timekeeping.c 67.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/syscore_ops.h>
21 22 23 24
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
25
#include <linux/stop_machine.h>
26
#include <linux/pvclock_gtod.h>
27
#include <linux/compiler.h>
28

29
#include "tick-internal.h"
30
#include "ntp_internal.h"
31
#include "timekeeping_internal.h"
32

33 34
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
35
#define TK_CLOCK_WAS_SET	(1 << 2)
36

37 38 39 40 41 42 43 44 45
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

46
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47
static struct timekeeper shadow_timekeeper;
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
64
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
65

66 67 68
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73 74
		tk->xtime_sec++;
	}
75 76 77 78
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
79 80
}

81 82 83 84 85
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
86
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
87 88 89
	return ts;
}

90
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec = ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 95
}

96
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
97 98
{
	tk->xtime_sec += ts->tv_sec;
99
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
100
	tk_normalize_xtime(tk);
101
}
102

103
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
104
{
105
	struct timespec64 tmp;
106 107 108 109 110

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
111
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
112
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
113
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
114
	tk->wall_to_monotonic = wtm;
115 116
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
117
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
118 119
}

120
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
121
{
122
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
123 124
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
static inline u64 tk_clock_read(struct tk_read_base *tkr)
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

145
#ifdef CONFIG_DEBUG_TIMEKEEPING
146 147
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

148
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
149 150
{

151
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
152
	const char *name = tk->tkr_mono.clock->name;
153 154

	if (offset > max_cycles) {
155
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
156
				offset, name, max_cycles);
157
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
158 159
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
160
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
161 162 163 164
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
165

166 167
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
168 169 170
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
171
			tk->last_warning = jiffies;
172
		}
173
		tk->underflow_seen = 0;
174 175
	}

176 177
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
178 179 180
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
181
			tk->last_warning = jiffies;
182
		}
183
		tk->overflow_seen = 0;
184
	}
185
}
186

187
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
188
{
189
	struct timekeeper *tk = &tk_core.timekeeper;
190
	u64 now, last, mask, max, delta;
191
	unsigned int seq;
192

193 194 195 196 197 198 199 200 201
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
202
		now = tk_clock_read(tkr);
203 204 205 206
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
207

208
	delta = clocksource_delta(now, last, mask);
209

210 211 212 213
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
214
	if (unlikely((~delta & mask) < (mask >> 3))) {
215
		tk->underflow_seen = 1;
216
		delta = 0;
217
	}
218

219
	/* Cap delta value to the max_cycles values to avoid mult overflows */
220
	if (unlikely(delta > max)) {
221
		tk->overflow_seen = 1;
222
		delta = tkr->clock->max_cycles;
223
	}
224 225 226

	return delta;
}
227
#else
228
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
229 230
{
}
231
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
232
{
233
	u64 cycle_now, delta;
234 235

	/* read clocksource */
236
	cycle_now = tk_clock_read(tkr);
237 238 239 240 241 242

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
243 244
#endif

245
/**
246
 * tk_setup_internals - Set up internals to use clocksource clock.
247
 *
248
 * @tk:		The target timekeeper to setup.
249 250 251 252 253 254 255
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
256
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
257
{
258
	u64 interval;
259
	u64 tmp, ntpinterval;
260
	struct clocksource *old_clock;
261

262
	++tk->cs_was_changed_seq;
263 264 265
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
266
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
267

P
Peter Zijlstra 已提交
268 269 270 271
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

272 273 274
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
275
	ntpinterval = tmp;
276 277
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
278 279 280
	if (tmp == 0)
		tmp = 1;

281
	interval = (u64) tmp;
282
	tk->cycle_interval = interval;
283 284

	/* Go back from cycles -> shifted ns */
285
	tk->xtime_interval = interval * clock->mult;
286
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
287
	tk->raw_interval = interval * clock->mult;
288

289 290 291
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
292
		if (shift_change < 0) {
293
			tk->tkr_mono.xtime_nsec >>= -shift_change;
294 295
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
296
			tk->tkr_mono.xtime_nsec <<= shift_change;
297 298
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
299
	}
P
Peter Zijlstra 已提交
300

301
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
302
	tk->tkr_raw.shift = clock->shift;
303

304 305
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
306
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
307 308 309 310 311 312

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
313
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
314
	tk->tkr_raw.mult = clock->mult;
315
	tk->ntp_err_mult = 0;
316
}
317

318
/* Timekeeper helper functions. */
319 320

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
321 322
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
323
#else
324
static inline u32 arch_gettimeoffset(void) { return 0; }
325 326
#endif

