timekeeping.c 63.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

122 123 124
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

125 126
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
127 128

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
134
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 136 137 138
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
139

140 141
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 143 144
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
145
			tk->last_warning = jiffies;
146
		}
147
		tk->underflow_seen = 0;
148 149
	}

150 151
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 153 154
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
155
			tk->last_warning = jiffies;
156
		}
157
		tk->overflow_seen = 0;
158
	}
159
}
160 161 162

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
163
	struct timekeeper *tk = &tk_core.timekeeper;
164 165
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
181

182
	delta = clocksource_delta(now, last, mask);
183

184 185 186 187
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
188
	if (unlikely((~delta & mask) < (mask >> 3))) {
189
		tk->underflow_seen = 1;
190
		delta = 0;
191
	}
192

193
	/* Cap delta value to the max_cycles values to avoid mult overflows */
194
	if (unlikely(delta > max)) {
195
		tk->overflow_seen = 1;
196
		delta = tkr->clock->max_cycles;
197
	}
198 199 200

	return delta;
}
201 202 203 204
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
205 206 207 208 209 210 211 212 213 214 215 216
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
217 218
#endif

219
/**
220
 * tk_setup_internals - Set up internals to use clocksource clock.
221
 *
222
 * @tk:		The target timekeeper to setup.
223 224 225 226 227 228 229
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
230
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 232
{
	cycle_t interval;
233
	u64 tmp, ntpinterval;
234
	struct clocksource *old_clock;
235

236
	++tk->cs_was_changed_seq;
237 238 239 240 241
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242

P
Peter Zijlstra 已提交
243 244 245 246 247
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

248 249 250
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
251
	ntpinterval = tmp;
252 253
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
254 255 256 257
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
258
	tk->cycle_interval = interval;
259 260

	/* Go back from cycles -> shifted ns */
261 262 263
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
264
		((u64) interval * clock->mult) >> clock->shift;
265

266 267 268 269
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
270
			tk->tkr_mono.xtime_nsec >>= -shift_change;
271
		else
272
			tk->tkr_mono.xtime_nsec <<= shift_change;
273
	}
P
Peter Zijlstra 已提交
274 275
	tk->tkr_raw.xtime_nsec = 0;

276
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
277
	tk->tkr_raw.shift = clock->shift;
278

279 280
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282 283 284 285 286 287

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
288
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
289
	tk->tkr_raw.mult = clock->mult;
290
	tk->ntp_err_mult = 0;
291
}
292

293
/* Timekeeper helper functions. */
294 295

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 297
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298
#else
299
static inline u32 arch_gettimeoffset(void) { return 0; }
300 301
#endif

302 303 304 305 306 307 308 309 310 311 312 313
static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
					  cycle_t delta)
{
	s64 nsec;

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

314
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315
{
316
	cycle_t delta;
317

318
	delta = timekeeping_get_delta(tkr);
319 320
	return timekeeping_delta_to_ns(tkr, delta);
}
321

322 323 324 325
static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
					    cycle_t cycles)
{
	cycle_t delta;
326

327 328 329
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
330 331
}

332 333
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334
 * @tkr: Timekeeping readout base from which we take the update
335 336 337 338
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
339
 * Employ the latch technique; see @raw_write_seqcount_latch.
340 341 342 343 344 345
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
346
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347
{
348
	struct tk_read_base *base = tkf->base;
349 350

	/* Force readers off to base[1] */
351
	raw_write_seqcount_latch(&tkf->seq);
352 353

	/* Update base[0] */
354
	memcpy(base, tkr, sizeof(*base));
355 356

	/* Force readers back to base[0] */
357
	raw_write_seqcount_latch(&tkf->seq);
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
395
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 397 398 399 400 401
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
402
		seq = raw_read_seqcount_latch(&tkf->seq);
403
		tkr = tkf->base + (seq & 0x01);
404 405 406 407
		now = ktime_to_ns(tkr->base);

		now += clocksource_delta(tkr->read(tkr->clock),
					 tkr->cycle_last, tkr->mask);
408
	} while (read_seqcount_retry(&tkf->seq, seq));
409 410 411

	return now;
}
412 413 414 415 416

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
417 418
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
419 420 421 422 423 424
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
446
	struct tk_read_base *tkr = &tk->tkr_mono;
447 448 449 450

