timekeeping.c 45.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35
static struct timekeeper timekeeper;
36 37
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
static seqcount_t timekeeper_seq;
38
static struct timekeeper shadow_timekeeper;
39

40 41 42
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

43 44 45
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

46 47 48 49 50 51 52 53 54 55 56
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
57
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
58 59 60 61 62
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
63
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
64
	tk_normalize_xtime(tk);
65
}
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
81
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
82 83 84 85 86 87 88 89 90 91 92
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

93
/**
94
 * tk_setup_internals - Set up internals to use clocksource clock.
95
 *
96
 * @tk:		The target timekeeper to setup.
97 98 99 100 101 102 103
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
104
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
105 106
{
	cycle_t interval;
107
	u64 tmp, ntpinterval;
108
	struct clocksource *old_clock;
109

110 111
	old_clock = tk->clock;
	tk->clock = clock;
112
	tk->cycle_last = clock->cycle_last = clock->read(clock);
113 114 115 116

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
117
	ntpinterval = tmp;
118 119
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
120 121 122 123
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
124
	tk->cycle_interval = interval;
125 126

	/* Go back from cycles -> shifted ns */
127 128 129
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
130
		((u64) interval * clock->mult) >> clock->shift;
131

132 133 134 135
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
136
			tk->xtime_nsec >>= -shift_change;
137
		else
138
			tk->xtime_nsec <<= shift_change;
139
	}
140
	tk->shift = clock->shift;
141

142 143
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
144 145 146 147 148 149

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
150
	tk->mult = clock->mult;
151
}
152

153
/* Timekeeper helper functions. */
154 155

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
156 157
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
158
#else
159
static inline u32 arch_gettimeoffset(void) { return 0; }
160 161
#endif

162
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
163 164 165
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
166
	s64 nsec;
167 168

	/* read clocksource: */
169
	clock = tk->clock;
170 171 172 173 174
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

175 176
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
177

178
	/* If arch requires, add in get_arch_timeoffset() */
179
	return nsec + arch_gettimeoffset();
180 181
}

182
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
183 184 185
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
186
	s64 nsec;
187 188

	/* read clocksource: */
189
	clock = tk->clock;
190 191 192 193 194
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

195 196 197
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

198
	/* If arch requires, add in get_arch_timeoffset() */
199
	return nsec + arch_gettimeoffset();
200 201
}

202 203
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

204
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
205
{
206
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
207 208 209 210 211 212 213 214 215 216 217
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;
	int ret;

218
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
219
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
220
	update_pvclock_gtod(tk, true);
221
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
222 223 224 225 226 227 228 229 230 231 232 233 234 235

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

236
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
237
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
238
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
239 240 241 242 243

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

244
/* must hold timekeeper_lock */
245
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
246
{
247
	if (action & TK_CLEAR_NTP) {
248
		tk->ntp_error = 0;
249 250
		ntp_clear();
	}
251
	update_vsyscall(tk);
252
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
253

254
	if (action & TK_MIRROR)
255
		memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
256 257
}

258
/**
259
 * timekeeping_forward_now - update clock to the current time
260
 *
261 262 263
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
264
 */
265
static void timekeeping_forward_now(struct timekeeper *tk)
266 267
{
	cycle_t cycle_now, cycle_delta;
268
	struct clocksource *clock;
269
	s64 nsec;
270

271
	clock = tk->clock;
272
	cycle_now = clock->read(clock);
273
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
274
	tk->cycle_last = clock->cycle_last = cycle_now;
275

276
	tk->xtime_nsec += cycle_delta * tk->mult;
277

278
	/* If arch requires, add in get_arch_timeoffset() */
279
	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
280

281
	tk_normalize_xtime(tk);
282

283
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
284
	timespec_add_ns(&tk->raw_time, nsec);
285 286 287
}

