timekeeping.c 36.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
27
	struct clocksource	*clock;
28
	/* NTP adjusted clock multiplier */
29
	u32			mult;
30
	/* The shift value of the current clocksource. */
31
	u32			shift;
32
	/* Number of clock cycles in one NTP interval. */
33
	cycle_t			cycle_interval;
34
	/* Number of clock shifted nano seconds in one NTP interval. */
35
	u64			xtime_interval;
36
	/* shifted nano seconds left over when rounding cycle_interval */
37
	s64			xtime_remainder;
38
	/* Raw nano seconds accumulated per NTP interval. */
39
	u32			raw_interval;
40

41 42 43
	/* Current CLOCK_REALTIME time in seconds */
	u64			xtime_sec;
	/* Clock shifted nano seconds */
44
	u64			xtime_nsec;
45

46 47
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
48
	s64			ntp_error;
49 50
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
51
	u32			ntp_error_shift;
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66
	/*
	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
	 * at zero at system boot time, so wall_to_monotonic will be negative,
	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
	 * the usual normalization.
	 *
	 * wall_to_monotonic is moved after resume from suspend for the
	 * monotonic time not to jump. We need to add total_sleep_time to
	 * wall_to_monotonic to get the real boot based time offset.
	 *
	 * - wall_to_monotonic is no longer the boot time, getboottime must be
	 * used instead.
	 */
67
	struct timespec		wall_to_monotonic;
68
	/* time spent in suspend */
69
	struct timespec		total_sleep_time;
70
	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71
	struct timespec		raw_time;
72
	/* Offset clock monotonic -> clock realtime */
73
	ktime_t			offs_real;
74
	/* Offset clock monotonic -> clock boottime */
75
	ktime_t			offs_boot;
J
John Stultz 已提交
76
	/* Seqlock for all timekeeper values */
77
	seqlock_t		lock;
78 79
};

80
static struct timekeeper timekeeper;
81

82 83 84 85 86 87 88 89 90
/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime.
 */
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);

/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static struct timespec tk_xtime(struct timekeeper *tk)
{
	struct timespec ts;

	ts.tv_sec = tk->xtime_sec;
	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
	return ts;
}
107

108 109 110 111 112 113 114 115 116 117 118
static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
	tk->xtime_nsec = ts->tv_nsec << tk->shift;
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
	tk->xtime_nsec += ts->tv_nsec << tk->shift;
}
119

120 121 122 123 124 125 126 127 128 129 130 131 132
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
133
	u64 tmp, ntpinterval;
134
	struct clocksource *old_clock;
135

136
	old_clock = timekeeper.clock;
137 138 139 140 141 142
	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
143
	ntpinterval = tmp;
144 145
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
146 147 148 149 150 151 152 153
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
154
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
155
	timekeeper.raw_interval =
156
		((u64) interval * clock->mult) >> clock->shift;
157

158 159 160 161 162 163 164 165
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
			timekeeper.xtime_nsec >>= -shift_change;
		else
			timekeeper.xtime_nsec <<= shift_change;
	}
166
	timekeeper.shift = clock->shift;
167 168

	timekeeper.ntp_error = 0;
169
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
170 171 172 173 174 175 176

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
177
}
178

179 180 181 182 183
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
184
	s64 nsec;
185 186 187 188 189 190 191 192

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

193
	nsec = cycle_delta * timekeeper.mult + timekeeper.xtime_nsec;
194 195 196 197
	nsec >>= timekeeper.shift;

	/* If arch requires, add in gettimeoffset() */
	return nsec + arch_gettimeoffset();
198 199 200 201 202 203
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
204
	s64 nsec;
205 206 207 208 209 210 211 212

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

213 214 215 216 217
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

	/* If arch requires, add in gettimeoffset() */
	return nsec + arch_gettimeoffset();
218 219
}

220 221 222 223 224 225 226 227
static void update_rt_offset(void)
{
	struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic;

	set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
	timekeeper.offs_real = timespec_to_ktime(tmp);
}