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
451
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
452 453 454 455 456

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
457 458
}

459 460 461 462
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
463
	struct timespec xt, wm;
464

465
	xt = timespec64_to_timespec(tk_xtime(tk));
466
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
467 468
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
485
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
486 487 488 489 490 491
	if (remainder != 0) {
		tk->tkr_mono.xtime_nsec -= remainder;
		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
		tk->ntp_error += remainder << tk->ntp_error_shift;
		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
	}
492 493 494 495 496
}
#else
#define old_vsyscall_fixup(tk)
#endif

497 498
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

499
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
500
{
501
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
502 503 504 505 506 507 508
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
509
	struct timekeeper *tk = &tk_core.timekeeper;
510 511 512
	unsigned long flags;
	int ret;

513
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
514
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
515
	update_pvclock_gtod(tk, true);
516
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
517 518 519 520 521 522 523 524 525 526 527 528 529 530

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

531
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
532
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
533
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
534 535 536 537 538

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

539 540 541 542 543 544 545 546 547 548 549
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

550 551 552 553 554
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
555 556
	u64 seconds;
	u32 nsec;
557 558 559 560 561 562 563 564

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
565 566
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
567
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
568 569

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
570
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
571 572 573 574 575 576

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
577
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
578 579 580
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
581 582
}

583
/* must hold timekeeper_lock */
584
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
585
{
586
	if (action & TK_CLEAR_NTP) {
587
		tk->ntp_error = 0;
588 589
		ntp_clear();
	}
590

591
	tk_update_leap_state(tk);
592 593
	tk_update_ktime_data(tk);

594 595 596
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

597
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
598
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
599 600 601

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
602 603 604 605 606 607 608 609
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
610 611
}

612
/**
613
 * timekeeping_forward_now - update clock to the current time
614
 *
615 616 617
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
618
 */
619
static void timekeeping_forward_now(struct timekeeper *tk)
620
{
621
	struct clocksource *clock = tk->tkr_mono.clock;
622
	cycle_t cycle_now, delta;
623
	s64 nsec;
624

625 626 627
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
628
	tk->tkr_raw.cycle_last  = cycle_now;
629

630
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
631

632
	/* If arch requires, add in get_arch_timeoffset() */
633
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
634

635
	tk_normalize_xtime(tk);
636

P
Peter Zijlstra 已提交
637
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
638
	timespec64_add_ns(&tk->raw_time, nsec);
639 640 641
}

/**
642
 * __getnstimeofday64 - Returns the time of day in a timespec64.
643 644
 * @ts:		pointer to the timespec to be set
 *
645 646
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
647
 */
648
int __getnstimeofday64(struct timespec64 *ts)
649
{
650
	struct timekeeper *tk = &tk_core.timekeeper;
651
	unsigned long seq;
652
	s64 nsecs = 0;
653 654

	do {
655
		seq = read_seqcount_begin(&tk_core.seq);
656

657
		ts->tv_sec = tk->xtime_sec;
658
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
659

660
	} while (read_seqcount_retry(&tk_core.seq, seq));
661

662
	ts->tv_nsec = 0;
663
	timespec64_add_ns(ts, nsecs);
664 665 666 667 668 669 670 671 672

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
673
EXPORT_SYMBOL(__getnstimeofday64);
674 675

/**
676
 * getnstimeofday64 - Returns the time of day in a timespec64.
677
 * @ts:		pointer to the timespec64 to be set
678
 *
679
 * Returns the time of day in a timespec64 (WARN if suspended).
680
 */
681
void getnstimeofday64(struct timespec64 *ts)
682
{
683
	WARN_ON(__getnstimeofday64(ts));
684
}
685
EXPORT_SYMBOL(getnstimeofday64);
686

687 688
ktime_t ktime_get(void)
{
689
	struct timekeeper *tk = &tk_core.timekeeper;
690
	unsigned int seq;
691 692
	ktime_t base;
	s64 nsecs;
693 694 695 696

