timekeeping.c 55.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

122 123 124
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

125 126
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
127 128

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133 134 135 136 137 138
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
139

140 141
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 143 144
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
145
			tk->last_warning = jiffies;
146
		}
147
		tk->underflow_seen = 0;
148 149
	}

150 151
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 153 154
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
155
			tk->last_warning = jiffies;
156
		}
157
		tk->overflow_seen = 0;
158
	}
159
}
160 161 162

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
163
	struct timekeeper *tk = &tk_core.timekeeper;
164 165
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
181

182
	delta = clocksource_delta(now, last, mask);
183

184 185 186 187
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
188
	if (unlikely((~delta & mask) < (mask >> 3))) {
189
		tk->underflow_seen = 1;
190
		delta = 0;
191
	}
192

193
	/* Cap delta value to the max_cycles values to avoid mult overflows */
194
	if (unlikely(delta > max)) {
195
		tk->overflow_seen = 1;
196
		delta = tkr->clock->max_cycles;
197
	}
198 199 200

	return delta;
}
201 202 203 204
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
205 206 207 208 209 210 211 212 213 214 215 216
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
217 218
#endif

219
/**
220
 * tk_setup_internals - Set up internals to use clocksource clock.
221
 *
222
 * @tk:		The target timekeeper to setup.
223 224 225 226 227 228 229
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
230
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 232
{
	cycle_t interval;
233
	u64 tmp, ntpinterval;
234
	struct clocksource *old_clock;
235

236 237 238 239 240
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241

P
Peter Zijlstra 已提交
242 243 244 245 246
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

247 248 249
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
250
	ntpinterval = tmp;
251 252
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
253 254 255 256
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
257
	tk->cycle_interval = interval;
258 259

	/* Go back from cycles -> shifted ns */
260 261 262
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
263
		((u64) interval * clock->mult) >> clock->shift;
264

265 266 267 268
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
269
			tk->tkr_mono.xtime_nsec >>= -shift_change;
270
		else
271
			tk->tkr_mono.xtime_nsec <<= shift_change;
272
	}
P
Peter Zijlstra 已提交
273 274
	tk->tkr_raw.xtime_nsec = 0;

275
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
276
	tk->tkr_raw.shift = clock->shift;
277

278 279
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281 282 283 284 285 286

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
287
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
288
	tk->tkr_raw.mult = clock->mult;
289
	tk->ntp_err_mult = 0;
290
}
291

292
/* Timekeeper helper functions. */
293 294

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 296
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297
#else
298
static inline u32 arch_gettimeoffset(void) { return 0; }
299 300
#endif

301
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302
{
303
	cycle_t delta;
304
	s64 nsec;
305

306
	delta = timekeeping_get_delta(tkr);
307

308 309
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
310

311
	/* If arch requires, add in get_arch_timeoffset() */
312
	return nsec + arch_gettimeoffset();
313 314
}

315 316
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
317
 * @tkr: Timekeeping readout base from which we take the update
318 319 320 321 322 323 324 325 326 327 328
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
329
 * update(tkf->base[0], tkr);
330 331 332
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
333
 * update(tkf->base[1], tkr);
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
354
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
355
{
356
	struct tk_read_base *base = tkf->base;
357 358

	/* Force readers off to base[1] */
359
	raw_write_seqcount_latch(&tkf->seq);
360 361

	/* Update base[0] */
362
	memcpy(base, tkr, sizeof(*base));
363 364

	/* Force readers back to base[0] */
365
	raw_write_seqcount_latch(&tkf->seq);
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
403
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
404 405 406 407 408 409
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
410 411
		seq = raw_read_seqcount(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
412
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
413
	} while (read_seqcount_retry(&tkf->seq, seq));
414 415 416

	return now;
}
417 418 419 420 421

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
422 423
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
424 425 426 427 428 429
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
451
	struct tk_read_base *tkr = &tk->tkr_mono;
452 453 454 455

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
456
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
457 458 459 460 461

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
462 463
}

464 465 466 467
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
468
	struct timespec xt, wm;
469

470
	xt = timespec64_to_timespec(tk_xtime(tk));
471
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
472 473
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
490 491 492
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
	tk->tkr_mono.xtime_nsec -= remainder;
	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
493
	tk->ntp_error += remainder << tk->ntp_error_shift;
494
	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
495 496 497 498 499
}
#else
#define old_vsyscall_fixup(tk)
#endif

