timekeeping.c 68.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/syscore_ops.h>
21 22 23 24
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
25
#include <linux/stop_machine.h>
26
#include <linux/pvclock_gtod.h>
27
#include <linux/compiler.h>
28

29
#include "tick-internal.h"
30
#include "ntp_internal.h"
31
#include "timekeeping_internal.h"
32

33 34
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
35
#define TK_CLOCK_WAS_SET	(1 << 2)
36

37 38 39 40 41 42 43 44 45
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

46
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47
static struct timekeeper shadow_timekeeper;
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};
84

85 86 87
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

88 89
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
90 91
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92 93
		tk->xtime_sec++;
	}
94 95 96 97
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
98 99
}

100 101 102 103 104
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
105
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106 107 108
	return ts;
}

109
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 111
{
	tk->xtime_sec = ts->tv_sec;
112
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 114
}

115
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 117
{
	tk->xtime_sec += ts->tv_sec;
118
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119
	tk_normalize_xtime(tk);
120
}
121

122
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123
{
124
	struct timespec64 tmp;
125 126 127 128 129

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
130
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
132
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133
	tk->wall_to_monotonic = wtm;
134 135
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
136
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 138
}

139
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140
{
141
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
142 143
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
static inline u64 tk_clock_read(struct tk_read_base *tkr)
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

164
#ifdef CONFIG_DEBUG_TIMEKEEPING
165 166
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

167
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
168 169
{

170
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
171
	const char *name = tk->tkr_mono.clock->name;
172 173

	if (offset > max_cycles) {
174
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
175
				offset, name, max_cycles);
176
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
177 178
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
179
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
180 181 182 183
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
184

185 186
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
187 188 189
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
190
			tk->last_warning = jiffies;
191
		}
192
		tk->underflow_seen = 0;
193 194
	}

195 196
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
197 198 199
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
200
			tk->last_warning = jiffies;
201
		}
202
		tk->overflow_seen = 0;
203
	}
204
}
205

206
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
207
{
208
	struct timekeeper *tk = &tk_core.timekeeper;
209
	u64 now, last, mask, max, delta;
210
	unsigned int seq;
211

212 213 214 215 216 217 218 219 220
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
221
		now = tk_clock_read(tkr);
222 223 224 225
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
226

227
	delta = clocksource_delta(now, last, mask);
228

229 230 231 232
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
233
	if (unlikely((~delta & mask) < (mask >> 3))) {
234
		tk->underflow_seen = 1;
235
		delta = 0;
236
	}
237

238
	/* Cap delta value to the max_cycles values to avoid mult overflows */
239
	if (unlikely(delta > max)) {
240
		tk->overflow_seen = 1;
241
		delta = tkr->clock->max_cycles;
242
	}
243 244 245

	return delta;
}
246
#else
247
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
248 249
{
}
250
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
251
{
252
	u64 cycle_now, delta;
253 254

	/* read clocksource */
255
	cycle_now = tk_clock_read(tkr);
256 257 258 259 260 261

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
262 263
#endif

264
/**
265
 * tk_setup_internals - Set up internals to use clocksource clock.
266
 *
267
 * @tk:		The target timekeeper to setup.
268 269 270 271 272 273 274
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
275
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
276
{
277
	u64 interval;
278
	u64 tmp, ntpinterval;
279
	struct clocksource *old_clock;
280

281
	++tk->cs_was_changed_seq;
282 283 284
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
285
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
286

P
Peter Zijlstra 已提交
287 288 289 290
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

291 292 293
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
294
	ntpinterval = tmp;
295 296
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
297 298 299
	if (tmp == 0)
		tmp = 1;

300
	interval = (u64) tmp;
301
	tk->cycle_interval = interval;
302 303

	/* Go back from cycles -> shifted ns */
304
	tk->xtime_interval = interval * clock->mult;
305
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
306
	tk->raw_interval = interval * clock->mult;
307

308 309 310
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
311
		if (shift_change < 0) {
312
			tk->tkr_mono.xtime_nsec >>= -shift_change;
313 314
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
315
			tk->tkr_mono.xtime_nsec <<= shift_change;
316 317
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
318
	}
P
Peter Zijlstra 已提交
319

320
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
321
	tk->tkr_raw.shift = clock->shift;
322

323 324
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
325
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
326 327 328 329 330 331

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
332
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
333
	tk->tkr_raw.mult = clock->mult;
334
	tk->ntp_err_mult = 0;
335
}
336

