timekeeping.c 55.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

122 123 124
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

125 126
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
127 128

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133 134 135 136 137 138
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
139

140 141
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 143 144
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
145
			tk->last_warning = jiffies;
146
		}
147
		tk->underflow_seen = 0;
148 149
	}

150 151
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 153 154
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
155
			tk->last_warning = jiffies;
156
		}
157
		tk->overflow_seen = 0;
158
	}
159
}
160 161 162

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
163
	struct timekeeper *tk = &tk_core.timekeeper;
164 165
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
181

182
	delta = clocksource_delta(now, last, mask);
183

184 185 186 187
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
188
	if (unlikely((~delta & mask) < (mask >> 3))) {
189
		tk->underflow_seen = 1;
190
		delta = 0;
191
	}
192

193
	/* Cap delta value to the max_cycles values to avoid mult overflows */
194
	if (unlikely(delta > max)) {
195
		tk->overflow_seen = 1;
196
		delta = tkr->clock->max_cycles;
197
	}
198 199 200

	return delta;
}
201 202 203 204
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
205 206 207 208 209 210 211 212 213 214 215 216
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
217 218
#endif

219
/**
220
 * tk_setup_internals - Set up internals to use clocksource clock.
221
 *
222
 * @tk:		The target timekeeper to setup.
223 224 225 226 227 228 229
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
230
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 232
{
	cycle_t interval;
233
	u64 tmp, ntpinterval;
234
	struct clocksource *old_clock;
235

236 237 238 239 240
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241

P
Peter Zijlstra 已提交
242 243 244 245 246
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

247 248 249
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
250
	ntpinterval = tmp;
251 252
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
253 254 255 256
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
257
	tk->cycle_interval = interval;
258 259

	/* Go back from cycles -> shifted ns */
260 261 262
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
263
		((u64) interval * clock->mult) >> clock->shift;
264

265 266 267 268
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
269
			tk->tkr_mono.xtime_nsec >>= -shift_change;
270
		else
271
			tk->tkr_mono.xtime_nsec <<= shift_change;
272
	}
P
Peter Zijlstra 已提交
273 274
	tk->tkr_raw.xtime_nsec = 0;

275
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
276
	tk->tkr_raw.shift = clock->shift;
277

278 279
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281 282 283 284 285 286

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
287
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
288
	tk->tkr_raw.mult = clock->mult;
289
	tk->ntp_err_mult = 0;
290
}
291

292
/* Timekeeper helper functions. */
293 294

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 296
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297
#else
298
static inline u32 arch_gettimeoffset(void) { return 0; }
299 300
#endif

301
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302
{
303
	cycle_t delta;
304
	s64 nsec;
305

306
	delta = timekeeping_get_delta(tkr);
307

308 309
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
310

311
	/* If arch requires, add in get_arch_timeoffset() */
312
	return nsec + arch_gettimeoffset();
313 314
}

315 316
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
317
 * @tkr: Timekeeping readout base from which we take the update
318 319 320 321 322 323 324 325 326 327 328
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
329
 * update(tkf->base[0], tkr);
330 331 332
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
333
 * update(tkf->base[1], tkr);
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
354
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
355
{
356
	struct tk_read_base *base = tkf->base;
357 358

	/* Force readers off to base[1] */
359
	raw_write_seqcount_latch(&tkf->seq);
360 361

	/* Update base[0] */
362
	memcpy(base, tkr, sizeof(*base));
363 364

	/* Force readers back to base[0] */
365
	raw_write_seqcount_latch(&tkf->seq);
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
403
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
404 405 406 407 408 409
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
410 411
		seq = raw_read_seqcount(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
412
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
413
	} while (read_seqcount_retry(&tkf->seq, seq));
414 415 416

	return now;
}
417 418 419 420 421

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
422 423
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
424 425 426 427 428 429
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
451
	struct tk_read_base *tkr = &tk->tkr_mono;
452 453 454 455

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
456
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
457 458 459 460 461

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
462 463
}

464 465 466 467
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
468
	struct timespec xt, wm;
469

470
	xt = timespec64_to_timespec(tk_xtime(tk));
471
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
472 473
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
490 491 492
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
	tk->tkr_mono.xtime_nsec -= remainder;
	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
493
	tk->ntp_error += remainder << tk->ntp_error_shift;
494
	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
495 496 497 498 499
}
#else
#define old_vsyscall_fixup(tk)
#endif

