timekeeping.c 38.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25

26

27
static struct timekeeper timekeeper;
28

29 30 31
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

32 33 34
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

35 36 37 38 39 40 41 42 43 44 45
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
46
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
47 48 49 50 51
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
52
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
53
	tk_normalize_xtime(tk);
54
}
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

81 82 83 84 85 86 87 88 89 90
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
91
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
92 93
{
	cycle_t interval;
94
	u64 tmp, ntpinterval;
95
	struct clocksource *old_clock;
96

97 98
	old_clock = tk->clock;
	tk->clock = clock;
99 100 101 102 103
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
104
	ntpinterval = tmp;
105 106
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
107 108 109 110
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
111
	tk->cycle_interval = interval;
112 113

	/* Go back from cycles -> shifted ns */
114 115 116
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
117
		((u64) interval * clock->mult) >> clock->shift;
118

119 120 121 122
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
123
			tk->xtime_nsec >>= -shift_change;
124
		else
125
			tk->xtime_nsec <<= shift_change;
126
	}
127
	tk->shift = clock->shift;
128

129 130
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
131 132 133 134 135 136

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
137
	tk->mult = clock->mult;
138
}
139

140
/* Timekeeper helper functions. */
141 142 143 144 145 146 147 148 149 150 151 152 153 154

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
u32 (*arch_gettimeoffset)(void);

u32 get_arch_timeoffset(void)
{
	if (likely(arch_gettimeoffset))
		return arch_gettimeoffset();
	return 0;
}
#else
static inline u32 get_arch_timeoffset(void) { return 0; }
#endif

155
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
156 157 158
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
159
	s64 nsec;
160 161

	/* read clocksource: */
162
	clock = tk->clock;
163 164 165 166 167
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

168 169
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
170

171 172
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
173 174
}

175
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
176 177 178
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
179
	s64 nsec;
180 181

	/* read clocksource: */
182
	clock = tk->clock;
183 184 185 186 187
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

188 189 190
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

191 192
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
193 194
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

static void update_pvclock_gtod(struct timekeeper *tk)
{
	raw_notifier_call_chain(&pvclock_gtod_chain, 0, tk);
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 *
 * Must hold write on timekeeper.lock
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;
	int ret;

	write_seqlock_irqsave(&tk->lock, flags);
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
	/* update timekeeping data */
	update_pvclock_gtod(tk);
	write_sequnlock_irqrestore(&tk->lock, flags);

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 *
 * Must hold write on timekeeper.lock
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;
	int ret;

	write_seqlock_irqsave(&tk->lock, flags);
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
	write_sequnlock_irqrestore(&tk->lock, flags);

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

243
/* must hold write on timekeeper.lock */
244
static void timekeeping_update(struct timekeeper *tk, bool clearntp)
245 246
{
	if (clearntp) {
247
		tk->ntp_error = 0;
248 249
		ntp_clear();
	}
250
	update_vsyscall(tk);
251
	update_pvclock_gtod(tk);
252 253
}

254
/**
255
 * timekeeping_forward_now - update clock to the current time
256
 *
257 258 259
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
260
 */
261
static void timekeeping_forward_now(struct timekeeper *tk)
262 263
{
	cycle_t cycle_now, cycle_delta;
264
	struct clocksource *clock;
265
	s64 nsec;
266

267
	clock = tk->clock;
268
	cycle_now = clock->read(clock);
269
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
270
	clock->cycle_last = cycle_now;
271

272
	tk->xtime_nsec += cycle_delta * tk->mult;
273

274 275
	/* If arch requires, add in get_arch_timeoffset() */
	tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
276

277
	tk_normalize_xtime(tk);
278

279
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
280
	timespec_add_ns(&tk->raw_time, nsec);
281 282 283
}

/**
284
 * __getnstimeofday - Returns the time of day in a timespec.
285 286
 * @ts:		pointer to the timespec to be set
 *
287 288
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
289
 */
290
int __getnstimeofday(struct timespec *ts)
291
{
292
	struct timekeeper *tk = &timekeeper;
293
	unsigned long seq;
294
	s64 nsecs = 0;
295 296

	do {
297
		seq = read_seqbegin(&tk->lock);
298

299
		ts->tv_sec = tk->xtime_sec;
300
		nsecs = timekeeping_get_ns(tk);
301

302
	} while (read_seqretry(&tk->lock, seq));
303

304
	ts->tv_nsec = 0;
305
	timespec_add_ns(ts, nsecs);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
EXPORT_SYMBOL(__getnstimeofday);