228 229 230
/* must hold write on timekeeper.lock */
static void timekeeping_update(bool clearntp)
{
231 232
	struct timespec xt;

233 234 235 236
	if (clearntp) {
		timekeeper.ntp_error = 0;
		ntp_clear();
	}
237
	update_rt_offset();
238 239
	xt = tk_xtime(&timekeeper);
	update_vsyscall(&xt, &timekeeper.wall_to_monotonic,
240 241 242 243
			 timekeeper.clock, timekeeper.mult);
}


244
/**
245
 * timekeeping_forward_now - update clock to the current time
246
 *
247 248 249
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
250
 */
251
static void timekeeping_forward_now(void)
252 253
{
	cycle_t cycle_now, cycle_delta;
254
	struct clocksource *clock;
255
	s64 nsec;
256

257
	clock = timekeeper.clock;
258
	cycle_now = clock->read(clock);
259
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
260
	clock->cycle_last = cycle_now;
261

262
	timekeeper.xtime_nsec += cycle_delta * timekeeper.mult;
263 264

	/* If arch requires, add in gettimeoffset() */
265
	timekeeper.xtime_nsec += arch_gettimeoffset() << timekeeper.shift;
266

267
	tk_normalize_xtime(&timekeeper);
268

269
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
270
	timespec_add_ns(&timekeeper.raw_time, nsec);
271 272 273
}

/**
274
 * getnstimeofday - Returns the time of day in a timespec
275 276
 * @ts:		pointer to the timespec to be set
 *
277
 * Returns the time of day in a timespec.
278
 */
279
void getnstimeofday(struct timespec *ts)
280 281
{
	unsigned long seq;
282
	s64 nsecs = 0;
283

284 285
	WARN_ON(timekeeping_suspended);

286
	do {
J
John Stultz 已提交
287
		seq = read_seqbegin(&timekeeper.lock);
288

289 290
		ts->tv_sec = timekeeper.xtime_sec;
		ts->tv_nsec = timekeeping_get_ns();
291

J
John Stultz 已提交
292
	} while (read_seqretry(&timekeeper.lock, seq));
293 294 295 296 297

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getnstimeofday);

298 299 300 301 302 303 304 305
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
306
		seq = read_seqbegin(&timekeeper.lock);
307
		secs = timekeeper.xtime_sec +
308
				timekeeper.wall_to_monotonic.tv_sec;
309
		nsecs = timekeeping_get_ns() +
310
				timekeeper.wall_to_monotonic.tv_nsec;
311

J
John Stultz 已提交
312
	} while (read_seqretry(&timekeeper.lock, seq));
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
337
		seq = read_seqbegin(&timekeeper.lock);
338 339
		ts->tv_sec = timekeeper.xtime_sec;
		ts->tv_nsec = timekeeping_get_ns();
340
		tomono = timekeeper.wall_to_monotonic;
341

J
John Stultz 已提交
342
	} while (read_seqretry(&timekeeper.lock, seq));
343 344

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
345
				ts->tv_nsec + tomono.tv_nsec);
346 347 348
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
J
John Stultz 已提交
368
		seq = read_seqbegin(&timekeeper.lock);
369

370
		*ts_raw = timekeeper.raw_time;
371 372
		ts_real->tv_sec = timekeeper.xtime_sec;
		ts_real->tv_nsec = 0;
373 374 375 376

		nsecs_raw = timekeeping_get_ns_raw();
		nsecs_real = timekeeping_get_ns();

J
John Stultz 已提交
377
	} while (read_seqretry(&timekeeper.lock, seq));
378 379 380 381 382 383 384 385

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

386 387 388 389
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
390
 * NOTE: Users should be converted to using getnstimeofday()
391 392 393 394 395
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

396
	getnstimeofday(&now);
397 398 399 400
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
401

402 403 404 405 406 407
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
408
int do_settimeofday(const struct timespec *tv)
409
{
410
	struct timespec ts_delta, xt;
411
	unsigned long flags;
412 413 414 415