	WARN_ON(timekeeping_suspended);

	do {
697
		seq = read_seqcount_begin(&tk_core.seq);
698 699
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
700

701
	} while (read_seqcount_retry(&tk_core.seq, seq));
702

703
	return ktime_add_ns(base, nsecs);
704 705 706
}
EXPORT_SYMBOL_GPL(ktime_get);

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
741 742
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
743 744 745 746 747 748 749 750

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

771 772 773 774 775 776 777 778 779 780 781 782
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
783 784
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
785 786 787 788 789 790 791

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

792
/**
793
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
794 795 796 797
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
798
 * in normalized timespec64 format in the variable pointed to by @ts.
799
 */
800
void ktime_get_ts64(struct timespec64 *ts)
801
{
802
	struct timekeeper *tk = &tk_core.timekeeper;
803
	struct timespec64 tomono;
804
	s64 nsec;
805 806 807 808 809
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
810
		seq = read_seqcount_begin(&tk_core.seq);
811
		ts->tv_sec = tk->xtime_sec;
812
		nsec = timekeeping_get_ns(&tk->tkr_mono);
813
		tomono = tk->wall_to_monotonic;
814

815
	} while (read_seqcount_retry(&tk_core.seq, seq));
816

817 818 819
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
820
}
821
EXPORT_SYMBOL_GPL(ktime_get_ts64);
822

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

871 872 873 874 875 876 877 878 879 880 881 882
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
	s64 nsec_raw;
	s64 nsec_real;
	cycle_t now;

897 898
	WARN_ON_ONCE(timekeeping_suspended);

899 900 901 902
	do {
		seq = read_seqcount_begin(&tk_core.seq);

		now = tk->tkr_mono.read(tk->tkr_mono.clock);
903 904
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
905 906 907 908 909 910 911 912 913 914 915 916
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
					 cycle_t partial_history_cycles,
					 cycle_t total_history_cycles,
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
	interp_forward = partial_history_cycles > total_history_cycles/2 ?
		true : false;
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1028 1029
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1030
 * @get_time_fn:	Callback to get simultaneous device time and
1031
 *	system counter from the device driver
1032 1033 1034
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1035 1036 1037 1038 1039 1040 1041 1042 1043
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1044
				  struct system_time_snapshot *history_begin,
1045 1046 1047 1048
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1049
	cycle_t cycles, now, interval_start;
1050
	unsigned int clock_was_set_seq = 0;
1051 1052
	ktime_t base_real, base_raw;
	s64 nsec_real, nsec_raw;
1053
	u8 cs_was_changed_seq;
1054
	unsigned long seq;
1055
	bool do_interp;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
		now = tk->tkr_mono.read(tk->tkr_mono.clock);
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
		cycle_t partial_history_cycles, total_history_cycles;
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1136 1137 1138 1139
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1140 1141 1142 1143
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1144
 * NOTE: Users should be converted to using getnstimeofday()
1145 1146 1147
 */
void do_gettimeofday(struct timeval *tv)
{
1148
	struct timespec64 now;
1149

1150
	getnstimeofday64(&now);
1151 1152 1153 1154
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1155

1156
/**
1157 1158
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1159 1160 1161
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1162
int do_settimeofday64(const struct timespec64 *ts)
1163
{
1164
	struct timekeeper *tk = &tk_core.timekeeper;
1165
	struct timespec64 ts_delta, xt;
1166
	unsigned long flags;
1167
	int ret = 0;
1168

1169
	if (!timespec64_valid_strict(ts))
1170 1171
		return -EINVAL;

1172
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1173
	write_seqcount_begin(&tk_core.seq);
1174

1175
	timekeeping_forward_now(tk);
1176

1177
	xt = tk_xtime(tk);
1178 1179
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1180

1181 1182 1183 1184 1185
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1186
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1187

1188
	tk_set_xtime(tk, ts);
1189
out:
1190
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1191

1192
	write_seqcount_end(&tk_core.seq);
1193
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1194 1195 1196 1197

	/* signal hrtimers about time change */
	clock_was_set();

