timekeeping.c 67.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/sched/clock.h>
21
#include <linux/syscore_ops.h>
22 23 24 25
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
26
#include <linux/stop_machine.h>
27
#include <linux/pvclock_gtod.h>
28
#include <linux/compiler.h>
29

30
#include "tick-internal.h"
31
#include "ntp_internal.h"
32
#include "timekeeping_internal.h"
33

34 35
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
36
#define TK_CLOCK_WAS_SET	(1 << 2)
37

38 39 40 41 42 43 44 45
enum timekeeping_adv_mode {
	/* Update timekeeper when a tick has passed */
	TK_ADV_TICK,

	/* Update timekeeper on a direct frequency change */
	TK_ADV_FREQ
};

46 47 48 49 50 51 52 53 54
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

55
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
56
static struct timekeeper shadow_timekeeper;
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};
93

94 95 96
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

97 98
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
99 100
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
101 102
		tk->xtime_sec++;
	}
103 104 105 106
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
107 108
}

109
static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
110 111 112 113
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
114
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
115 116 117
	return ts;
}

118
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
119 120
{
	tk->xtime_sec = ts->tv_sec;
121
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
122 123
}

124
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
125 126
{
	tk->xtime_sec += ts->tv_sec;
127
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
128
	tk_normalize_xtime(tk);
129
}
130

131
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
132
{
133
	struct timespec64 tmp;
134 135 136 137 138

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
139
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
140
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
141
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
142
	tk->wall_to_monotonic = wtm;
143 144
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
145
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
146 147
}

148
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
149
{
150
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
166
static inline u64 tk_clock_read(const struct tk_read_base *tkr)
167 168 169 170 171 172
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

173
#ifdef CONFIG_DEBUG_TIMEKEEPING
174 175
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

176
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
177 178
{

179
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
180
	const char *name = tk->tkr_mono.clock->name;
181 182

	if (offset > max_cycles) {
183
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
184
				offset, name, max_cycles);
185
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
186 187
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
188
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
189 190 191 192
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
193

194 195
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
196 197 198
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
199
			tk->last_warning = jiffies;
200
		}
201
		tk->underflow_seen = 0;
202 203
	}

204 205
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
206 207 208
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
209
			tk->last_warning = jiffies;
210
		}
211
		tk->overflow_seen = 0;
212
	}
213
}
214

215
static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
216
{
217
	struct timekeeper *tk = &tk_core.timekeeper;
218
	u64 now, last, mask, max, delta;
219
	unsigned int seq;
220

221 222 223 224 225 226 227 228 229
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
230
		now = tk_clock_read(tkr);
231 232 233 234
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
235

236
	delta = clocksource_delta(now, last, mask);
237

238 239 240 241
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
242
	if (unlikely((~delta & mask) < (mask >> 3))) {
243
		tk->underflow_seen = 1;
244
		delta = 0;
245
	}
246

247
	/* Cap delta value to the max_cycles values to avoid mult overflows */
248
	if (unlikely(delta > max)) {
249
		tk->overflow_seen = 1;
250
		delta = tkr->clock->max_cycles;
251
	}
252 253 254

	return delta;
}
255
#else
256
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
257 258
{
}
259
static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
260
{
261
	u64 cycle_now, delta;
262 263

	/* read clocksource */
264
	cycle_now = tk_clock_read(tkr);
265 266 267 268 269 270

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
271 272
#endif

273
/**
274
 * tk_setup_internals - Set up internals to use clocksource clock.
275
 *
276
 * @tk:		The target timekeeper to setup.
277 278 279 280 281 282 283
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
284
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
285
{
286
	u64 interval;
287
	u64 tmp, ntpinterval;
288
	struct clocksource *old_clock;
289

290
	++tk->cs_was_changed_seq;
291 292 293
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
294
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
295

P
Peter Zijlstra 已提交
296 297 298 299
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

300 301 302
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
303
	ntpinterval = tmp;
304 305
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
306 307 308
	if (tmp == 0)
		tmp = 1;

309
	interval = (u64) tmp;
310
	tk->cycle_interval = interval;
311 312

	/* Go back from cycles -> shifted ns */
313
	tk->xtime_interval = interval * clock->mult;
314
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
315
	tk->raw_interval = interval * clock->mult;
316

317 318 319
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
320
		if (shift_change < 0) {
321
			tk->tkr_mono.xtime_nsec >>= -shift_change;
322 323
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
324
			tk->tkr_mono.xtime_nsec <<= shift_change;
325 326
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
327
	}
P
Peter Zijlstra 已提交
328

329
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
330
	tk->tkr_raw.shift = clock->shift;
331

332 333
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
334
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
335 336 337 338 339 340

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
341
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
342
	tk->tkr_raw.mult = clock->mult;
343
	tk->ntp_err_mult = 0;
344
	tk->skip_second_overflow = 0;
345
}
346

347
/* Timekeeper helper functions. */
348 349

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
350 351
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
352
#else
353
static inline u32 arch_gettimeoffset(void) { return 0; }
354 355
#endif