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

416
	write_seqlock_irqsave(&timekeeper.lock, flags);
417

418
	timekeeping_forward_now();
419

420 421 422 423
	xt = tk_xtime(&timekeeper);
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

424 425
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
426

427 428
	tk_set_xtime(&timekeeper, tv);

429
	timekeeping_update(true);
430

431
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
432 433 434 435 436 437 438 439

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

440 441 442 443 444 445 446 447 448

/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
449
	unsigned long flags;
450 451 452 453

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

454
	write_seqlock_irqsave(&timekeeper.lock, flags);
455 456 457

	timekeeping_forward_now();

458 459

	tk_xtime_add(&timekeeper, ts);
460 461
	timekeeper.wall_to_monotonic =
				timespec_sub(timekeeper.wall_to_monotonic, *ts);
462

463
	timekeeping_update(true);
464

465
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
466 467 468 469 470 471 472 473

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(timekeeping_inject_offset);

474 475 476 477 478
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
479
static int change_clocksource(void *data)
480
{
481
	struct clocksource *new, *old;
482
	unsigned long flags;
483

484
	new = (struct clocksource *) data;
485

486 487
	write_seqlock_irqsave(&timekeeper.lock, flags);

488
	timekeeping_forward_now();
489 490 491 492 493 494
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
495 496 497 498
	timekeeping_update(true);

	write_sequnlock_irqrestore(&timekeeper.lock, flags);

499 500
	return 0;
}
501

502 503 504 505 506 507 508 509 510 511
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
512
		return;
513
	stop_machine(change_clocksource, clock, NULL);
514 515
	tick_clock_notify();
}
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
531

532 533 534 535 536 537 538 539 540 541 542 543
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
J
John Stultz 已提交
544
		seq = read_seqbegin(&timekeeper.lock);
545
		nsecs = timekeeping_get_ns_raw();
546
		*ts = timekeeper.raw_time;
547

J
John Stultz 已提交
548
	} while (read_seqretry(&timekeeper.lock, seq));
549 550 551 552 553 554

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


555
/**
556
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
557
 */
558
int timekeeping_valid_for_hres(void)
559 560 561 562 563
{
	unsigned long seq;
	int ret;

	do {
J
John Stultz 已提交
564
		seq = read_seqbegin(&timekeeper.lock);
565

566
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
567

J
John Stultz 已提交
568
	} while (read_seqretry(&timekeeper.lock, seq));
569 570 571 572

	return ret;
}

573 574 575 576 577
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
J
John Stultz 已提交
578 579
	unsigned long seq;
	u64 ret;
580

J
John Stultz 已提交
581 582 583 584 585 586 587 588
	do {
		seq = read_seqbegin(&timekeeper.lock);

		ret = timekeeper.clock->max_idle_ns;

	} while (read_seqretry(&timekeeper.lock, seq));

	return ret;
589 590
}

591
/**
592
 * read_persistent_clock -  Return time from the persistent clock.
593 594
 *
 * Weak dummy function for arches that do not yet support it.
595 596
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
597 598 599
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
600
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
601
{
602 603
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
604 605
}

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

621 622 623 624 625
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
626
	struct clocksource *clock;
627
	unsigned long flags;
628
	struct timespec now, boot;
629 630

	read_persistent_clock(&now);
631
	read_boot_clock(&boot);
632

J
John Stultz 已提交
633
	seqlock_init(&timekeeper.lock);
634

R
Roman Zippel 已提交
635
	ntp_init();
636

J
John Stultz 已提交
637
	write_seqlock_irqsave(&timekeeper.lock, flags);
638
	clock = clocksource_default_clock();
639 640
	if (clock->enable)
		clock->enable(clock);
641
	timekeeper_setup_internals(clock);
642

643
	tk_set_xtime(&timekeeper, &now);
644 645
	timekeeper.raw_time.tv_sec = 0;
	timekeeper.raw_time.tv_nsec = 0;
646 647 648
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
		boot = tk_xtime(&timekeeper);