337
/* Timekeeper helper functions. */
338 339

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
340 341
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
342
#else
343
static inline u32 arch_gettimeoffset(void) { return 0; }
344 345
#endif

346
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
347
{
348
	u64 nsec;
349 350 351 352 353 354 355 356

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

357
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
358
{
359
	u64 delta;
360

361
	delta = timekeeping_get_delta(tkr);
362 363
	return timekeeping_delta_to_ns(tkr, delta);
}
364

365
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
366
{
367
	u64 delta;
368

369 370 371
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
372 373
}

374 375
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
376
 * @tkr: Timekeeping readout base from which we take the update
377 378 379 380
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
381
 * Employ the latch technique; see @raw_write_seqcount_latch.
382 383 384 385 386 387
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
388
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
389
{
390
	struct tk_read_base *base = tkf->base;
391 392

	/* Force readers off to base[1] */
393
	raw_write_seqcount_latch(&tkf->seq);
394 395

	/* Update base[0] */
396
	memcpy(base, tkr, sizeof(*base));
397 398

	/* Force readers back to base[0] */
399
	raw_write_seqcount_latch(&tkf->seq);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
437
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
438 439 440 441 442 443
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
444
		seq = raw_read_seqcount_latch(&tkf->seq);
445
		tkr = tkf->base + (seq & 0x01);
446 447
		now = ktime_to_ns(tkr->base);

448 449
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
450
					tk_clock_read(tkr),
451 452
					tkr->cycle_last,
					tkr->mask));
453
	} while (read_seqcount_retry(&tkf->seq, seq));
454 455 456

	return now;
}
457 458 459 460 461

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
462 463
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
464 465 466 467 468 469
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

/*
 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 */
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_real);

		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tk_clock_read(tkr),
					tkr->cycle_last,
					tkr->mask));
	} while (read_seqcount_retry(&tkf->seq, seq));

	return now;
}

/**
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 */
u64 ktime_get_real_fast_ns(void)
{
	return __ktime_get_real_fast_ns(&tk_fast_mono);
}

532 533 534 535 536 537 538 539 540 541 542 543 544
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
545
	struct tk_read_base *tkr = &tk->tkr_mono;
546 547

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
548 549
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
550
	tkr_dummy.base_real = tkr->base + tk->offs_real;
551
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
552 553 554

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
555
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
556
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
557 558
}

559
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
560
#warning Please contact your maintainers, as GENERIC_TIME_VSYSCALL_OLD compatibity will disappear soon.
561 562 563

static inline void update_vsyscall(struct timekeeper *tk)
{
564
	struct timespec xt, wm;
565

566
	xt = timespec64_to_timespec(tk_xtime(tk));
567
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
568 569
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
586
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
587 588 589 590 591 592
	if (remainder != 0) {
		tk->tkr_mono.xtime_nsec -= remainder;
		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
		tk->ntp_error += remainder << tk->ntp_error_shift;
		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
	}
593 594 595 596 597
}
#else
#define old_vsyscall_fixup(tk)
#endif

598 599
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

600
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
601
{
602
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
603 604 605 606 607 608 609
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
610
	struct timekeeper *tk = &tk_core.timekeeper;
611 612 613
	unsigned long flags;
	int ret;

614
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
615
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
616
	update_pvclock_gtod(tk, true);
617
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
618 619 620 621 622 623 624 625 626 627 628 629 630 631

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

632
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
633
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
634
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
635 636 637 638 639

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

640 641 642 643 644 645
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
646
	if (tk->next_leap_ktime != KTIME_MAX)
647 648 649 650
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

651 652 653 654 655
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
656 657
	u64 seconds;
	u32 nsec;
658 659 660 661 662 663 664 665

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
666 667
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
668
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
669

670 671 672 673 674
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
675
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
676 677 678
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
679 680

	/* Update the monotonic raw base */
681
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
682 683
}

684
/* must hold timekeeper_lock */
685
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
686
{
687
	if (action & TK_CLEAR_NTP) {
688
		tk->ntp_error = 0;
689 690
		ntp_clear();
	}
691

692
	tk_update_leap_state(tk);
693 694
	tk_update_ktime_data(tk);

695 696 697
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

698
	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
699
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
700
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
701 702 703

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
704 705 706 707 708 709 710 711
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
712 713
}

714
/**
715
 * timekeeping_forward_now - update clock to the current time
716
 *
717 718 719
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
720
 */
721
static void timekeeping_forward_now(struct timekeeper *tk)
722
{
723
	u64 cycle_now, delta;
724

