timekeeping.c 58.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

122 123 124
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

125 126
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
127 128

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133 134 135 136 137 138
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
139

140 141
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 143 144
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
145
			tk->last_warning = jiffies;
146
		}
147
		tk->underflow_seen = 0;
148 149
	}

150 151
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 153 154
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
155
			tk->last_warning = jiffies;
156
		}
157
		tk->overflow_seen = 0;
158
	}
159
}
160 161 162

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
163
	struct timekeeper *tk = &tk_core.timekeeper;
164 165
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
181

182
	delta = clocksource_delta(now, last, mask);
183

184 185 186 187
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
188
	if (unlikely((~delta & mask) < (mask >> 3))) {
189
		tk->underflow_seen = 1;
190
		delta = 0;
191
	}
192

193
	/* Cap delta value to the max_cycles values to avoid mult overflows */
194
	if (unlikely(delta > max)) {
195
		tk->overflow_seen = 1;
196
		delta = tkr->clock->max_cycles;
197
	}
198 199 200

	return delta;
}
201 202 203 204
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
205 206 207 208 209 210 211 212 213 214 215 216
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
217 218
#endif

219
/**
220
 * tk_setup_internals - Set up internals to use clocksource clock.
221
 *
222
 * @tk:		The target timekeeper to setup.
223 224 225 226 227 228 229
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
230
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 232
{
	cycle_t interval;
233
	u64 tmp, ntpinterval;
234
	struct clocksource *old_clock;
235

236 237 238 239 240
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241

P
Peter Zijlstra 已提交
242 243 244 245 246
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

247 248 249
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
250
	ntpinterval = tmp;
251 252
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
253 254 255 256
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
257
	tk->cycle_interval = interval;
258 259

	/* Go back from cycles -> shifted ns */
260 261 262
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
263
		((u64) interval * clock->mult) >> clock->shift;
264

265 266 267 268
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
269
			tk->tkr_mono.xtime_nsec >>= -shift_change;
270
		else
271
			tk->tkr_mono.xtime_nsec <<= shift_change;
272
	}
P
Peter Zijlstra 已提交
273 274
	tk->tkr_raw.xtime_nsec = 0;

275
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
276
	tk->tkr_raw.shift = clock->shift;
277

278 279
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281 282 283 284 285 286

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
287
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
288
	tk->tkr_raw.mult = clock->mult;
289
	tk->ntp_err_mult = 0;
290
}
291

292
/* Timekeeper helper functions. */
293 294

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 296
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297
#else
298
static inline u32 arch_gettimeoffset(void) { return 0; }
299 300
#endif

301 302 303 304 305 306 307 308 309 310 311 312
static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
					  cycle_t delta)
{
	s64 nsec;

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

313
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
314
{
315
	cycle_t delta;
316

317
	delta = timekeeping_get_delta(tkr);
318 319
	return timekeeping_delta_to_ns(tkr, delta);
}
320

321 322 323 324
static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
					    cycle_t cycles)
{
	cycle_t delta;
325

326 327 328
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
329 330
}

331 332
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
333
 * @tkr: Timekeeping readout base from which we take the update
334 335 336 337
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
338
 * Employ the latch technique; see @raw_write_seqcount_latch.
339 340 341 342 343 344
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
345
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
346
{
347
	struct tk_read_base *base = tkf->base;
348 349

	/* Force readers off to base[1] */
350
	raw_write_seqcount_latch(&tkf->seq);
351 352

	/* Update base[0] */
353
	memcpy(base, tkr, sizeof(*base));
354 355

	/* Force readers back to base[0] */
356
	raw_write_seqcount_latch(&tkf->seq);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
394
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
395 396 397 398 399 400
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
401
		seq = raw_read_seqcount_latch(&tkf->seq);
402
		tkr = tkf->base + (seq & 0x01);
403
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
404
	} while (read_seqcount_retry(&tkf->seq, seq));
405 406 407

	return now;
}
408 409 410 411 412

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
413 414
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
415 416 417 418 419 420
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
442
	struct tk_read_base *tkr = &tk->tkr_mono;
443 444 445 446