356
static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
357
{
358
	u64 nsec;
359 360 361 362 363 364 365 366

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

367
static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
368
{
369
	u64 delta;
370

371
	delta = timekeeping_get_delta(tkr);
372 373
	return timekeeping_delta_to_ns(tkr, delta);
}
374

375
static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
376
{
377
	u64 delta;
378

379 380 381
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
382 383
}

384 385
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
386
 * @tkr: Timekeeping readout base from which we take the update
387 388 389 390
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
391
 * Employ the latch technique; see @raw_write_seqcount_latch.
392 393 394 395 396 397
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
398 399
static void update_fast_timekeeper(const struct tk_read_base *tkr,
				   struct tk_fast *tkf)
400
{
401
	struct tk_read_base *base = tkf->base;
402 403

	/* Force readers off to base[1] */
404
	raw_write_seqcount_latch(&tkf->seq);
405 406

	/* Update base[0] */
407
	memcpy(base, tkr, sizeof(*base));
408 409

	/* Force readers back to base[0] */
410
	raw_write_seqcount_latch(&tkf->seq);
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
448
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
449 450 451 452 453 454
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
455
		seq = raw_read_seqcount_latch(&tkf->seq);
456
		tkr = tkf->base + (seq & 0x01);
457 458
		now = ktime_to_ns(tkr->base);

459 460
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
461
					tk_clock_read(tkr),
462 463
					tkr->cycle_last,
					tkr->mask));
464
	} while (read_seqcount_retry(&tkf->seq, seq));
465 466 467

	return now;
}
468 469 470 471 472

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
473 474
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
475 476 477 478 479 480
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);


511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
/*
 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 */
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_real);

		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tk_clock_read(tkr),
					tkr->cycle_last,
					tkr->mask));
	} while (read_seqcount_retry(&tkf->seq, seq));

	return now;
}

/**
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 */
u64 ktime_get_real_fast_ns(void)
{
	return __ktime_get_real_fast_ns(&tk_fast_mono);
}
542
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
543

544 545 546 547 548 549 550 551 552 553
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
554
static void halt_fast_timekeeper(const struct timekeeper *tk)
555 556
{
	static struct tk_read_base tkr_dummy;
557
	const struct tk_read_base *tkr = &tk->tkr_mono;
558 559

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
560 561
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
562
	tkr_dummy.base_real = tkr->base + tk->offs_real;
563
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
564 565 566

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
567
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
568
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
569 570
}

571 572
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

573
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
574
{
575
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
576 577 578 579 580 581 582
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
583
	struct timekeeper *tk = &tk_core.timekeeper;
584 585 586
	unsigned long flags;
	int ret;

587
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
588
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
589
	update_pvclock_gtod(tk, true);
590
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
591 592 593 594 595 596 597 598 599 600 601 602 603 604

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

605
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
606
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
607
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
608 609 610 611 612

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

613 614 615 616 617 618
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
619
	if (tk->next_leap_ktime != KTIME_MAX)
620 621 622 623
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

624 625 626 627 628
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
629 630
	u64 seconds;
	u32 nsec;
631 632 633 634 635 636 637 638

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
639 640
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
641
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
642

643 644 645 646 647
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
648
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
649 650 651
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
652 653

	/* Update the monotonic raw base */
654
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
655 656
}

657
/* must hold timekeeper_lock */
658
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
659
{
660
	if (action & TK_CLEAR_NTP) {
661
		tk->ntp_error = 0;
662 663
		ntp_clear();
	}
664

665
	tk_update_leap_state(tk);
666 667
	tk_update_ktime_data(tk);

668 669 670
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

671
	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
672
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
673
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
674 675 676

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
677 678 679 680 681 682 683 684
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
685 686
}

687
/**
688
 * timekeeping_forward_now - update clock to the current time
689
 *
690 691 692
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
693
 */
694
static void timekeeping_forward_now(struct timekeeper *tk)
695
{
696
	u64 cycle_now, delta;
697

698
	cycle_now = tk_clock_read(&tk->tkr_mono);
699 700
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
701
	tk->tkr_raw.cycle_last  = cycle_now;
702

703
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
704

705
	/* If arch requires, add in get_arch_timeoffset() */
706
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
707

708

709 710 711 712 713 714
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
715 716 717
}

/**
718
 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
719 720
 * @ts:		pointer to the timespec to be set
 *
721
 * Returns the time of day in a timespec64 (WARN if suspended).
722
 */
723
void ktime_get_real_ts64(struct timespec64 *ts)
724
{
725
	struct timekeeper *tk = &tk_core.timekeeper;
726
	unsigned long seq;
727
	u64 nsecs;
728

729 730
	WARN_ON(timekeeping_suspended);

731
	do {
732
		seq = read_seqcount_begin(&tk_core.seq);
733

734
		ts->tv_sec = tk->xtime_sec;
735
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
736