725
	cycle_now = tk_clock_read(&tk->tkr_mono);
726 727
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
728
	tk->tkr_raw.cycle_last  = cycle_now;
729

730
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
731

732
	/* If arch requires, add in get_arch_timeoffset() */
733
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
734

735

736 737 738 739 740 741
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
742 743 744
}

/**
745
 * __getnstimeofday64 - Returns the time of day in a timespec64.
746 747
 * @ts:		pointer to the timespec to be set
 *
748 749
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
750
 */
751
int __getnstimeofday64(struct timespec64 *ts)
752
{
753
	struct timekeeper *tk = &tk_core.timekeeper;
754
	unsigned long seq;
755
	u64 nsecs;
756 757

	do {
758
		seq = read_seqcount_begin(&tk_core.seq);
759

760
		ts->tv_sec = tk->xtime_sec;
761
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
762

763
	} while (read_seqcount_retry(&tk_core.seq, seq));
764

765
	ts->tv_nsec = 0;
766
	timespec64_add_ns(ts, nsecs);
767 768 769 770 771 772 773 774 775

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
776
EXPORT_SYMBOL(__getnstimeofday64);
777 778

/**
779
 * getnstimeofday64 - Returns the time of day in a timespec64.
780
 * @ts:		pointer to the timespec64 to be set
781
 *
782
 * Returns the time of day in a timespec64 (WARN if suspended).
783
 */
784
void getnstimeofday64(struct timespec64 *ts)
785
{
786
	WARN_ON(__getnstimeofday64(ts));
787
}
788
EXPORT_SYMBOL(getnstimeofday64);
789

790 791
ktime_t ktime_get(void)
{
792
	struct timekeeper *tk = &tk_core.timekeeper;
793
	unsigned int seq;
794
	ktime_t base;
795
	u64 nsecs;
796 797 798 799

	WARN_ON(timekeeping_suspended);

	do {
800
		seq = read_seqcount_begin(&tk_core.seq);
801 802
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
803

804
	} while (read_seqcount_retry(&tk_core.seq, seq));
805

806
	return ktime_add_ns(base, nsecs);
807 808 809
}
EXPORT_SYMBOL_GPL(ktime_get);

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

827 828 829 830 831 832 833 834 835 836 837
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
838
	u64 nsecs;
839 840 841 842 843

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
844 845
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
846 847 848 849 850 851 852 853

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

874 875 876 877 878 879 880 881
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
882
	u64 nsecs;
883 884 885

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
886 887
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
888 889 890 891 892 893 894

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

895
/**
896
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
897 898 899 900
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
901
 * in normalized timespec64 format in the variable pointed to by @ts.
902
 */
903
void ktime_get_ts64(struct timespec64 *ts)
904
{
905
	struct timekeeper *tk = &tk_core.timekeeper;
906
	struct timespec64 tomono;
907
	unsigned int seq;
908
	u64 nsec;
909 910 911 912

	WARN_ON(timekeeping_suspended);

	do {
913
		seq = read_seqcount_begin(&tk_core.seq);
914
		ts->tv_sec = tk->xtime_sec;
915
		nsec = timekeeping_get_ns(&tk->tkr_mono);
916
		tomono = tk->wall_to_monotonic;
917

918
	} while (read_seqcount_retry(&tk_core.seq, seq));
919

920 921 922
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
923
}
924
EXPORT_SYMBOL_GPL(ktime_get_ts64);
925

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

974 975 976 977 978 979 980 981 982 983 984 985
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

986 987 988 989 990 991 992 993 994 995
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
996 997
	u64 nsec_raw;
	u64 nsec_real;
998
	u64 now;
999

1000 1001
	WARN_ON_ONCE(timekeeping_suspended);

1002 1003
	do {
		seq = read_seqcount_begin(&tk_core.seq);
1004
		now = tk_clock_read(&tk->tkr_mono);
1005 1006
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1056 1057
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1070
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1120
static bool cycle_between(u64 before, u64 test, u64 after)
1121 1122 1123 1124 1125 1126 1127 1128
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1129 1130
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1131
 * @get_time_fn:	Callback to get simultaneous device time and
1132
 *	system counter from the device driver
1133 1134 1135
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1136 1137 1138 1139 1140 1141 1142 1143 1144
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1145
				  struct system_time_snapshot *history_begin,
1146 1147 1148 1149
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1150
	u64 cycles, now, interval_start;
1151
	unsigned int clock_was_set_seq = 0;
1152
	ktime_t base_real, base_raw;
1153
	u64 nsec_real, nsec_raw;
1154
	u8 cs_was_changed_seq;
1155
	unsigned long seq;
1156
	bool do_interp;
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1176 1177 1178 1179 1180 1181
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1182
		now = tk_clock_read(&tk->tkr_mono);
1183 1184 1185 1186 1187 1188 1189 1190 1191
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1205 1206 1207 1208 1209 1210