500 501
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

502
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
503
{
504
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
505 506 507 508 509 510 511
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
512
	struct timekeeper *tk = &tk_core.timekeeper;
513 514 515
	unsigned long flags;
	int ret;

516
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
517
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
518
	update_pvclock_gtod(tk, true);
519
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
520 521 522 523 524 525 526 527 528 529 530 531 532 533

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

534
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
535
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
536
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
537 538 539 540 541

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

542 543 544 545 546
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
547 548
	u64 seconds;
	u32 nsec;
549 550 551 552 553 554 555 556

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
557 558
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
559
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
560 561

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
562
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
563 564 565 566 567 568

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
569
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
570 571 572
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
573 574
}

575
/* must hold timekeeper_lock */
576
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
577
{
578
	if (action & TK_CLEAR_NTP) {
579
		tk->ntp_error = 0;
580 581
		ntp_clear();
	}
582

583 584
	tk_update_ktime_data(tk);

585 586 587
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

588
	if (action & TK_MIRROR)
589 590
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
591

592
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
593
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
594 595 596

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
597 598
}

599
/**
600
 * timekeeping_forward_now - update clock to the current time
601
 *
602 603 604
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
605
 */
606
static void timekeeping_forward_now(struct timekeeper *tk)
607
{
608
	struct clocksource *clock = tk->tkr_mono.clock;
609
	cycle_t cycle_now, delta;
610
	s64 nsec;
611

612 613 614
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
615
	tk->tkr_raw.cycle_last  = cycle_now;
616

617
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
618

619
	/* If arch requires, add in get_arch_timeoffset() */
620
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
621

622
	tk_normalize_xtime(tk);
623

P
Peter Zijlstra 已提交
624
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
625
	timespec64_add_ns(&tk->raw_time, nsec);
626 627 628
}

/**
629
 * __getnstimeofday64 - Returns the time of day in a timespec64.
630 631
 * @ts:		pointer to the timespec to be set
 *
632 633
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
634
 */
635
int __getnstimeofday64(struct timespec64 *ts)
636
{
637
	struct timekeeper *tk = &tk_core.timekeeper;
638
	unsigned long seq;
639
	s64 nsecs = 0;
640 641

	do {
642
		seq = read_seqcount_begin(&tk_core.seq);
643

644
		ts->tv_sec = tk->xtime_sec;
645
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
646

647
	} while (read_seqcount_retry(&tk_core.seq, seq));
648

649
	ts->tv_nsec = 0;
650
	timespec64_add_ns(ts, nsecs);
651 652 653 654 655 656 657 658 659

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
660
EXPORT_SYMBOL(__getnstimeofday64);
661 662

/**
663
 * getnstimeofday64 - Returns the time of day in a timespec64.
664
 * @ts:		pointer to the timespec64 to be set
665
 *
666
 * Returns the time of day in a timespec64 (WARN if suspended).
667
 */
668
void getnstimeofday64(struct timespec64 *ts)
669
{
670
	WARN_ON(__getnstimeofday64(ts));
671
}
672
EXPORT_SYMBOL(getnstimeofday64);
673

674 675
ktime_t ktime_get(void)
{
676
	struct timekeeper *tk = &tk_core.timekeeper;
677
	unsigned int seq;
678 679
	ktime_t base;
	s64 nsecs;
680 681 682 683

	WARN_ON(timekeeping_suspended);

	do {
684
		seq = read_seqcount_begin(&tk_core.seq);
685 686
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
687

688
	} while (read_seqcount_retry(&tk_core.seq, seq));
689

690
	return ktime_add_ns(base, nsecs);
691 692 693
}
EXPORT_SYMBOL_GPL(ktime_get);

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
728 729
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
730 731 732 733 734 735 736 737

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

758 759 760 761 762 763 764 765 766 767 768 769
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
770 771
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
772 773 774 775 776 777 778

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

779
/**
780
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
781 782 783 784
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
785
 * in normalized timespec64 format in the variable pointed to by @ts.
786
 */
787
void ktime_get_ts64(struct timespec64 *ts)
788
{
789
	struct timekeeper *tk = &tk_core.timekeeper;
790
	struct timespec64 tomono;
791
	s64 nsec;
792 793 794 795 796
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
797
		seq = read_seqcount_begin(&tk_core.seq);
798
		ts->tv_sec = tk->xtime_sec;
799
		nsec = timekeeping_get_ns(&tk->tkr_mono);
800
		tomono = tk->wall_to_monotonic;
801