327
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
328
{
329
	u64 nsec;
330 331 332 333 334 335 336 337

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

338
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
339
{
340
	u64 delta;
341

342
	delta = timekeeping_get_delta(tkr);
343 344
	return timekeeping_delta_to_ns(tkr, delta);
}
345

346
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
347
{
348
	u64 delta;
349

350 351 352
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
353 354
}

355 356
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
357
 * @tkr: Timekeeping readout base from which we take the update
358 359 360 361
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
362
 * Employ the latch technique; see @raw_write_seqcount_latch.
363 364 365 366 367 368
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
369
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
370
{
371
	struct tk_read_base *base = tkf->base;
372 373

	/* Force readers off to base[1] */
374
	raw_write_seqcount_latch(&tkf->seq);
375 376

	/* Update base[0] */
377
	memcpy(base, tkr, sizeof(*base));
378 379

	/* Force readers back to base[0] */
380
	raw_write_seqcount_latch(&tkf->seq);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
418
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
419 420 421 422 423 424
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
425
		seq = raw_read_seqcount_latch(&tkf->seq);
426
		tkr = tkf->base + (seq & 0x01);
427 428
		now = ktime_to_ns(tkr->base);

429 430
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
431
					tk_clock_read(tkr),
432 433
					tkr->cycle_last,
					tkr->mask));
434
	} while (read_seqcount_retry(&tkf->seq, seq));
435 436 437

	return now;
}
438 439 440 441 442

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
443 444
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
445 446 447 448 449 450
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);

480
/* Suspend-time cycles value for halted fast timekeeper. */
481
static u64 cycles_at_suspend;
482

483
static u64 dummy_clock_read(struct clocksource *cs)
484 485 486 487
{
	return cycles_at_suspend;
}

488 489 490 491
static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

492 493 494 495 496 497 498 499 500 501 502 503 504
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
505
	struct tk_read_base *tkr = &tk->tkr_mono;
506 507

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
508 509
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
510
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
511 512 513

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
514
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
515
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
516 517
}

518
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
519
#warning Please contact your maintainers, as GENERIC_TIME_VSYSCALL_OLD compatibity will disappear soon.
520 521 522

static inline void update_vsyscall(struct timekeeper *tk)
{
523
	struct timespec xt, wm;
524

525
	xt = timespec64_to_timespec(tk_xtime(tk));
526
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
527 528
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
545
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
546 547 548 549 550 551
	if (remainder != 0) {
		tk->tkr_mono.xtime_nsec -= remainder;
		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
		tk->ntp_error += remainder << tk->ntp_error_shift;
		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
	}
552 553 554 555 556
}
#else
#define old_vsyscall_fixup(tk)
#endif

557 558
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

559
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
560
{
561
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
562 563 564 565 566 567 568
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
569
	struct timekeeper *tk = &tk_core.timekeeper;
570 571 572
	unsigned long flags;
	int ret;

573
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
574
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
575
	update_pvclock_gtod(tk, true);
576
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
577 578 579 580 581 582 583 584 585 586 587 588 589 590

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

591
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
592
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
593
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
594 595 596 597 598

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

599 600 601 602 603 604
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
605
	if (tk->next_leap_ktime != KTIME_MAX)
606 607 608 609
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

610 611 612 613 614
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
615 616
	u64 seconds;
	u32 nsec;
617 618 619 620 621 622 623 624

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
625 626
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
627
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
628

629 630 631 632 633
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
634
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
635 636 637
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
638 639

	/* Update the monotonic raw base */
640
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
641 642
}

643
/* must hold timekeeper_lock */
644
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
645
{
646
	if (action & TK_CLEAR_NTP) {
647
		tk->ntp_error = 0;
648 649
		ntp_clear();
	}
650

651
	tk_update_leap_state(tk);
652 653
	tk_update_ktime_data(tk);

654 655 656
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

657
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
658
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
659 660 661

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
662 663 664 665 666 667 668 669
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
670 671
}

672
/**
673
 * timekeeping_forward_now - update clock to the current time
674
 *
675 676 677
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
678
 */
679
static void timekeeping_forward_now(struct timekeeper *tk)
680
{
681
	u64 cycle_now, delta;
682

683
	cycle_now = tk_clock_read(&tk->tkr_mono);
684 685
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
686
	tk->tkr_raw.cycle_last  = cycle_now;
687

688
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
689

690
	/* If arch requires, add in get_arch_timeoffset() */
691
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
692