1198
	return ret;
1199
}
1200
EXPORT_SYMBOL(do_settimeofday64);
1201

1202 1203 1204 1205 1206 1207 1208 1209
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
1210
	struct timekeeper *tk = &tk_core.timekeeper;
1211
	unsigned long flags;
1212
	struct timespec64 ts64, tmp;
1213
	int ret = 0;
1214

1215
	if (!timespec_inject_offset_valid(ts))
1216 1217
		return -EINVAL;

1218 1219
	ts64 = timespec_to_timespec64(*ts);

1220
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1221
	write_seqcount_begin(&tk_core.seq);
1222

1223
	timekeeping_forward_now(tk);
1224

1225
	/* Make sure the proposed value is valid */
1226
	tmp = timespec64_add(tk_xtime(tk),  ts64);
1227 1228
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
1229 1230 1231
		ret = -EINVAL;
		goto error;
	}
1232

1233 1234
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1235

1236
error: /* even if we error out, we forwarded the time, so call update */
1237
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1238

1239
	write_seqcount_end(&tk_core.seq);
1240
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1241 1242 1243 1244

	/* signal hrtimers about time change */
	clock_was_set();

1245
	return ret;
1246 1247 1248
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1249 1250 1251 1252 1253 1254 1255

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
1256
	struct timekeeper *tk = &tk_core.timekeeper;
1257 1258 1259 1260
	unsigned int seq;
	s32 ret;

	do {
1261
		seq = read_seqcount_begin(&tk_core.seq);
1262
		ret = tk->tai_offset;
1263
	} while (read_seqcount_retry(&tk_core.seq, seq));
1264 1265 1266 1267 1268 1269 1270 1271

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1272
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1273 1274
{
	tk->tai_offset = tai_offset;
1275
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1276 1277 1278 1279 1280 1281 1282 1283
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1284
	struct timekeeper *tk = &tk_core.timekeeper;
1285 1286
	unsigned long flags;

1287
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1288
	write_seqcount_begin(&tk_core.seq);
1289
	__timekeeping_set_tai_offset(tk, tai_offset);
1290
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1291
	write_seqcount_end(&tk_core.seq);
1292
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1293
	clock_was_set();
1294 1295
}

1296 1297 1298 1299 1300
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1301
static int change_clocksource(void *data)
1302
{
1303
	struct timekeeper *tk = &tk_core.timekeeper;
1304
	struct clocksource *new, *old;
1305
	unsigned long flags;
1306

1307
	new = (struct clocksource *) data;
1308

1309
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1310
	write_seqcount_begin(&tk_core.seq);
1311

1312
	timekeeping_forward_now(tk);
1313 1314 1315 1316 1317 1318
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1319
			old = tk->tkr_mono.clock;
1320 1321 1322 1323 1324 1325 1326
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1327
	}
1328
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1329

1330
	write_seqcount_end(&tk_core.seq);
1331
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1332

1333 1334
	return 0;
}
1335

1336 1337 1338 1339 1340 1341 1342
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1343
int timekeeping_notify(struct clocksource *clock)
1344
{
1345
	struct timekeeper *tk = &tk_core.timekeeper;
1346

1347
	if (tk->tkr_mono.clock == clock)
1348
		return 0;
1349
	stop_machine(change_clocksource, clock, NULL);
1350
	tick_clock_notify();
1351
	return tk->tkr_mono.clock == clock ? 0 : -1;
1352
}
1353

1354
/**
1355 1356
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1357 1358 1359
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1360
void getrawmonotonic64(struct timespec64 *ts)
1361
{
1362
	struct timekeeper *tk = &tk_core.timekeeper;
1363
	struct timespec64 ts64;
1364 1365 1366 1367
	unsigned long seq;
	s64 nsecs;

	do {
1368
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1369
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1370
		ts64 = tk->raw_time;
1371

1372
	} while (read_seqcount_retry(&tk_core.seq, seq));
1373

1374
	timespec64_add_ns(&ts64, nsecs);
1375
	*ts = ts64;
1376
}
1377 1378
EXPORT_SYMBOL(getrawmonotonic64);