802
	} while (read_seqcount_retry(&tk_core.seq, seq));
803

804 805 806
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
807
}
808
EXPORT_SYMBOL_GPL(ktime_get_ts64);
809

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

858 859 860 861 862 863 864 865 866 867 868 869 870
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
871
	struct timekeeper *tk = &tk_core.timekeeper;
872 873 874 875 876 877
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
878
		seq = read_seqcount_begin(&tk_core.seq);
879

880
		*ts_raw = timespec64_to_timespec(tk->raw_time);
881
		ts_real->tv_sec = tk->xtime_sec;
882
		ts_real->tv_nsec = 0;
883

P
Peter Zijlstra 已提交
884
		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
885
		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
886

887
	} while (read_seqcount_retry(&tk_core.seq, seq));
888 889 890 891 892 893 894 895

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

896 897 898 899
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
900
 * NOTE: Users should be converted to using getnstimeofday()
901 902 903
 */
void do_gettimeofday(struct timeval *tv)
{
904
	struct timespec64 now;
905

906
	getnstimeofday64(&now);
907 908 909 910
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
911

912
/**
913 914
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
915 916 917
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
918
int do_settimeofday64(const struct timespec64 *ts)
919
{
920
	struct timekeeper *tk = &tk_core.timekeeper;
921
	struct timespec64 ts_delta, xt;
922
	unsigned long flags;
923

924
	if (!timespec64_valid_strict(ts))
925 926
		return -EINVAL;

927
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
928
	write_seqcount_begin(&tk_core.seq);
929

930
	timekeeping_forward_now(tk);
931

932
	xt = tk_xtime(tk);
933 934
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
935

936
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
937

938
	tk_set_xtime(tk, ts);
939

940
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
941

942
	write_seqcount_end(&tk_core.seq);
943
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
944 945 946 947 948 949

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
950
EXPORT_SYMBOL(do_settimeofday64);
951

952 953 954 955 956 957 958 959
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
960
	struct timekeeper *tk = &tk_core.timekeeper;
961
	unsigned long flags;
962
	struct timespec64 ts64, tmp;
963
	int ret = 0;
964 965 966 967

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

968 969
	ts64 = timespec_to_timespec64(*ts);

970
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
971
	write_seqcount_begin(&tk_core.seq);
972

973
	timekeeping_forward_now(tk);
974

975
	/* Make sure the proposed value is valid */
976 977
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
978 979 980
		ret = -EINVAL;
		goto error;
	}
981

982 983
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
984

985
error: /* even if we error out, we forwarded the time, so call update */
986
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
987

988
	write_seqcount_end(&tk_core.seq);
989
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
990 991 992 993

	/* signal hrtimers about time change */
	clock_was_set();

994
	return ret;
995 996 997
}
EXPORT_SYMBOL(timekeeping_inject_offset);

998 999 1000 1001 1002 1003 1004

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
1005
	struct timekeeper *tk = &tk_core.timekeeper;
1006 1007 1008 1009
	unsigned int seq;
	s32 ret;

	do {
1010
		seq = read_seqcount_begin(&tk_core.seq);
1011
		ret = tk->tai_offset;
1012
	} while (read_seqcount_retry(&tk_core.seq, seq));
1013 1014 1015 1016 1017 1018 1019 1020

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1021
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1022 1023
{
	tk->tai_offset = tai_offset;
1024
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1025 1026 1027 1028 1029 1030 1031 1032
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1033
	struct timekeeper *tk = &tk_core.timekeeper;
1034 1035
	unsigned long flags;

1036
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1037
	write_seqcount_begin(&tk_core.seq);
1038
	__timekeeping_set_tai_offset(tk, tai_offset);
1039
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1040
	write_seqcount_end(&tk_core.seq);
1041
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1042
	clock_was_set();
1043 1044
}

1045 1046 1047 1048 1049
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1050
static int change_clocksource(void *data)
1051
{
1052
	struct timekeeper *tk = &tk_core.timekeeper;
1053
	struct clocksource *new, *old;
1054
	unsigned long flags;
1055