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1211
		u64 partial_history_cycles, total_history_cycles;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1237 1238 1239 1240
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1241 1242 1243 1244
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1245
 * NOTE: Users should be converted to using getnstimeofday()
1246 1247 1248
 */
void do_gettimeofday(struct timeval *tv)
{
1249
	struct timespec64 now;
1250

1251
	getnstimeofday64(&now);
1252 1253 1254 1255
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1256

1257
/**
1258 1259
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1260 1261 1262
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1263
int do_settimeofday64(const struct timespec64 *ts)
1264
{
1265
	struct timekeeper *tk = &tk_core.timekeeper;
1266
	struct timespec64 ts_delta, xt;
1267
	unsigned long flags;
1268
	int ret = 0;
1269

1270
	if (!timespec64_valid_strict(ts))
1271 1272
		return -EINVAL;

1273
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1274
	write_seqcount_begin(&tk_core.seq);
1275

1276
	timekeeping_forward_now(tk);
1277

1278
	xt = tk_xtime(tk);
1279 1280
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1281

1282 1283 1284 1285 1286
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1287
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1288

1289
	tk_set_xtime(tk, ts);
1290
out:
1291
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1292

1293
	write_seqcount_end(&tk_core.seq);
1294
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1295 1296 1297 1298

	/* signal hrtimers about time change */
	clock_was_set();

1299
	return ret;
1300
}
1301
EXPORT_SYMBOL(do_settimeofday64);
1302

1303 1304 1305 1306 1307 1308
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
1309
static int timekeeping_inject_offset(struct timespec64 *ts)
1310
{
1311
	struct timekeeper *tk = &tk_core.timekeeper;
1312
	unsigned long flags;
1313
	struct timespec64 tmp;
1314
	int ret = 0;
1315

1316
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1317 1318
		return -EINVAL;

1319
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1320
	write_seqcount_begin(&tk_core.seq);
1321

1322
	timekeeping_forward_now(tk);
1323

1324
	/* Make sure the proposed value is valid */
1325 1326
	tmp = timespec64_add(tk_xtime(tk), *ts);
	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1327
	    !timespec64_valid_strict(&tmp)) {
1328 1329 1330
		ret = -EINVAL;
		goto error;
	}
1331

1332 1333
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1334

1335
error: /* even if we error out, we forwarded the time, so call update */
1336
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1337

1338
	write_seqcount_end(&tk_core.seq);
1339
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1340 1341 1342 1343

	/* signal hrtimers about time change */
	clock_was_set();

1344
	return ret;
1345
}
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
1372
		struct timespec64 adjust;
1373 1374 1375 1376 1377 1378 1379

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}
1380

1381
/**
1382
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1383 1384
 *
 */
1385
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1386 1387
{
	tk->tai_offset = tai_offset;
1388
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1389 1390
}

1391 1392 1393 1394 1395
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1396
static int change_clocksource(void *data)
1397
{
1398
	struct timekeeper *tk = &tk_core.timekeeper;
1399
	struct clocksource *new, *old;
1400
	unsigned long flags;
1401

1402
	new = (struct clocksource *) data;
1403

1404
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1405
	write_seqcount_begin(&tk_core.seq);
1406

1407
	timekeeping_forward_now(tk);
1408 1409 1410 1411 1412 1413
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1414
			old = tk->tkr_mono.clock;
1415 1416 1417 1418 1419 1420 1421
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1422
	}
1423
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1424

1425
	write_seqcount_end(&tk_core.seq);
1426
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1427

1428 1429
	return 0;
}
1430

1431 1432 1433 1434 1435 1436 1437
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1438
int timekeeping_notify(struct clocksource *clock)
1439
{
1440
	struct timekeeper *tk = &tk_core.timekeeper;
1441

1442
	if (tk->tkr_mono.clock == clock)
1443
		return 0;
1444
	stop_machine(change_clocksource, clock, NULL);
1445
	tick_clock_notify();
1446
	return tk->tkr_mono.clock == clock ? 0 : -1;
1447
}
1448