737
	} while (read_seqcount_retry(&tk_core.seq, seq));
738

739
	ts->tv_nsec = 0;
740
	timespec64_add_ns(ts, nsecs);
741
}
742
EXPORT_SYMBOL(ktime_get_real_ts64);
743

744 745
ktime_t ktime_get(void)
{
746
	struct timekeeper *tk = &tk_core.timekeeper;
747
	unsigned int seq;
748
	ktime_t base;
749
	u64 nsecs;
750 751 752 753

	WARN_ON(timekeeping_suspended);

	do {
754
		seq = read_seqcount_begin(&tk_core.seq);
755 756
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
757

758
	} while (read_seqcount_retry(&tk_core.seq, seq));
759

760
	return ktime_add_ns(base, nsecs);
761 762 763
}
EXPORT_SYMBOL_GPL(ktime_get);

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

781 782
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
783
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
784 785 786 787 788 789 790 791
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
792
	u64 nsecs;
793 794 795 796 797

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
798 799
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
800 801 802 803 804 805 806 807

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = ktime_add(tk->tkr_mono.base, *offset);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return base;

}
EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

847 848 849 850 851 852 853 854
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
855
	u64 nsecs;
856 857 858

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
859 860
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
861 862 863 864 865 866 867

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

868
/**
869
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
870 871 872 873
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
874
 * in normalized timespec64 format in the variable pointed to by @ts.
875
 */
876
void ktime_get_ts64(struct timespec64 *ts)
877
{
878
	struct timekeeper *tk = &tk_core.timekeeper;
879
	struct timespec64 tomono;
880
	unsigned int seq;
881
	u64 nsec;
882 883 884 885

	WARN_ON(timekeeping_suspended);

	do {
886
		seq = read_seqcount_begin(&tk_core.seq);
887
		ts->tv_sec = tk->xtime_sec;
888
		nsec = timekeeping_get_ns(&tk->tkr_mono);
889
		tomono = tk->wall_to_monotonic;
890

891
	} while (read_seqcount_retry(&tk_core.seq, seq));
892

893 894 895
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
896
}
897
EXPORT_SYMBOL_GPL(ktime_get_ts64);
898

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

947 948 949 950 951 952 953 954 955 956 957 958
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

959 960 961 962 963 964 965 966 967 968
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
969 970
	u64 nsec_raw;
	u64 nsec_real;
971
	u64 now;
972

973 974
	WARN_ON_ONCE(timekeeping_suspended);

975 976
	do {
		seq = read_seqcount_begin(&tk_core.seq);
977
		now = tk_clock_read(&tk->tkr_mono);
978 979
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
980 981 982 983 984 985 986 987 988 989 990 991
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
992

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1029 1030
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1043
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1093
static bool cycle_between(u64 before, u64 test, u64 after)
1094 1095 1096 1097 1098 1099 1100 1101
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1102 1103
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1104
 * @get_time_fn:	Callback to get simultaneous device time and
1105
 *	system counter from the device driver
1106 1107 1108
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1109 1110 1111 1112 1113 1114 1115 1116 1117
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1118
				  struct system_time_snapshot *history_begin,
1119 1120 1121 1122
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1123
	u64 cycles, now, interval_start;
1124
	unsigned int clock_was_set_seq = 0;
1125
	ktime_t base_real, base_raw;
1126
	u64 nsec_real, nsec_raw;
1127
	u8 cs_was_changed_seq;
1128
	unsigned long seq;
1129
	bool do_interp;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1149 1150 1151 1152 1153 1154
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1155
		now = tk_clock_read(&tk->tkr_mono);
1156 1157 1158 1159 1160 1161 1162 1163 1164
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1178 1179 1180 1181 1182 1183

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1184
		u64 partial_history_cycles, total_history_cycles;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1210 1211 1212 1213
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1214 1215 1216 1217
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1218
 * NOTE: Users should be converted to using getnstimeofday()
1219 1220 1221
 */
void do_gettimeofday(struct timeval *tv)
{
1222
	struct timespec64 now;
1223

1224
	getnstimeofday64(&now);
1225 1226 1227 1228
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1229

1230
/**
1231 1232
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1233 1234 1235
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1236
int do_settimeofday64(const struct timespec64 *ts)
1237
{
1238
	struct timekeeper *tk = &tk_core.timekeeper;
1239
	struct timespec64 ts_delta, xt;
1240
	unsigned long flags;
1241
	int ret = 0;
1242

1243
	if (!timespec64_valid_strict(ts))
1244 1245
		return -EINVAL;

1246
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1247
	write_seqcount_begin(&tk_core.seq);
1248

1249
	timekeeping_forward_now(tk);
1250

1251
	xt = tk_xtime(tk);
1252 1253
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1254

1255 1256 1257 1258 1259
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1260
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1261

1262
	tk_set_xtime(tk, ts);
1263
out:
1264
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1265

1266
	write_seqcount_end(&tk_core.seq);
1267
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1268 1269 1270 1271