/**
288
 * __getnstimeofday - Returns the time of day in a timespec.
289 290
 * @ts:		pointer to the timespec to be set
 *
291 292
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
293
 */
294
int __getnstimeofday(struct timespec *ts)
295
{
296
	struct timekeeper *tk = &timekeeper;
297
	unsigned long seq;
298
	s64 nsecs = 0;
299 300

	do {
301
		seq = read_seqcount_begin(&timekeeper_seq);
302

303
		ts->tv_sec = tk->xtime_sec;
304
		nsecs = timekeeping_get_ns(tk);
305

306
	} while (read_seqcount_retry(&timekeeper_seq, seq));
307

308
	ts->tv_nsec = 0;
309
	timespec_add_ns(ts, nsecs);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
EXPORT_SYMBOL(__getnstimeofday);

/**
 * getnstimeofday - Returns the time of day in a timespec.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
void getnstimeofday(struct timespec *ts)
{
	WARN_ON(__getnstimeofday(ts));
330 331 332
}
EXPORT_SYMBOL(getnstimeofday);

333 334
ktime_t ktime_get(void)
{
335
	struct timekeeper *tk = &timekeeper;
336 337 338 339 340 341
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
342
		seq = read_seqcount_begin(&timekeeper_seq);
343 344
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
345

346
	} while (read_seqcount_retry(&timekeeper_seq, seq));
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
365
	struct timekeeper *tk = &timekeeper;
366
	struct timespec tomono;
367
	s64 nsec;
368 369 370 371 372
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
373
		seq = read_seqcount_begin(&timekeeper_seq);
374
		ts->tv_sec = tk->xtime_sec;
375
		nsec = timekeeping_get_ns(tk);
376
		tomono = tk->wall_to_monotonic;
377

378
	} while (read_seqcount_retry(&timekeeper_seq, seq));
379

380 381 382
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec);
383 384 385
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

J
John Stultz 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

/**
 * timekeeping_clocktai - Returns the TAI time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void timekeeping_clocktai(struct timespec *ts)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long seq;
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
402
		seq = read_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
403 404 405 406

		ts->tv_sec = tk->xtime_sec + tk->tai_offset;
		nsecs = timekeeping_get_ns(tk);

407
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
408 409 410 411 412 413 414 415

	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsecs);

}
EXPORT_SYMBOL(timekeeping_clocktai);


416 417 418 419 420 421 422 423 424 425 426 427 428 429
/**
 * ktime_get_clocktai - Returns the TAI time of day in a ktime
 *
 * Returns the time of day in a ktime.
 */
ktime_t ktime_get_clocktai(void)
{
	struct timespec ts;

	timekeeping_clocktai(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL(ktime_get_clocktai);

430 431 432 433 434 435 436 437 438 439 440 441 442
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
443
	struct timekeeper *tk = &timekeeper;
444 445 446 447 448 449
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
450
		seq = read_seqcount_begin(&timekeeper_seq);
451

452 453
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
454
		ts_real->tv_nsec = 0;
455

456 457
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
458

459
	} while (read_seqcount_retry(&timekeeper_seq, seq));
460 461 462 463 464 465 466 467

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

468 469 470 471
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
472
 * NOTE: Users should be converted to using getnstimeofday()
473 474 475 476 477
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

478
	getnstimeofday(&now);
479 480 481 482
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
483

484 485 486 487 488 489
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
490
int do_settimeofday(const struct timespec *tv)
491
{
492
	struct timekeeper *tk = &timekeeper;
493
	struct timespec ts_delta, xt;
494
	unsigned long flags;
495

496
	if (!timespec_valid_strict(tv))
497 498
		return -EINVAL;

499 500
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
501

502
	timekeeping_forward_now(tk);
503

504
	xt = tk_xtime(tk);
505 506 507
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

508
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
509

510
	tk_set_xtime(tk, tv);
511

512
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
513

514 515
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
516 517 518 519 520 521 522 523

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

524 525 526 527 528 529 530 531
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
532
	struct timekeeper *tk = &timekeeper;
533
	unsigned long flags;
534 535
	struct timespec tmp;
	int ret = 0;
536 537 538 539

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

540 541
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
542

543
	timekeeping_forward_now(tk);
544

545 546
	/* Make sure the proposed value is valid */
	tmp = timespec_add(tk_xtime(tk),  *ts);
547
	if (!timespec_valid_strict(&tmp)) {
548 549 550
		ret = -EINVAL;
		goto error;
	}
551