1449
/**
1450 1451
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1452 1453 1454
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1455
void getrawmonotonic64(struct timespec64 *ts)
1456
{
1457
	struct timekeeper *tk = &tk_core.timekeeper;
1458
	unsigned long seq;
1459
	u64 nsecs;
1460 1461

	do {
1462
		seq = read_seqcount_begin(&tk_core.seq);
1463
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1464
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1465

1466
	} while (read_seqcount_retry(&tk_core.seq, seq));
1467

1468 1469
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1470
}
1471 1472
EXPORT_SYMBOL(getrawmonotonic64);

1473

1474
/**
1475
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1476
 */
1477
int timekeeping_valid_for_hres(void)
1478
{
1479
	struct timekeeper *tk = &tk_core.timekeeper;
1480 1481 1482 1483
	unsigned long seq;
	int ret;

	do {
1484
		seq = read_seqcount_begin(&tk_core.seq);
1485

1486
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1487

1488
	} while (read_seqcount_retry(&tk_core.seq, seq));
1489 1490 1491 1492

	return ret;
}

1493 1494 1495 1496 1497
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1498
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1499 1500
	unsigned long seq;
	u64 ret;
1501

J
John Stultz 已提交
1502
	do {
1503
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1504

1505
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1506

1507
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1508 1509

	return ret;
1510 1511
}

1512
/**
1513
 * read_persistent_clock -  Return time from the persistent clock.
1514 1515
 *
 * Weak dummy function for arches that do not yet support it.
1516 1517
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1518 1519 1520
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1521
void __weak read_persistent_clock(struct timespec *ts)
1522
{
1523 1524
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1525 1526
}

1527 1528 1529 1530 1531 1532 1533 1534
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1535
/**
X
Xunlei Pang 已提交
1536
 * read_boot_clock64 -  Return time of the system start.
1537 1538 1539
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1540
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1541 1542 1543
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1544
void __weak read_boot_clock64(struct timespec64 *ts)
1545 1546 1547 1548 1549
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1550 1551 1552 1553 1554 1555
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1556 1557 1558 1559 1560
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1561
	struct timekeeper *tk = &tk_core.timekeeper;
1562
	struct clocksource *clock;
1563
	unsigned long flags;
1564
	struct timespec64 now, boot, tmp;
1565

1566
	read_persistent_clock64(&now);
1567
	if (!timespec64_valid_strict(&now)) {
1568 1569 1570 1571
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1572
	} else if (now.tv_sec || now.tv_nsec)
1573
		persistent_clock_exists = true;
1574

1575
	read_boot_clock64(&boot);
1576
	if (!timespec64_valid_strict(&boot)) {
1577 1578 1579 1580 1581
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1582

1583
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1584
	write_seqcount_begin(&tk_core.seq);
1585 1586
	ntp_init();

1587
	clock = clocksource_default_clock();
1588 1589
	if (clock->enable)
		clock->enable(clock);
1590
	tk_setup_internals(tk, clock);
1591

1592
	tk_set_xtime(tk, &now);
1593
	tk->raw_sec = 0;
1594
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1595
		boot = tk_xtime(tk);
1596

1597
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1598
	tk_set_wall_to_mono(tk, tmp);
1599

1600
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1601

1602
	write_seqcount_end(&tk_core.seq);
1603
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1604 1605
}

1606
/* time in seconds when suspend began for persistent clock */
1607
static struct timespec64 timekeeping_suspend_time;
1608

1609 1610 1611 1612 1613 1614 1615
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1616
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1617
					   struct timespec64 *delta)
1618
{
1619
	if (!timespec64_valid_strict(delta)) {
1620 1621 1622
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1623 1624
		return;
	}
1625
	tk_xtime_add(tk, delta);
1626
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1627
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1628
	tk_debug_account_sleep_time(delta);
1629 1630
}

1631
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1667
/**
1668 1669
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1670
 *
1671
 * This hook is for architectures that cannot support read_persistent_clock64
1672
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1673
 * and also don't have an effective nonstop clocksource.
1674 1675 1676 1677
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1678
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1679
{
1680
	struct timekeeper *tk = &tk_core.timekeeper;
1681
	unsigned long flags;
1682

1683
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1684
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1685

1686
	timekeeping_forward_now(tk);
1687

1688
	__timekeeping_inject_sleeptime(tk, delta);
1689

1690
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1691

1692
	write_seqcount_end(&tk_core.seq);
1693
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1694 1695 1696 1697