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
447
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
448 449 450 451 452

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
453 454
}

455 456 457 458
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
459
	struct timespec xt, wm;
460

461
	xt = timespec64_to_timespec(tk_xtime(tk));
462
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
463 464
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
481 482 483
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
	tk->tkr_mono.xtime_nsec -= remainder;
	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
484
	tk->ntp_error += remainder << tk->ntp_error_shift;
485
	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
486 487 488 489 490
}
#else
#define old_vsyscall_fixup(tk)
#endif

491 492
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

493
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
494
{
495
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
496 497 498 499 500 501 502
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
503
	struct timekeeper *tk = &tk_core.timekeeper;
504 505 506
	unsigned long flags;
	int ret;

507
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
508
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
509
	update_pvclock_gtod(tk, true);
510
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
511 512 513 514 515 516 517 518 519 520 521 522 523 524

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

525
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
526
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
527
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
528 529 530 531 532

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

533 534 535 536 537 538 539 540 541 542 543
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

544 545 546 547 548
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
549 550
	u64 seconds;
	u32 nsec;
551 552 553 554 555 556 557 558

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
559 560
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
561
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
562 563

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
564
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
565 566 567 568 569 570

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
571
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
572 573 574
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
575 576
}

577
/* must hold timekeeper_lock */
578
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
579
{
580
	if (action & TK_CLEAR_NTP) {
581
		tk->ntp_error = 0;
582 583
		ntp_clear();
	}
584

585
	tk_update_leap_state(tk);
586 587
	tk_update_ktime_data(tk);

588 589 590
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

591
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
592
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
593 594 595

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
596 597 598 599 600 601 602 603
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
604 605
}

606
/**
607
 * timekeeping_forward_now - update clock to the current time
608
 *
609 610 611
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
612
 */
613
static void timekeeping_forward_now(struct timekeeper *tk)
614
{
615
	struct clocksource *clock = tk->tkr_mono.clock;
616
	cycle_t cycle_now, delta;
617
	s64 nsec;
618

619 620 621
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
622
	tk->tkr_raw.cycle_last  = cycle_now;
623

624
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
625

626
	/* If arch requires, add in get_arch_timeoffset() */
627
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
628

629
	tk_normalize_xtime(tk);
630

P
Peter Zijlstra 已提交
631
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
632
	timespec64_add_ns(&tk->raw_time, nsec);
633 634 635
}

/**
636
 * __getnstimeofday64 - Returns the time of day in a timespec64.
637 638
 * @ts:		pointer to the timespec to be set
 *
639 640
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
641
 */
642
int __getnstimeofday64(struct timespec64 *ts)
643
{
644
	struct timekeeper *tk = &tk_core.timekeeper;
645
	unsigned long seq;
646
	s64 nsecs = 0;
647 648

	do {
649
		seq = read_seqcount_begin(&tk_core.seq);
650

651
		ts->tv_sec = tk->xtime_sec;
652
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
653

654
	} while (read_seqcount_retry(&tk_core.seq, seq));
655

656
	ts->tv_nsec = 0;
657
	timespec64_add_ns(ts, nsecs);
658 659 660 661 662 663 664 665 666

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
667
EXPORT_SYMBOL(__getnstimeofday64);
668 669

/**
670
 * getnstimeofday64 - Returns the time of day in a timespec64.
671
 * @ts:		pointer to the timespec64 to be set
672
 *
673
 * Returns the time of day in a timespec64 (WARN if suspended).
674
 */
675
void getnstimeofday64(struct timespec64 *ts)
676
{
677
	WARN_ON(__getnstimeofday64(ts));
678
}
679
EXPORT_SYMBOL(getnstimeofday64);
680

681 682
ktime_t ktime_get(void)
{
683
	struct timekeeper *tk = &tk_core.timekeeper;
684
	unsigned int seq;
685 686
	ktime_t base;
	s64 nsecs;
687 688 689 690

