448
int timekeeping_valid_for_hres(void)
1449
{
1450
	struct timekeeper *tk = &tk_core.timekeeper;
1451 1452 1453 1454
	unsigned long seq;
	int ret;

	do {
1455
		seq = read_seqcount_begin(&tk_core.seq);
1456

1457
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1458

1459
	} while (read_seqcount_retry(&tk_core.seq, seq));
1460 1461 1462 1463

	return ret;
}

1464 1465 1466 1467 1468
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1469
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1470 1471
	unsigned long seq;
	u64 ret;
1472

J
John Stultz 已提交
1473
	do {
1474
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1475

1476
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1477

1478
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1479 1480

	return ret;
1481 1482
}

1483
/**
1484
 * read_persistent_clock -  Return time from the persistent clock.
1485 1486
 *
 * Weak dummy function for arches that do not yet support it.
1487 1488
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1489 1490 1491
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1492
void __weak read_persistent_clock(struct timespec *ts)
1493
{
1494 1495
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1496 1497
}

1498 1499 1500 1501 1502 1503 1504 1505
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1506
/**
X
Xunlei Pang 已提交
1507
 * read_boot_clock64 -  Return time of the system start.
1508 1509 1510
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1511
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1512 1513 1514
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1515
void __weak read_boot_clock64(struct timespec64 *ts)
1516 1517 1518 1519 1520
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1521 1522 1523 1524 1525 1526
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1527 1528 1529 1530 1531
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1532
	struct timekeeper *tk = &tk_core.timekeeper;
1533
	struct clocksource *clock;
1534
	unsigned long flags;
1535
	struct timespec64 now, boot, tmp;
1536

1537
	read_persistent_clock64(&now);
1538
	if (!timespec64_valid_strict(&now)) {
1539 1540 1541 1542
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1543
	} else if (now.tv_sec || now.tv_nsec)
1544
		persistent_clock_exists = true;
1545

1546
	read_boot_clock64(&boot);
1547
	if (!timespec64_valid_strict(&boot)) {
1548 1549 1550 1551 1552
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1553

1554
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1555
	write_seqcount_begin(&tk_core.seq);
1556 1557
	ntp_init();

1558
	clock = clocksource_default_clock();
1559 1560
	if (clock->enable)
		clock->enable(clock);
1561
	tk_setup_internals(tk, clock);
1562

1563
	tk_set_xtime(tk, &now);
1564
	tk->raw_sec = 0;
1565
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1566
		boot = tk_xtime(tk);
1567

1568
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1569
	tk_set_wall_to_mono(tk, tmp);
1570

1571
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1572

1573
	write_seqcount_end(&tk_core.seq);
1574
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1575 1576
}

1577
/* time in seconds when suspend began for persistent clock */
1578
static struct timespec64 timekeeping_suspend_time;
1579

1580 1581 1582 1583 1584 1585 1586
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1587
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1588
					   struct timespec64 *delta)
1589
{
1590
	if (!timespec64_valid_strict(delta)) {
1591 1592 1593
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1594 1595
		return;
	}
1596
	tk_xtime_add(tk, delta);
1597
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1598
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1599
	tk_debug_account_sleep_time(delta);
1600 1601
}

1602
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1638
/**
1639 1640
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1641
 *
1642
 * This hook is for architectures that cannot support read_persistent_clock64
1643
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1644
 * and also don't have an effective nonstop clocksource.
1645 1646 1647 1648
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1649
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1650
{
1651
	struct timekeeper *tk = &tk_core.timekeeper;
1652
	unsigned long flags;
1653

1654
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1655
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1656

1657
	timekeeping_forward_now(tk);
1658

1659
	__timekeeping_inject_sleeptime(tk, delta);
1660

1661
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1662

1663
	write_seqcount_end(&tk_core.seq);
1664
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1665 1666 1667 1668