	/* signal hrtimers about time change */
	clock_was_set();

1272
	return ret;
1273
}
1274
EXPORT_SYMBOL(do_settimeofday64);
1275

1276 1277 1278 1279 1280 1281
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
1282
static int timekeeping_inject_offset(const struct timespec64 *ts)
1283
{
1284
	struct timekeeper *tk = &tk_core.timekeeper;
1285
	unsigned long flags;
1286
	struct timespec64 tmp;
1287
	int ret = 0;
1288

1289
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1290 1291
		return -EINVAL;

1292
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1293
	write_seqcount_begin(&tk_core.seq);
1294

1295
	timekeeping_forward_now(tk);
1296

1297
	/* Make sure the proposed value is valid */
1298 1299
	tmp = timespec64_add(tk_xtime(tk), *ts);
	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1300
	    !timespec64_valid_strict(&tmp)) {
1301 1302 1303
		ret = -EINVAL;
		goto error;
	}
1304

1305 1306
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1307

1308
error: /* even if we error out, we forwarded the time, so call update */
1309
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1310

1311
	write_seqcount_end(&tk_core.seq);
1312
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1313 1314 1315 1316

	/* signal hrtimers about time change */
	clock_was_set();

1317
	return ret;
1318
}
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
1345
		struct timespec64 adjust;
1346 1347 1348 1349 1350 1351 1352

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}
1353

1354
/**
1355
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1356 1357
 *
 */
1358
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1359 1360
{
	tk->tai_offset = tai_offset;
1361
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1362 1363
}

1364 1365 1366 1367 1368
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1369
static int change_clocksource(void *data)
1370
{
1371
	struct timekeeper *tk = &tk_core.timekeeper;
1372
	struct clocksource *new, *old;
1373
	unsigned long flags;
1374

1375
	new = (struct clocksource *) data;
1376

1377
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1378
	write_seqcount_begin(&tk_core.seq);
1379

1380
	timekeeping_forward_now(tk);
1381 1382 1383 1384 1385 1386
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1387
			old = tk->tkr_mono.clock;
1388 1389 1390 1391 1392 1393 1394
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1395
	}
1396
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1397

1398
	write_seqcount_end(&tk_core.seq);
1399
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1400

1401 1402
	return 0;
}
1403

1404 1405 1406 1407 1408 1409 1410
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1411
int timekeeping_notify(struct clocksource *clock)
1412
{
1413
	struct timekeeper *tk = &tk_core.timekeeper;
1414

1415
	if (tk->tkr_mono.clock == clock)
1416
		return 0;
1417
	stop_machine(change_clocksource, clock, NULL);
1418
	tick_clock_notify();
1419
	return tk->tkr_mono.clock == clock ? 0 : -1;
1420
}
1421

1422
/**
1423
 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1424
 * @ts:		pointer to the timespec64 to be set
1425 1426 1427
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1428
void ktime_get_raw_ts64(struct timespec64 *ts)
1429
{
1430
	struct timekeeper *tk = &tk_core.timekeeper;
1431
	unsigned long seq;
1432
	u64 nsecs;
1433 1434

	do {
1435
		seq = read_seqcount_begin(&tk_core.seq);
1436
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1437
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1438

1439
	} while (read_seqcount_retry(&tk_core.seq, seq));
1440

1441 1442
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1443
}
1444
EXPORT_SYMBOL(ktime_get_raw_ts64);
1445

1446

1447
/**
1448
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1449
 */
1450
int timekeeping_valid_for_hres(void)
1451
{
1452
	struct timekeeper *tk = &tk_core.timekeeper;
1453 1454 1455 1456
	unsigned long seq;
	int ret;

	do {
1457
		seq = read_seqcount_begin(&tk_core.seq);
1458

1459
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1460

1461
	} while (read_seqcount_retry(&tk_core.seq, seq));
1462 1463 1464 1465

	return ret;
}

1466 1467 1468 1469 1470
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1471
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1472 1473
	unsigned long seq;
	u64 ret;
1474

J
John Stultz 已提交
1475
	do {
1476
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1477

1478
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1479

1480
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1481 1482

	return ret;
1483 1484
}

1485
/**
1486
 * read_persistent_clock -  Return time from the persistent clock.
1487 1488
 *
 * Weak dummy function for arches that do not yet support it.
1489 1490
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1491 1492 1493
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1494
void __weak read_persistent_clock(struct timespec *ts)
1495
{
1496 1497
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1498 1499
}