693

694 695 696 697 698 699
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
700 701 702
}

/**
703
 * __getnstimeofday64 - Returns the time of day in a timespec64.
704 705
 * @ts:		pointer to the timespec to be set
 *
706 707
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
708
 */
709
int __getnstimeofday64(struct timespec64 *ts)
710
{
711
	struct timekeeper *tk = &tk_core.timekeeper;
712
	unsigned long seq;
713
	u64 nsecs;
714 715

	do {
716
		seq = read_seqcount_begin(&tk_core.seq);
717

718
		ts->tv_sec = tk->xtime_sec;
719
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
720

721
	} while (read_seqcount_retry(&tk_core.seq, seq));
722

723
	ts->tv_nsec = 0;
724
	timespec64_add_ns(ts, nsecs);
725 726 727 728 729 730 731 732 733

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
734
EXPORT_SYMBOL(__getnstimeofday64);
735 736

/**
737
 * getnstimeofday64 - Returns the time of day in a timespec64.
738
 * @ts:		pointer to the timespec64 to be set
739
 *
740
 * Returns the time of day in a timespec64 (WARN if suspended).
741
 */
742
void getnstimeofday64(struct timespec64 *ts)
743
{
744
	WARN_ON(__getnstimeofday64(ts));
745
}
746
EXPORT_SYMBOL(getnstimeofday64);
747

748 749
ktime_t ktime_get(void)
{
750
	struct timekeeper *tk = &tk_core.timekeeper;
751
	unsigned int seq;
752
	ktime_t base;
753
	u64 nsecs;
754 755 756 757

	WARN_ON(timekeeping_suspended);

	do {
758
		seq = read_seqcount_begin(&tk_core.seq);
759 760
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
761

762
	} while (read_seqcount_retry(&tk_core.seq, seq));
763

764
	return ktime_add_ns(base, nsecs);
765 766 767
}
EXPORT_SYMBOL_GPL(ktime_get);

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

785 786 787 788 789 790 791 792 793 794 795
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
796
	u64 nsecs;
797 798 799 800 801

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
802 803
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
804 805 806 807 808 809 810 811

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

832 833 834 835 836 837 838 839
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
840
	u64 nsecs;
841 842 843

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
844 845
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
846 847 848 849 850 851 852

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

853
/**
854
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
855 856 857 858
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
859
 * in normalized timespec64 format in the variable pointed to by @ts.
860
 */
861
void ktime_get_ts64(struct timespec64 *ts)
862
{
863
	struct timekeeper *tk = &tk_core.timekeeper;
864
	struct timespec64 tomono;
865
	unsigned int seq;
866
	u64 nsec;
867 868 869 870

	WARN_ON(timekeeping_suspended);

	do {
871
		seq = read_seqcount_begin(&tk_core.seq);
872
		ts->tv_sec = tk->xtime_sec;
873
		nsec = timekeeping_get_ns(&tk->tkr_mono);
874
		tomono = tk->wall_to_monotonic;
875

876
	} while (read_seqcount_retry(&tk_core.seq, seq));
877

878 879 880
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
881
}
882
EXPORT_SYMBOL_GPL(ktime_get_ts64);
883

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

932 933 934 935 936 937 938 939 940 941 942 943
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

944 945 946 947 948 949 950 951 952 953
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
954 955
	u64 nsec_raw;
	u64 nsec_real;
956
	u64 now;
957

958 959
	WARN_ON_ONCE(timekeeping_suspended);

960 961
	do {
		seq = read_seqcount_begin(&tk_core.seq);
962
		now = tk_clock_read(&tk->tkr_mono);
963 964
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
965 966 967 968 969 970 971 972 973 974 975 976
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
977

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1014 1015
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1028
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1078
static bool cycle_between(u64 before, u64 test, u64 after)
1079 1080 1081 1082 1083 1084 1085 1086
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1087 1088
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1089
 * @get_time_fn:	Callback to get simultaneous device time and
1090
 *	system counter from the device driver
1091 1092 1093
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1094 1095 1096 1097 1098 1099 1100 1101 1102
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1103
				  struct system_time_snapshot *history_begin,
1104 1105 1106 1107
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1108
	u64 cycles, now, interval_start;
1109
	unsigned int clock_was_set_seq = 0;
1110
	ktime_t base_real, base_raw;
1111
	u64 nsec_real, nsec_raw;
1112
	u8 cs_was_changed_seq;
1113
	unsigned long seq;
1114
	bool do_interp;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1134 1135 1136 1137 1138 1139
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1140
		now = tk_clock_read(&tk->tkr_mono);
1141 1142 1143 1144 1145 1146 1147 1148 1149
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1163 1164 1165 1166 1167 1168