	/* signal hrtimers about time change */
	clock_was_set();
}
1669
#endif
1670

1671 1672 1673
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1674
void timekeeping_resume(void)
1675
{
1676
	struct timekeeper *tk = &tk_core.timekeeper;
1677
	struct clocksource *clock = tk->tkr_mono.clock;
1678
	unsigned long flags;
1679
	struct timespec64 ts_new, ts_delta;
1680
	u64 cycle_now;
1681

1682
	sleeptime_injected = false;
1683
	read_persistent_clock64(&ts_new);
1684

1685
	clockevents_resume();
1686 1687
	clocksource_resume();

1688
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1689
	write_seqcount_begin(&tk_core.seq);
1690

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1703
	cycle_now = tk_clock_read(&tk->tkr_mono);
1704
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1705
		cycle_now > tk->tkr_mono.cycle_last) {
1706
		u64 nsec, cyc_delta;
1707

1708 1709 1710
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
					      tk->tkr_mono.mask);
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1711
		ts_delta = ns_to_timespec64(nsec);
1712
		sleeptime_injected = true;
1713 1714
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1715
		sleeptime_injected = true;
1716
	}
1717

1718
	if (sleeptime_injected)
1719 1720 1721
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1722
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1723 1724
	tk->tkr_raw.cycle_last  = cycle_now;

1725
	tk->ntp_error = 0;
1726
	timekeeping_suspended = 0;
1727
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1728
	write_seqcount_end(&tk_core.seq);
1729
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1730 1731 1732

	touch_softlockup_watchdog();

1733
	tick_resume();
1734
	hrtimers_resume();
1735 1736
}

1737
int timekeeping_suspend(void)
1738
{
1739
	struct timekeeper *tk = &tk_core.timekeeper;
1740
	unsigned long flags;
1741 1742
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1743

1744
	read_persistent_clock64(&timekeeping_suspend_time);
1745

1746 1747 1748 1749 1750 1751
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1752
		persistent_clock_exists = true;
1753

1754
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1755
	write_seqcount_begin(&tk_core.seq);
1756
	timekeeping_forward_now(tk);
1757
	timekeeping_suspended = 1;
1758

1759
	if (persistent_clock_exists) {
1760
		/*
1761 1762 1763 1764
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1765
		 */
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1779
	}
1780 1781

	timekeeping_update(tk, TK_MIRROR);
1782
	halt_fast_timekeeper(tk);
1783
	write_seqcount_end(&tk_core.seq);
1784
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1785

1786
	tick_suspend();
M
Magnus Damm 已提交
1787
	clocksource_suspend();
1788
	clockevents_suspend();
1789 1790 1791 1792 1793

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1794
static struct syscore_ops timekeeping_syscore_ops = {
1795 1796 1797 1798
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1799
static int __init timekeeping_init_ops(void)
1800
{
1801 1802
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1803
}
1804
device_initcall(timekeeping_init_ops);
1805 1806

/*
1807
 * Apply a multiplier adjustment to the timekeeper
1808
 */
1809 1810
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
1811
							 s32 mult_adj)
1812
{
1813
	s64 interval = tk->cycle_interval;
1814

1815 1816 1817
	if (mult_adj == 0) {
		return;
	} else if (mult_adj == -1) {
1818
		interval = -interval;
1819 1820 1821 1822
		offset = -offset;
	} else if (mult_adj != 1) {
		interval *= mult_adj;
		offset *= mult_adj;
1823
	}
1824

1825 1826 1827
	/*
	 * So the following can be confusing.
	 *
1828
	 * To keep things simple, lets assume mult_adj == 1 for now.
1829
	 *
1830
	 * When mult_adj != 1, remember that the interval and offset values
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 */
1872
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1873 1874 1875 1876 1877
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1878
	tk->tkr_mono.mult += mult_adj;
1879
	tk->xtime_interval += interval;
1880
	tk->tkr_mono.xtime_nsec -= offset;
1881 1882 1883
}