500 501
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

502
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
503
{
504
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
505 506 507 508 509 510 511
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
512
	struct timekeeper *tk = &tk_core.timekeeper;
513 514 515
	unsigned long flags;
	int ret;

516
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
517
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
518
	update_pvclock_gtod(tk, true);
519
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
520 521 522 523 524 525 526 527 528 529 530 531 532 533

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

534
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
535
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
536
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
537 538 539 540 541

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

542 543 544 545 546 547 548 549 550 551 552
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

553 554 555 556 557
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
558 559
	u64 seconds;
	u32 nsec;
560 561 562 563 564 565 566 567

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
568 569
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
570
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
571 572

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
573
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
574 575 576 577 578 579

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
580
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
581 582 583
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
584 585
}

586
/* must hold timekeeper_lock */
587
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
588
{
589
	if (action & TK_CLEAR_NTP) {
590
		tk->ntp_error = 0;
591 592
		ntp_clear();
	}
593

594
	tk_update_leap_state(tk);
595 596
	tk_update_ktime_data(tk);

597 598 599
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

600
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
601
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
602 603 604

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
605 606 607 608 609 610 611 612
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
613 614
}

615
/**
616
 * timekeeping_forward_now - update clock to the current time
617
 *
618 619 620
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
621
 */
622
static void timekeeping_forward_now(struct timekeeper *tk)
623
{
624
	struct clocksource *clock = tk->tkr_mono.clock;
625
	cycle_t cycle_now, delta;
626
	s64 nsec;
627

628 629 630
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
631
	tk->tkr_raw.cycle_last  = cycle_now;
632

633
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
634

635
	/* If arch requires, add in get_arch_timeoffset() */
636
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
637

638
	tk_normalize_xtime(tk);
639

P
Peter Zijlstra 已提交
640
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
641
	timespec64_add_ns(&tk->raw_time, nsec);
642 643 644
}

/**
645
 * __getnstimeofday64 - Returns the time of day in a timespec64.
646 647
 * @ts:		pointer to the timespec to be set
 *
648 649
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
650
 */
651
int __getnstimeofday64(struct timespec64 *ts)
652
{
653
	struct timekeeper *tk = &tk_core.timekeeper;
654
	unsigned long seq;
655
	s64 nsecs = 0;
656 657

	do {
658
		seq = read_seqcount_begin(&tk_core.seq);
659

660
		ts->tv_sec = tk->xtime_sec;
661
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
662

663
	} while (read_seqcount_retry(&tk_core.seq, seq));
664

665
	ts->tv_nsec = 0;
666
	timespec64_add_ns(ts, nsecs);
667 668 669 670 671 672 673 674 675

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
676
EXPORT_SYMBOL(__getnstimeofday64);
677 678

/**
679
 * getnstimeofday64 - Returns the time of day in a timespec64.
680
 * @ts:		pointer to the timespec64 to be set
681
 *
682
 * Returns the time of day in a timespec64 (WARN if suspended).
683
 */
684
void getnstimeofday64(struct timespec64 *ts)
685
{
686
	WARN_ON(__getnstimeofday64(ts));
687
}
688
EXPORT_SYMBOL(getnstimeofday64);
689

690 691
ktime_t ktime_get(void)
{
692
	struct timekeeper *tk = &tk_core.timekeeper;
693
	unsigned int seq;
694 695
	ktime_t base;
	s64 nsecs;
696 697 698 699

	WARN_ON(timekeeping_suspended);

	do {
700
		seq = read_seqcount_begin(&tk_core.seq);
701 702
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
703

704
	} while (read_seqcount_retry(&tk_core.seq, seq));
705

706
	return ktime_add_ns(base, nsecs);
707 708 709
}
EXPORT_SYMBOL_GPL(ktime_get);

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
744 745
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
746 747 748 749 750 751 752 753

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

774 775 776 777 778 779 780 781 782 783 784 785
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
786 787
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
788 789 790 791 792 793 794

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

795
/**
796
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
797 798 799 800
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
801
 * in normalized timespec64 format in the variable pointed to by @ts.
802
 */
803
void ktime_get_ts64(struct timespec64 *ts)
804
{
805
	struct timekeeper *tk = &tk_core.timekeeper;
806
	struct timespec64 tomono;
807
	s64 nsec;
808 809 810 811 812
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
813
		seq = read_seqcount_begin(&tk_core.seq);
814
		ts->tv_sec = tk->xtime_sec;
815
		nsec = timekeeping_get_ns(&tk->tkr_mono);
816
		tomono = tk->wall_to_monotonic;
817