1379

1380
/**
1381
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1382
 */
1383
int timekeeping_valid_for_hres(void)
1384
{
1385
	struct timekeeper *tk = &tk_core.timekeeper;
1386 1387 1388 1389
	unsigned long seq;
	int ret;

	do {
1390
		seq = read_seqcount_begin(&tk_core.seq);
1391

1392
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1393

1394
	} while (read_seqcount_retry(&tk_core.seq, seq));
1395 1396 1397 1398

	return ret;
}

1399 1400 1401 1402 1403
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1404
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1405 1406
	unsigned long seq;
	u64 ret;
1407

J
John Stultz 已提交
1408
	do {
1409
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1410

1411
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1412

1413
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1414 1415

	return ret;
1416 1417
}

1418
/**
1419
 * read_persistent_clock -  Return time from the persistent clock.
1420 1421
 *
 * Weak dummy function for arches that do not yet support it.
1422 1423
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1424 1425 1426
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1427
void __weak read_persistent_clock(struct timespec *ts)
1428
{
1429 1430
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1431 1432
}

1433 1434 1435 1436 1437 1438 1439 1440
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1441
/**
X
Xunlei Pang 已提交
1442
 * read_boot_clock64 -  Return time of the system start.
1443 1444 1445
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1446
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1447 1448 1449
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1450
void __weak read_boot_clock64(struct timespec64 *ts)
1451 1452 1453 1454 1455
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1456 1457 1458 1459 1460 1461
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1462 1463 1464 1465 1466
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1467
	struct timekeeper *tk = &tk_core.timekeeper;
1468
	struct clocksource *clock;
1469
	unsigned long flags;
1470
	struct timespec64 now, boot, tmp;
1471

1472
	read_persistent_clock64(&now);
1473
	if (!timespec64_valid_strict(&now)) {
1474 1475 1476 1477
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1478
	} else if (now.tv_sec || now.tv_nsec)
1479
		persistent_clock_exists = true;
1480

1481
	read_boot_clock64(&boot);
1482
	if (!timespec64_valid_strict(&boot)) {
1483 1484 1485 1486 1487
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1488

1489
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1490
	write_seqcount_begin(&tk_core.seq);
1491 1492
	ntp_init();

1493
	clock = clocksource_default_clock();
1494 1495
	if (clock->enable)
		clock->enable(clock);
1496
	tk_setup_internals(tk, clock);
1497

1498 1499 1500
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1501
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1502
		boot = tk_xtime(tk);
1503

1504
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1505
	tk_set_wall_to_mono(tk, tmp);
1506

1507
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1508

1509
	write_seqcount_end(&tk_core.seq);
1510
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1511 1512
}

1513
/* time in seconds when suspend began for persistent clock */
1514
static struct timespec64 timekeeping_suspend_time;
1515

1516 1517 1518 1519 1520 1521 1522
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1523
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1524
					   struct timespec64 *delta)
1525
{
1526
	if (!timespec64_valid_strict(delta)) {
1527 1528 1529
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1530 1531
		return;
	}
1532
	tk_xtime_add(tk, delta);
1533
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1534
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1535
	tk_debug_account_sleep_time(delta);
1536 1537
}

1538
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1574
/**
1575 1576
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1577
 *
1578
 * This hook is for architectures that cannot support read_persistent_clock64
1579
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1580
 * and also don't have an effective nonstop clocksource.
1581 1582 1583 1584
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1585
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1586
{
1587
	struct timekeeper *tk = &tk_core.timekeeper;
1588
	unsigned long flags;
1589

1590
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1591
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1592

1593
	timekeeping_forward_now(tk);
1594

1595
	__timekeeping_inject_sleeptime(tk, delta);
1596

1597
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1598

1599
	write_seqcount_end(&tk_core.seq);
1600
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1601 1602 1603 1604

	/* signal hrtimers about time change */
	clock_was_set();
}
1605
#endif
1606

1607 1608 1609
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1610
void timekeeping_resume(void)
1611
{
1612
	struct timekeeper *tk = &tk_core.timekeeper;
1613
	struct clocksource *clock = tk->tkr_mono.clock;
1614
	unsigned long flags;
1615
	struct timespec64 ts_new, ts_delta;
1616
	cycle_t cycle_now, cycle_delta;
1617