1056
	new = (struct clocksource *) data;
1057

1058
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1059
	write_seqcount_begin(&tk_core.seq);
1060

1061
	timekeeping_forward_now(tk);
1062 1063 1064 1065 1066 1067
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1068
			old = tk->tkr_mono.clock;
1069 1070 1071 1072 1073 1074 1075
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1076
	}
1077
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1078

1079
	write_seqcount_end(&tk_core.seq);
1080
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1081

1082 1083
	return 0;
}
1084

1085 1086 1087 1088 1089 1090 1091
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1092
int timekeeping_notify(struct clocksource *clock)
1093
{
1094
	struct timekeeper *tk = &tk_core.timekeeper;
1095

1096
	if (tk->tkr_mono.clock == clock)
1097
		return 0;
1098
	stop_machine(change_clocksource, clock, NULL);
1099
	tick_clock_notify();
1100
	return tk->tkr_mono.clock == clock ? 0 : -1;
1101
}
1102

1103
/**
1104 1105
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1106 1107 1108
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1109
void getrawmonotonic64(struct timespec64 *ts)
1110
{
1111
	struct timekeeper *tk = &tk_core.timekeeper;
1112
	struct timespec64 ts64;
1113 1114 1115 1116
	unsigned long seq;
	s64 nsecs;

	do {
1117
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1118
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1119
		ts64 = tk->raw_time;
1120

1121
	} while (read_seqcount_retry(&tk_core.seq, seq));
1122

1123
	timespec64_add_ns(&ts64, nsecs);
1124
	*ts = ts64;
1125
}
1126 1127
EXPORT_SYMBOL(getrawmonotonic64);

1128

1129
/**
1130
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1131
 */
1132
int timekeeping_valid_for_hres(void)
1133
{
1134
	struct timekeeper *tk = &tk_core.timekeeper;
1135 1136 1137 1138
	unsigned long seq;
	int ret;

	do {
1139
		seq = read_seqcount_begin(&tk_core.seq);
1140

1141
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1142

1143
	} while (read_seqcount_retry(&tk_core.seq, seq));
1144 1145 1146 1147

	return ret;
}

1148 1149 1150 1151 1152
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1153
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1154 1155
	unsigned long seq;
	u64 ret;
1156

J
John Stultz 已提交
1157
	do {
1158
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1159

1160
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1161

1162
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1163 1164

	return ret;
1165 1166
}

1167
/**
1168
 * read_persistent_clock -  Return time from the persistent clock.
1169 1170
 *
 * Weak dummy function for arches that do not yet support it.
1171 1172
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1173 1174 1175
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1176
void __weak read_persistent_clock(struct timespec *ts)
1177
{
1178 1179
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1180 1181
}

1182 1183 1184 1185 1186 1187 1188 1189
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1190
/**
X
Xunlei Pang 已提交
1191
 * read_boot_clock64 -  Return time of the system start.
1192 1193 1194
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1195
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1196 1197 1198
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1199
void __weak read_boot_clock64(struct timespec64 *ts)
1200 1201 1202 1203 1204
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1205 1206 1207 1208 1209 1210
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1211 1212 1213 1214 1215
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1216
	struct timekeeper *tk = &tk_core.timekeeper;
1217
	struct clocksource *clock;
1218
	unsigned long flags;
1219
	struct timespec64 now, boot, tmp;
1220

1221
	read_persistent_clock64(&now);
1222
	if (!timespec64_valid_strict(&now)) {
1223 1224 1225 1226
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1227
	} else if (now.tv_sec || now.tv_nsec)
1228
		persistent_clock_exists = true;
1229

1230
	read_boot_clock64(&boot);
1231
	if (!timespec64_valid_strict(&boot)) {
1232 1233 1234 1235 1236
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1237

1238
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1239
	write_seqcount_begin(&tk_core.seq);
1240 1241
	ntp_init();

1242
	clock = clocksource_default_clock();
1243 1244
	if (clock->enable)
		clock->enable(clock);
1245
	tk_setup_internals(tk, clock);
1246

1247 1248 1249
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1250
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1251
		boot = tk_xtime(tk);
1252

1253
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1254
	tk_set_wall_to_mono(tk, tmp);
1255

1256
	timekeeping_update(tk, TK_MIRROR);
1257

1258
	write_seqcount_end(&tk_core.seq);
1259
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1260 1261
}