818
	} while (read_seqcount_retry(&tk_core.seq, seq));
819

820 821 822
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
823
}
824
EXPORT_SYMBOL_GPL(ktime_get_ts64);
825

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

874 875 876 877 878 879 880 881 882 883 884 885 886
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
887
	struct timekeeper *tk = &tk_core.timekeeper;
888 889 890 891 892 893
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
894
		seq = read_seqcount_begin(&tk_core.seq);
895

896
		*ts_raw = timespec64_to_timespec(tk->raw_time);
897
		ts_real->tv_sec = tk->xtime_sec;
898
		ts_real->tv_nsec = 0;
899

P
Peter Zijlstra 已提交
900
		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
901
		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
902

903
	} while (read_seqcount_retry(&tk_core.seq, seq));
904 905 906 907 908 909 910 911

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

912 913 914 915
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
916
 * NOTE: Users should be converted to using getnstimeofday()
917 918 919
 */
void do_gettimeofday(struct timeval *tv)
{
920
	struct timespec64 now;
921

922
	getnstimeofday64(&now);
923 924 925 926
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
927

928
/**
929 930
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
931 932 933
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
934
int do_settimeofday64(const struct timespec64 *ts)
935
{
936
	struct timekeeper *tk = &tk_core.timekeeper;
937
	struct timespec64 ts_delta, xt;
938
	unsigned long flags;
939

940
	if (!timespec64_valid_strict(ts))
941 942
		return -EINVAL;

943
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
944
	write_seqcount_begin(&tk_core.seq);
945

946
	timekeeping_forward_now(tk);
947

948
	xt = tk_xtime(tk);
949 950
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
951

952
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
953

954
	tk_set_xtime(tk, ts);
955

956
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
957

958
	write_seqcount_end(&tk_core.seq);
959
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
960 961 962 963 964 965

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
966
EXPORT_SYMBOL(do_settimeofday64);
967

968 969 970 971 972 973 974 975
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
976
	struct timekeeper *tk = &tk_core.timekeeper;
977
	unsigned long flags;
978
	struct timespec64 ts64, tmp;
979
	int ret = 0;
980 981 982 983

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

984 985
	ts64 = timespec_to_timespec64(*ts);

986
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
987
	write_seqcount_begin(&tk_core.seq);
988

989
	timekeeping_forward_now(tk);
990

991
	/* Make sure the proposed value is valid */
992 993
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
994 995 996
		ret = -EINVAL;
		goto error;
	}
997

998 999
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1000

1001
error: /* even if we error out, we forwarded the time, so call update */
1002
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1003

1004
	write_seqcount_end(&tk_core.seq);
1005
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1006 1007 1008 1009

	/* signal hrtimers about time change */
	clock_was_set();

1010
	return ret;
1011 1012 1013
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1014 1015 1016 1017 1018 1019 1020

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
1021
	struct timekeeper *tk = &tk_core.timekeeper;
1022 1023 1024 1025
	unsigned int seq;
	s32 ret;

	do {
1026
		seq = read_seqcount_begin(&tk_core.seq);
1027
		ret = tk->tai_offset;
1028
	} while (read_seqcount_retry(&tk_core.seq, seq));
1029 1030 1031 1032 1033 1034 1035 1036

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1037
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1038 1039
{
	tk->tai_offset = tai_offset;
1040
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1041 1042 1043 1044 1045 1046 1047 1048
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1049
	struct timekeeper *tk = &tk_core.timekeeper;
1050 1051
	unsigned long flags;

1052
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1053
	write_seqcount_begin(&tk_core.seq);
1054
	__timekeeping_set_tai_offset(tk, tai_offset);
1055
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1056
	write_seqcount_end(&tk_core.seq);
1057
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1058
	clock_was_set();
1059 1060
}

1061 1062 1063 1064 1065
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1066
static int change_clocksource(void *data)
1067
{
1068
	struct timekeeper *tk = &tk_core.timekeeper;
1069
	struct clocksource *new, *old;
1070
	unsigned long flags;
1071

1072
	new = (struct clocksource *) data;
1073

1074
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1075
	write_seqcount_begin(&tk_core.seq);
1076