649
	set_normalized_timespec(&timekeeper.wall_to_monotonic,
650
				-boot.tv_sec, -boot.tv_nsec);
651
	update_rt_offset();
652 653
	timekeeper.total_sleep_time.tv_sec = 0;
	timekeeper.total_sleep_time.tv_nsec = 0;
J
John Stultz 已提交
654
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
655 656 657
}

/* time in seconds when suspend began */
658
static struct timespec timekeeping_suspend_time;
659

660 661 662 663 664 665
static void update_sleep_time(struct timespec t)
{
	timekeeper.total_sleep_time = t;
	timekeeper.offs_boot = timespec_to_ktime(t);
}

666 667 668 669 670 671 672 673 674
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
static void __timekeeping_inject_sleeptime(struct timespec *delta)
{
675
	if (!timespec_valid(delta)) {
676
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
677 678 679 680
					"sleep delta value!\n");
		return;
	}

681
	tk_xtime_add(&timekeeper, delta);
682 683
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, *delta);
684
	update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta));
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
}


/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
700
	unsigned long flags;
701 702 703 704 705 706 707
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

708
	write_seqlock_irqsave(&timekeeper.lock, flags);
J
John Stultz 已提交
709

710 711 712 713
	timekeeping_forward_now();

	__timekeeping_inject_sleeptime(delta);

714
	timekeeping_update(true);
715

716
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
717 718 719 720 721 722

	/* signal hrtimers about time change */
	clock_was_set();
}


723 724 725 726 727 728 729
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
730
static void timekeeping_resume(void)
731
{
732
	unsigned long flags;
733 734 735
	struct timespec ts;

	read_persistent_clock(&ts);
736

737 738
	clocksource_resume();

739
	write_seqlock_irqsave(&timekeeper.lock, flags);
740

741 742
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
743
		__timekeeping_inject_sleeptime(&ts);
744 745
	}
	/* re-base the last cycle value */
746 747
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
748
	timekeeping_suspended = 0;
749
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
750 751 752 753 754 755

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
756
	hrtimers_resume();
757 758
}

759
static int timekeeping_suspend(void)
760
{
761
	unsigned long flags;
762 763
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
764

765
	read_persistent_clock(&timekeeping_suspend_time);
766

767
	write_seqlock_irqsave(&timekeeper.lock, flags);
768
	timekeeping_forward_now();
769
	timekeeping_suspended = 1;
770 771 772 773 774 775 776

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
777
	delta = timespec_sub(tk_xtime(&timekeeper), timekeeping_suspend_time);
778 779 780 781 782 783 784 785 786 787 788 789
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
790
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
791 792

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
793
	clocksource_suspend();
794 795 796 797 798

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
799
static struct syscore_ops timekeeping_syscore_ops = {
800 801 802 803
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

804
static int __init timekeeping_init_ops(void)
805
{
806 807
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
808 809
}

810
device_initcall(timekeeping_init_ops);
811 812 813 814 815

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
816
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
817 818 819 820 821 822 823 824 825 826 827 828
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
829
	 * here.  This is tuned so that an error of about 1 msec is adjusted
830 831
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
832
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
833 834 835 836 837 838 839 840
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
841
	tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
842
	tick_error -= timekeeper.xtime_interval >> 1;
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
867
static void timekeeping_adjust(s64 offset)
868
{
869
	s64 error, interval = timekeeper.cycle_interval;
870 871
	int adj;

872
	/*
873
	 * The point of this is to check if the error is greater than half
874 875 876 877 878
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
879 880
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
881
	 * larger than half an interval.
882
	 *
883
	 * Note: It does not "save" on aggravation when reading the code.
884
	 */
885
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
886
	if (error > interval) {
887 888
		/*
		 * We now divide error by 4(via shift), which checks if
889
		 * the error is greater than twice the interval.
890 891 892
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
893
		error >>= 2;
894 895 896 897 898
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
899
		 * The proper fix is to avoid rounding up by using
900 901 902 903
		 * the high precision timekeeper.xtime_nsec instead of
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
904 905 906
		if (likely(error <= interval))
			adj = 1;
		else
907
			adj = timekeeping_bigadjust(error, &interval, &offset);
908
	} else if (error < -interval) {
909
		/* See comment above, this is just switched for the negative */
910 911 912 913 914 915
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
916
			adj = timekeeping_bigadjust(error, &interval, &offset);
917
	} else /* No adjustment needed */
918 919
		return;