/**
 * getnstimeofday - Returns the time of day in a timespec.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
void getnstimeofday(struct timespec *ts)
{
	WARN_ON(__getnstimeofday(ts));
326 327 328
}
EXPORT_SYMBOL(getnstimeofday);

329 330
ktime_t ktime_get(void)
{
331
	struct timekeeper *tk = &timekeeper;
332 333 334 335 336 337
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
338 339 340
		seq = read_seqbegin(&tk->lock);
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
341

342
	} while (read_seqretry(&tk->lock, seq));
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
361
	struct timekeeper *tk = &timekeeper;
362
	struct timespec tomono;
363
	s64 nsec;
364 365 366 367 368
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
369 370
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
371
		nsec = timekeeping_get_ns(tk);
372
		tomono = tk->wall_to_monotonic;
373

374
	} while (read_seqretry(&tk->lock, seq));
375

376 377 378
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec);
379 380 381
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

382 383 384 385 386 387 388 389 390 391 392 393 394
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
395
	struct timekeeper *tk = &timekeeper;
396 397 398 399 400 401
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
402
		seq = read_seqbegin(&tk->lock);
403

404 405
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
406
		ts_real->tv_nsec = 0;
407

408 409
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
410

411
	} while (read_seqretry(&tk->lock, seq));
412 413 414 415 416 417 418 419

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

420 421 422 423
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
424
 * NOTE: Users should be converted to using getnstimeofday()
425 426 427 428 429
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

430
	getnstimeofday(&now);
431 432 433 434
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
435

436 437 438 439 440 441
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
442
int do_settimeofday(const struct timespec *tv)
443
{
444
	struct timekeeper *tk = &timekeeper;
445
	struct timespec ts_delta, xt;
446
	unsigned long flags;
447

448
	if (!timespec_valid_strict(tv))
449 450
		return -EINVAL;

451
	write_seqlock_irqsave(&tk->lock, flags);
452

453
	timekeeping_forward_now(tk);
454

455
	xt = tk_xtime(tk);
456 457 458
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

459
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
460

461
	tk_set_xtime(tk, tv);
462

463
	timekeeping_update(tk, true);
464

465
	write_sequnlock_irqrestore(&tk->lock, flags);
466 467 468 469 470 471 472 473

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

474 475 476 477 478 479 480 481
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
482
	struct timekeeper *tk = &timekeeper;
483
	unsigned long flags;
484 485
	struct timespec tmp;
	int ret = 0;
486 487 488 489

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

490
	write_seqlock_irqsave(&tk->lock, flags);
491

492
	timekeeping_forward_now(tk);
493

494 495
	/* Make sure the proposed value is valid */
	tmp = timespec_add(tk_xtime(tk),  *ts);
496
	if (!timespec_valid_strict(&tmp)) {
497 498 499
		ret = -EINVAL;
		goto error;
	}
500

501 502
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
503

504
error: /* even if we error out, we forwarded the time, so call update */
505
	timekeeping_update(tk, true);
506

507
	write_sequnlock_irqrestore(&tk->lock, flags);
508 509 510 511

	/* signal hrtimers about time change */
	clock_was_set();

512
	return ret;
513 514 515
}
EXPORT_SYMBOL(timekeeping_inject_offset);

516 517 518 519 520
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
521
static int change_clocksource(void *data)
522
{
523
	struct timekeeper *tk = &timekeeper;
524
	struct clocksource *new, *old;
525
	unsigned long flags;
526

527
	new = (struct clocksource *) data;
528

529
	write_seqlock_irqsave(&tk->lock, flags);
530

531
	timekeeping_forward_now(tk);
532
	if (!new->enable || new->enable(new) == 0) {
533 534
		old = tk->clock;
		tk_setup_internals(tk, new);
535 536 537
		if (old->disable)
			old->disable(old);
	}
538
	timekeeping_update(tk, true);
539

540
	write_sequnlock_irqrestore(&tk->lock, flags);
541

542 543
	return 0;
}
544

545 546 547 548 549 550 551 552 553
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
554 555 556
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
557
		return;
558
	stop_machine(change_clocksource, clock, NULL);
559 560
	tick_clock_notify();
}
561

562 563 564 565 566 567 568 569 570 571 572 573 574 575
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
576