1077
	timekeeping_forward_now(tk);
1078 1079 1080 1081 1082 1083
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1084
			old = tk->tkr_mono.clock;
1085 1086 1087 1088 1089 1090 1091
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1092
	}
1093
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1094

1095
	write_seqcount_end(&tk_core.seq);
1096
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1097

1098 1099
	return 0;
}
1100

1101 1102 1103 1104 1105 1106 1107
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1108
int timekeeping_notify(struct clocksource *clock)
1109
{
1110
	struct timekeeper *tk = &tk_core.timekeeper;
1111

1112
	if (tk->tkr_mono.clock == clock)
1113
		return 0;
1114
	stop_machine(change_clocksource, clock, NULL);
1115
	tick_clock_notify();
1116
	return tk->tkr_mono.clock == clock ? 0 : -1;
1117
}
1118

1119
/**
1120 1121
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1122 1123 1124
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1125
void getrawmonotonic64(struct timespec64 *ts)
1126
{
1127
	struct timekeeper *tk = &tk_core.timekeeper;
1128
	struct timespec64 ts64;
1129 1130 1131 1132
	unsigned long seq;
	s64 nsecs;

	do {
1133
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1134
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1135
		ts64 = tk->raw_time;
1136

1137
	} while (read_seqcount_retry(&tk_core.seq, seq));
1138

1139
	timespec64_add_ns(&ts64, nsecs);
1140
	*ts = ts64;
1141
}
1142 1143
EXPORT_SYMBOL(getrawmonotonic64);

1144

1145
/**
1146
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1147
 */
1148
int timekeeping_valid_for_hres(void)
1149
{
1150
	struct timekeeper *tk = &tk_core.timekeeper;
1151 1152 1153 1154
	unsigned long seq;
	int ret;

	do {
1155
		seq = read_seqcount_begin(&tk_core.seq);
1156

1157
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1158

1159
	} while (read_seqcount_retry(&tk_core.seq, seq));
1160 1161 1162 1163

	return ret;
}

1164 1165 1166 1167 1168
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1169
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1170 1171
	unsigned long seq;
	u64 ret;
1172

J
John Stultz 已提交
1173
	do {
1174
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1175

1176
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1177

1178
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1179 1180

	return ret;
1181 1182
}

1183
/**
1184
 * read_persistent_clock -  Return time from the persistent clock.
1185 1186
 *
 * Weak dummy function for arches that do not yet support it.
1187 1188
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1189 1190 1191
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1192
void __weak read_persistent_clock(struct timespec *ts)
1193
{
1194 1195
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1196 1197
}

1198 1199 1200 1201 1202 1203 1204 1205
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1206
/**
X
Xunlei Pang 已提交
1207
 * read_boot_clock64 -  Return time of the system start.
1208 1209 1210
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1211
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1212 1213 1214
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1215
void __weak read_boot_clock64(struct timespec64 *ts)
1216 1217 1218 1219 1220
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1221 1222 1223 1224 1225 1226
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1227 1228 1229 1230 1231
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1232
	struct timekeeper *tk = &tk_core.timekeeper;
1233
	struct clocksource *clock;
1234
	unsigned long flags;
1235
	struct timespec64 now, boot, tmp;
1236

1237
	read_persistent_clock64(&now);
1238
	if (!timespec64_valid_strict(&now)) {
1239 1240 1241 1242
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1243
	} else if (now.tv_sec || now.tv_nsec)
1244
		persistent_clock_exists = true;
1245

1246
	read_boot_clock64(&boot);
1247
	if (!timespec64_valid_strict(&boot)) {
1248 1249 1250 1251 1252
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1253

1254
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1255
	write_seqcount_begin(&tk_core.seq);
1256 1257
	ntp_init();

1258
	clock = clocksource_default_clock();
1259 1260
	if (clock->enable)
		clock->enable(clock);
1261
	tk_setup_internals(tk, clock);
1262

1263 1264 1265
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1266
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1267
		boot = tk_xtime(tk);
1268

1269
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1270
	tk_set_wall_to_mono(tk, tmp);
1271

1272
	timekeeping_update(tk, TK_MIRROR);
1273

1274
	write_seqcount_end(&tk_core.seq);
1275
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1276 1277
}

1278
/* time in seconds when suspend began for persistent clock */
1279
static struct timespec64 timekeeping_suspend_time;
1280