552 553
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
554

555
error: /* even if we error out, we forwarded the time, so call update */
556
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
557

558 559
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
560 561 562 563

	/* signal hrtimers about time change */
	clock_was_set();

564
	return ret;
565 566 567
}
EXPORT_SYMBOL(timekeeping_inject_offset);

568 569 570 571 572 573 574 575 576 577 578 579

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
	struct timekeeper *tk = &timekeeper;
	unsigned int seq;
	s32 ret;

	do {
580
		seq = read_seqcount_begin(&timekeeper_seq);
581
		ret = tk->tai_offset;
582
	} while (read_seqcount_retry(&timekeeper_seq, seq));
583 584 585 586 587 588 589 590

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
591
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
592 593
{
	tk->tai_offset = tai_offset;
594
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
595 596 597 598 599 600 601 602 603 604 605
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;

606 607
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
608
	__timekeeping_set_tai_offset(tk, tai_offset);
609
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
610 611
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
612
	clock_was_set();
613 614
}

615 616 617 618 619
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
620
static int change_clocksource(void *data)
621
{
622
	struct timekeeper *tk = &timekeeper;
623
	struct clocksource *new, *old;
624
	unsigned long flags;
625

626
	new = (struct clocksource *) data;
627

628 629
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
630

631
	timekeeping_forward_now(tk);
632 633 634 635 636 637 638 639 640 641 642 643 644 645
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
			old = tk->clock;
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
646
	}
647
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
648

649 650
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
651

652 653
	return 0;
}
654

655 656 657 658 659 660 661
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
662
int timekeeping_notify(struct clocksource *clock)
663
{
664 665 666
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
667
		return 0;
668
	stop_machine(change_clocksource, clock, NULL);
669
	tick_clock_notify();
670
	return tk->clock == clock ? 0 : -1;
671
}
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
687

688 689 690 691 692 693 694 695
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
696
	struct timekeeper *tk = &timekeeper;
697 698 699 700
	unsigned long seq;
	s64 nsecs;

	do {
701
		seq = read_seqcount_begin(&timekeeper_seq);
702 703
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
704

705
	} while (read_seqcount_retry(&timekeeper_seq, seq));
706 707 708 709 710

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

711
/**
712
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
713
 */
714
int timekeeping_valid_for_hres(void)
715
{
716
	struct timekeeper *tk = &timekeeper;
717 718 719 720
	unsigned long seq;
	int ret;

	do {
721
		seq = read_seqcount_begin(&timekeeper_seq);
722

723
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
724

725
	} while (read_seqcount_retry(&timekeeper_seq, seq));
726 727 728 729

	return ret;
}

730 731 732 733 734
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
735
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
736 737
	unsigned long seq;
	u64 ret;
738

J
John Stultz 已提交
739
	do {
740
		seq = read_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
741

742
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
743

744
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
745 746

	return ret;
747 748
}

749
/**
750
 * read_persistent_clock -  Return time from the persistent clock.
751 752
 *
 * Weak dummy function for arches that do not yet support it.
753 754
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
755 756 757
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
758
void __weak read_persistent_clock(struct timespec *ts)
759
{
760 761
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
762 763
}

764 765 766 767 768 769 770 771 772
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
773
void __weak read_boot_clock(struct timespec *ts)
774 775 776 777 778
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

779 780 781 782 783
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
784
	struct timekeeper *tk = &timekeeper;
785
	struct clocksource *clock;
786
	unsigned long flags;
787
	struct timespec now, boot, tmp;
788 789

	read_persistent_clock(&now);
790

791
	if (!timespec_valid_strict(&now)) {
792 793 794 795
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
796 797
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
798

799
	read_boot_clock(&boot);
800
	if (!timespec_valid_strict(&boot)) {
801 802 803 804 805
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
806

807 808
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
809 810
	ntp_init();

811
	clock = clocksource_default_clock();
812 813
	if (clock->enable)
		clock->enable(clock);
814
	tk_setup_internals(tk, clock);
815

816 817 818
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
819
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
820
		boot = tk_xtime(tk);
821

822
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
823
	tk_set_wall_to_mono(tk, tmp);
824 825 826