	WARN_ON(timekeeping_suspended);

	do {
691
		seq = read_seqcount_begin(&tk_core.seq);
692 693
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
694

695
	} while (read_seqcount_retry(&tk_core.seq, seq));
696

697
	return ktime_add_ns(base, nsecs);
698 699 700
}
EXPORT_SYMBOL_GPL(ktime_get);

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
735 736
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
737 738 739 740 741 742 743 744

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

765 766 767 768 769 770 771 772 773 774 775 776
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
777 778
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
779 780 781 782 783 784 785

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

786
/**
787
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
788 789 790 791
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
792
 * in normalized timespec64 format in the variable pointed to by @ts.
793
 */
794
void ktime_get_ts64(struct timespec64 *ts)
795
{
796
	struct timekeeper *tk = &tk_core.timekeeper;
797
	struct timespec64 tomono;
798
	s64 nsec;
799 800 801 802 803
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
804
		seq = read_seqcount_begin(&tk_core.seq);
805
		ts->tv_sec = tk->xtime_sec;
806
		nsec = timekeeping_get_ns(&tk->tkr_mono);
807
		tomono = tk->wall_to_monotonic;
808

809
	} while (read_seqcount_retry(&tk_core.seq, seq));
810

811 812 813
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
814
}
815
EXPORT_SYMBOL_GPL(ktime_get_ts64);
816

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

865 866 867 868 869 870 871 872 873 874 875 876
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
	s64 nsec_raw;
	s64 nsec_real;
	cycle_t now;

891 892
	WARN_ON_ONCE(timekeeping_suspended);

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	do {
		seq = read_seqcount_begin(&tk_core.seq);

		now = tk->tkr_mono.read(tk->tkr_mono.clock);
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
909

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
 * @sync_devicetime:	Callback to get simultaneous device time and
 *	system counter from the device driver
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
	ktime_t base_real, base_raw;
	s64 nsec_real, nsec_raw;
	unsigned long seq;
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

966 967 968 969
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
970
 * NOTE: Users should be converted to using getnstimeofday()
971 972 973
 */
void do_gettimeofday(struct timeval *tv)
{
974
	struct timespec64 now;
975

976
	getnstimeofday64(&now);
977 978 979 980
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
981

982
/**
983 984
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
985 986 987
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
988
int do_settimeofday64(const struct timespec64 *ts)
989
{
990
	struct timekeeper *tk = &tk_core.timekeeper;
991
	struct timespec64 ts_delta, xt;
992
	unsigned long flags;
993
	int ret = 0;
994

995
	if (!timespec64_valid_strict(ts))
996 997
		return -EINVAL;

998
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
999
	write_seqcount_begin(&tk_core.seq);
1000

1001
	timekeeping_forward_now(tk);
1002

1003
	xt = tk_xtime(tk);
1004 1005
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1006

1007 1008 1009 1010 1011
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1012
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1013

1014
	tk_set_xtime(tk, ts);
1015
out:
1016
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1017

1018
	write_seqcount_end(&tk_core.seq);
1019
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1020 1021 1022 1023

	/* signal hrtimers about time change */
	clock_was_set();

1024
	return ret;
1025
}
1026
EXPORT_SYMBOL(do_settimeofday64);
1027

1028 1029 1030 1031 1032 1033 1034 1035
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
1036
	struct timekeeper *tk = &tk_core.timekeeper;
1037
	unsigned long flags;
1038
	struct timespec64 ts64, tmp;
1039
	int ret = 0;
1040

1041
	if (!timespec_inject_offset_valid(ts))
1042 1043
		return -EINVAL;

1044 1045
	ts64 = timespec_to_timespec64(*ts);

1046
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1047
	write_seqcount_begin(&tk_core.seq);
1048