1281 1282 1283 1284 1285 1286 1287
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1288
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1289
					   struct timespec64 *delta)
1290
{
1291
	if (!timespec64_valid_strict(delta)) {
1292 1293 1294
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1295 1296
		return;
	}
1297
	tk_xtime_add(tk, delta);
1298
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1299
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1300
	tk_debug_account_sleep_time(delta);
1301 1302
}

1303
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1339
/**
1340 1341
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1342
 *
1343
 * This hook is for architectures that cannot support read_persistent_clock64
1344
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1345
 * and also don't have an effective nonstop clocksource.
1346 1347 1348 1349
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1350
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1351
{
1352
	struct timekeeper *tk = &tk_core.timekeeper;
1353
	unsigned long flags;
1354

1355
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1356
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1357

1358
	timekeeping_forward_now(tk);
1359

1360
	__timekeeping_inject_sleeptime(tk, delta);
1361

1362
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1363

1364
	write_seqcount_end(&tk_core.seq);
1365
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1366 1367 1368 1369

	/* signal hrtimers about time change */
	clock_was_set();
}
1370
#endif
1371

1372 1373 1374
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1375
void timekeeping_resume(void)
1376
{
1377
	struct timekeeper *tk = &tk_core.timekeeper;
1378
	struct clocksource *clock = tk->tkr_mono.clock;
1379
	unsigned long flags;
1380
	struct timespec64 ts_new, ts_delta;
1381
	cycle_t cycle_now, cycle_delta;
1382

1383
	sleeptime_injected = false;
1384
	read_persistent_clock64(&ts_new);
1385

1386
	clockevents_resume();
1387 1388
	clocksource_resume();

1389
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1390
	write_seqcount_begin(&tk_core.seq);
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1404
	cycle_now = tk->tkr_mono.read(clock);
1405
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1406
		cycle_now > tk->tkr_mono.cycle_last) {
1407 1408 1409 1410 1411
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1412 1413
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1428
		ts_delta = ns_to_timespec64(nsec);
1429
		sleeptime_injected = true;
1430 1431
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1432
		sleeptime_injected = true;
1433
	}
1434

1435
	if (sleeptime_injected)
1436 1437 1438
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1439
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1440 1441
	tk->tkr_raw.cycle_last  = cycle_now;

1442
	tk->ntp_error = 0;
1443
	timekeeping_suspended = 0;
1444
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1445
	write_seqcount_end(&tk_core.seq);
1446
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1447 1448 1449

	touch_softlockup_watchdog();

1450
	tick_resume();
1451
	hrtimers_resume();
1452 1453
}

1454
int timekeeping_suspend(void)
1455
{
1456
	struct timekeeper *tk = &tk_core.timekeeper;
1457
	unsigned long flags;
1458 1459
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1460

1461
	read_persistent_clock64(&timekeeping_suspend_time);
1462

1463 1464 1465 1466 1467 1468
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1469
		persistent_clock_exists = true;
1470

1471
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1472
	write_seqcount_begin(&tk_core.seq);
1473
	timekeeping_forward_now(tk);
1474
	timekeeping_suspended = 1;
1475

1476
	if (persistent_clock_exists) {
1477
		/*
1478 1479 1480 1481
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1482
		 */
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1496
	}
1497 1498

	timekeeping_update(tk, TK_MIRROR);
1499
	halt_fast_timekeeper(tk);
1500
	write_seqcount_end(&tk_core.seq);
1501
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1502

1503
	tick_suspend();
M
Magnus Damm 已提交
1504
	clocksource_suspend();
1505
	clockevents_suspend();
1506 1507 1508 1509 1510

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1511
static struct syscore_ops timekeeping_syscore_ops = {
1512 1513 1514 1515
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1516
static int __init timekeeping_init_ops(void)
1517
{
1518 1519
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1520
}
1521
device_initcall(timekeeping_init_ops);
1522 1523

/*
1524
 * Apply a multiplier adjustment to the timekeeper
1525
 */
1526 1527 1528 1529
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1530
{
1531 1532
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1533

1534 1535 1536 1537
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1538
	}
1539 1540 1541
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1542