1500 1501 1502 1503 1504 1505 1506 1507
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1508
/**
1509 1510
 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
 *                                        from the boot.
1511 1512
 *
 * Weak dummy function for arches that do not yet support it.
1513 1514
 * wall_time	- current time as returned by persistent clock
 * boot_offset	- offset that is defined as wall_time - boot_time
1515 1516 1517 1518
 * The default function calculates offset based on the current value of
 * local_clock(). This way architectures that support sched_clock() but don't
 * support dedicated boot time clock will provide the best estimate of the
 * boot time.
1519
 */
1520 1521 1522
void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
				     struct timespec64 *boot_offset)
1523
{
1524
	read_persistent_clock64(wall_time);
1525
	*boot_offset = ns_to_timespec64(local_clock());
1526 1527
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
/*
 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
 *
 * The flag starts of false and is only set when a suspend reaches
 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
 * timekeeper clocksource is not stopping across suspend and has been
 * used to update sleep time. If the timekeeper clocksource has stopped
 * then the flag stays true and is used by the RTC resume code to decide
 * whether sleeptime must be injected and if so the flag gets false then.
 *
 * If a suspend fails before reaching timekeeping_resume() then the flag
 * stays false and prevents erroneous sleeptime injection.
 */
static bool suspend_timing_needed;
1542 1543 1544 1545

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1546 1547 1548 1549 1550
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1551
	struct timespec64 wall_time, boot_offset, wall_to_mono;
1552
	struct timekeeper *tk = &tk_core.timekeeper;
1553
	struct clocksource *clock;
1554
	unsigned long flags;
1555

1556 1557 1558 1559
	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
	if (timespec64_valid_strict(&wall_time) &&
	    timespec64_to_ns(&wall_time) > 0) {
		persistent_clock_exists = true;
1560
	} else if (timespec64_to_ns(&wall_time) != 0) {
1561 1562
		pr_warn("Persistent clock returned invalid value");
		wall_time = (struct timespec64){0};
1563
	}
1564

1565 1566 1567 1568 1569 1570 1571 1572 1573
	if (timespec64_compare(&wall_time, &boot_offset) < 0)
		boot_offset = (struct timespec64){0};

	/*
	 * We want set wall_to_mono, so the following is true:
	 * wall time + wall_to_mono = boot time
	 */
	wall_to_mono = timespec64_sub(boot_offset, wall_time);

1574
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1575
	write_seqcount_begin(&tk_core.seq);
1576 1577
	ntp_init();

1578
	clock = clocksource_default_clock();
1579 1580
	if (clock->enable)
		clock->enable(clock);
1581
	tk_setup_internals(tk, clock);
1582

1583
	tk_set_xtime(tk, &wall_time);
1584
	tk->raw_sec = 0;
1585

1586
	tk_set_wall_to_mono(tk, wall_to_mono);
1587

1588
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1589

1590
	write_seqcount_end(&tk_core.seq);
1591
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1592 1593
}

1594
/* time in seconds when suspend began for persistent clock */
1595
static struct timespec64 timekeeping_suspend_time;
1596

1597 1598 1599 1600 1601 1602 1603
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1604
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1605
					   const struct timespec64 *delta)
1606
{
1607
	if (!timespec64_valid_strict(delta)) {
1608 1609 1610
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1611 1612
		return;
	}
1613
	tk_xtime_add(tk, delta);
1614
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1615
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1616
	tk_debug_account_sleep_time(delta);
1617 1618
}

1619
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
1638
	return !suspend_timing_needed;
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1655
/**
1656 1657
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1658
 *
1659
 * This hook is for architectures that cannot support read_persistent_clock64
1660
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1661
 * and also don't have an effective nonstop clocksource.
1662 1663 1664 1665
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1666
void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1667
{
1668
	struct timekeeper *tk = &tk_core.timekeeper;
1669
	unsigned long flags;
1670

1671
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1672
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1673

1674 1675
	suspend_timing_needed = false;

1676
	timekeeping_forward_now(tk);
1677

1678
	__timekeeping_inject_sleeptime(tk, delta);
1679

1680
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1681

1682
	write_seqcount_end(&tk_core.seq);
1683
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1684 1685 1686 1687

	/* signal hrtimers about time change */
	clock_was_set();
}
1688
#endif
1689

1690 1691 1692
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1693
void timekeeping_resume(void)
1694
{
1695
	struct timekeeper *tk = &tk_core.timekeeper;
1696
	struct clocksource *clock = tk->tkr_mono.clock;
1697
	unsigned long flags;
1698
	struct timespec64 ts_new, ts_delta;
1699
	u64 cycle_now, nsec;
1700
	bool inject_sleeptime = false;
1701

1702
	read_persistent_clock64(&ts_new);
1703

1704
	clockevents_resume();
1705 1706
	clocksource_resume();

1707
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1708
	write_seqcount_begin(&tk_core.seq);
1709

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1722
	cycle_now = tk_clock_read(&tk->tkr_mono);
1723 1724
	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
	if (nsec > 0) {
1725
		ts_delta = ns_to_timespec64(nsec);
1726
		inject_sleeptime = true;
1727 1728
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1729
		inject_sleeptime = true;
1730
	}
1731

1732 1733
	if (inject_sleeptime) {
		suspend_timing_needed = false;
1734
		__timekeeping_inject_sleeptime(tk, &ts_delta);
1735
	}
1736 1737