1049
	timekeeping_forward_now(tk);
1050

1051
	/* Make sure the proposed value is valid */
1052
	tmp = timespec64_add(tk_xtime(tk),  ts64);
1053 1054
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
1055 1056 1057
		ret = -EINVAL;
		goto error;
	}
1058

1059 1060
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1061

1062
error: /* even if we error out, we forwarded the time, so call update */
1063
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1064

1065
	write_seqcount_end(&tk_core.seq);
1066
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1067 1068 1069 1070

	/* signal hrtimers about time change */
	clock_was_set();

1071
	return ret;
1072 1073 1074
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1075 1076 1077 1078 1079 1080 1081

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
1082
	struct timekeeper *tk = &tk_core.timekeeper;
1083 1084 1085 1086
	unsigned int seq;
	s32 ret;

	do {
1087
		seq = read_seqcount_begin(&tk_core.seq);
1088
		ret = tk->tai_offset;
1089
	} while (read_seqcount_retry(&tk_core.seq, seq));
1090 1091 1092 1093 1094 1095 1096 1097

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1098
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1099 1100
{
	tk->tai_offset = tai_offset;
1101
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1102 1103 1104 1105 1106 1107 1108 1109
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1110
	struct timekeeper *tk = &tk_core.timekeeper;
1111 1112
	unsigned long flags;

1113
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1114
	write_seqcount_begin(&tk_core.seq);
1115
	__timekeeping_set_tai_offset(tk, tai_offset);
1116
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1117
	write_seqcount_end(&tk_core.seq);
1118
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1119
	clock_was_set();
1120 1121
}

1122 1123 1124 1125 1126
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1127
static int change_clocksource(void *data)
1128
{
1129
	struct timekeeper *tk = &tk_core.timekeeper;
1130
	struct clocksource *new, *old;
1131
	unsigned long flags;
1132

1133
	new = (struct clocksource *) data;
1134

1135
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1136
	write_seqcount_begin(&tk_core.seq);
1137

1138
	timekeeping_forward_now(tk);
1139 1140 1141 1142 1143 1144
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1145
			old = tk->tkr_mono.clock;
1146 1147 1148 1149 1150 1151 1152
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1153
	}
1154
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1155

1156
	write_seqcount_end(&tk_core.seq);
1157
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1158

1159 1160
	return 0;
}
1161

1162 1163 1164 1165 1166 1167 1168
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1169
int timekeeping_notify(struct clocksource *clock)
1170
{
1171
	struct timekeeper *tk = &tk_core.timekeeper;
1172

1173
	if (tk->tkr_mono.clock == clock)
1174
		return 0;
1175
	stop_machine(change_clocksource, clock, NULL);
1176
	tick_clock_notify();
1177
	return tk->tkr_mono.clock == clock ? 0 : -1;
1178
}
1179

1180
/**
1181 1182
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1183 1184 1185
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1186
void getrawmonotonic64(struct timespec64 *ts)
1187
{
1188
	struct timekeeper *tk = &tk_core.timekeeper;
1189
	struct timespec64 ts64;
1190 1191 1192 1193
	unsigned long seq;
	s64 nsecs;

	do {
1194
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1195
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1196
		ts64 = tk->raw_time;
1197

1198
	} while (read_seqcount_retry(&tk_core.seq, seq));
1199

1200
	timespec64_add_ns(&ts64, nsecs);
1201
	*ts = ts64;
1202
}
1203 1204
EXPORT_SYMBOL(getrawmonotonic64);

1205

1206
/**
1207
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1208
 */
1209
int timekeeping_valid_for_hres(void)
1210
{
1211
	struct timekeeper *tk = &tk_core.timekeeper;
1212 1213 1214 1215
	unsigned long seq;
	int ret;

	do {
1216
		seq = read_seqcount_begin(&tk_core.seq);
1217

1218
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1219

1220
	} while (read_seqcount_retry(&tk_core.seq, seq));
1221 1222 1223 1224

	return ret;
}

1225 1226 1227 1228 1229
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1230
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1231 1232
	unsigned long seq;
	u64 ret;
1233