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1169
		u64 partial_history_cycles, total_history_cycles;
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1195 1196 1197 1198
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1199 1200 1201 1202
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1203
 * NOTE: Users should be converted to using getnstimeofday()
1204 1205 1206
 */
void do_gettimeofday(struct timeval *tv)
{
1207
	struct timespec64 now;
1208

1209
	getnstimeofday64(&now);
1210 1211 1212 1213
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1214

1215
/**
1216 1217
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1218 1219 1220
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1221
int do_settimeofday64(const struct timespec64 *ts)
1222
{
1223
	struct timekeeper *tk = &tk_core.timekeeper;
1224
	struct timespec64 ts_delta, xt;
1225
	unsigned long flags;
1226
	int ret = 0;
1227

1228
	if (!timespec64_valid_strict(ts))
1229 1230
		return -EINVAL;

1231
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1232
	write_seqcount_begin(&tk_core.seq);
1233

1234
	timekeeping_forward_now(tk);
1235

1236
	xt = tk_xtime(tk);
1237 1238
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1239

1240 1241 1242 1243 1244
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1245
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1246

1247
	tk_set_xtime(tk, ts);
1248
out:
1249
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1250

1251
	write_seqcount_end(&tk_core.seq);
1252
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1253 1254 1255 1256

	/* signal hrtimers about time change */
	clock_was_set();

1257
	return ret;
1258
}
1259
EXPORT_SYMBOL(do_settimeofday64);
1260

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/*
 * Validates if a timespec/timeval used to inject a time offset is valid.
 * Offsets can be postive or negative. The value of the timeval/timespec
 * is the sum of its fields, but *NOTE*: the field tv_usec/tv_nsec must
 * always be non-negative.
 */
static inline bool timeval_inject_offset_valid(const struct timeval *tv)
{
	/* We don't check the tv_sec as it can be positive or negative */

	/* Can't have more microseconds then a second */
	if (tv->tv_usec < 0 || tv->tv_usec >= USEC_PER_SEC)
		return false;
	return true;
}

static inline bool timespec_inject_offset_valid(const struct timespec *ts)
{
	/* We don't check the tv_sec as it can be positive or negative */

	/* Can't have more nanoseconds then a second */
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
		return false;
	return true;
}

1287 1288 1289 1290 1291 1292
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
1293
static int timekeeping_inject_offset(struct timespec *ts)
1294
{
1295
	struct timekeeper *tk = &tk_core.timekeeper;
1296
	unsigned long flags;
1297
	struct timespec64 ts64, tmp;
1298
	int ret = 0;
1299

1300
	if (!timespec_inject_offset_valid(ts))
1301 1302
		return -EINVAL;

1303 1304
	ts64 = timespec_to_timespec64(*ts);

1305
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1306
	write_seqcount_begin(&tk_core.seq);
1307

1308
	timekeeping_forward_now(tk);
1309

1310
	/* Make sure the proposed value is valid */
1311
	tmp = timespec64_add(tk_xtime(tk),  ts64);
1312 1313
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
1314 1315 1316
		ret = -EINVAL;
		goto error;
	}
1317

1318 1319
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1320

1321
error: /* even if we error out, we forwarded the time, so call update */
1322
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1323

1324
	write_seqcount_end(&tk_core.seq);
1325
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1326 1327 1328 1329

	/* signal hrtimers about time change */
	clock_was_set();

1330
	return ret;
1331
}
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
		struct timespec adjust;

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}
1366

1367
/**
1368
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1369 1370
 *
 */
1371
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1372 1373
{
	tk->tai_offset = tai_offset;
1374
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1375 1376
}

1377 1378 1379 1380 1381
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1382
static int change_clocksource(void *data)
1383
{
1384
	struct timekeeper *tk = &tk_core.timekeeper;
1385
	struct clocksource *new, *old;
1386
	unsigned long flags;
1387

1388
	new = (struct clocksource *) data;
1389

1390
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1391
	write_seqcount_begin(&tk_core.seq);
1392

1393
	timekeeping_forward_now(tk);
1394 1395 1396 1397 1398 1399
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1400
			old = tk->tkr_mono.clock;
1401 1402 1403 1404 1405 1406 1407
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1408
	}
1409
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1410

1411
	write_seqcount_end(&tk_core.seq);
1412
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1413