1543 1544 1545
	/*
	 * So the following can be confusing.
	 *
1546
	 * To keep things simple, lets assume mult_adj == 1 for now.
1547
	 *
1548
	 * When mult_adj != 1, remember that the interval and offset values
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1592
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1593 1594 1595 1596 1597
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1598
	tk->tkr_mono.mult += mult_adj;
1599
	tk->xtime_interval += interval;
1600
	tk->tkr_mono.xtime_nsec -= offset;
1601
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1621 1622
	tk->ntp_tick = ntp_tick_length();

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1662 1663 1664
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1665 1666
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1667 1668
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1669
	}
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1685 1686 1687
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1688
		tk->ntp_error += neg << tk->ntp_error_shift;
1689
	}
1690 1691
}

1692 1693 1694 1695 1696 1697 1698 1699
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1700
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1701
{
1702
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1703
	unsigned int clock_set = 0;
1704

1705
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1706 1707
		int leap;

1708
		tk->tkr_mono.xtime_nsec -= nsecps;
1709 1710 1711 1712
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1713
		if (unlikely(leap)) {
1714
			struct timespec64 ts;
1715 1716

			tk->xtime_sec += leap;
1717

1718 1719 1720
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1721
				timespec64_sub(tk->wall_to_monotonic, ts));
1722

1723 1724
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1725
			clock_set = TK_CLOCK_WAS_SET;
1726
		}
1727
	}
1728
	return clock_set;
1729 1730
}

1731 1732 1733 1734 1735 1736 1737 1738 1739
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1740
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1741 1742
						u32 shift,
						unsigned int *clock_set)
1743
{
T
Thomas Gleixner 已提交
1744
	cycle_t interval = tk->cycle_interval << shift;
1745
	u64 raw_nsecs;
1746

1747
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1748
	if (offset < interval)
1749 1750 1751
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1752
	offset -= interval;
1753
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1754
	tk->tkr_raw.cycle_last  += interval;
1755

1756
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1757
	*clock_set |= accumulate_nsecs_to_secs(tk);
1758

1759
	/* Accumulate raw time */
1760
	raw_nsecs = (u64)tk->raw_interval << shift;
1761
	raw_nsecs += tk->raw_time.tv_nsec;
1762 1763 1764
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1765
		tk->raw_time.tv_sec += raw_secs;
1766
	}
1767
	tk->raw_time.tv_nsec = raw_nsecs;
1768 1769

	/* Accumulate error between NTP and clock interval */
1770
	tk->ntp_error += tk->ntp_tick << shift;
1771 1772
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1773 1774 1775 1776

	return offset;
}

1777 1778 1779 1780
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1781
void update_wall_time(void)
1782
{
1783
	struct timekeeper *real_tk = &tk_core.timekeeper;
1784
	struct timekeeper *tk = &shadow_timekeeper;
1785
	cycle_t offset;
1786
	int shift = 0, maxshift;
1787
	unsigned int clock_set = 0;
J
John Stultz 已提交
1788 1789
	unsigned long flags;

1790
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1791 1792 1793

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1794
		goto out;
1795

J
John Stultz 已提交
1796
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1797
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1798
#else
1799 1800
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1801 1802
#endif

1803
	/* Check if there's really nothing to do */
1804
	if (offset < real_tk->cycle_interval)
1805 1806
		goto out;

1807 1808 1809
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1810 1811 1812 1813
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1814
	 * that is smaller than the offset.  We then accumulate that
1815 1816
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1817
	 */
1818
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1819
	shift = max(0, shift);
1820
	/* Bound shift to one less than what overflows tick_length */
1821
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1822
	shift = min(shift, maxshift);
1823
	while (offset >= tk->cycle_interval) {
1824 1825
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1826
		if (offset < tk->cycle_interval<<shift)
1827
			shift--;
1828 1829 1830
	}

	/* correct the clock when NTP error is too big */
1831
	timekeeping_adjust(tk, offset);
1832

J
John Stultz 已提交
1833
	/*
1834 1835 1836 1837
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1838

J
John Stultz 已提交
1839 1840
	/*
	 * Finally, make sure that after the rounding
1841
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1842
	 */
1843
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1844

1845
	write_seqcount_begin(&tk_core.seq);
1846 1847 1848 1849 1850 1851 1852
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1853
	 * memcpy under the tk_core.seq against one before we start
1854 1855 1856
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1857
	timekeeping_update(real_tk, clock_set);
1858
	write_seqcount_end(&tk_core.seq);
1859
out:
1860
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1861
	if (clock_set)
1862 1863
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1864
}
T
Tomas Janousek 已提交
1865 1866