J
John Stultz 已提交
1234
	do {
1235
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1236

1237
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1238

1239
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1240 1241

	return ret;
1242 1243
}

1244
/**
1245
 * read_persistent_clock -  Return time from the persistent clock.
1246 1247
 *
 * Weak dummy function for arches that do not yet support it.
1248 1249
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1250 1251 1252
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1253
void __weak read_persistent_clock(struct timespec *ts)
1254
{
1255 1256
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1257 1258
}

1259 1260 1261 1262 1263 1264 1265 1266
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1267
/**
X
Xunlei Pang 已提交
1268
 * read_boot_clock64 -  Return time of the system start.
1269 1270 1271
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1272
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1273 1274 1275
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1276
void __weak read_boot_clock64(struct timespec64 *ts)
1277 1278 1279 1280 1281
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1282 1283 1284 1285 1286 1287
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1288 1289 1290 1291 1292
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1293
	struct timekeeper *tk = &tk_core.timekeeper;
1294
	struct clocksource *clock;
1295
	unsigned long flags;
1296
	struct timespec64 now, boot, tmp;
1297

1298
	read_persistent_clock64(&now);
1299
	if (!timespec64_valid_strict(&now)) {
1300 1301 1302 1303
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1304
	} else if (now.tv_sec || now.tv_nsec)
1305
		persistent_clock_exists = true;
1306

1307
	read_boot_clock64(&boot);
1308
	if (!timespec64_valid_strict(&boot)) {
1309 1310 1311 1312 1313
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1314

1315
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1316
	write_seqcount_begin(&tk_core.seq);
1317 1318
	ntp_init();

1319
	clock = clocksource_default_clock();
1320 1321
	if (clock->enable)
		clock->enable(clock);
1322
	tk_setup_internals(tk, clock);
1323

1324 1325 1326
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1327
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1328
		boot = tk_xtime(tk);
1329

1330
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1331
	tk_set_wall_to_mono(tk, tmp);
1332

1333
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1334

1335
	write_seqcount_end(&tk_core.seq);
1336
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1337 1338
}

1339
/* time in seconds when suspend began for persistent clock */
1340
static struct timespec64 timekeeping_suspend_time;
1341

1342 1343 1344 1345 1346 1347 1348
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1349
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1350
					   struct timespec64 *delta)
1351
{
1352
	if (!timespec64_valid_strict(delta)) {
1353 1354 1355
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1356 1357
		return;
	}
1358
	tk_xtime_add(tk, delta);
1359
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1360
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1361
	tk_debug_account_sleep_time(delta);
1362 1363
}

1364
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1400
/**
1401 1402
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1403
 *
1404
 * This hook is for architectures that cannot support read_persistent_clock64
1405
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1406
 * and also don't have an effective nonstop clocksource.
1407 1408 1409 1410
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1411
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1412
{
1413
	struct timekeeper *tk = &tk_core.timekeeper;
1414
	unsigned long flags;
1415

1416
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1417
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1418

1419
	timekeeping_forward_now(tk);
1420

1421
	__timekeeping_inject_sleeptime(tk, delta);
1422

1423
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1424

1425
	write_seqcount_end(&tk_core.seq);
1426
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1427 1428 1429 1430

	/* signal hrtimers about time change */
	clock_was_set();
}
1431
#endif
1432

1433 1434 1435
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1436
void timekeeping_resume(void)
1437
{
1438
	struct timekeeper *tk = &tk_core.timekeeper;
1439
	struct clocksource *clock = tk->tkr_mono.clock;
1440
	unsigned long flags;
1441
	struct timespec64 ts_new, ts_delta;
1442
	cycle_t cycle_now, cycle_delta;
1443

1444
	sleeptime_injected = false;
1445
	read_persistent_clock64(&ts_new);
1446

1447
	clockevents_resume();
1448 1449
	clocksource_resume();