	/* signal hrtimers about time change */
	clock_was_set();
}
1698
#endif
1699

1700 1701 1702
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1703
void timekeeping_resume(void)
1704
{
1705
	struct timekeeper *tk = &tk_core.timekeeper;
1706
	struct clocksource *clock = tk->tkr_mono.clock;
1707
	unsigned long flags;
1708
	struct timespec64 ts_new, ts_delta;
1709
	u64 cycle_now;
1710

1711
	sleeptime_injected = false;
1712
	read_persistent_clock64(&ts_new);
1713

1714
	clockevents_resume();
1715 1716
	clocksource_resume();

1717
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1718
	write_seqcount_begin(&tk_core.seq);
1719

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1732
	cycle_now = tk_clock_read(&tk->tkr_mono);
1733
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1734
		cycle_now > tk->tkr_mono.cycle_last) {
1735
		u64 nsec, cyc_delta;
1736

1737 1738 1739
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
					      tk->tkr_mono.mask);
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1740
		ts_delta = ns_to_timespec64(nsec);
1741
		sleeptime_injected = true;
1742 1743
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1744
		sleeptime_injected = true;
1745
	}
1746

1747
	if (sleeptime_injected)
1748 1749 1750
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1751
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1752 1753
	tk->tkr_raw.cycle_last  = cycle_now;

1754
	tk->ntp_error = 0;
1755
	timekeeping_suspended = 0;
1756
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1757
	write_seqcount_end(&tk_core.seq);
1758
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1759 1760 1761

	touch_softlockup_watchdog();

1762
	tick_resume();
1763
	hrtimers_resume();
1764 1765
}

1766
int timekeeping_suspend(void)
1767
{
1768
	struct timekeeper *tk = &tk_core.timekeeper;
1769
	unsigned long flags;
1770 1771
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1772

1773
	read_persistent_clock64(&timekeeping_suspend_time);
1774

1775 1776 1777 1778 1779 1780
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1781
		persistent_clock_exists = true;
1782

1783
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1784
	write_seqcount_begin(&tk_core.seq);
1785
	timekeeping_forward_now(tk);
1786
	timekeeping_suspended = 1;
1787

1788
	if (persistent_clock_exists) {
1789
		/*
1790 1791 1792 1793
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1794
		 */
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1808
	}
1809 1810

	timekeeping_update(tk, TK_MIRROR);
1811
	halt_fast_timekeeper(tk);
1812
	write_seqcount_end(&tk_core.seq);
1813
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1814

1815
	tick_suspend();
M
Magnus Damm 已提交
1816
	clocksource_suspend();
1817
	clockevents_suspend();
1818 1819 1820 1821 1822

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1823
static struct syscore_ops timekeeping_syscore_ops = {
1824 1825 1826 1827
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1828
static int __init timekeeping_init_ops(void)
1829
{
1830 1831
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1832
}
1833
device_initcall(timekeeping_init_ops);
1834 1835

/*
1836
 * Apply a multiplier adjustment to the timekeeper
1837
 */
1838 1839 1840 1841
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1842
{
1843 1844
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1845

1846 1847 1848 1849
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1850
	}
1851 1852 1853
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1854

1855 1856 1857
	/*
	 * So the following can be confusing.
	 *
1858
	 * To keep things simple, lets assume mult_adj == 1 for now.
1859
	 *
1860
	 * When mult_adj != 1, remember that the interval and offset values
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1904
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1905 1906 1907 1908 1909
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1910
	tk->tkr_mono.mult += mult_adj;
1911
	tk->xtime_interval += interval;
1912
	tk->tkr_mono.xtime_nsec -= offset;
1913
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1925 1926 1927
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1928 1929
	s64 tick_error;
	bool negative;
1930
	u32 adj_scale;
1931 1932 1933 1934 1935

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1936 1937
	tk->ntp_tick = ntp_tick_length();

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1960
	tick_error = abs(tick_error);
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1971
		tick_error >>= 1;
1972
	}
1973 1974

	/* scale the corrections */
1975
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1997 1998 1999
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
2000 2001
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2002 2003
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2004
	}
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
2020 2021 2022
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
2023
		tk->ntp_error += neg << tk->ntp_error_shift;
2024
	}
2025 2026
}

2027 2028 2029
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
2030
 * Helper function that accumulates the nsecs greater than a second
2031 2032 2033 2034
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
2035
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2036
{
2037
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2038
	unsigned int clock_set = 0;
2039

2040
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2041 2042
		int leap;

2043
		tk->tkr_mono.xtime_nsec -= nsecps;
2044 2045 2046 2047
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
2048
		if (unlikely(leap)) {
2049
			struct timespec64 ts;
2050 2051

			tk->xtime_sec += leap;
2052

2053 2054 2055
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
2056
				timespec64_sub(tk->wall_to_monotonic, ts));
2057