1414 1415
	return 0;
}
1416

1417 1418 1419 1420 1421 1422 1423
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1424
int timekeeping_notify(struct clocksource *clock)
1425
{
1426
	struct timekeeper *tk = &tk_core.timekeeper;
1427

1428
	if (tk->tkr_mono.clock == clock)
1429
		return 0;
1430
	stop_machine(change_clocksource, clock, NULL);
1431
	tick_clock_notify();
1432
	return tk->tkr_mono.clock == clock ? 0 : -1;
1433
}
1434

1435
/**
1436 1437
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1438 1439 1440
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1441
void getrawmonotonic64(struct timespec64 *ts)
1442
{
1443
	struct timekeeper *tk = &tk_core.timekeeper;
1444
	unsigned long seq;
1445
	u64 nsecs;
1446 1447

	do {
1448
		seq = read_seqcount_begin(&tk_core.seq);
1449
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1450
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1451

1452
	} while (read_seqcount_retry(&tk_core.seq, seq));
1453

1454 1455
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1456
}
1457 1458
EXPORT_SYMBOL(getrawmonotonic64);

1459

1460
/**
1461
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1462
 */
1463
int timekeeping_valid_for_hres(void)
1464
{
1465
	struct timekeeper *tk = &tk_core.timekeeper;
1466 1467 1468 1469
	unsigned long seq;
	int ret;

	do {
1470
		seq = read_seqcount_begin(&tk_core.seq);
1471

1472
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1473

1474
	} while (read_seqcount_retry(&tk_core.seq, seq));
1475 1476 1477 1478

	return ret;
}

1479 1480 1481 1482 1483
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1484
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1485 1486
	unsigned long seq;
	u64 ret;
1487

J
John Stultz 已提交
1488
	do {
1489
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1490

1491
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1492

1493
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1494 1495

	return ret;
1496 1497
}

1498
/**
1499
 * read_persistent_clock -  Return time from the persistent clock.
1500 1501
 *
 * Weak dummy function for arches that do not yet support it.
1502 1503
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1504 1505 1506
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1507
void __weak read_persistent_clock(struct timespec *ts)
1508
{
1509 1510
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1511 1512
}

1513 1514 1515 1516 1517 1518 1519 1520
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1521
/**
X
Xunlei Pang 已提交
1522
 * read_boot_clock64 -  Return time of the system start.
1523 1524 1525
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1526
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1527 1528 1529
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1530
void __weak read_boot_clock64(struct timespec64 *ts)
1531 1532 1533 1534 1535
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1536 1537 1538 1539 1540 1541
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1542 1543 1544 1545 1546
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1547
	struct timekeeper *tk = &tk_core.timekeeper;
1548
	struct clocksource *clock;
1549
	unsigned long flags;
1550
	struct timespec64 now, boot, tmp;
1551

1552
	read_persistent_clock64(&now);
1553
	if (!timespec64_valid_strict(&now)) {
1554 1555 1556 1557
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1558
	} else if (now.tv_sec || now.tv_nsec)
1559
		persistent_clock_exists = true;
1560

1561
	read_boot_clock64(&boot);
1562
	if (!timespec64_valid_strict(&boot)) {
1563 1564 1565 1566 1567
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1568

1569
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1570
	write_seqcount_begin(&tk_core.seq);
1571 1572
	ntp_init();

1573
	clock = clocksource_default_clock();
1574 1575
	if (clock->enable)
		clock->enable(clock);
1576
	tk_setup_internals(tk, clock);
1577

1578
	tk_set_xtime(tk, &now);
1579
	tk->raw_sec = 0;
1580
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1581
		boot = tk_xtime(tk);
1582

1583
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1584
	tk_set_wall_to_mono(tk, tmp);
1585

1586
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1587

1588
	write_seqcount_end(&tk_core.seq);
1589
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1590 1591
}

1592
/* time in seconds when suspend began for persistent clock */
1593
static struct timespec64 timekeeping_suspend_time;
1594

1595 1596 1597 1598 1599 1600 1601
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1602
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1603
					   struct timespec64 *delta)
1604
{
1605
	if (!timespec64_valid_strict(delta)) {
1606 1607 1608
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1609 1610
		return;
	}
1611
	tk_xtime_add(tk, delta);
1612
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1613
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1614
	tk_debug_account_sleep_time(delta);
1615 1616
}