577 578 579 580 581 582 583 584
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
585
	struct timekeeper *tk = &timekeeper;
586 587 588 589
	unsigned long seq;
	s64 nsecs;

	do {
590 591 592
		seq = read_seqbegin(&tk->lock);
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
593

594
	} while (read_seqretry(&tk->lock, seq));
595 596 597 598 599

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

600
/**
601
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
602
 */
603
int timekeeping_valid_for_hres(void)
604
{
605
	struct timekeeper *tk = &timekeeper;
606 607 608 609
	unsigned long seq;
	int ret;

	do {
610
		seq = read_seqbegin(&tk->lock);
611

612
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
613

614
	} while (read_seqretry(&tk->lock, seq));
615 616 617 618

	return ret;
}

619 620 621 622 623
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
624
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
625 626
	unsigned long seq;
	u64 ret;
627

J
John Stultz 已提交
628
	do {
629
		seq = read_seqbegin(&tk->lock);
J
John Stultz 已提交
630

631
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
632

633
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
634 635

	return ret;
636 637
}

638
/**
639
 * read_persistent_clock -  Return time from the persistent clock.
640 641
 *
 * Weak dummy function for arches that do not yet support it.
642 643
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
644 645 646
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
647
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
648
{
649 650
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
651 652
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

668 669 670 671 672
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
673
	struct timekeeper *tk = &timekeeper;
674
	struct clocksource *clock;
675
	unsigned long flags;
676
	struct timespec now, boot, tmp;
677 678

	read_persistent_clock(&now);
679

680
	if (!timespec_valid_strict(&now)) {
681 682 683 684
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
685 686
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
687

688
	read_boot_clock(&boot);
689
	if (!timespec_valid_strict(&boot)) {
690 691 692 693 694
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
695

696
	seqlock_init(&tk->lock);
697

R
Roman Zippel 已提交
698
	ntp_init();
699

700
	write_seqlock_irqsave(&tk->lock, flags);
701
	clock = clocksource_default_clock();
702 703
	if (clock->enable)
		clock->enable(clock);
704
	tk_setup_internals(tk, clock);
705

706 707 708
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
709
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
710
		boot = tk_xtime(tk);
711

712
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
713
	tk_set_wall_to_mono(tk, tmp);
714 715 716

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
717
	tk_set_sleep_time(tk, tmp);
718

719
	write_sequnlock_irqrestore(&tk->lock, flags);
720 721 722
}

/* time in seconds when suspend began */
723
static struct timespec timekeeping_suspend_time;
724

725 726 727 728 729 730 731
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
732 733
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
734
{
735
	if (!timespec_valid_strict(delta)) {
736
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
737 738 739
					"sleep delta value!\n");
		return;
	}
740
	tk_xtime_add(tk, delta);
741 742
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
743 744 745 746 747 748 749 750 751 752 753 754 755 756
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
757
	struct timekeeper *tk = &timekeeper;
758
	unsigned long flags;
759

760 761 762 763 764
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
765 766
		return;

767
	write_seqlock_irqsave(&tk->lock, flags);
J
John Stultz 已提交
768

769
	timekeeping_forward_now(tk);
770

771
	__timekeeping_inject_sleeptime(tk, delta);
772

773
	timekeeping_update(tk, true);
774

775
	write_sequnlock_irqrestore(&tk->lock, flags);
776 777 778 779 780

	/* signal hrtimers about time change */
	clock_was_set();
}

781 782 783 784 785 786 787
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
788
static void timekeeping_resume(void)
789
{
790
	struct timekeeper *tk = &timekeeper;
791
	struct clocksource *clock = tk->clock;
792
	unsigned long flags;
793 794 795
	struct timespec ts_new, ts_delta;
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
796

797
	read_persistent_clock(&ts_new);
798

799
	clockevents_resume();
800 801
	clocksource_resume();

802
	write_seqlock_irqsave(&tk->lock, flags);
803

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = clock->read(clock);
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
		cycle_now > clock->cycle_last) {
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

		ts_delta = ns_to_timespec(nsec);
		suspendtime_found = true;
	} else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
		suspendtime_found = true;
844
	}
845 846 847 848 849 850

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
	clock->cycle_last = cycle_now;
851
	tk->ntp_error = 0;
852
	timekeeping_suspended = 0;
853 854
	timekeeping_update(tk, false);
	write_sequnlock_irqrestore(&tk->lock, flags);
855 856 857 858 859 860