2058 2059
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

2060
			clock_set = TK_CLOCK_WAS_SET;
2061
		}
2062
	}
2063
	return clock_set;
2064 2065
}

2066 2067 2068 2069 2070 2071 2072 2073 2074
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
2075 2076
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
2077
{
2078
	u64 interval = tk->cycle_interval << shift;
2079
	u64 snsec_per_sec;
2080

Z
Zhen Lei 已提交
2081
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2082
	if (offset < interval)
2083 2084 2085
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2086
	offset -= interval;
2087
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2088
	tk->tkr_raw.cycle_last  += interval;
2089

2090
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2091
	*clock_set |= accumulate_nsecs_to_secs(tk);
2092

2093
	/* Accumulate raw time */
2094 2095 2096 2097
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2098
		tk->raw_sec++;
2099 2100 2101
	}

	/* Accumulate error between NTP and clock interval */
2102
	tk->ntp_error += tk->ntp_tick << shift;
2103 2104
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2105 2106 2107 2108

	return offset;
}

2109 2110 2111 2112
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2113
void update_wall_time(void)
2114
{
2115
	struct timekeeper *real_tk = &tk_core.timekeeper;
2116
	struct timekeeper *tk = &shadow_timekeeper;
2117
	u64 offset;
2118
	int shift = 0, maxshift;
2119
	unsigned int clock_set = 0;
J
John Stultz 已提交
2120 2121
	unsigned long flags;

2122
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2123 2124 2125

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2126
		goto out;
2127

J
John Stultz 已提交
2128
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2129
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2130
#else
2131
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2132
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2133 2134
#endif

2135
	/* Check if there's really nothing to do */
2136
	if (offset < real_tk->cycle_interval)
2137 2138
		goto out;

2139
	/* Do some additional sanity checking */
2140
	timekeeping_check_update(tk, offset);
2141

2142 2143 2144 2145
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2146
	 * that is smaller than the offset.  We then accumulate that
2147 2148
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2149
	 */
2150
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2151
	shift = max(0, shift);
2152
	/* Bound shift to one less than what overflows tick_length */
2153
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2154
	shift = min(shift, maxshift);
2155
	while (offset >= tk->cycle_interval) {
2156 2157
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2158
		if (offset < tk->cycle_interval<<shift)
2159
			shift--;
2160 2161 2162
	}

	/* correct the clock when NTP error is too big */
2163
	timekeeping_adjust(tk, offset);
2164

J
John Stultz 已提交
2165
	/*
2166 2167 2168 2169
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
2170

J
John Stultz 已提交
2171 2172
	/*
	 * Finally, make sure that after the rounding
2173
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2174
	 */
2175
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2176

2177
	write_seqcount_begin(&tk_core.seq);
2178 2179 2180 2181 2182 2183 2184
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2185
	 * memcpy under the tk_core.seq against one before we start
2186 2187
	 * updating.
	 */
2188
	timekeeping_update(tk, clock_set);
2189
	memcpy(real_tk, tk, sizeof(*tk));
2190
	/* The memcpy must come last. Do not put anything here! */
2191
	write_seqcount_end(&tk_core.seq);
2192
out:
2193
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2194
	if (clock_set)
2195 2196
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2197
}
T
Tomas Janousek 已提交
2198 2199

/**
2200 2201
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2202
 *
2203
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2204 2205 2206 2207 2208 2209
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2210
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2211
{
2212
	struct timekeeper *tk = &tk_core.timekeeper;
2213 2214
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

2215
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2216
}
2217
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2218

2219 2220
unsigned long get_seconds(void)
{
2221
	struct timekeeper *tk = &tk_core.timekeeper;
2222 2223

	return tk->xtime_sec;
2224 2225 2226
}
EXPORT_SYMBOL(get_seconds);

2227 2228
struct timespec __current_kernel_time(void)
{
2229
	struct timekeeper *tk = &tk_core.timekeeper;
2230

2231
	return timespec64_to_timespec(tk_xtime(tk));
2232
}
2233

2234
struct timespec64 current_kernel_time64(void)
2235
{
2236
	struct timekeeper *tk = &tk_core.timekeeper;
2237
	struct timespec64 now;
2238 2239 2240
	unsigned long seq;

	do {
2241
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2242

2243
		now = tk_xtime(tk);
2244
	} while (read_seqcount_retry(&tk_core.seq, seq));
2245