1617
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1653
/**
1654 1655
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1656
 *
1657
 * This hook is for architectures that cannot support read_persistent_clock64
1658
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1659
 * and also don't have an effective nonstop clocksource.
1660 1661 1662 1663
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1664
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1665
{
1666
	struct timekeeper *tk = &tk_core.timekeeper;
1667
	unsigned long flags;
1668

1669
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1670
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1671

1672
	timekeeping_forward_now(tk);
1673

1674
	__timekeeping_inject_sleeptime(tk, delta);
1675

1676
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1677

1678
	write_seqcount_end(&tk_core.seq);
1679
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1680 1681 1682 1683

	/* signal hrtimers about time change */
	clock_was_set();
}
1684
#endif
1685

1686 1687 1688
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1689
void timekeeping_resume(void)
1690
{
1691
	struct timekeeper *tk = &tk_core.timekeeper;
1692
	struct clocksource *clock = tk->tkr_mono.clock;
1693
	unsigned long flags;
1694
	struct timespec64 ts_new, ts_delta;
1695
	u64 cycle_now;
1696

1697
	sleeptime_injected = false;
1698
	read_persistent_clock64(&ts_new);
1699

1700
	clockevents_resume();
1701 1702
	clocksource_resume();

1703
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1704
	write_seqcount_begin(&tk_core.seq);
1705

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1718
	cycle_now = tk_clock_read(&tk->tkr_mono);
1719
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1720
		cycle_now > tk->tkr_mono.cycle_last) {
1721
		u64 nsec, cyc_delta;
1722

1723 1724 1725
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
					      tk->tkr_mono.mask);
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1726
		ts_delta = ns_to_timespec64(nsec);
1727
		sleeptime_injected = true;
1728 1729
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1730
		sleeptime_injected = true;
1731
	}
1732

1733
	if (sleeptime_injected)
1734 1735 1736
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1737
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1738 1739
	tk->tkr_raw.cycle_last  = cycle_now;

1740
	tk->ntp_error = 0;
1741
	timekeeping_suspended = 0;
1742
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1743
	write_seqcount_end(&tk_core.seq);
1744
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1745 1746 1747

	touch_softlockup_watchdog();

1748
	tick_resume();
1749
	hrtimers_resume();
1750 1751
}

1752
int timekeeping_suspend(void)
1753
{
1754
	struct timekeeper *tk = &tk_core.timekeeper;
1755
	unsigned long flags;
1756 1757
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1758

1759
	read_persistent_clock64(&timekeeping_suspend_time);
1760

1761 1762 1763 1764 1765 1766
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1767
		persistent_clock_exists = true;
1768

1769
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1770
	write_seqcount_begin(&tk_core.seq);
1771
	timekeeping_forward_now(tk);
1772
	timekeeping_suspended = 1;
1773

1774
	if (persistent_clock_exists) {
1775
		/*
1776 1777 1778 1779
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1780
		 */
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1794
	}
1795 1796

	timekeeping_update(tk, TK_MIRROR);
1797
	halt_fast_timekeeper(tk);
1798
	write_seqcount_end(&tk_core.seq);
1799
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1800

1801
	tick_suspend();
M
Magnus Damm 已提交
1802
	clocksource_suspend();
1803
	clockevents_suspend();
1804 1805 1806 1807 1808

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1809
static struct syscore_ops timekeeping_syscore_ops = {
1810 1811 1812 1813
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1814
static int __init timekeeping_init_ops(void)
1815
{
1816 1817
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1818
}
1819
device_initcall(timekeeping_init_ops);
1820 1821

/*
1822
 * Apply a multiplier adjustment to the timekeeper
1823
 */
1824 1825 1826 1827
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1828
{
1829 1830
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1831

1832 1833 1834 1835
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1836
	}
1837 1838 1839
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1840

1841 1842 1843
	/*
	 * So the following can be confusing.
	 *
1844
	 * To keep things simple, lets assume mult_adj == 1 for now.
1845
	 *
1846
	 * When mult_adj != 1, remember that the interval and offset values
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1890
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1891 1892 1893 1894 1895
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1896
	tk->tkr_mono.mult += mult_adj;
1897
	tk->xtime_interval += interval;
1898
	tk->tkr_mono.xtime_nsec -= offset;
1899
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1911 1912 1913
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1914 1915
	s64 tick_error;
	bool negative;
1916
	u32 adj_scale;
1917 1918 1919 1920 1921

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1922 1923
	tk->ntp_tick = ntp_tick_length();

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1946
	tick_error = abs(tick_error);
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1957
		tick_error >>= 1;
1958
	}
1959 1960