/**
1867 1868
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1869
 *
1870
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1871 1872 1873 1874 1875 1876
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1877
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1878
{
1879
	struct timekeeper *tk = &tk_core.timekeeper;
1880 1881
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1882
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1883
}
1884
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1885

1886 1887
unsigned long get_seconds(void)
{
1888
	struct timekeeper *tk = &tk_core.timekeeper;
1889 1890

	return tk->xtime_sec;
1891 1892 1893
}
EXPORT_SYMBOL(get_seconds);

1894 1895
struct timespec __current_kernel_time(void)
{
1896
	struct timekeeper *tk = &tk_core.timekeeper;
1897

1898
	return timespec64_to_timespec(tk_xtime(tk));
1899
}
1900

1901 1902
struct timespec current_kernel_time(void)
{
1903
	struct timekeeper *tk = &tk_core.timekeeper;
1904
	struct timespec64 now;
1905 1906 1907
	unsigned long seq;

	do {
1908
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1909

1910
		now = tk_xtime(tk);
1911
	} while (read_seqcount_retry(&tk_core.seq, seq));
1912

1913
	return timespec64_to_timespec(now);
1914 1915
}
EXPORT_SYMBOL(current_kernel_time);
1916

1917
struct timespec64 get_monotonic_coarse64(void)
1918
{
1919
	struct timekeeper *tk = &tk_core.timekeeper;
1920
	struct timespec64 now, mono;
1921 1922 1923
	unsigned long seq;

	do {
1924
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1925

1926 1927
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1928
	} while (read_seqcount_retry(&tk_core.seq, seq));
1929

1930
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1931
				now.tv_nsec + mono.tv_nsec);
1932

1933
	return now;
1934
}
1935 1936

/*
1937
 * Must hold jiffies_lock
1938 1939 1940 1941 1942 1943
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1944

1945
/**
1946
 * ktime_get_update_offsets_now - hrtimer helper
1947
 * @cwsseq:	pointer to check and store the clock was set sequence number
1948 1949
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1950
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1951
 *
1952 1953 1954 1955
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
1956
 * Called from hrtimer_interrupt() or retrigger_next_event()
1957
 */
1958 1959
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
1960
{
1961
	struct timekeeper *tk = &tk_core.timekeeper;
1962
	unsigned int seq;
1963 1964
	ktime_t base;
	u64 nsecs;
1965 1966

	do {
1967
		seq = read_seqcount_begin(&tk_core.seq);
1968

1969 1970
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1971 1972
		base = ktime_add_ns(base, nsecs);

1973 1974 1975 1976 1977 1978
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
1979 1980 1981 1982 1983

		/* Handle leapsecond insertion adjustments */
		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

1984
	} while (read_seqcount_retry(&tk_core.seq, seq));
1985

1986
	return base;
1987 1988
}

1989 1990 1991 1992 1993
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1994
	struct timekeeper *tk = &tk_core.timekeeper;
1995
	unsigned long flags;
1996
	struct timespec64 ts;
1997
	s32 orig_tai, tai;
1998 1999 2000 2001 2002 2003 2004
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2016
	getnstimeofday64(&ts);
2017

2018
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2019
	write_seqcount_begin(&tk_core.seq);
2020

2021
	orig_tai = tai = tk->tai_offset;
2022
	ret = __do_adjtimex(txc, &ts, &tai);
2023

2024 2025
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2026
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2027
	}
2028 2029
	tk_update_leap_state(tk);

2030
	write_seqcount_end(&tk_core.seq);
2031 2032
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2033 2034 2035
	if (tai != orig_tai)
		clock_was_set();

2036 2037
	ntp_notify_cmos_timer();

2038 2039
	return ret;
}
2040 2041 2042 2043 2044 2045 2046

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
2047 2048 2049
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2050
	write_seqcount_begin(&tk_core.seq);
2051

2052
	__hardpps(phase_ts, raw_ts);
2053

2054
	write_seqcount_end(&tk_core.seq);
2055
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2056 2057 2058 2059
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2060 2061 2062 2063 2064 2065 2066 2067
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2068
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2069
	do_timer(ticks);
2070
	write_sequnlock(&jiffies_lock);
2071
	update_wall_time();
T
Torben Hohn 已提交
2072
}