/*
1884 1885
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
1886
 */
1887
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1888
{
1889
	u32 mult;
1890

1891
	/*
1892 1893
	 * Determine the multiplier from the current NTP tick length.
	 * Avoid expensive division when the tick length doesn't change.
1894
	 */
1895 1896 1897 1898 1899 1900
	if (likely(tk->ntp_tick == ntp_tick_length())) {
		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
	} else {
		tk->ntp_tick = ntp_tick_length();
		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
				 tk->xtime_remainder, tk->cycle_interval);
1901
	}
1902

1903 1904 1905 1906 1907 1908 1909 1910
	/*
	 * If the clock is behind the NTP time, increase the multiplier by 1
	 * to catch up with it. If it's ahead and there was a remainder in the
	 * tick division, the clock will slow down. Otherwise it will stay
	 * ahead until the tick length changes to a non-divisible value.
	 */
	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
	mult += tk->ntp_err_mult;
1911

1912
	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1913

1914 1915 1916
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1917 1918
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1919 1920
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1921
	}
1922 1923 1924 1925 1926 1927 1928

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
1929 1930 1931
	 * Now, since we have already accumulated the second and the NTP
	 * subsystem has been notified via second_overflow(), we need to skip
	 * the next update.
1932
	 */
1933
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1934 1935 1936 1937
		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
							tk->tkr_mono.shift;
		tk->xtime_sec--;
		tk->skip_second_overflow = 1;
1938
	}
1939 1940
}

1941 1942 1943
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1944
 * Helper function that accumulates the nsecs greater than a second
1945 1946 1947 1948
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1949
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1950
{
1951
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1952
	unsigned int clock_set = 0;
1953

1954
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1955 1956
		int leap;

1957
		tk->tkr_mono.xtime_nsec -= nsecps;
1958 1959
		tk->xtime_sec++;

1960 1961 1962 1963 1964 1965 1966 1967 1968
		/*
		 * Skip NTP update if this second was accumulated before,
		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
		 */
		if (unlikely(tk->skip_second_overflow)) {
			tk->skip_second_overflow = 0;
			continue;
		}

1969 1970
		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1971
		if (unlikely(leap)) {
1972
			struct timespec64 ts;
1973 1974

			tk->xtime_sec += leap;
1975

1976 1977 1978
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1979
				timespec64_sub(tk->wall_to_monotonic, ts));
1980

1981 1982
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1983
			clock_set = TK_CLOCK_WAS_SET;
1984
		}
1985
	}
1986
	return clock_set;
1987 1988
}

1989 1990 1991 1992 1993 1994 1995 1996 1997
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1998 1999
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
2000
{
2001
	u64 interval = tk->cycle_interval << shift;
2002
	u64 snsec_per_sec;
2003

Z
Zhen Lei 已提交
2004
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2005
	if (offset < interval)
2006 2007 2008
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2009
	offset -= interval;
2010
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2011
	tk->tkr_raw.cycle_last  += interval;
2012

2013
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2014
	*clock_set |= accumulate_nsecs_to_secs(tk);
2015

2016
	/* Accumulate raw time */
2017 2018 2019 2020
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2021
		tk->raw_sec++;
2022 2023 2024
	}

	/* Accumulate error between NTP and clock interval */
2025
	tk->ntp_error += tk->ntp_tick << shift;
2026 2027
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2028 2029 2030 2031

	return offset;
}

2032 2033 2034
/*
 * timekeeping_advance - Updates the timekeeper to the current time and
 * current NTP tick length
2035
 */
2036
static void timekeeping_advance(enum timekeeping_adv_mode mode)
2037
{
2038
	struct timekeeper *real_tk = &tk_core.timekeeper;
2039
	struct timekeeper *tk = &shadow_timekeeper;
2040
	u64 offset;
2041
	int shift = 0, maxshift;
2042
	unsigned int clock_set = 0;
J
John Stultz 已提交
2043 2044
	unsigned long flags;

