timekeeping.c 36.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
27
	struct clocksource	*clock;
28
	/* NTP adjusted clock multiplier */
29
	u32			mult;
30
	/* The shift value of the current clocksource. */
31
	u32			shift;
32
	/* Number of clock cycles in one NTP interval. */
33
	cycle_t			cycle_interval;
34
	/* Number of clock shifted nano seconds in one NTP interval. */
35
	u64			xtime_interval;
36
	/* shifted nano seconds left over when rounding cycle_interval */
37
	s64			xtime_remainder;
38
	/* Raw nano seconds accumulated per NTP interval. */
39
	u32			raw_interval;
40

41 42 43
	/* Current CLOCK_REALTIME time in seconds */
	u64			xtime_sec;
	/* Clock shifted nano seconds */
44
	u64			xtime_nsec;
45

46 47
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
48
	s64			ntp_error;
49 50
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
51
	u32			ntp_error_shift;
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66
	/*
	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
	 * at zero at system boot time, so wall_to_monotonic will be negative,
	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
	 * the usual normalization.
	 *
	 * wall_to_monotonic is moved after resume from suspend for the
	 * monotonic time not to jump. We need to add total_sleep_time to
	 * wall_to_monotonic to get the real boot based time offset.
	 *
	 * - wall_to_monotonic is no longer the boot time, getboottime must be
	 * used instead.
	 */
67
	struct timespec		wall_to_monotonic;
68
	/* Offset clock monotonic -> clock realtime */
69
	ktime_t			offs_real;
70 71
	/* time spent in suspend */
	struct timespec		total_sleep_time;
72
	/* Offset clock monotonic -> clock boottime */
73
	ktime_t			offs_boot;
74 75
	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
	struct timespec		raw_time;
J
John Stultz 已提交
76
	/* Seqlock for all timekeeper values */
77
	seqlock_t		lock;
78 79
};

80
static struct timekeeper timekeeper;
81

82 83 84 85 86 87 88 89 90
/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime.
 */
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);

/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static struct timespec tk_xtime(struct timekeeper *tk)
{
	struct timespec ts;

	ts.tv_sec = tk->xtime_sec;
	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
	return ts;
}
107

108 109 110
static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
111
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
112 113 114 115 116
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
117
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
118
}
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

145 146 147 148 149 150 151 152 153 154
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
155
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
156 157
{
	cycle_t interval;
158
	u64 tmp, ntpinterval;
159
	struct clocksource *old_clock;
160

161 162
	old_clock = tk->clock;
	tk->clock = clock;
163 164 165 166 167
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
168
	ntpinterval = tmp;
169 170
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
171 172 173 174
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
175
	tk->cycle_interval = interval;
176 177

	/* Go back from cycles -> shifted ns */
178 179 180
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
181
		((u64) interval * clock->mult) >> clock->shift;
182

183 184 185 186
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
187
			tk->xtime_nsec >>= -shift_change;
188
		else
189
			tk->xtime_nsec <<= shift_change;
190
	}
191
	tk->shift = clock->shift;
192

193 194
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
195 196 197 198 199 200

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
201
	tk->mult = clock->mult;
202
}
203

204
/* Timekeeper helper functions. */
205
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
206 207 208
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
209
	s64 nsec;
210 211

	/* read clocksource: */
212
	clock = tk->clock;
213 214 215 216 217
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

218 219
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
220 221 222

	/* If arch requires, add in gettimeoffset() */
	return nsec + arch_gettimeoffset();
223 224
}

225
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
226 227 228
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
229
	s64 nsec;
230 231

	/* read clocksource: */
232
	clock = tk->clock;
233 234 235 236 237
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

238 239 240 241 242
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

	/* If arch requires, add in gettimeoffset() */
	return nsec + arch_gettimeoffset();
243 244
}

245
/* must hold write on timekeeper.lock */
246
static void timekeeping_update(struct timekeeper *tk, bool clearntp)
247
{
248 249
	struct timespec xt;

250
	if (clearntp) {
251
		tk->ntp_error = 0;
252 253
		ntp_clear();
	}
254 255
	xt = tk_xtime(tk);
	update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
256 257
}

258
/**
259
 * timekeeping_forward_now - update clock to the current time
260
 *
261 262 263
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
264
 */
265
static void timekeeping_forward_now(struct timekeeper *tk)
266 267
{
	cycle_t cycle_now, cycle_delta;
268
	struct clocksource *clock;
269
	s64 nsec;
270