	/* scale the corrections */
1961
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1983 1984 1985
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1986 1987
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1988 1989
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1990
	}
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
2006 2007 2008
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
2009
		tk->ntp_error += neg << tk->ntp_error_shift;
2010
	}
2011 2012
}

2013 2014 2015
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
2016
 * Helper function that accumulates the nsecs greater than a second
2017 2018 2019 2020
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
2021
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2022
{
2023
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2024
	unsigned int clock_set = 0;
2025

2026
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2027 2028
		int leap;

2029
		tk->tkr_mono.xtime_nsec -= nsecps;
2030 2031 2032 2033
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
2034
		if (unlikely(leap)) {
2035
			struct timespec64 ts;
2036 2037

			tk->xtime_sec += leap;
2038

2039 2040 2041
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
2042
				timespec64_sub(tk->wall_to_monotonic, ts));
2043

2044 2045
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

2046
			clock_set = TK_CLOCK_WAS_SET;
2047
		}
2048
	}
2049
	return clock_set;
2050 2051
}

2052 2053 2054 2055 2056 2057 2058 2059 2060
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
2061 2062
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
2063
{
2064
	u64 interval = tk->cycle_interval << shift;
2065
	u64 snsec_per_sec;
2066

Z
Zhen Lei 已提交
2067
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2068
	if (offset < interval)
2069 2070 2071
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2072
	offset -= interval;
2073
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2074
	tk->tkr_raw.cycle_last  += interval;
2075

2076
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2077
	*clock_set |= accumulate_nsecs_to_secs(tk);
2078

2079
	/* Accumulate raw time */
2080 2081 2082 2083
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2084
		tk->raw_sec++;
2085 2086 2087
	}

	/* Accumulate error between NTP and clock interval */
2088
	tk->ntp_error += tk->ntp_tick << shift;
2089 2090
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2091 2092 2093 2094

	return offset;
}

2095 2096 2097 2098
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2099
void update_wall_time(void)
2100
{
2101
	struct timekeeper *real_tk = &tk_core.timekeeper;
2102
	struct timekeeper *tk = &shadow_timekeeper;
2103
	u64 offset;
2104
	int shift = 0, maxshift;
2105
	unsigned int clock_set = 0;
J
John Stultz 已提交
2106 2107
	unsigned long flags;

2108
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2109 2110 2111

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2112
		goto out;
2113

J
John Stultz 已提交
2114
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2115
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2116
#else
2117
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2118
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2119 2120
#endif

2121
	/* Check if there's really nothing to do */
2122
	if (offset < real_tk->cycle_interval)
2123 2124
		goto out;

2125
	/* Do some additional sanity checking */
2126
	timekeeping_check_update(tk, offset);
2127

2128 2129 2130 2131
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2132
	 * that is smaller than the offset.  We then accumulate that
2133 2134
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2135
	 */
2136
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2137
	shift = max(0, shift);
2138
	/* Bound shift to one less than what overflows tick_length */
2139
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2140
	shift = min(shift, maxshift);
2141
	while (offset >= tk->cycle_interval) {
2142 2143
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2144
		if (offset < tk->cycle_interval<<shift)
2145
			shift--;
2146 2147 2148
	}

	/* correct the clock when NTP error is too big */
2149
	timekeeping_adjust(tk, offset);
2150

J
John Stultz 已提交
2151
	/*
2152 2153 2154 2155
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
2156

J
John Stultz 已提交
2157 2158
	/*
	 * Finally, make sure that after the rounding
2159
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2160
	 */
2161
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2162

2163
	write_seqcount_begin(&tk_core.seq);
2164 2165 2166 2167 2168 2169 2170
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2171
	 * memcpy under the tk_core.seq against one before we start
2172 2173
	 * updating.
	 */
2174
	timekeeping_update(tk, clock_set);
2175
	memcpy(real_tk, tk, sizeof(*tk));
2176
	/* The memcpy must come last. Do not put anything here! */
2177
	write_seqcount_end(&tk_core.seq);
2178
out:
2179
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2180
	if (clock_set)
2181 2182
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2183
}
T
Tomas Janousek 已提交
2184 2185

/**
2186 2187
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2188
 *
2189
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2190 2191 2192 2193 2194 2195
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2196
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2197
{
2198
	struct timekeeper *tk = &tk_core.timekeeper;
2199 2200
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

2201
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2202
}
2203
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2204