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
827
	tk_set_sleep_time(tk, tmp);
828

829 830
	memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));

831 832
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
833 834 835
}

/* time in seconds when suspend began */
836
static struct timespec timekeeping_suspend_time;
837

838 839 840 841 842 843 844
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
845 846
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
847
{
848
	if (!timespec_valid_strict(delta)) {
849 850 851
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
852 853
		return;
	}
854
	tk_xtime_add(tk, delta);
855 856
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
857
	tk_debug_account_sleep_time(delta);
858 859 860 861 862 863 864 865 866 867 868 869 870 871
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
872
	struct timekeeper *tk = &timekeeper;
873
	unsigned long flags;
874

875 876 877 878 879
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
880 881
		return;

882 883
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
884

885
	timekeeping_forward_now(tk);
886

887
	__timekeeping_inject_sleeptime(tk, delta);
888

889
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
890

891 892
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
893 894 895 896 897

	/* signal hrtimers about time change */
	clock_was_set();
}

898 899 900 901 902 903 904
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
905
static void timekeeping_resume(void)
906
{
907
	struct timekeeper *tk = &timekeeper;
908
	struct clocksource *clock = tk->clock;
909
	unsigned long flags;
910 911 912
	struct timespec ts_new, ts_delta;
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
913

914
	read_persistent_clock(&ts_new);
915

916
	clockevents_resume();
917 918
	clocksource_resume();

919 920
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
921

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = clock->read(clock);
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
		cycle_now > clock->cycle_last) {
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

		ts_delta = ns_to_timespec(nsec);
		suspendtime_found = true;
	} else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
		suspendtime_found = true;
962
	}
963 964 965 966 967

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
968
	tk->cycle_last = clock->cycle_last = cycle_now;
969
	tk->ntp_error = 0;
970
	timekeeping_suspended = 0;
971
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
972 973
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
974 975 976 977 978 979

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
980
	hrtimers_resume();
981 982
}

983
static int timekeeping_suspend(void)
984
{
985
	struct timekeeper *tk = &timekeeper;
986
	unsigned long flags;
987 988
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
989

990
	read_persistent_clock(&timekeeping_suspend_time);
991

992 993 994 995 996 997 998 999
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1000 1001
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
1002
	timekeeping_forward_now(tk);
1003
	timekeeping_suspended = 1;
1004 1005 1006 1007 1008 1009 1010

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1011
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
1024 1025

	timekeeping_update(tk, TK_MIRROR);
1026 1027
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1028 1029

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1030
	clocksource_suspend();
1031
	clockevents_suspend();
1032 1033 1034 1035 1036

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1037
static struct syscore_ops timekeeping_syscore_ops = {
1038 1039 1040 1041
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1042
static int __init timekeeping_init_ops(void)
1043
{
1044 1045
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1046 1047
}

1048
device_initcall(timekeeping_init_ops);
1049 1050 1051 1052 1053

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
1054 1055
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
1068
	 * here.  This is tuned so that an error of about 1 msec is adjusted
1069 1070
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
1071
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1072 1073 1074 1075 1076 1077 1078 1079
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
1080 1081
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
1106
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1107
{
1108
	s64 error, interval = tk->cycle_interval;
1109 1110
	int adj;

1111
	/*
1112
	 * The point of this is to check if the error is greater than half
1113 1114 1115 1116 1117
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
1118 1119
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
1120
	 * larger than half an interval.
1121
	 *
1122
	 * Note: It does not "save" on aggravation when reading the code.
1123
	 */
1124
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1125
	if (error > interval) {
1126 1127
		/*
		 * We now divide error by 4(via shift), which checks if
1128
		 * the error is greater than twice the interval.
1129 1130 1131
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1132 1133 1134 1135
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1152

1153 1154
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1155
		printk_deferred_once(KERN_WARNING
1156
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1157 1158
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
1159
	}
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1209 1210 1211 1212
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1213

1214
out_adjust:
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1229 1230 1231 1232
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1233 1234
	}

1235 1236
}

1237 1238 1239 1240 1241 1242 1243 1244
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1245
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1246 1247
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1248
	unsigned int clock_set = 0;
1249 1250 1251 1252 1253 1254 1255 1256 1257