1450
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1451
	write_seqcount_begin(&tk_core.seq);
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1465
	cycle_now = tk->tkr_mono.read(clock);
1466
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1467
		cycle_now > tk->tkr_mono.cycle_last) {
1468 1469 1470 1471 1472
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1473 1474
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1489
		ts_delta = ns_to_timespec64(nsec);
1490
		sleeptime_injected = true;
1491 1492
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1493
		sleeptime_injected = true;
1494
	}
1495

1496
	if (sleeptime_injected)
1497 1498 1499
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1500
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1501 1502
	tk->tkr_raw.cycle_last  = cycle_now;

1503
	tk->ntp_error = 0;
1504
	timekeeping_suspended = 0;
1505
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1506
	write_seqcount_end(&tk_core.seq);
1507
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1508 1509 1510

	touch_softlockup_watchdog();

1511
	tick_resume();
1512
	hrtimers_resume();
1513 1514
}

1515
int timekeeping_suspend(void)
1516
{
1517
	struct timekeeper *tk = &tk_core.timekeeper;
1518
	unsigned long flags;
1519 1520
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1521

1522
	read_persistent_clock64(&timekeeping_suspend_time);
1523

1524 1525 1526 1527 1528 1529
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1530
		persistent_clock_exists = true;
1531

1532
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1533
	write_seqcount_begin(&tk_core.seq);
1534
	timekeeping_forward_now(tk);
1535
	timekeeping_suspended = 1;
1536

1537
	if (persistent_clock_exists) {
1538
		/*
1539 1540 1541 1542
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1543
		 */
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1557
	}
1558 1559

	timekeeping_update(tk, TK_MIRROR);
1560
	halt_fast_timekeeper(tk);
1561
	write_seqcount_end(&tk_core.seq);
1562
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1563

1564
	tick_suspend();
M
Magnus Damm 已提交
1565
	clocksource_suspend();
1566
	clockevents_suspend();
1567 1568 1569 1570 1571

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1572
static struct syscore_ops timekeeping_syscore_ops = {
1573 1574 1575 1576
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1577
static int __init timekeeping_init_ops(void)
1578
{
1579 1580
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1581
}
1582
device_initcall(timekeeping_init_ops);
1583 1584

/*
1585
 * Apply a multiplier adjustment to the timekeeper
1586
 */
1587 1588 1589 1590
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1591
{
1592 1593
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1594

1595 1596 1597 1598
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1599
	}
1600 1601 1602
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1603

1604 1605 1606
	/*
	 * So the following can be confusing.
	 *
1607
	 * To keep things simple, lets assume mult_adj == 1 for now.
1608
	 *
1609
	 * When mult_adj != 1, remember that the interval and offset values
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1653
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1654 1655 1656 1657 1658
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1659
	tk->tkr_mono.mult += mult_adj;
1660
	tk->xtime_interval += interval;
1661
	tk->tkr_mono.xtime_nsec -= offset;
1662
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1674 1675 1676
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1677 1678
	s64 tick_error;
	bool negative;
1679
	u32 adj_scale;
1680 1681 1682 1683 1684

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1685 1686
	tk->ntp_tick = ntp_tick_length();

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1709
	tick_error = abs(tick_error);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1720
		tick_error >>= 1;
1721
	}
1722 1723

	/* scale the corrections */
1724
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1746 1747 1748
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1749 1750
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1751 1752
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1753
	}
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1769 1770 1771
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1772
		tk->ntp_error += neg << tk->ntp_error_shift;
1773
	}
1774 1775
}

1776 1777 1778
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1779
 * Helper function that accumulates the nsecs greater than a second
1780 1781 1782 1783
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1784
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1785
{
1786
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1787
	unsigned int clock_set = 0;
1788

1789
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1790 1791
		int leap;

1792
		tk->tkr_mono.xtime_nsec -= nsecps;
1793 1794 1795 1796
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1797
		if (unlikely(leap)) {
1798
			struct timespec64 ts;
1799 1800

			tk->xtime_sec += leap;
1801

1802 1803 1804
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1805
				timespec64_sub(tk->wall_to_monotonic, ts));
1806