2246
	return now;
2247
}
2248
EXPORT_SYMBOL(current_kernel_time64);
2249

2250
struct timespec64 get_monotonic_coarse64(void)
2251
{
2252
	struct timekeeper *tk = &tk_core.timekeeper;
2253
	struct timespec64 now, mono;
2254 2255 2256
	unsigned long seq;

	do {
2257
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2258

2259 2260
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2261
	} while (read_seqcount_retry(&tk_core.seq, seq));
2262

2263
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2264
				now.tv_nsec + mono.tv_nsec);
2265

2266
	return now;
2267
}
2268
EXPORT_SYMBOL(get_monotonic_coarse64);
2269 2270

/*
2271
 * Must hold jiffies_lock
2272 2273 2274 2275 2276 2277
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2278

2279
/**
2280
 * ktime_get_update_offsets_now - hrtimer helper
2281
 * @cwsseq:	pointer to check and store the clock was set sequence number
2282 2283
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2284
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2285
 *
2286 2287 2288 2289
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2290
 * Called from hrtimer_interrupt() or retrigger_next_event()
2291
 */
2292 2293
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2294
{
2295
	struct timekeeper *tk = &tk_core.timekeeper;
2296
	unsigned int seq;
2297 2298
	ktime_t base;
	u64 nsecs;
2299 2300

	do {
2301
		seq = read_seqcount_begin(&tk_core.seq);
2302

2303 2304
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2305 2306
		base = ktime_add_ns(base, nsecs);

2307 2308 2309 2310 2311 2312
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2313 2314

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2315
		if (unlikely(base >= tk->next_leap_ktime))
2316 2317
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2318
	} while (read_seqcount_retry(&tk_core.seq, seq));
2319

2320
	return base;
2321 2322
}

2323
/**
2324
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2325
 */
2326
static int timekeeping_validate_timex(struct timex *txc)
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
		/*
		 * Validate if a timespec/timeval used to inject a time
		 * offset is valid.  Offsets can be postive or negative, so
		 * we don't check tv_sec. The value of the timeval/timespec
		 * is the sum of its fields,but *NOTE*:
		 * The field tv_usec/tv_nsec must always be non-negative and
		 * we can't have more nanoseconds/microseconds than a second.
		 */
		if (txc->time.tv_usec < 0)
			return -EINVAL;
2364

2365 2366
		if (txc->modes & ADJ_NANO) {
			if (txc->time.tv_usec >= NSEC_PER_SEC)
2367 2368
				return -EINVAL;
		} else {
2369
			if (txc->time.tv_usec >= USEC_PER_SEC)
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}


2389 2390 2391 2392 2393
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2394
	struct timekeeper *tk = &tk_core.timekeeper;
2395
	unsigned long flags;
2396
	struct timespec64 ts;
2397
	s32 orig_tai, tai;
2398 2399 2400
	int ret;

	/* Validate the data before disabling interrupts */
2401
	ret = timekeeping_validate_timex(txc);
2402 2403 2404
	if (ret)
		return ret;

2405
	if (txc->modes & ADJ_SETOFFSET) {
2406
		struct timespec64 delta;
2407 2408 2409 2410 2411 2412 2413 2414 2415
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2416
	getnstimeofday64(&ts);
2417

2418
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2419
	write_seqcount_begin(&tk_core.seq);
2420

2421
	orig_tai = tai = tk->tai_offset;
2422
	ret = __do_adjtimex(txc, &ts, &tai);
2423

2424 2425
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2426
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2427
	}
2428 2429
	tk_update_leap_state(tk);

2430
	write_seqcount_end(&tk_core.seq);
2431 2432
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2433 2434 2435
	if (tai != orig_tai)
		clock_was_set();

2436 2437
	ntp_notify_cmos_timer();

2438 2439
	return ret;
}
2440 2441 2442 2443 2444

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2445
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2446
{
2447 2448 2449
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2450
	write_seqcount_begin(&tk_core.seq);
2451

2452
	__hardpps(phase_ts, raw_ts);
2453

2454
	write_seqcount_end(&tk_core.seq);
2455
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2456 2457
}
EXPORT_SYMBOL(hardpps);
2458
#endif /* CONFIG_NTP_PPS */
2459

T
Torben Hohn 已提交
2460 2461 2462 2463 2464 2465 2466 2467
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2468
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2469
	do_timer(ticks);
2470
	write_sequnlock(&jiffies_lock);
2471
	update_wall_time();
T
Torben Hohn 已提交
2472
}