920 921 922 923 924
	if (unlikely(timekeeper.clock->maxadj &&
			(timekeeper.mult + adj >
			timekeeper.clock->mult + timekeeper.clock->maxadj))) {
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
925 926 927
			timekeeper.clock->name, (long)timekeeper.mult + adj,
			(long)timekeeper.clock->mult +
				timekeeper.clock->maxadj);
928
	}
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
978
	timekeeper.mult += adj;
979 980 981
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
982
				timekeeper.ntp_error_shift;
983 984
}

L
Linus Torvalds 已提交
985

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
		tk->xtime_sec += leap;
		tk->wall_to_monotonic.tv_sec -= leap;
		if (leap)
			clock_was_set_delayed();

	}
}


1015 1016 1017 1018 1019 1020 1021 1022 1023
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1024
static cycle_t logarithmic_accumulation(cycle_t offset, u32 shift)
1025
{
1026
	u64 raw_nsecs;
1027

1028
	/* If the offset is smaller than a shifted interval, do nothing */
1029 1030 1031 1032 1033 1034 1035 1036
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
1037 1038

	accumulate_nsecs_to_secs(&timekeeper);
1039

1040 1041
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
1042
	raw_nsecs += timekeeper.raw_time.tv_nsec;
1043 1044 1045
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1046
		timekeeper.raw_time.tv_sec += raw_secs;
1047
	}
1048
	timekeeper.raw_time.tv_nsec = raw_nsecs;
1049 1050

	/* Accumulate error between NTP and clock interval */
1051
	timekeeper.ntp_error += ntp_tick_length() << shift;
1052 1053
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
1054 1055 1056 1057 1058
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
1059

1060 1061 1062 1063
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1064
static void update_wall_time(void)
1065
{
1066
	struct clocksource *clock;
1067
	cycle_t offset;
1068
	int shift = 0, maxshift;
J
John Stultz 已提交
1069
	unsigned long flags;
1070
	s64 remainder;
J
John Stultz 已提交
1071 1072

	write_seqlock_irqsave(&timekeeper.lock, flags);
1073 1074 1075

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1076
		goto out;
1077

1078
	clock = timekeeper.clock;
J
John Stultz 已提交
1079 1080

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1081
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
1082 1083
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1084 1085
#endif

1086 1087 1088 1089
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1090
	 * that is smaller than the offset.  We then accumulate that
1091 1092
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1093
	 */
1094 1095
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
1096
	/* Bound shift to one less than what overflows tick_length */
1097
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1098
	shift = min(shift, maxshift);
1099
	while (offset >= timekeeper.cycle_interval) {
1100
		offset = logarithmic_accumulation(offset, shift);
1101 1102
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
1103 1104 1105
	}

	/* correct the clock when NTP error is too big */
1106
	timekeeping_adjust(offset);
1107

1108 1109 1110 1111
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
1112
	 * slightly speeding the clocksource up in timekeeping_adjust(),
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1124 1125 1126
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
1127
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1128 1129
	}

J
John Stultz 已提交
1130
	/*
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), this can be killed.
	*/
	remainder = timekeeper.xtime_nsec & ((1 << timekeeper.shift) - 1);
	timekeeper.xtime_nsec -= remainder;
	timekeeper.xtime_nsec += 1 << timekeeper.shift;
	timekeeper.ntp_error += remainder << timekeeper.ntp_error_shift;
1143

J
John Stultz 已提交
1144 1145
	/*
	 * Finally, make sure that after the rounding
1146
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1147
	 */
1148
	accumulate_nsecs_to_secs(&timekeeper);
L
Linus Torvalds 已提交
1149