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1258 1259 1260 1261
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1262

1263 1264 1265 1266 1267
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

1268 1269
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1270
			clock_set = TK_CLOCK_WAS_SET;
1271
		}
1272
	}
1273
	return clock_set;
1274 1275
}

1276 1277 1278 1279 1280 1281 1282 1283 1284
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1285
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1286 1287
						u32 shift,
						unsigned int *clock_set)
1288
{
T
Thomas Gleixner 已提交
1289
	cycle_t interval = tk->cycle_interval << shift;
1290
	u64 raw_nsecs;
1291

1292
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1293
	if (offset < interval)
1294 1295 1296
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1297
	offset -= interval;
1298
	tk->cycle_last += interval;
1299

1300
	tk->xtime_nsec += tk->xtime_interval << shift;
1301
	*clock_set |= accumulate_nsecs_to_secs(tk);
1302

1303
	/* Accumulate raw time */
1304
	raw_nsecs = (u64)tk->raw_interval << shift;
1305
	raw_nsecs += tk->raw_time.tv_nsec;
1306 1307 1308
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1309
		tk->raw_time.tv_sec += raw_secs;
1310
	}
1311
	tk->raw_time.tv_nsec = raw_nsecs;
1312 1313

	/* Accumulate error between NTP and clock interval */
1314 1315 1316
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1317 1318 1319 1320

	return offset;
}

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;
1340
	tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
1341 1342 1343 1344 1345 1346 1347
}
#else
#define old_vsyscall_fixup(tk)
#endif



1348 1349 1350 1351
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1352
void update_wall_time(void)
1353
{
1354
	struct clocksource *clock;
1355 1356
	struct timekeeper *real_tk = &timekeeper;
	struct timekeeper *tk = &shadow_timekeeper;
1357
	cycle_t offset;
1358
	int shift = 0, maxshift;
1359
	unsigned int clock_set = 0;
J
John Stultz 已提交
1360 1361
	unsigned long flags;

1362
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1363 1364 1365

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1366
		goto out;
1367

1368
	clock = real_tk->clock;
J
John Stultz 已提交
1369 1370

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1371
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1372 1373
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1374 1375
#endif

1376
	/* Check if there's really nothing to do */
1377
	if (offset < real_tk->cycle_interval)
1378 1379
		goto out;

1380 1381 1382 1383
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1384
	 * that is smaller than the offset.  We then accumulate that
1385 1386
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1387
	 */
1388
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1389
	shift = max(0, shift);
1390
	/* Bound shift to one less than what overflows tick_length */
1391
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1392
	shift = min(shift, maxshift);
1393
	while (offset >= tk->cycle_interval) {
1394 1395
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1396
		if (offset < tk->cycle_interval<<shift)
1397
			shift--;
1398 1399 1400
	}

	/* correct the clock when NTP error is too big */
1401
	timekeeping_adjust(tk, offset);
1402

J
John Stultz 已提交
1403
	/*
1404 1405 1406 1407
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1408

J
John Stultz 已提交
1409 1410
	/*
	 * Finally, make sure that after the rounding
1411
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1412
	 */
1413
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1414

1415
	write_seqcount_begin(&timekeeper_seq);
1416 1417
	/* Update clock->cycle_last with the new value */
	clock->cycle_last = tk->cycle_last;
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
	 * memcpy under the timekeeper_seq against one before we start
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1429
	timekeeping_update(real_tk, clock_set);
1430
	write_seqcount_end(&timekeeper_seq);
1431
out:
1432
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1433
	if (clock_set)
1434 1435
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1436
}
T
Tomas Janousek 已提交
1437 1438 1439 1440 1441

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1442
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1443 1444 1445 1446 1447 1448 1449 1450
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1451
	struct timekeeper *tk = &timekeeper;
1452
	struct timespec boottime = {
1453 1454 1455 1456
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1457
	};
1458 1459

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1460
}
1461
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1462

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1474
	struct timekeeper *tk = &timekeeper;
1475
	struct timespec tomono, sleep;
1476
	s64 nsec;
1477 1478 1479 1480 1481
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1482
		seq = read_seqcount_begin(&timekeeper_seq);
1483
		ts->tv_sec = tk->xtime_sec;
1484
		nsec = timekeeping_get_ns(tk);
1485 1486
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1487