	/* Re-base the last cycle value */
1738
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1739 1740
	tk->tkr_raw.cycle_last  = cycle_now;

1741
	tk->ntp_error = 0;
1742
	timekeeping_suspended = 0;
1743
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1744
	write_seqcount_end(&tk_core.seq);
1745
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1746 1747 1748

	touch_softlockup_watchdog();

1749
	tick_resume();
1750
	hrtimers_resume();
1751 1752
}

1753
int timekeeping_suspend(void)
1754
{
1755
	struct timekeeper *tk = &tk_core.timekeeper;
1756
	unsigned long flags;
1757 1758
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1759 1760
	struct clocksource *curr_clock;
	u64 cycle_now;
1761

1762
	read_persistent_clock64(&timekeeping_suspend_time);
1763

1764 1765 1766 1767 1768 1769
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1770
		persistent_clock_exists = true;
1771

1772 1773
	suspend_timing_needed = true;

1774
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1775
	write_seqcount_begin(&tk_core.seq);
1776
	timekeeping_forward_now(tk);
1777
	timekeeping_suspended = 1;
1778

1779 1780 1781 1782 1783 1784 1785 1786 1787
	/*
	 * Since we've called forward_now, cycle_last stores the value
	 * just read from the current clocksource. Save this to potentially
	 * use in suspend timing.
	 */
	curr_clock = tk->tkr_mono.clock;
	cycle_now = tk->tkr_mono.cycle_last;
	clocksource_start_suspend_timing(curr_clock, cycle_now);

1788
	if (persistent_clock_exists) {
1789
		/*
1790 1791 1792 1793
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1794
		 */
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1808
	}
1809 1810

	timekeeping_update(tk, TK_MIRROR);
1811
	halt_fast_timekeeper(tk);
1812
	write_seqcount_end(&tk_core.seq);
1813
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1814

1815
	tick_suspend();
M
Magnus Damm 已提交
1816
	clocksource_suspend();
1817
	clockevents_suspend();
1818 1819 1820 1821 1822

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1823
static struct syscore_ops timekeeping_syscore_ops = {
1824 1825 1826 1827
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1828
static int __init timekeeping_init_ops(void)
1829
{
1830 1831
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1832
}
1833
device_initcall(timekeeping_init_ops);
1834 1835

/*
1836
 * Apply a multiplier adjustment to the timekeeper
1837
 */
1838 1839
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
1840
							 s32 mult_adj)
1841
{
1842
	s64 interval = tk->cycle_interval;
1843

1844 1845 1846
	if (mult_adj == 0) {
		return;
	} else if (mult_adj == -1) {
1847
		interval = -interval;
1848 1849 1850 1851
		offset = -offset;
	} else if (mult_adj != 1) {
		interval *= mult_adj;
		offset *= mult_adj;
1852
	}
1853

1854 1855 1856
	/*
	 * So the following can be confusing.
	 *
1857
	 * To keep things simple, lets assume mult_adj == 1 for now.
1858
	 *
1859
	 * When mult_adj != 1, remember that the interval and offset values
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 */
1901
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1902 1903 1904 1905 1906
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1907
	tk->tkr_mono.mult += mult_adj;
1908
	tk->xtime_interval += interval;
1909
	tk->tkr_mono.xtime_nsec -= offset;
1910 1911 1912
}

/*
1913 1914
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
1915
 */
1916
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1917
{
1918
	u32 mult;
1919

1920
	/*
1921 1922
	 * Determine the multiplier from the current NTP tick length.
	 * Avoid expensive division when the tick length doesn't change.
1923
	 */
1924 1925 1926 1927 1928 1929
	if (likely(tk->ntp_tick == ntp_tick_length())) {
		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
	} else {
		tk->ntp_tick = ntp_tick_length();
		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
				 tk->xtime_remainder, tk->cycle_interval);
1930
	}
1931

1932 1933 1934 1935 1936 1937 1938 1939
	/*
	 * If the clock is behind the NTP time, increase the multiplier by 1
	 * to catch up with it. If it's ahead and there was a remainder in the
	 * tick division, the clock will slow down. Otherwise it will stay
	 * ahead until the tick length changes to a non-divisible value.
	 */
	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
	mult += tk->ntp_err_mult;
1940

1941
	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1942

1943 1944 1945
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1946 1947
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1948 1949
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1950
	}
1951 1952 1953 1954 1955 1956 1957

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
1958 1959 1960
	 * Now, since we have already accumulated the second and the NTP
	 * subsystem has been notified via second_overflow(), we need to skip
	 * the next update.
1961
	 */
1962
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1963 1964 1965 1966
		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
							tk->tkr_mono.shift;
		tk->xtime_sec--;
		tk->skip_second_overflow = 1;
1967
	}
1968 1969
}

1970 1971 1972
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1973
 * Helper function that accumulates the nsecs greater than a second
1974 1975 1976 1977
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1978
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1979
{
1980
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1981
	unsigned int clock_set = 0;
1982

1983
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1984 1985
		int leap;