1150
	timekeeping_update(false);
J
John Stultz 已提交
1151 1152 1153 1154

out:
	write_sequnlock_irqrestore(&timekeeper.lock, flags);

1155
}
T
Tomas Janousek 已提交
1156 1157 1158 1159 1160

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1161
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1162 1163 1164 1165 1166 1167 1168 1169
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1170
	struct timespec boottime = {
1171
		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1172
				timekeeper.total_sleep_time.tv_sec,
1173
		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1174
				timekeeper.total_sleep_time.tv_nsec
1175
	};
1176 1177

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1178
}
1179
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
	struct timespec tomono, sleep;
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
1199
		seq = read_seqbegin(&timekeeper.lock);
1200 1201
		ts->tv_sec = timekeeper.xtime_sec;
		ts->tv_nsec = timekeeping_get_ns();
1202
		tomono = timekeeper.wall_to_monotonic;
1203
		sleep = timekeeper.total_sleep_time;
1204

J
John Stultz 已提交
1205
	} while (read_seqretry(&timekeeper.lock, seq));
1206 1207

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1208
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1229 1230 1231 1232 1233 1234
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1235
	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
T
Tomas Janousek 已提交
1236
}
1237
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1238

1239 1240
unsigned long get_seconds(void)
{
1241
	return timekeeper.xtime_sec;
1242 1243 1244
}
EXPORT_SYMBOL(get_seconds);

1245 1246
struct timespec __current_kernel_time(void)
{
1247
	return tk_xtime(&timekeeper);
1248
}
1249

1250 1251 1252 1253 1254 1255
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
J
John Stultz 已提交
1256
		seq = read_seqbegin(&timekeeper.lock);
L
Linus Torvalds 已提交
1257

1258
		now = tk_xtime(&timekeeper);
J
John Stultz 已提交
1259
	} while (read_seqretry(&timekeeper.lock, seq));
1260 1261 1262 1263

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1264 1265 1266 1267 1268 1269 1270

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
J
John Stultz 已提交
1271
		seq = read_seqbegin(&timekeeper.lock);
L
Linus Torvalds 已提交
1272

1273
		now = tk_xtime(&timekeeper);
1274
		mono = timekeeper.wall_to_monotonic;
J
John Stultz 已提交
1275
	} while (read_seqretry(&timekeeper.lock, seq));
1276 1277 1278 1279 1280

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1293 1294

/**
1295 1296
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1297 1298
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1299
 * @sleep:	pointer to timespec to be set with time in suspend
1300
 */
1301 1302
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1303 1304 1305 1306
{
	unsigned long seq;

	do {
J
John Stultz 已提交
1307
		seq = read_seqbegin(&timekeeper.lock);
1308
		*xtim = tk_xtime(&timekeeper);
1309
		*wtom = timekeeper.wall_to_monotonic;
1310
		*sleep = timekeeper.total_sleep_time;
J
John Stultz 已提交
1311
	} while (read_seqretry(&timekeeper.lock, seq));
1312
}
T
Torben Hohn 已提交
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
{
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
		seq = read_seqbegin(&timekeeper.lock);

1332 1333
		secs = timekeeper.xtime_sec;
		nsecs = timekeeping_get_ns();
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

		*offs_real = timekeeper.offs_real;
		*offs_boot = timekeeper.offs_boot;
	} while (read_seqretry(&timekeeper.lock, seq));

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1345 1346 1347 1348 1349 1350 1351 1352 1353
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
	unsigned long seq;
	struct timespec wtom;

	do {
J
John Stultz 已提交
1354
		seq = read_seqbegin(&timekeeper.lock);
1355
		wtom = timekeeper.wall_to_monotonic;
J
John Stultz 已提交
1356 1357
	} while (read_seqretry(&timekeeper.lock, seq));

1358 1359
	return timespec_to_ktime(wtom);
}
1360 1361
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

1362

T
Torben Hohn 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}