1618
	sleeptime_injected = false;
1619
	read_persistent_clock64(&ts_new);
1620

1621
	clockevents_resume();
1622 1623
	clocksource_resume();

1624
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1625
	write_seqcount_begin(&tk_core.seq);
1626

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1639
	cycle_now = tk->tkr_mono.read(clock);
1640
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1641
		cycle_now > tk->tkr_mono.cycle_last) {
1642 1643 1644 1645 1646
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1647 1648
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1663
		ts_delta = ns_to_timespec64(nsec);
1664
		sleeptime_injected = true;
1665 1666
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1667
		sleeptime_injected = true;
1668
	}
1669

1670
	if (sleeptime_injected)
1671 1672 1673
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1674
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1675 1676
	tk->tkr_raw.cycle_last  = cycle_now;

1677
	tk->ntp_error = 0;
1678
	timekeeping_suspended = 0;
1679
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1680
	write_seqcount_end(&tk_core.seq);
1681
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1682 1683 1684

	touch_softlockup_watchdog();

1685
	tick_resume();
1686
	hrtimers_resume();
1687 1688
}

1689
int timekeeping_suspend(void)
1690
{
1691
	struct timekeeper *tk = &tk_core.timekeeper;
1692
	unsigned long flags;
1693 1694
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1695

1696
	read_persistent_clock64(&timekeeping_suspend_time);
1697

1698 1699 1700 1701 1702 1703
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1704
		persistent_clock_exists = true;
1705

1706
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1707
	write_seqcount_begin(&tk_core.seq);
1708
	timekeeping_forward_now(tk);
1709
	timekeeping_suspended = 1;
1710

1711
	if (persistent_clock_exists) {
1712
		/*
1713 1714 1715 1716
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1717
		 */
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1731
	}
1732 1733

	timekeeping_update(tk, TK_MIRROR);
1734
	halt_fast_timekeeper(tk);
1735
	write_seqcount_end(&tk_core.seq);
1736
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1737

1738
	tick_suspend();
M
Magnus Damm 已提交
1739
	clocksource_suspend();
1740
	clockevents_suspend();
1741 1742 1743 1744 1745

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1746
static struct syscore_ops timekeeping_syscore_ops = {
1747 1748 1749 1750
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1751
static int __init timekeeping_init_ops(void)
1752
{
1753 1754
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1755
}
1756
device_initcall(timekeeping_init_ops);
1757 1758

/*
1759
 * Apply a multiplier adjustment to the timekeeper
1760
 */
1761 1762 1763 1764
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1765
{
1766 1767
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1768

1769 1770 1771 1772
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1773
	}
1774 1775 1776
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1777

1778 1779 1780
	/*
	 * So the following can be confusing.
	 *
1781
	 * To keep things simple, lets assume mult_adj == 1 for now.
1782
	 *
1783
	 * When mult_adj != 1, remember that the interval and offset values
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1827
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1828 1829 1830 1831 1832
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1833
	tk->tkr_mono.mult += mult_adj;
1834
	tk->xtime_interval += interval;
1835
	tk->tkr_mono.xtime_nsec -= offset;
1836
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1848 1849 1850
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1851 1852
	s64 tick_error;
	bool negative;
1853
	u32 adj_scale;
1854 1855 1856 1857 1858

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1859 1860
	tk->ntp_tick = ntp_tick_length();

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1883
	tick_error = abs(tick_error);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1894
		tick_error >>= 1;
1895
	}
1896 1897

	/* scale the corrections */
1898
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1920 1921 1922
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1923 1924
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1925 1926
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1927
	}
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1943 1944 1945
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1946
		tk->ntp_error += neg << tk->ntp_error_shift;
1947
	}
1948 1949
}

1950 1951 1952
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1953
 * Helper function that accumulates the nsecs greater than a second
1954 1955 1956 1957
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1958
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1959
{
1960
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1961
	unsigned int clock_set = 0;
1962