271
	clock = tk->clock;
272
	cycle_now = clock->read(clock);
273
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
274
	clock->cycle_last = cycle_now;
275

276
	tk->xtime_nsec += cycle_delta * tk->mult;
277 278

	/* If arch requires, add in gettimeoffset() */
279
	tk->xtime_nsec += arch_gettimeoffset() << tk->shift;
280

281
	tk_normalize_xtime(tk);
282

283
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
284
	timespec_add_ns(&tk->raw_time, nsec);
285 286 287
}

/**
288
 * getnstimeofday - Returns the time of day in a timespec
289 290
 * @ts:		pointer to the timespec to be set
 *
291
 * Returns the time of day in a timespec.
292
 */
293
void getnstimeofday(struct timespec *ts)
294
{
295
	struct timekeeper *tk = &timekeeper;
296
	unsigned long seq;
297
	s64 nsecs = 0;
298

299 300
	WARN_ON(timekeeping_suspended);

301
	do {
302
		seq = read_seqbegin(&tk->lock);
303

304 305
		ts->tv_sec = tk->xtime_sec;
		ts->tv_nsec = timekeeping_get_ns(tk);
306

307
	} while (read_seqretry(&tk->lock, seq));
308 309 310 311 312

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getnstimeofday);

313 314
ktime_t ktime_get(void)
{
315
	struct timekeeper *tk = &timekeeper;
316 317 318 319 320 321
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
322 323 324
		seq = read_seqbegin(&tk->lock);
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
325

326
	} while (read_seqretry(&tk->lock, seq));
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
345
	struct timekeeper *tk = &timekeeper;
346 347 348 349 350 351
	struct timespec tomono;
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
352 353 354 355
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
		ts->tv_nsec = timekeeping_get_ns(tk);
		tomono = tk->wall_to_monotonic;
356

357
	} while (read_seqretry(&tk->lock, seq));
358 359

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
360
				ts->tv_nsec + tomono.tv_nsec);
361 362 363
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

364 365 366 367 368 369 370 371 372 373 374 375 376
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
377
	struct timekeeper *tk = &timekeeper;
378 379 380 381 382 383
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
384
		seq = read_seqbegin(&tk->lock);
385

386 387
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
388
		ts_real->tv_nsec = 0;
389

390 391
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
392

393
	} while (read_seqretry(&tk->lock, seq));
394 395 396 397 398 399 400 401

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

402 403 404 405
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
406
 * NOTE: Users should be converted to using getnstimeofday()
407 408 409 410 411
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

412
	getnstimeofday(&now);
413 414 415 416
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
417

418 419 420 421 422 423
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
424
int do_settimeofday(const struct timespec *tv)
425
{
426
	struct timekeeper *tk = &timekeeper;
427
	struct timespec ts_delta, xt;
428
	unsigned long flags;
429 430 431 432

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

433
	write_seqlock_irqsave(&tk->lock, flags);
434

435
	timekeeping_forward_now(tk);
436

437
	xt = tk_xtime(tk);
438 439 440
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

441
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
442

443
	tk_set_xtime(tk, tv);
444

445
	timekeeping_update(tk, true);
446

447
	write_sequnlock_irqrestore(&tk->lock, flags);
448 449 450 451 452 453 454 455

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

456 457 458 459 460 461 462 463
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
464
	struct timekeeper *tk = &timekeeper;
465
	unsigned long flags;
466 467 468 469

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

470
	write_seqlock_irqsave(&tk->lock, flags);
471

472
	timekeeping_forward_now(tk);
473

474

475 476
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
477

478
	timekeeping_update(tk, true);
479

480
	write_sequnlock_irqrestore(&tk->lock, flags);
481 482 483 484 485 486 487 488

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(timekeeping_inject_offset);

489 490 491 492 493
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
494
static int change_clocksource(void *data)
495
{
496
	struct timekeeper *tk = &timekeeper;
497
	struct clocksource *new, *old;
498
	unsigned long flags;
499

500
	new = (struct clocksource *) data;
501

502
	write_seqlock_irqsave(&tk->lock, flags);
503

504
	timekeeping_forward_now(tk);
505
	if (!new->enable || new->enable(new) == 0) {
506 507
		old = tk->clock;
		tk_setup_internals(tk, new);
508 509 510
		if (old->disable)
			old->disable(old);
	}
511
	timekeeping_update(tk, true);
512