2045
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2046 2047 2048

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2049
		goto out;
2050

J
John Stultz 已提交
2051
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2052
	offset = real_tk->cycle_interval;
2053 2054 2055

	if (mode != TK_ADV_TICK)
		goto out;
J
John Stultz 已提交
2056
#else
2057
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2058
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2059

2060
	/* Check if there's really nothing to do */
2061
	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2062
		goto out;
2063
#endif
2064

2065
	/* Do some additional sanity checking */
2066
	timekeeping_check_update(tk, offset);
2067

2068 2069 2070 2071
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2072
	 * that is smaller than the offset.  We then accumulate that
2073 2074
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2075
	 */
2076
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2077
	shift = max(0, shift);
2078
	/* Bound shift to one less than what overflows tick_length */
2079
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2080
	shift = min(shift, maxshift);
2081
	while (offset >= tk->cycle_interval) {
2082 2083
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2084
		if (offset < tk->cycle_interval<<shift)
2085
			shift--;
2086 2087
	}

2088
	/* Adjust the multiplier to correct NTP error */
2089
	timekeeping_adjust(tk, offset);
2090

J
John Stultz 已提交
2091 2092
	/*
	 * Finally, make sure that after the rounding
2093
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2094
	 */
2095
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2096

2097
	write_seqcount_begin(&tk_core.seq);
2098 2099 2100 2101 2102 2103 2104
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2105
	 * memcpy under the tk_core.seq against one before we start
2106 2107
	 * updating.
	 */
2108
	timekeeping_update(tk, clock_set);
2109
	memcpy(real_tk, tk, sizeof(*tk));
2110
	/* The memcpy must come last. Do not put anything here! */
2111
	write_seqcount_end(&tk_core.seq);
2112
out:
2113
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2114
	if (clock_set)
2115 2116
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2117
}
T
Tomas Janousek 已提交
2118

2119 2120 2121 2122 2123 2124 2125 2126 2127
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
void update_wall_time(void)
{
	timekeeping_advance(TK_ADV_TICK);
}

T
Tomas Janousek 已提交
2128
/**
2129 2130
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2131
 *
2132
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2133 2134 2135 2136 2137 2138
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2139
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2140
{
2141
	struct timekeeper *tk = &tk_core.timekeeper;
2142
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2143

2144
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2145
}
2146
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2147

2148 2149
unsigned long get_seconds(void)
{
2150
	struct timekeeper *tk = &tk_core.timekeeper;
2151 2152

	return tk->xtime_sec;
2153 2154 2155
}
EXPORT_SYMBOL(get_seconds);

2156
void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2157
{
2158
	struct timekeeper *tk = &tk_core.timekeeper;
2159 2160 2161
	unsigned long seq;

	do {
2162
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2163

2164
		*ts = tk_xtime(tk);
2165
	} while (read_seqcount_retry(&tk_core.seq, seq));
2166
}
2167
EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2168

2169
void ktime_get_coarse_ts64(struct timespec64 *ts)
2170
{
2171
	struct timekeeper *tk = &tk_core.timekeeper;
2172
	struct timespec64 now, mono;
2173 2174 2175
	unsigned long seq;

	do {
2176
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2177

2178 2179
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2180
	} while (read_seqcount_retry(&tk_core.seq, seq));
2181

2182
	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2183 2184
				now.tv_nsec + mono.tv_nsec);
}
2185
EXPORT_SYMBOL(ktime_get_coarse_ts64);
2186 2187

/*
2188
 * Must hold jiffies_lock
2189 2190 2191 2192 2193 2194
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2195