1963
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1964 1965
		int leap;

1966
		tk->tkr_mono.xtime_nsec -= nsecps;
1967 1968 1969 1970
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1971
		if (unlikely(leap)) {
1972
			struct timespec64 ts;
1973 1974

			tk->xtime_sec += leap;
1975

1976 1977 1978
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1979
				timespec64_sub(tk->wall_to_monotonic, ts));
1980

1981 1982
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1983
			clock_set = TK_CLOCK_WAS_SET;
1984
		}
1985
	}
1986
	return clock_set;
1987 1988
}

1989 1990 1991 1992 1993 1994 1995 1996 1997
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1998
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1999 2000
						u32 shift,
						unsigned int *clock_set)
2001
{
T
Thomas Gleixner 已提交
2002
	cycle_t interval = tk->cycle_interval << shift;
2003
	u64 raw_nsecs;
2004

Z
Zhen Lei 已提交
2005
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2006
	if (offset < interval)
2007 2008 2009
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2010
	offset -= interval;
2011
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2012
	tk->tkr_raw.cycle_last  += interval;
2013

2014
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2015
	*clock_set |= accumulate_nsecs_to_secs(tk);
2016

2017
	/* Accumulate raw time */
2018
	raw_nsecs = (u64)tk->raw_interval << shift;
2019
	raw_nsecs += tk->raw_time.tv_nsec;
2020 2021 2022
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2023
		tk->raw_time.tv_sec += raw_secs;
2024
	}
2025
	tk->raw_time.tv_nsec = raw_nsecs;
2026 2027

	/* Accumulate error between NTP and clock interval */
2028
	tk->ntp_error += tk->ntp_tick << shift;
2029 2030
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2031 2032 2033 2034

	return offset;
}

2035 2036 2037 2038
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2039
void update_wall_time(void)
2040
{
2041
	struct timekeeper *real_tk = &tk_core.timekeeper;
2042
	struct timekeeper *tk = &shadow_timekeeper;
2043
	cycle_t offset;
2044
	int shift = 0, maxshift;
2045
	unsigned int clock_set = 0;
J
John Stultz 已提交
2046 2047
	unsigned long flags;

2048
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2049 2050 2051

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2052
		goto out;
2053

J
John Stultz 已提交
2054
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2055
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2056
#else
2057 2058
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2059 2060
#endif

2061
	/* Check if there's really nothing to do */
2062
	if (offset < real_tk->cycle_interval)
2063 2064
		goto out;

2065 2066 2067
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

2068 2069 2070 2071
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2072
	 * that is smaller than the offset.  We then accumulate that
2073 2074
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2075
	 */
2076
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2077
	shift = max(0, shift);
2078
	/* Bound shift to one less than what overflows tick_length */
2079
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2080
	shift = min(shift, maxshift);
2081
	while (offset >= tk->cycle_interval) {
2082 2083
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2084
		if (offset < tk->cycle_interval<<shift)
2085
			shift--;
2086 2087 2088
	}

	/* correct the clock when NTP error is too big */
2089
	timekeeping_adjust(tk, offset);
2090

J
John Stultz 已提交
2091
	/*
2092 2093 2094 2095
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
2096

J
John Stultz 已提交
2097 2098
	/*
	 * Finally, make sure that after the rounding
2099
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2100
	 */
2101
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2102

2103
	write_seqcount_begin(&tk_core.seq);
2104 2105 2106 2107 2108 2109 2110
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2111
	 * memcpy under the tk_core.seq against one before we start
2112 2113
	 * updating.
	 */
2114
	timekeeping_update(tk, clock_set);
2115
	memcpy(real_tk, tk, sizeof(*tk));
2116
	/* The memcpy must come last. Do not put anything here! */
2117
	write_seqcount_end(&tk_core.seq);
2118
out:
2119
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2120
	if (clock_set)
2121 2122
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2123
}
T
Tomas Janousek 已提交
2124 2125

/**
2126 2127
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2128
 *
2129
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2130 2131 2132 2133 2134 2135
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2136
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2137
{
2138
	struct timekeeper *tk = &tk_core.timekeeper;
2139 2140
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