513
	write_sequnlock_irqrestore(&tk->lock, flags);
514

515 516
	return 0;
}
517

518 519 520 521 522 523 524 525 526
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
527 528 529
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
530
		return;
531
	stop_machine(change_clocksource, clock, NULL);
532 533
	tick_clock_notify();
}
534

535 536 537 538 539 540 541 542 543 544 545 546 547 548
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
549

550 551 552 553 554 555 556 557
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
558
	struct timekeeper *tk = &timekeeper;
559 560 561 562
	unsigned long seq;
	s64 nsecs;

	do {
563 564 565
		seq = read_seqbegin(&tk->lock);
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
566

567
	} while (read_seqretry(&tk->lock, seq));
568 569 570 571 572

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

573
/**
574
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
575
 */
576
int timekeeping_valid_for_hres(void)
577
{
578
	struct timekeeper *tk = &timekeeper;
579 580 581 582
	unsigned long seq;
	int ret;

	do {
583
		seq = read_seqbegin(&tk->lock);
584

585
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
586

587
	} while (read_seqretry(&tk->lock, seq));
588 589 590 591

	return ret;
}

592 593 594 595 596
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
597
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
598 599
	unsigned long seq;
	u64 ret;
600

J
John Stultz 已提交
601
	do {
602
		seq = read_seqbegin(&tk->lock);
J
John Stultz 已提交
603

604
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
605

606
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
607 608

	return ret;
609 610
}

611
/**
612
 * read_persistent_clock -  Return time from the persistent clock.
613 614
 *
 * Weak dummy function for arches that do not yet support it.
615 616
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
617 618 619
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
620
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
621
{
622 623
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
624 625
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

641 642 643 644 645
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
646
	struct timekeeper *tk = &timekeeper;
647
	struct clocksource *clock;
648
	unsigned long flags;
649
	struct timespec now, boot, tmp;
650 651

	read_persistent_clock(&now);
652
	read_boot_clock(&boot);
653

654
	seqlock_init(&tk->lock);
655

R
Roman Zippel 已提交
656
	ntp_init();
657

658
	write_seqlock_irqsave(&tk->lock, flags);
659
	clock = clocksource_default_clock();
660 661
	if (clock->enable)
		clock->enable(clock);
662
	tk_setup_internals(tk, clock);
663

664 665 666
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
667
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
668
		boot = tk_xtime(tk);
669

670
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
671
	tk_set_wall_to_mono(tk, tmp);
672 673 674

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
675
	tk_set_sleep_time(tk, tmp);
676

677
	write_sequnlock_irqrestore(&tk->lock, flags);
678 679 680
}

/* time in seconds when suspend began */
681
static struct timespec timekeeping_suspend_time;
682

683 684 685 686 687 688 689
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
690 691
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
692
{
693
	if (!timespec_valid(delta)) {
694
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
695 696 697
					"sleep delta value!\n");
		return;
	}
698
	tk_xtime_add(tk, delta);
699 700
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
701 702 703 704 705 706 707 708 709 710 711 712 713 714
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
715
	struct timekeeper *tk = &timekeeper;
716
	unsigned long flags;
717 718 719 720 721 722 723
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

724
	write_seqlock_irqsave(&tk->lock, flags);
J
John Stultz 已提交
725

726
	timekeeping_forward_now(tk);
727

728
	__timekeeping_inject_sleeptime(tk, delta);
729

730
	timekeeping_update(tk, true);
731

732
	write_sequnlock_irqrestore(&tk->lock, flags);
733 734 735 736 737

	/* signal hrtimers about time change */
	clock_was_set();
}

738 739 740 741 742 743 744
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
745
static void timekeeping_resume(void)
746
{
747
	struct timekeeper *tk = &timekeeper;
748
	unsigned long flags;
749 750 751
	struct timespec ts;

	read_persistent_clock(&ts);
752

753 754
	clocksource_resume();

755
	write_seqlock_irqsave(&tk->lock, flags);
756

757 758
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
759
		__timekeeping_inject_sleeptime(tk, &ts);
760 761
	}
	/* re-base the last cycle value */
762 763
	tk->clock->cycle_last = tk->clock->read(tk->clock);
	tk->ntp_error = 0;
764
	timekeeping_suspended = 0;
765 766
	timekeeping_update(tk, false);
	write_sequnlock_irqrestore(&tk->lock, flags);
767 768 769 770 771 772