1807 1808
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1809
			clock_set = TK_CLOCK_WAS_SET;
1810
		}
1811
	}
1812
	return clock_set;
1813 1814
}

1815 1816 1817 1818 1819 1820 1821 1822 1823
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1824
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1825 1826
						u32 shift,
						unsigned int *clock_set)
1827
{
T
Thomas Gleixner 已提交
1828
	cycle_t interval = tk->cycle_interval << shift;
1829
	u64 raw_nsecs;
1830

Z
Zhen Lei 已提交
1831
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1832
	if (offset < interval)
1833 1834 1835
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1836
	offset -= interval;
1837
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1838
	tk->tkr_raw.cycle_last  += interval;
1839

1840
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1841
	*clock_set |= accumulate_nsecs_to_secs(tk);
1842

1843
	/* Accumulate raw time */
1844
	raw_nsecs = (u64)tk->raw_interval << shift;
1845
	raw_nsecs += tk->raw_time.tv_nsec;
1846 1847 1848
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1849
		tk->raw_time.tv_sec += raw_secs;
1850
	}
1851
	tk->raw_time.tv_nsec = raw_nsecs;
1852 1853

	/* Accumulate error between NTP and clock interval */
1854
	tk->ntp_error += tk->ntp_tick << shift;
1855 1856
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1857 1858 1859 1860

	return offset;
}

1861 1862 1863 1864
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1865
void update_wall_time(void)
1866
{
1867
	struct timekeeper *real_tk = &tk_core.timekeeper;
1868
	struct timekeeper *tk = &shadow_timekeeper;
1869
	cycle_t offset;
1870
	int shift = 0, maxshift;
1871
	unsigned int clock_set = 0;
J
John Stultz 已提交
1872 1873
	unsigned long flags;

1874
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1875 1876 1877

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1878
		goto out;
1879

J
John Stultz 已提交
1880
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1881
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1882
#else
1883 1884
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1885 1886
#endif

1887
	/* Check if there's really nothing to do */
1888
	if (offset < real_tk->cycle_interval)
1889 1890
		goto out;

1891 1892 1893
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1894 1895 1896 1897
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1898
	 * that is smaller than the offset.  We then accumulate that
1899 1900
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1901
	 */
1902
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1903
	shift = max(0, shift);
1904
	/* Bound shift to one less than what overflows tick_length */
1905
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1906
	shift = min(shift, maxshift);
1907
	while (offset >= tk->cycle_interval) {
1908 1909
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1910
		if (offset < tk->cycle_interval<<shift)
1911
			shift--;
1912 1913 1914
	}

	/* correct the clock when NTP error is too big */
1915
	timekeeping_adjust(tk, offset);
1916

J
John Stultz 已提交
1917
	/*
1918 1919 1920 1921
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1922

J
John Stultz 已提交
1923 1924
	/*
	 * Finally, make sure that after the rounding
1925
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1926
	 */
1927
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1928

1929
	write_seqcount_begin(&tk_core.seq);
1930 1931 1932 1933 1934 1935 1936
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1937
	 * memcpy under the tk_core.seq against one before we start
1938 1939
	 * updating.
	 */
1940
	timekeeping_update(tk, clock_set);
1941
	memcpy(real_tk, tk, sizeof(*tk));
1942
	/* The memcpy must come last. Do not put anything here! */
1943
	write_seqcount_end(&tk_core.seq);
1944
out:
1945
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1946
	if (clock_set)
1947 1948
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1949
}
T
Tomas Janousek 已提交
1950 1951

/**
1952 1953
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1954
 *
1955
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1956 1957 1958 1959 1960 1961
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1962
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1963
{
1964
	struct timekeeper *tk = &tk_core.timekeeper;
1965 1966
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1967
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1968
}
1969
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1970