1262
/* time in seconds when suspend began for persistent clock */
1263
static struct timespec64 timekeeping_suspend_time;
1264

1265 1266 1267 1268 1269 1270 1271
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1272
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1273
					   struct timespec64 *delta)
1274
{
1275
	if (!timespec64_valid_strict(delta)) {
1276 1277 1278
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1279 1280
		return;
	}
1281
	tk_xtime_add(tk, delta);
1282
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1283
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1284
	tk_debug_account_sleep_time(delta);
1285 1286
}

1287
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1323
/**
1324 1325
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1326
 *
1327
 * This hook is for architectures that cannot support read_persistent_clock64
1328
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1329
 * and also don't have an effective nonstop clocksource.
1330 1331 1332 1333
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1334
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1335
{
1336
	struct timekeeper *tk = &tk_core.timekeeper;
1337
	unsigned long flags;
1338

1339
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1340
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1341

1342
	timekeeping_forward_now(tk);
1343

1344
	__timekeeping_inject_sleeptime(tk, delta);
1345

1346
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1347

1348
	write_seqcount_end(&tk_core.seq);
1349
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1350 1351 1352 1353

	/* signal hrtimers about time change */
	clock_was_set();
}
1354
#endif
1355

1356 1357 1358
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1359
void timekeeping_resume(void)
1360
{
1361
	struct timekeeper *tk = &tk_core.timekeeper;
1362
	struct clocksource *clock = tk->tkr_mono.clock;
1363
	unsigned long flags;
1364
	struct timespec64 ts_new, ts_delta;
1365
	cycle_t cycle_now, cycle_delta;
1366

1367
	sleeptime_injected = false;
1368
	read_persistent_clock64(&ts_new);
1369

1370
	clockevents_resume();
1371 1372
	clocksource_resume();

1373
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1374
	write_seqcount_begin(&tk_core.seq);
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1388
	cycle_now = tk->tkr_mono.read(clock);
1389
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1390
		cycle_now > tk->tkr_mono.cycle_last) {
1391 1392 1393 1394 1395
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1396 1397
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1412
		ts_delta = ns_to_timespec64(nsec);
1413
		sleeptime_injected = true;
1414 1415
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1416
		sleeptime_injected = true;
1417
	}
1418

1419
	if (sleeptime_injected)
1420 1421 1422
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1423
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1424 1425
	tk->tkr_raw.cycle_last  = cycle_now;

1426
	tk->ntp_error = 0;
1427
	timekeeping_suspended = 0;
1428
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1429
	write_seqcount_end(&tk_core.seq);
1430
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1431 1432 1433

	touch_softlockup_watchdog();

1434
	tick_resume();
1435
	hrtimers_resume();
1436 1437
}

1438
int timekeeping_suspend(void)
1439
{
1440
	struct timekeeper *tk = &tk_core.timekeeper;
1441
	unsigned long flags;
1442 1443
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1444

1445
	read_persistent_clock64(&timekeeping_suspend_time);
1446

1447 1448 1449 1450 1451 1452
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1453
		persistent_clock_exists = true;
1454

1455
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1456
	write_seqcount_begin(&tk_core.seq);
1457
	timekeeping_forward_now(tk);
1458
	timekeeping_suspended = 1;
1459

1460
	if (persistent_clock_exists) {
1461
		/*
1462 1463 1464 1465
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1466
		 */
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1480
	}
1481 1482

	timekeeping_update(tk, TK_MIRROR);
1483
	halt_fast_timekeeper(tk);
1484
	write_seqcount_end(&tk_core.seq);
1485
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1486

1487
	tick_suspend();
M
Magnus Damm 已提交
1488
	clocksource_suspend();
1489
	clockevents_suspend();
1490 1491 1492 1493 1494

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1495
static struct syscore_ops timekeeping_syscore_ops = {
1496 1497 1498 1499
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1500
static int __init timekeeping_init_ops(void)
1501
{
1502 1503
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1504
}
1505
device_initcall(timekeeping_init_ops);
1506 1507

/*
1508
 * Apply a multiplier adjustment to the timekeeper
1509
 */
1510 1511 1512 1513
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1514
{
1515 1516
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1517

1518 1519 1520 1521
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1522
	}
1523 1524 1525
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1526