2205 2206
unsigned long get_seconds(void)
{
2207
	struct timekeeper *tk = &tk_core.timekeeper;
2208 2209

	return tk->xtime_sec;
2210 2211 2212
}
EXPORT_SYMBOL(get_seconds);

2213 2214
struct timespec __current_kernel_time(void)
{
2215
	struct timekeeper *tk = &tk_core.timekeeper;
2216

2217
	return timespec64_to_timespec(tk_xtime(tk));
2218
}
2219

2220
struct timespec64 current_kernel_time64(void)
2221
{
2222
	struct timekeeper *tk = &tk_core.timekeeper;
2223
	struct timespec64 now;
2224 2225 2226
	unsigned long seq;

	do {
2227
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2228

2229
		now = tk_xtime(tk);
2230
	} while (read_seqcount_retry(&tk_core.seq, seq));
2231

2232
	return now;
2233
}
2234
EXPORT_SYMBOL(current_kernel_time64);
2235

2236
struct timespec64 get_monotonic_coarse64(void)
2237
{
2238
	struct timekeeper *tk = &tk_core.timekeeper;
2239
	struct timespec64 now, mono;
2240 2241 2242
	unsigned long seq;

	do {
2243
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2244

2245 2246
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2247
	} while (read_seqcount_retry(&tk_core.seq, seq));
2248

2249
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2250
				now.tv_nsec + mono.tv_nsec);
2251

2252
	return now;
2253
}
2254
EXPORT_SYMBOL(get_monotonic_coarse64);
2255 2256

/*
2257
 * Must hold jiffies_lock
2258 2259 2260 2261 2262 2263
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2264

2265
/**
2266
 * ktime_get_update_offsets_now - hrtimer helper
2267
 * @cwsseq:	pointer to check and store the clock was set sequence number
2268 2269
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2270
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2271
 *
2272 2273 2274 2275
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2276
 * Called from hrtimer_interrupt() or retrigger_next_event()
2277
 */
2278 2279
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2280
{
2281
	struct timekeeper *tk = &tk_core.timekeeper;
2282
	unsigned int seq;
2283 2284
	ktime_t base;
	u64 nsecs;
2285 2286

	do {
2287
		seq = read_seqcount_begin(&tk_core.seq);
2288

2289 2290
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2291 2292
		base = ktime_add_ns(base, nsecs);

2293 2294 2295 2296 2297 2298
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2299 2300

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2301
		if (unlikely(base >= tk->next_leap_ktime))
2302 2303
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2304
	} while (read_seqcount_retry(&tk_core.seq, seq));
2305

2306
	return base;
2307 2308
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
/**
 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
 */
static int ntp_validate_timex(struct timex *txc)
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

		if (txc->modes & ADJ_NANO) {
			struct timespec ts;

			ts.tv_sec = txc->time.tv_sec;
			ts.tv_nsec = txc->time.tv_usec;
			if (!timespec_inject_offset_valid(&ts))
				return -EINVAL;

		} else {
			if (!timeval_inject_offset_valid(&txc->time))
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}


2369 2370 2371 2372 2373
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2374
	struct timekeeper *tk = &tk_core.timekeeper;
2375
	unsigned long flags;
2376
	struct timespec64 ts;
2377
	s32 orig_tai, tai;
2378 2379 2380 2381 2382 2383 2384
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2396
	getnstimeofday64(&ts);
2397

2398
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2399
	write_seqcount_begin(&tk_core.seq);
2400

2401
	orig_tai = tai = tk->tai_offset;
2402
	ret = __do_adjtimex(txc, &ts, &tai);
2403

2404 2405
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2406
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2407
	}
2408 2409
	tk_update_leap_state(tk);

2410
	write_seqcount_end(&tk_core.seq);
2411 2412
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2413 2414 2415
	if (tai != orig_tai)
		clock_was_set();

2416 2417
	ntp_notify_cmos_timer();

2418 2419
	return ret;
}
2420 2421 2422 2423 2424

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2425
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2426
{
2427 2428 2429
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2430
	write_seqcount_begin(&tk_core.seq);
2431

2432
	__hardpps(phase_ts, raw_ts);
2433

2434
	write_seqcount_end(&tk_core.seq);
2435
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2436 2437
}
EXPORT_SYMBOL(hardpps);
2438
#endif /* CONFIG_NTP_PPS */
2439

T
Torben Hohn 已提交
2440 2441 2442 2443 2444 2445 2446 2447
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2448
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2449
	do_timer(ticks);
2450
	write_sequnlock(&jiffies_lock);
2451
	update_wall_time();
T
Torben Hohn 已提交
2452
}