1986
		tk->tkr_mono.xtime_nsec -= nsecps;
1987 1988
		tk->xtime_sec++;

1989 1990 1991 1992 1993 1994 1995 1996 1997
		/*
		 * Skip NTP update if this second was accumulated before,
		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
		 */
		if (unlikely(tk->skip_second_overflow)) {
			tk->skip_second_overflow = 0;
			continue;
		}

1998 1999
		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
2000
		if (unlikely(leap)) {
2001
			struct timespec64 ts;
2002 2003

			tk->xtime_sec += leap;
2004

2005 2006 2007
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
2008
				timespec64_sub(tk->wall_to_monotonic, ts));
2009

2010 2011
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

2012
			clock_set = TK_CLOCK_WAS_SET;
2013
		}
2014
	}
2015
	return clock_set;
2016 2017
}

2018 2019 2020 2021 2022 2023 2024 2025 2026
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
2027 2028
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
2029
{
2030
	u64 interval = tk->cycle_interval << shift;
2031
	u64 snsec_per_sec;
2032

Z
Zhen Lei 已提交
2033
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2034
	if (offset < interval)
2035 2036 2037
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2038
	offset -= interval;
2039
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2040
	tk->tkr_raw.cycle_last  += interval;
2041

2042
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2043
	*clock_set |= accumulate_nsecs_to_secs(tk);
2044

2045
	/* Accumulate raw time */
2046 2047 2048 2049
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2050
		tk->raw_sec++;
2051 2052 2053
	}

	/* Accumulate error between NTP and clock interval */
2054
	tk->ntp_error += tk->ntp_tick << shift;
2055 2056
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2057 2058 2059 2060

	return offset;
}

2061 2062 2063
/*
 * timekeeping_advance - Updates the timekeeper to the current time and
 * current NTP tick length
2064
 */
2065
static void timekeeping_advance(enum timekeeping_adv_mode mode)
2066
{
2067
	struct timekeeper *real_tk = &tk_core.timekeeper;
2068
	struct timekeeper *tk = &shadow_timekeeper;
2069
	u64 offset;
2070
	int shift = 0, maxshift;
2071
	unsigned int clock_set = 0;
J
John Stultz 已提交
2072 2073
	unsigned long flags;

2074
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2075 2076 2077

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2078
		goto out;
2079

J
John Stultz 已提交
2080
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2081
	offset = real_tk->cycle_interval;
2082 2083 2084

	if (mode != TK_ADV_TICK)
		goto out;
J
John Stultz 已提交
2085
#else
2086
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2087
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2088

2089
	/* Check if there's really nothing to do */
2090
	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2091
		goto out;
2092
#endif
2093

2094
	/* Do some additional sanity checking */
2095
	timekeeping_check_update(tk, offset);
2096

2097 2098 2099 2100
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2101
	 * that is smaller than the offset.  We then accumulate that
2102 2103
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2104
	 */
2105
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2106
	shift = max(0, shift);
2107
	/* Bound shift to one less than what overflows tick_length */
2108
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2109
	shift = min(shift, maxshift);
2110
	while (offset >= tk->cycle_interval) {
2111 2112
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2113
		if (offset < tk->cycle_interval<<shift)
2114
			shift--;
2115 2116
	}

2117
	/* Adjust the multiplier to correct NTP error */
2118
	timekeeping_adjust(tk, offset);
2119

J
John Stultz 已提交
2120 2121
	/*
	 * Finally, make sure that after the rounding
2122
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2123
	 */
2124
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2125

2126
	write_seqcount_begin(&tk_core.seq);
2127 2128 2129 2130 2131 2132 2133
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2134
	 * memcpy under the tk_core.seq against one before we start
2135 2136
	 * updating.
	 */
2137
	timekeeping_update(tk, clock_set);
2138
	memcpy(real_tk, tk, sizeof(*tk));
2139
	/* The memcpy must come last. Do not put anything here! */
2140
	write_seqcount_end(&tk_core.seq);
2141
out:
2142
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2143
	if (clock_set)
2144 2145
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2146
}
T
Tomas Janousek 已提交
2147

2148 2149 2150 2151 2152 2153 2154 2155 2156
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
void update_wall_time(void)
{
	timekeeping_advance(TK_ADV_TICK);
}

T
Tomas Janousek 已提交
2157
/**
2158 2159
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2160
 *
2161
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2162 2163 2164 2165 2166 2167
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2168
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2169
{
2170
	struct timekeeper *tk = &tk_core.timekeeper;
2171
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2172

2173
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2174
}
2175
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2176

2177 2178
unsigned long get_seconds(void)
{
2179
	struct timekeeper *tk = &tk_core.timekeeper;
2180 2181

	return tk->xtime_sec;
2182 2183 2184
}
EXPORT_SYMBOL(get_seconds);