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
773
	hrtimers_resume();
774 775
}

776
static int timekeeping_suspend(void)
777
{
778
	struct timekeeper *tk = &timekeeper;
779
	unsigned long flags;
780 781
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
782

783
	read_persistent_clock(&timekeeping_suspend_time);
784

785 786
	write_seqlock_irqsave(&tk->lock, flags);
	timekeeping_forward_now(tk);
787
	timekeeping_suspended = 1;
788 789 790 791 792 793 794

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
795
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
796 797 798 799 800 801 802 803 804 805 806 807
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
808
	write_sequnlock_irqrestore(&tk->lock, flags);
809 810

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
811
	clocksource_suspend();
812 813 814 815 816

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
817
static struct syscore_ops timekeeping_syscore_ops = {
818 819 820 821
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

822
static int __init timekeeping_init_ops(void)
823
{
824 825
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
826 827
}

828
device_initcall(timekeeping_init_ops);
829 830 831 832 833

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
834 835
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
836 837 838 839 840 841 842 843 844 845 846 847
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
848
	 * here.  This is tuned so that an error of about 1 msec is adjusted
849 850
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
851
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
852 853 854 855 856 857 858 859
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
860 861
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
886
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
887
{
888
	s64 error, interval = tk->cycle_interval;
889 890
	int adj;

891
	/*
892
	 * The point of this is to check if the error is greater than half
893 894 895 896 897
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
898 899
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
900
	 * larger than half an interval.
901
	 *
902
	 * Note: It does not "save" on aggravation when reading the code.
903
	 */
904
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
905
	if (error > interval) {
906 907
		/*
		 * We now divide error by 4(via shift), which checks if
908
		 * the error is greater than twice the interval.
909 910 911
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
912
		error >>= 2;
913 914 915 916 917
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
918
		 * The proper fix is to avoid rounding up by using
919
		 * the high precision tk->xtime_nsec instead of
920 921 922
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
923 924 925
		if (likely(error <= interval))
			adj = 1;
		else
926 927
			adj = timekeeping_bigadjust(tk, error, &interval,
							&offset);
928
	} else if (error < -interval) {
929
		/* See comment above, this is just switched for the negative */
930 931 932 933 934 935
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
936 937 938
			adj = timekeeping_bigadjust(tk, error, &interval,
							&offset);
	} else
939 940
		return;

941 942
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
943 944
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
945 946
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
947
	}
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
997 998 999 1000
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1016 1017 1018 1019
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1020 1021
	}

1022 1023
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1044 1045 1046 1047
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1048

1049 1050 1051 1052 1053 1054 1055
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

			clock_was_set_delayed();
		}
1056 1057 1058
	}
}

1059 1060 1061 1062 1063 1064 1065 1066 1067
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1068 1069
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
						u32 shift)
1070
{
1071
	u64 raw_nsecs;
1072

1073 1074
	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < tk->cycle_interval<<shift)
1075 1076 1077
		return offset;

	/* Accumulate one shifted interval */
1078 1079
	offset -= tk->cycle_interval << shift;
	tk->clock->cycle_last += tk->cycle_interval << shift;
1080

1081 1082
	tk->xtime_nsec += tk->xtime_interval << shift;
	accumulate_nsecs_to_secs(tk);
1083

1084
	/* Accumulate raw time */
1085 1086
	raw_nsecs = tk->raw_interval << shift;
	raw_nsecs += tk->raw_time.tv_nsec;
1087 1088 1089
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1090
		tk->raw_time.tv_sec += raw_secs;
1091
	}
1092
	tk->raw_time.tv_nsec = raw_nsecs;
1093 1094

	/* Accumulate error between NTP and clock interval */
1095 1096 1097
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1098 1099 1100 1101

	return offset;
}

1102 1103 1104 1105
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1106
static void update_wall_time(void)
1107
{
1108
	struct clocksource *clock;
1109
	struct timekeeper *tk = &timekeeper;
1110
	cycle_t offset;
1111
	int shift = 0, maxshift;
J
John Stultz 已提交
1112
	unsigned long flags;
1113
	s64 remainder;
J
John Stultz 已提交
1114

1115
	write_seqlock_irqsave(&tk->lock, flags);
1116 1117 1118

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1119
		goto out;
1120

1121
	clock = tk->clock;
J
John Stultz 已提交
1122 1123

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1124
	offset = tk->cycle_interval;
J
John Stultz 已提交
1125 1126
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1127 1128
#endif