1488
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1489

1490 1491 1492
	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1513 1514 1515 1516 1517 1518
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1519 1520 1521
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1522
}
1523
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1524

1525 1526
unsigned long get_seconds(void)
{
1527 1528 1529
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1530 1531 1532
}
EXPORT_SYMBOL(get_seconds);

1533 1534
struct timespec __current_kernel_time(void)
{
1535 1536 1537
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1538
}
1539

1540 1541
struct timespec current_kernel_time(void)
{
1542
	struct timekeeper *tk = &timekeeper;
1543 1544 1545 1546
	struct timespec now;
	unsigned long seq;

	do {
1547
		seq = read_seqcount_begin(&timekeeper_seq);
L
Linus Torvalds 已提交
1548

1549
		now = tk_xtime(tk);
1550
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1551 1552 1553 1554

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1555 1556 1557

struct timespec get_monotonic_coarse(void)
{
1558
	struct timekeeper *tk = &timekeeper;
1559 1560 1561 1562
	struct timespec now, mono;
	unsigned long seq;

	do {
1563
		seq = read_seqcount_begin(&timekeeper_seq);
L
Linus Torvalds 已提交
1564

1565 1566
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1567
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1568 1569 1570 1571 1572

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1573 1574

/*
1575
 * Must hold jiffies_lock
1576 1577 1578 1579 1580 1581
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1582 1583

/**
1584 1585
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1586 1587
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1588
 * @sleep:	pointer to timespec to be set with time in suspend
1589
 */
1590 1591
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1592
{
1593
	struct timekeeper *tk = &timekeeper;
1594 1595 1596
	unsigned long seq;

	do {
1597
		seq = read_seqcount_begin(&timekeeper_seq);
1598 1599 1600
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
1601
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1602
}
T
Torben Hohn 已提交
1603

1604 1605 1606 1607 1608
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1609
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1610 1611
 *
 * Returns current monotonic time and updates the offsets
1612
 * Called from hrtimer_interrupt() or retrigger_next_event()
1613
 */
1614 1615
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1616
{
1617
	struct timekeeper *tk = &timekeeper;
1618 1619 1620 1621 1622
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1623
		seq = read_seqcount_begin(&timekeeper_seq);
1624

1625 1626
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1627

1628 1629
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1630
		*offs_tai = tk->offs_tai;
1631
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1632 1633 1634 1635 1636 1637 1638

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1639 1640 1641 1642 1643
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1644
	struct timekeeper *tk = &timekeeper;
1645 1646 1647 1648
	unsigned long seq;
	struct timespec wtom;

	do {
1649
		seq = read_seqcount_begin(&timekeeper_seq);
1650
		wtom = tk->wall_to_monotonic;
1651
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
1652

1653 1654
	return timespec_to_ktime(wtom);
}
1655 1656
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

1657 1658 1659 1660 1661
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1662
	struct timekeeper *tk = &timekeeper;
1663
	unsigned long flags;
1664
	struct timespec ts;
1665
	s32 orig_tai, tai;
1666 1667 1668 1669 1670 1671 1672
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1684 1685
	getnstimeofday(&ts);

1686 1687 1688
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);

1689
	orig_tai = tai = tk->tai_offset;
1690
	ret = __do_adjtimex(txc, &ts, &tai);
1691

1692 1693
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1694
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1695
	}
1696 1697 1698
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1699 1700 1701
	if (tai != orig_tai)
		clock_was_set();

1702 1703
	ntp_notify_cmos_timer();

1704 1705
	return ret;
}
1706 1707 1708 1709 1710 1711 1712

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1713 1714 1715 1716 1717
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);

1718
	__hardpps(phase_ts, raw_ts);
1719 1720 1721

	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1722 1723 1724 1725
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1726 1727 1728 1729 1730 1731 1732 1733
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1734
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1735
	do_timer(ticks);
1736
	write_sequnlock(&jiffies_lock);
1737
	update_wall_time();
T
Torben Hohn 已提交
1738
}