1527 1528 1529
	/*
	 * So the following can be confusing.
	 *
1530
	 * To keep things simple, lets assume mult_adj == 1 for now.
1531
	 *
1532
	 * When mult_adj != 1, remember that the interval and offset values
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1576
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1577 1578 1579 1580 1581
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1582
	tk->tkr_mono.mult += mult_adj;
1583
	tk->xtime_interval += interval;
1584
	tk->tkr_mono.xtime_nsec -= offset;
1585
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1605 1606
	tk->ntp_tick = ntp_tick_length();

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1646 1647 1648
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1649 1650
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1651 1652
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1653
	}
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1669 1670 1671
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1672
		tk->ntp_error += neg << tk->ntp_error_shift;
1673
	}
1674 1675
}

1676 1677 1678 1679 1680 1681 1682 1683
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1684
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1685
{
1686
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1687
	unsigned int clock_set = 0;
1688

1689
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1690 1691
		int leap;

1692
		tk->tkr_mono.xtime_nsec -= nsecps;
1693 1694 1695 1696
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1697
		if (unlikely(leap)) {
1698
			struct timespec64 ts;
1699 1700

			tk->xtime_sec += leap;
1701

1702 1703 1704
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1705
				timespec64_sub(tk->wall_to_monotonic, ts));
1706

1707 1708
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1709
			clock_set = TK_CLOCK_WAS_SET;
1710
		}
1711
	}
1712
	return clock_set;
1713 1714
}

1715 1716 1717 1718 1719 1720 1721 1722 1723
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1724
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1725 1726
						u32 shift,
						unsigned int *clock_set)
1727
{
T
Thomas Gleixner 已提交
1728
	cycle_t interval = tk->cycle_interval << shift;
1729
	u64 raw_nsecs;
1730

1731
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1732
	if (offset < interval)
1733 1734 1735
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1736
	offset -= interval;
1737
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1738
	tk->tkr_raw.cycle_last  += interval;
1739

1740
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1741
	*clock_set |= accumulate_nsecs_to_secs(tk);
1742

1743
	/* Accumulate raw time */
1744
	raw_nsecs = (u64)tk->raw_interval << shift;
1745
	raw_nsecs += tk->raw_time.tv_nsec;
1746 1747 1748
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1749
		tk->raw_time.tv_sec += raw_secs;
1750
	}
1751
	tk->raw_time.tv_nsec = raw_nsecs;
1752 1753

	/* Accumulate error between NTP and clock interval */
1754
	tk->ntp_error += tk->ntp_tick << shift;
1755 1756
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1757 1758 1759 1760

	return offset;
}

1761 1762 1763 1764
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1765
void update_wall_time(void)
1766
{
1767
	struct timekeeper *real_tk = &tk_core.timekeeper;
1768
	struct timekeeper *tk = &shadow_timekeeper;
1769
	cycle_t offset;
1770
	int shift = 0, maxshift;
1771
	unsigned int clock_set = 0;
J
John Stultz 已提交
1772 1773
	unsigned long flags;

1774
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1775 1776 1777

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1778
		goto out;
1779

J
John Stultz 已提交
1780
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1781
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1782
#else
1783 1784
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1785 1786
#endif

1787
	/* Check if there's really nothing to do */
1788
	if (offset < real_tk->cycle_interval)
1789 1790
		goto out;

1791 1792 1793
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1794 1795 1796 1797
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1798
	 * that is smaller than the offset.  We then accumulate that
1799 1800
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1801
	 */
1802
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1803
	shift = max(0, shift);
1804
	/* Bound shift to one less than what overflows tick_length */
1805
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1806
	shift = min(shift, maxshift);
1807
	while (offset >= tk->cycle_interval) {
1808 1809
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1810
		if (offset < tk->cycle_interval<<shift)
1811
			shift--;
1812 1813 1814
	}

	/* correct the clock when NTP error is too big */
1815
	timekeeping_adjust(tk, offset);
1816

J
John Stultz 已提交
1817
	/*
1818 1819 1820 1821
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1822

J
John Stultz 已提交
1823 1824
	/*
	 * Finally, make sure that after the rounding
1825
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1826
	 */
1827
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1828