1129 1130 1131 1132
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1133
	 * that is smaller than the offset.  We then accumulate that
1134 1135
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1136
	 */
1137
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1138
	shift = max(0, shift);
1139
	/* Bound shift to one less than what overflows tick_length */
1140
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1141
	shift = min(shift, maxshift);
1142 1143 1144
	while (offset >= tk->cycle_interval) {
		offset = logarithmic_accumulation(tk, offset, shift);
		if (offset < tk->cycle_interval<<shift)
1145
			shift--;
1146 1147 1148
	}

	/* correct the clock when NTP error is too big */
1149
	timekeeping_adjust(tk, offset);
1150

1151

J
John Stultz 已提交
1152
	/*
1153 1154 1155 1156 1157 1158 1159 1160
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), this can be killed.
	*/
1161 1162 1163 1164
	remainder = tk->xtime_nsec & ((1 << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1 << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;
1165

J
John Stultz 已提交
1166 1167
	/*
	 * Finally, make sure that after the rounding
1168
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1169
	 */
1170
	accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1171

1172
	timekeeping_update(tk, false);
J
John Stultz 已提交
1173 1174

out:
1175
	write_sequnlock_irqrestore(&tk->lock, flags);
J
John Stultz 已提交
1176

1177
}
T
Tomas Janousek 已提交
1178 1179 1180 1181 1182

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1183
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1184 1185 1186 1187 1188 1189 1190 1191
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1192
	struct timekeeper *tk = &timekeeper;
1193
	struct timespec boottime = {
1194 1195 1196 1197
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1198
	};
1199 1200

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1201
}
1202
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1215
	struct timekeeper *tk = &timekeeper;
1216 1217 1218 1219 1220 1221
	struct timespec tomono, sleep;
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1222 1223 1224 1225 1226
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
		ts->tv_nsec = timekeeping_get_ns(tk);
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1227

1228
	} while (read_seqretry(&tk->lock, seq));
1229 1230

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1231
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1252 1253 1254 1255 1256 1257
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1258 1259 1260
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1261
}
1262
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1263

1264 1265
unsigned long get_seconds(void)
{
1266 1267 1268
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1269 1270 1271
}
EXPORT_SYMBOL(get_seconds);

1272 1273
struct timespec __current_kernel_time(void)
{
1274 1275 1276
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1277
}
1278

1279 1280
struct timespec current_kernel_time(void)
{
1281
	struct timekeeper *tk = &timekeeper;
1282 1283 1284 1285
	struct timespec now;
	unsigned long seq;

	do {
1286
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1287

1288 1289
		now = tk_xtime(tk);
	} while (read_seqretry(&tk->lock, seq));
1290 1291 1292 1293

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1294 1295 1296

struct timespec get_monotonic_coarse(void)
{
1297
	struct timekeeper *tk = &timekeeper;
1298 1299 1300 1301
	struct timespec now, mono;
	unsigned long seq;

	do {
1302
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1303

1304 1305 1306
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
1307 1308 1309 1310 1311

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1324 1325

/**
1326 1327
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1328 1329
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1330
 * @sleep:	pointer to timespec to be set with time in suspend
1331
 */
1332 1333
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1334
{
1335
	struct timekeeper *tk = &timekeeper;
1336 1337 1338
	unsigned long seq;

	do {
1339 1340 1341 1342 1343
		seq = read_seqbegin(&tk->lock);
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
	} while (read_seqretry(&tk->lock, seq));
1344
}
T
Torben Hohn 已提交
1345

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
{
1357
	struct timekeeper *tk = &timekeeper;
1358 1359 1360 1361 1362
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1363
		seq = read_seqbegin(&tk->lock);
1364

1365 1366
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1367

1368 1369 1370
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
	} while (read_seqretry(&tk->lock, seq));
1371 1372 1373 1374 1375 1376 1377

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1378 1379 1380 1381 1382
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1383
	struct timekeeper *tk = &timekeeper;
1384 1385 1386 1387
	unsigned long seq;
	struct timespec wtom;

	do {
1388 1389 1390
		seq = read_seqbegin(&tk->lock);
		wtom = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
1391

1392 1393
	return timespec_to_ktime(wtom);
}
1394 1395
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

T
Torben Hohn 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}