2196
/**
2197
 * ktime_get_update_offsets_now - hrtimer helper
2198
 * @cwsseq:	pointer to check and store the clock was set sequence number
2199
 * @offs_real:	pointer to storage for monotonic -> realtime offset
2200
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2201
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2202
 *
2203 2204 2205 2206
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2207
 * Called from hrtimer_interrupt() or retrigger_next_event()
2208
 */
2209
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2210
				     ktime_t *offs_boot, ktime_t *offs_tai)
2211
{
2212
	struct timekeeper *tk = &tk_core.timekeeper;
2213
	unsigned int seq;
2214 2215
	ktime_t base;
	u64 nsecs;
2216 2217

	do {
2218
		seq = read_seqcount_begin(&tk_core.seq);
2219

2220 2221
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2222 2223
		base = ktime_add_ns(base, nsecs);

2224 2225 2226
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
2227
			*offs_boot = tk->offs_boot;
2228 2229
			*offs_tai = tk->offs_tai;
		}
2230 2231

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2232
		if (unlikely(base >= tk->next_leap_ktime))
2233 2234
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2235
	} while (read_seqcount_retry(&tk_core.seq, seq));
2236

2237
	return base;
2238 2239
}

2240
/**
2241
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2242
 */
2243
static int timekeeping_validate_timex(struct timex *txc)
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
		/*
		 * Validate if a timespec/timeval used to inject a time
		 * offset is valid.  Offsets can be postive or negative, so
		 * we don't check tv_sec. The value of the timeval/timespec
		 * is the sum of its fields,but *NOTE*:
		 * The field tv_usec/tv_nsec must always be non-negative and
		 * we can't have more nanoseconds/microseconds than a second.
		 */
		if (txc->time.tv_usec < 0)
			return -EINVAL;
2281

2282 2283
		if (txc->modes & ADJ_NANO) {
			if (txc->time.tv_usec >= NSEC_PER_SEC)
2284 2285
				return -EINVAL;
		} else {
2286
			if (txc->time.tv_usec >= USEC_PER_SEC)
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}


2306 2307 2308 2309 2310
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2311
	struct timekeeper *tk = &tk_core.timekeeper;
2312
	unsigned long flags;
2313
	struct timespec64 ts;
2314
	s32 orig_tai, tai;
2315 2316 2317
	int ret;

	/* Validate the data before disabling interrupts */
2318
	ret = timekeeping_validate_timex(txc);
2319 2320 2321
	if (ret)
		return ret;

2322
	if (txc->modes & ADJ_SETOFFSET) {
2323
		struct timespec64 delta;
2324 2325 2326 2327 2328 2329 2330 2331 2332
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2333
	ktime_get_real_ts64(&ts);
2334

2335
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2336
	write_seqcount_begin(&tk_core.seq);
2337

2338
	orig_tai = tai = tk->tai_offset;
2339
	ret = __do_adjtimex(txc, &ts, &tai);
2340

2341 2342
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2343
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2344
	}
2345 2346
	tk_update_leap_state(tk);

2347
	write_seqcount_end(&tk_core.seq);
2348 2349
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2350 2351 2352 2353
	/* Update the multiplier immediately if frequency was set directly */
	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
		timekeeping_advance(TK_ADV_FREQ);

2354 2355 2356
	if (tai != orig_tai)
		clock_was_set();

2357 2358
	ntp_notify_cmos_timer();

2359 2360
	return ret;
}
2361 2362 2363 2364 2365

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2366
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2367
{
2368 2369 2370
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2371
	write_seqcount_begin(&tk_core.seq);
2372

2373
	__hardpps(phase_ts, raw_ts);
2374

2375
	write_seqcount_end(&tk_core.seq);
2376
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2377 2378
}
EXPORT_SYMBOL(hardpps);
2379
#endif /* CONFIG_NTP_PPS */
2380

T
Torben Hohn 已提交
2381 2382 2383 2384 2385 2386 2387 2388
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2389
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2390
	do_timer(ticks);
2391
	write_sequnlock(&jiffies_lock);
2392
	update_wall_time();
T
Torben Hohn 已提交
2393
}