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
861
	hrtimers_resume();
862 863
}

864
static int timekeeping_suspend(void)
865
{
866
	struct timekeeper *tk = &timekeeper;
867
	unsigned long flags;
868 869
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
870

871
	read_persistent_clock(&timekeeping_suspend_time);
872

873 874
	write_seqlock_irqsave(&tk->lock, flags);
	timekeeping_forward_now(tk);
875
	timekeeping_suspended = 1;
876 877 878 879 880 881 882

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
883
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
884 885 886 887 888 889 890 891 892 893 894 895
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
896
	write_sequnlock_irqrestore(&tk->lock, flags);
897 898

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
899
	clocksource_suspend();
900
	clockevents_suspend();
901 902 903 904 905

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
906
static struct syscore_ops timekeeping_syscore_ops = {
907 908 909 910
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

911
static int __init timekeeping_init_ops(void)
912
{
913 914
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
915 916
}

917
device_initcall(timekeeping_init_ops);
918 919 920 921 922

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
923 924
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
925 926 927 928 929 930 931 932 933 934 935 936
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
937
	 * here.  This is tuned so that an error of about 1 msec is adjusted
938 939
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
940
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
941 942 943 944 945 946 947 948
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
949 950
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
975
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
976
{
977
	s64 error, interval = tk->cycle_interval;
978 979
	int adj;

980
	/*
981
	 * The point of this is to check if the error is greater than half
982 983 984 985 986
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
987 988
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
989
	 * larger than half an interval.
990
	 *
991
	 * Note: It does not "save" on aggravation when reading the code.
992
	 */
993
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
994
	if (error > interval) {
995 996
		/*
		 * We now divide error by 4(via shift), which checks if
997
		 * the error is greater than twice the interval.
998 999 1000
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1001
		error >>= 2;
1002 1003 1004 1005 1006
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
1007
		 * The proper fix is to avoid rounding up by using
1008
		 * the high precision tk->xtime_nsec instead of
1009 1010 1011
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
1012 1013 1014
		if (likely(error <= interval))
			adj = 1;
		else
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1031

1032 1033
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1034 1035
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1036 1037
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
1038
	}
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1088 1089 1090 1091
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1092

1093
out_adjust:
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1108 1109 1110 1111
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1112 1113
	}

1114 1115
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1136 1137 1138 1139
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1140

1141 1142 1143 1144 1145 1146 1147
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

			clock_was_set_delayed();
		}
1148 1149 1150
	}
}

1151 1152 1153 1154 1155 1156 1157 1158 1159
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1160 1161
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
						u32 shift)
1162
{
1163
	u64 raw_nsecs;
1164

1165 1166
	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < tk->cycle_interval<<shift)
1167 1168 1169
		return offset;

	/* Accumulate one shifted interval */
1170 1171
	offset -= tk->cycle_interval << shift;
	tk->clock->cycle_last += tk->cycle_interval << shift;
1172

1173 1174
	tk->xtime_nsec += tk->xtime_interval << shift;
	accumulate_nsecs_to_secs(tk);
1175

1176
	/* Accumulate raw time */
1177
	raw_nsecs = (u64)tk->raw_interval << shift;
1178
	raw_nsecs += tk->raw_time.tv_nsec;
1179 1180 1181
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1182
		tk->raw_time.tv_sec += raw_secs;
1183
	}
1184
	tk->raw_time.tv_nsec = raw_nsecs;
1185 1186

	/* Accumulate error between NTP and clock interval */
1187 1188 1189
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1190 1191 1192 1193

	return offset;
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;

}
#else
#define old_vsyscall_fixup(tk)
#endif



1221 1222 1223 1224
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1225
static void update_wall_time(void)
1226
{
1227
	struct clocksource *clock;
1228
	struct timekeeper *tk = &timekeeper;
1229
	cycle_t offset;
1230
	int shift = 0, maxshift;
J
John Stultz 已提交
1231 1232
	unsigned long flags;

1233
	write_seqlock_irqsave(&tk->lock, flags);
1234 1235 1236

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1237
		goto out;
1238

1239
	clock = tk->clock;
J
John Stultz 已提交
1240 1241

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1242
	offset = tk->cycle_interval;
J
John Stultz 已提交
1243 1244
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1245 1246
#endif

1247 1248 1249 1250
	/* Check if there's really nothing to do */
	if (offset < tk->cycle_interval)
		goto out;