2141
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2142
}
2143
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2144

2145 2146
unsigned long get_seconds(void)
{
2147
	struct timekeeper *tk = &tk_core.timekeeper;
2148 2149

	return tk->xtime_sec;
2150 2151 2152
}
EXPORT_SYMBOL(get_seconds);

2153 2154
struct timespec __current_kernel_time(void)
{
2155
	struct timekeeper *tk = &tk_core.timekeeper;
2156

2157
	return timespec64_to_timespec(tk_xtime(tk));
2158
}
2159

2160
struct timespec64 current_kernel_time64(void)
2161
{
2162
	struct timekeeper *tk = &tk_core.timekeeper;
2163
	struct timespec64 now;
2164 2165 2166
	unsigned long seq;

	do {
2167
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2168

2169
		now = tk_xtime(tk);
2170
	} while (read_seqcount_retry(&tk_core.seq, seq));
2171

2172
	return now;
2173
}
2174
EXPORT_SYMBOL(current_kernel_time64);
2175

2176
struct timespec64 get_monotonic_coarse64(void)
2177
{
2178
	struct timekeeper *tk = &tk_core.timekeeper;
2179
	struct timespec64 now, mono;
2180 2181 2182
	unsigned long seq;

	do {
2183
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2184

2185 2186
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2187
	} while (read_seqcount_retry(&tk_core.seq, seq));
2188

2189
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2190
				now.tv_nsec + mono.tv_nsec);
2191

2192
	return now;
2193
}
2194
EXPORT_SYMBOL(get_monotonic_coarse64);
2195 2196

/*
2197
 * Must hold jiffies_lock
2198 2199 2200 2201 2202 2203
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2204

2205
/**
2206
 * ktime_get_update_offsets_now - hrtimer helper
2207
 * @cwsseq:	pointer to check and store the clock was set sequence number
2208 2209
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2210
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2211
 *
2212 2213 2214 2215
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2216
 * Called from hrtimer_interrupt() or retrigger_next_event()
2217
 */
2218 2219
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2220
{
2221
	struct timekeeper *tk = &tk_core.timekeeper;
2222
	unsigned int seq;
2223 2224
	ktime_t base;
	u64 nsecs;
2225 2226

	do {
2227
		seq = read_seqcount_begin(&tk_core.seq);
2228

2229 2230
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2231 2232
		base = ktime_add_ns(base, nsecs);

2233 2234 2235 2236 2237 2238
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2239 2240 2241 2242 2243

		/* Handle leapsecond insertion adjustments */
		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2244
	} while (read_seqcount_retry(&tk_core.seq, seq));
2245

2246
	return base;
2247 2248
}

2249 2250 2251 2252 2253
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2254
	struct timekeeper *tk = &tk_core.timekeeper;
2255
	unsigned long flags;
2256
	struct timespec64 ts;
2257
	s32 orig_tai, tai;
2258 2259 2260 2261 2262 2263 2264
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2276
	getnstimeofday64(&ts);
2277

2278
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2279
	write_seqcount_begin(&tk_core.seq);
2280

2281
	orig_tai = tai = tk->tai_offset;
2282
	ret = __do_adjtimex(txc, &ts, &tai);
2283

2284 2285
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2286
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2287
	}
2288 2289
	tk_update_leap_state(tk);

2290
	write_seqcount_end(&tk_core.seq);
2291 2292
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2293 2294 2295
	if (tai != orig_tai)
		clock_was_set();

2296 2297
	ntp_notify_cmos_timer();

2298 2299
	return ret;
}
2300 2301 2302 2303 2304

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2305
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2306
{
2307 2308 2309
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2310
	write_seqcount_begin(&tk_core.seq);
2311

2312
	__hardpps(phase_ts, raw_ts);
2313

2314
	write_seqcount_end(&tk_core.seq);
2315
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2316 2317 2318 2319
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2320 2321 2322 2323 2324 2325 2326 2327
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2328
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2329
	do_timer(ticks);
2330
	write_sequnlock(&jiffies_lock);
2331
	update_wall_time();
T
Torben Hohn 已提交
2332
}