2185
void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2186
{
2187
	struct timekeeper *tk = &tk_core.timekeeper;
2188 2189 2190
	unsigned long seq;

	do {
2191
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2192

2193
		*ts = tk_xtime(tk);
2194
	} while (read_seqcount_retry(&tk_core.seq, seq));
2195
}
2196
EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2197

2198
void ktime_get_coarse_ts64(struct timespec64 *ts)
2199
{
2200
	struct timekeeper *tk = &tk_core.timekeeper;
2201
	struct timespec64 now, mono;
2202 2203 2204
	unsigned long seq;

	do {
2205
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2206

2207 2208
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2209
	} while (read_seqcount_retry(&tk_core.seq, seq));
2210

2211
	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2212 2213
				now.tv_nsec + mono.tv_nsec);
}
2214
EXPORT_SYMBOL(ktime_get_coarse_ts64);
2215 2216

/*
2217
 * Must hold jiffies_lock
2218 2219 2220 2221 2222 2223
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2224

2225
/**
2226
 * ktime_get_update_offsets_now - hrtimer helper
2227
 * @cwsseq:	pointer to check and store the clock was set sequence number
2228
 * @offs_real:	pointer to storage for monotonic -> realtime offset
2229
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2230
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2231
 *
2232 2233 2234 2235
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2236
 * Called from hrtimer_interrupt() or retrigger_next_event()
2237
 */
2238
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2239
				     ktime_t *offs_boot, ktime_t *offs_tai)
2240
{
2241
	struct timekeeper *tk = &tk_core.timekeeper;
2242
	unsigned int seq;
2243 2244
	ktime_t base;
	u64 nsecs;
2245 2246

	do {
2247
		seq = read_seqcount_begin(&tk_core.seq);
2248

2249 2250
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2251 2252
		base = ktime_add_ns(base, nsecs);

2253 2254 2255
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
2256
			*offs_boot = tk->offs_boot;
2257 2258
			*offs_tai = tk->offs_tai;
		}
2259 2260

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2261
		if (unlikely(base >= tk->next_leap_ktime))
2262 2263
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2264
	} while (read_seqcount_retry(&tk_core.seq, seq));
2265

2266
	return base;
2267 2268
}

2269
/**
2270
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2271
 */
2272
static int timekeeping_validate_timex(const struct timex *txc)
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
		/*
		 * Validate if a timespec/timeval used to inject a time
		 * offset is valid.  Offsets can be postive or negative, so
		 * we don't check tv_sec. The value of the timeval/timespec
		 * is the sum of its fields,but *NOTE*:
		 * The field tv_usec/tv_nsec must always be non-negative and
		 * we can't have more nanoseconds/microseconds than a second.
		 */
		if (txc->time.tv_usec < 0)
			return -EINVAL;
2310

2311 2312
		if (txc->modes & ADJ_NANO) {
			if (txc->time.tv_usec >= NSEC_PER_SEC)
2313 2314
				return -EINVAL;
		} else {
2315
			if (txc->time.tv_usec >= USEC_PER_SEC)
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}


2335 2336 2337 2338 2339
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2340
	struct timekeeper *tk = &tk_core.timekeeper;
2341
	unsigned long flags;
2342
	struct timespec64 ts;
2343
	s32 orig_tai, tai;
2344 2345 2346
	int ret;

	/* Validate the data before disabling interrupts */
2347
	ret = timekeeping_validate_timex(txc);
2348 2349 2350
	if (ret)
		return ret;

2351
	if (txc->modes & ADJ_SETOFFSET) {
2352
		struct timespec64 delta;
2353 2354 2355 2356 2357 2358 2359 2360 2361
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2362
	ktime_get_real_ts64(&ts);
2363

2364
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2365
	write_seqcount_begin(&tk_core.seq);
2366

2367
	orig_tai = tai = tk->tai_offset;
2368
	ret = __do_adjtimex(txc, &ts, &tai);
2369

2370 2371
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2372
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2373
	}
2374 2375
	tk_update_leap_state(tk);

2376
	write_seqcount_end(&tk_core.seq);
2377 2378
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2379 2380 2381 2382
	/* Update the multiplier immediately if frequency was set directly */
	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
		timekeeping_advance(TK_ADV_FREQ);

2383 2384 2385
	if (tai != orig_tai)
		clock_was_set();

2386 2387
	ntp_notify_cmos_timer();

2388 2389
	return ret;
}
2390 2391 2392 2393 2394

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2395
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2396
{
2397 2398 2399
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2400
	write_seqcount_begin(&tk_core.seq);
2401

2402
	__hardpps(phase_ts, raw_ts);
2403

2404
	write_seqcount_end(&tk_core.seq);
2405
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2406 2407
}
EXPORT_SYMBOL(hardpps);
2408
#endif /* CONFIG_NTP_PPS */
2409

T
Torben Hohn 已提交
2410 2411 2412 2413 2414 2415 2416 2417
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2418
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2419
	do_timer(ticks);
2420
	write_sequnlock(&jiffies_lock);
2421
	update_wall_time();
T
Torben Hohn 已提交
2422
}