1251 1252 1253 1254
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1255
	 * that is smaller than the offset.  We then accumulate that
1256 1257
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1258
	 */
1259
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1260
	shift = max(0, shift);
1261
	/* Bound shift to one less than what overflows tick_length */
1262
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1263
	shift = min(shift, maxshift);
1264 1265 1266
	while (offset >= tk->cycle_interval) {
		offset = logarithmic_accumulation(tk, offset, shift);
		if (offset < tk->cycle_interval<<shift)
1267
			shift--;
1268 1269 1270
	}

	/* correct the clock when NTP error is too big */
1271
	timekeeping_adjust(tk, offset);
1272

J
John Stultz 已提交
1273
	/*
1274 1275 1276 1277
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1278

J
John Stultz 已提交
1279 1280
	/*
	 * Finally, make sure that after the rounding
1281
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1282
	 */
1283
	accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1284

1285
	timekeeping_update(tk, false);
J
John Stultz 已提交
1286 1287

out:
1288
	write_sequnlock_irqrestore(&tk->lock, flags);
J
John Stultz 已提交
1289

1290
}
T
Tomas Janousek 已提交
1291 1292 1293 1294 1295

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1296
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1297 1298 1299 1300 1301 1302 1303 1304
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1305
	struct timekeeper *tk = &timekeeper;
1306
	struct timespec boottime = {
1307 1308 1309 1310
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1311
	};
1312 1313

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1314
}
1315
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1328
	struct timekeeper *tk = &timekeeper;
1329
	struct timespec tomono, sleep;
1330
	s64 nsec;
1331 1332 1333 1334 1335
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1336 1337
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
1338
		nsec = timekeeping_get_ns(tk);
1339 1340
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1341

1342
	} while (read_seqretry(&tk->lock, seq));
1343

1344 1345 1346
	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1367 1368 1369 1370 1371 1372
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1373 1374 1375
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1376
}
1377
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1378

1379 1380
unsigned long get_seconds(void)
{
1381 1382 1383
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1384 1385 1386
}
EXPORT_SYMBOL(get_seconds);

1387 1388
struct timespec __current_kernel_time(void)
{
1389 1390 1391
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1392
}
1393

1394 1395
struct timespec current_kernel_time(void)
{
1396
	struct timekeeper *tk = &timekeeper;
1397 1398 1399 1400
	struct timespec now;
	unsigned long seq;

	do {
1401
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1402

1403 1404
		now = tk_xtime(tk);
	} while (read_seqretry(&tk->lock, seq));
1405 1406 1407 1408

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1409 1410 1411

struct timespec get_monotonic_coarse(void)
{
1412
	struct timekeeper *tk = &timekeeper;
1413 1414 1415 1416
	struct timespec now, mono;
	unsigned long seq;

	do {
1417
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1418

1419 1420 1421
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
1422 1423 1424 1425 1426

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1427 1428

/*
1429
 * Must hold jiffies_lock
1430 1431 1432 1433 1434 1435 1436
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1437 1438

/**
1439 1440
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1441 1442
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1443
 * @sleep:	pointer to timespec to be set with time in suspend
1444
 */
1445 1446
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1447
{
1448
	struct timekeeper *tk = &timekeeper;
1449 1450 1451
	unsigned long seq;

	do {
1452 1453 1454 1455 1456
		seq = read_seqbegin(&tk->lock);
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
	} while (read_seqretry(&tk->lock, seq));
1457
}
T
Torben Hohn 已提交
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
{
1470
	struct timekeeper *tk = &timekeeper;
1471 1472 1473 1474 1475
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1476
		seq = read_seqbegin(&tk->lock);
1477

1478 1479
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1480

1481 1482 1483
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
	} while (read_seqretry(&tk->lock, seq));
1484 1485 1486 1487 1488 1489 1490

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1491 1492 1493 1494 1495
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1496
	struct timekeeper *tk = &timekeeper;
1497 1498 1499 1500
	unsigned long seq;
	struct timespec wtom;

	do {
1501 1502 1503
		seq = read_seqbegin(&tk->lock);
		wtom = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
1504

1505 1506
	return timespec_to_ktime(wtom);
}
1507 1508
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

T
Torben Hohn 已提交
1509 1510 1511 1512 1513 1514 1515 1516
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1517
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1518
	do_timer(ticks);
1519
	write_sequnlock(&jiffies_lock);
T
Torben Hohn 已提交
1520
}