1829
	write_seqcount_begin(&tk_core.seq);
1830 1831 1832 1833 1834 1835 1836
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1837
	 * memcpy under the tk_core.seq against one before we start
1838 1839 1840
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1841
	timekeeping_update(real_tk, clock_set);
1842
	write_seqcount_end(&tk_core.seq);
1843
out:
1844
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1845
	if (clock_set)
1846 1847
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1848
}
T
Tomas Janousek 已提交
1849 1850

/**
1851 1852
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1853
 *
1854
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1855 1856 1857 1858 1859 1860
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1861
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1862
{
1863
	struct timekeeper *tk = &tk_core.timekeeper;
1864 1865
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1866
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1867
}
1868
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1869

1870 1871
unsigned long get_seconds(void)
{
1872
	struct timekeeper *tk = &tk_core.timekeeper;
1873 1874

	return tk->xtime_sec;
1875 1876 1877
}
EXPORT_SYMBOL(get_seconds);

1878 1879
struct timespec __current_kernel_time(void)
{
1880
	struct timekeeper *tk = &tk_core.timekeeper;
1881

1882
	return timespec64_to_timespec(tk_xtime(tk));
1883
}
1884

1885 1886
struct timespec current_kernel_time(void)
{
1887
	struct timekeeper *tk = &tk_core.timekeeper;
1888
	struct timespec64 now;
1889 1890 1891
	unsigned long seq;

	do {
1892
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1893

1894
		now = tk_xtime(tk);
1895
	} while (read_seqcount_retry(&tk_core.seq, seq));
1896

1897
	return timespec64_to_timespec(now);
1898 1899
}
EXPORT_SYMBOL(current_kernel_time);
1900

1901
struct timespec64 get_monotonic_coarse64(void)
1902
{
1903
	struct timekeeper *tk = &tk_core.timekeeper;
1904
	struct timespec64 now, mono;
1905 1906 1907
	unsigned long seq;

	do {
1908
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1909

1910 1911
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1912
	} while (read_seqcount_retry(&tk_core.seq, seq));
1913

1914
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1915
				now.tv_nsec + mono.tv_nsec);
1916

1917
	return now;
1918
}
1919 1920

/*
1921
 * Must hold jiffies_lock
1922 1923 1924 1925 1926 1927
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1928

1929
/**
1930
 * ktime_get_update_offsets_now - hrtimer helper
1931
 * @cwsseq:	pointer to check and store the clock was set sequence number
1932 1933
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1934
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1935
 *
1936 1937 1938 1939
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
1940
 * Called from hrtimer_interrupt() or retrigger_next_event()
1941
 */
1942 1943
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
1944
{
1945
	struct timekeeper *tk = &tk_core.timekeeper;
1946
	unsigned int seq;
1947 1948
	ktime_t base;
	u64 nsecs;
1949 1950

	do {
1951
		seq = read_seqcount_begin(&tk_core.seq);
1952

1953 1954
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1955 1956 1957 1958 1959 1960
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
1961
	} while (read_seqcount_retry(&tk_core.seq, seq));
1962

1963
	return ktime_add_ns(base, nsecs);
1964 1965
}

1966 1967 1968 1969 1970
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1971
	struct timekeeper *tk = &tk_core.timekeeper;
1972
	unsigned long flags;
1973
	struct timespec64 ts;
1974
	s32 orig_tai, tai;
1975 1976 1977 1978 1979 1980 1981
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1993
	getnstimeofday64(&ts);
1994

1995
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1996
	write_seqcount_begin(&tk_core.seq);
1997

1998
	orig_tai = tai = tk->tai_offset;
1999
	ret = __do_adjtimex(txc, &ts, &tai);
2000

2001 2002
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2003
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2004
	}
2005
	write_seqcount_end(&tk_core.seq);
2006 2007
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2008 2009 2010
	if (tai != orig_tai)
		clock_was_set();

2011 2012
	ntp_notify_cmos_timer();

2013 2014
	return ret;
}
2015 2016 2017 2018 2019 2020 2021

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
2022 2023 2024
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2025
	write_seqcount_begin(&tk_core.seq);
2026

2027
	__hardpps(phase_ts, raw_ts);
2028

2029
	write_seqcount_end(&tk_core.seq);
2030
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2031 2032 2033 2034
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2035 2036 2037 2038 2039 2040 2041 2042
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2043
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2044
	do_timer(ticks);
2045
	write_sequnlock(&jiffies_lock);
2046
	update_wall_time();
T
Torben Hohn 已提交
2047
}