1971 1972
unsigned long get_seconds(void)
{
1973
	struct timekeeper *tk = &tk_core.timekeeper;
1974 1975

	return tk->xtime_sec;
1976 1977 1978
}
EXPORT_SYMBOL(get_seconds);

1979 1980
struct timespec __current_kernel_time(void)
{
1981
	struct timekeeper *tk = &tk_core.timekeeper;
1982

1983
	return timespec64_to_timespec(tk_xtime(tk));
1984
}
1985

1986
struct timespec64 current_kernel_time64(void)
1987
{
1988
	struct timekeeper *tk = &tk_core.timekeeper;
1989
	struct timespec64 now;
1990 1991 1992
	unsigned long seq;

	do {
1993
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1994

1995
		now = tk_xtime(tk);
1996
	} while (read_seqcount_retry(&tk_core.seq, seq));
1997

1998
	return now;
1999
}
2000
EXPORT_SYMBOL(current_kernel_time64);
2001

2002
struct timespec64 get_monotonic_coarse64(void)
2003
{
2004
	struct timekeeper *tk = &tk_core.timekeeper;
2005
	struct timespec64 now, mono;
2006 2007 2008
	unsigned long seq;

	do {
2009
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2010

2011 2012
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2013
	} while (read_seqcount_retry(&tk_core.seq, seq));
2014

2015
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2016
				now.tv_nsec + mono.tv_nsec);
2017

2018
	return now;
2019
}
2020 2021

/*
2022
 * Must hold jiffies_lock
2023 2024 2025 2026 2027 2028
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2029

2030
/**
2031
 * ktime_get_update_offsets_now - hrtimer helper
2032
 * @cwsseq:	pointer to check and store the clock was set sequence number
2033 2034
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2035
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2036
 *
2037 2038 2039 2040
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2041
 * Called from hrtimer_interrupt() or retrigger_next_event()
2042
 */
2043 2044
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2045
{
2046
	struct timekeeper *tk = &tk_core.timekeeper;
2047
	unsigned int seq;
2048 2049
	ktime_t base;
	u64 nsecs;
2050 2051

	do {
2052
		seq = read_seqcount_begin(&tk_core.seq);
2053

2054 2055
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2056 2057
		base = ktime_add_ns(base, nsecs);

2058 2059 2060 2061 2062 2063
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2064 2065 2066 2067 2068

		/* Handle leapsecond insertion adjustments */
		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2069
	} while (read_seqcount_retry(&tk_core.seq, seq));
2070

2071
	return base;
2072 2073
}

2074 2075 2076 2077 2078
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2079
	struct timekeeper *tk = &tk_core.timekeeper;
2080
	unsigned long flags;
2081
	struct timespec64 ts;
2082
	s32 orig_tai, tai;
2083 2084 2085 2086 2087 2088 2089
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2101
	getnstimeofday64(&ts);
2102

2103
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2104
	write_seqcount_begin(&tk_core.seq);
2105

2106
	orig_tai = tai = tk->tai_offset;
2107
	ret = __do_adjtimex(txc, &ts, &tai);
2108

2109 2110
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2111
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2112
	}
2113 2114
	tk_update_leap_state(tk);

2115
	write_seqcount_end(&tk_core.seq);
2116 2117
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2118 2119 2120
	if (tai != orig_tai)
		clock_was_set();

2121 2122
	ntp_notify_cmos_timer();

2123 2124
	return ret;
}
2125 2126 2127 2128 2129

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2130
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2131
{
2132 2133 2134
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2135
	write_seqcount_begin(&tk_core.seq);
2136

2137
	__hardpps(phase_ts, raw_ts);
2138

2139
	write_seqcount_end(&tk_core.seq);
2140
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2141 2142 2143 2144
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2145 2146 2147 2148 2149 2150 2151 2152
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2153
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2154
	do_timer(ticks);
2155
	write_sequnlock(&jiffies_lock);
2156
	update_wall_time();
T
Torben Hohn 已提交
2157
}