timekeeping.c 35.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24

25

26
static struct timekeeper timekeeper;
27

28 29 30 31 32 33 34 35 36
/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime.
 */
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);

/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

37 38 39 40 41 42 43 44 45 46 47
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
48
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
49 50 51 52 53
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
54
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
55
	tk_normalize_xtime(tk);
56
}
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

83 84 85 86 87 88 89 90 91 92
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
93
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
94 95
{
	cycle_t interval;
96
	u64 tmp, ntpinterval;
97
	struct clocksource *old_clock;
98

99 100
	old_clock = tk->clock;
	tk->clock = clock;
101 102 103 104 105
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
106
	ntpinterval = tmp;
107 108
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
109 110 111 112
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
113
	tk->cycle_interval = interval;
114 115

	/* Go back from cycles -> shifted ns */
116 117 118
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
119
		((u64) interval * clock->mult) >> clock->shift;
120

121 122 123 124
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
125
			tk->xtime_nsec >>= -shift_change;
126
		else
127
			tk->xtime_nsec <<= shift_change;
128
	}
129
	tk->shift = clock->shift;
130

131 132
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
133 134 135 136 137 138

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
139
	tk->mult = clock->mult;
140
}
141

142
/* Timekeeper helper functions. */
143
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
144 145 146
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
147
	s64 nsec;
148 149

	/* read clocksource: */
150
	clock = tk->clock;
151 152 153 154 155
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

156 157
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
158 159 160

	/* If arch requires, add in gettimeoffset() */
	return nsec + arch_gettimeoffset();
161 162
}

163
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
164 165 166
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
167
	s64 nsec;
168 169

	/* read clocksource: */
170
	clock = tk->clock;
171 172 173 174 175
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

176 177 178 179 180
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

	/* If arch requires, add in gettimeoffset() */
	return nsec + arch_gettimeoffset();
181 182
}

183
/* must hold write on timekeeper.lock */
184
static void timekeeping_update(struct timekeeper *tk, bool clearntp)
185 186
{
	if (clearntp) {
187
		tk->ntp_error = 0;
188 189
		ntp_clear();
	}
190
	update_vsyscall(tk);
191 192
}

193
/**
194
 * timekeeping_forward_now - update clock to the current time
195
 *
196 197 198
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
199
 */
200
static void timekeeping_forward_now(struct timekeeper *tk)
201 202
{
	cycle_t cycle_now, cycle_delta;
203
	struct clocksource *clock;
204
	s64 nsec;
205

206
	clock = tk->clock;
207
	cycle_now = clock->read(clock);
208
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
209
	clock->cycle_last = cycle_now;
210

211
	tk->xtime_nsec += cycle_delta * tk->mult;
212 213

	/* If arch requires, add in gettimeoffset() */
214
	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
215

216
	tk_normalize_xtime(tk);
217

218
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
219
	timespec_add_ns(&tk->raw_time, nsec);
220 221 222
}

/**
223
 * getnstimeofday - Returns the time of day in a timespec
224 225
 * @ts:		pointer to the timespec to be set
 *
226
 * Returns the time of day in a timespec.
227
 */
228
void getnstimeofday(struct timespec *ts)
229
{
230
	struct timekeeper *tk = &timekeeper;
231
	unsigned long seq;
232
	s64 nsecs = 0;
233

234 235
	WARN_ON(timekeeping_suspended);

236
	do {
237
		seq = read_seqbegin(&tk->lock);
238

239
		ts->tv_sec = tk->xtime_sec;
240
		nsecs = timekeeping_get_ns(tk);
241

242
	} while (read_seqretry(&tk->lock, seq));
243

244
	ts->tv_nsec = 0;
245 246 247 248
	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getnstimeofday);

249 250
ktime_t ktime_get(void)
{
251
	struct timekeeper *tk = &timekeeper;
252 253 254 255 256 257
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
258 259 260
		seq = read_seqbegin(&tk->lock);
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
261

262
	} while (read_seqretry(&tk->lock, seq));
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
281
	struct timekeeper *tk = &timekeeper;
282
	struct timespec tomono;
283
	s64 nsec;
284 285 286 287 288
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
289 290
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
291
		nsec = timekeeping_get_ns(tk);
292
		tomono = tk->wall_to_monotonic;
293

294
	} while (read_seqretry(&tk->lock, seq));
295

296 297 298
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec);
299 300 301
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

302 303 304 305 306 307 308 309 310 311 312 313 314
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
315
	struct timekeeper *tk = &timekeeper;
316 317 318 319 320 321
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
322
		seq = read_seqbegin(&tk->lock);
323

324 325
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
326
		ts_real->tv_nsec = 0;
327

328 329
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
330

331
	} while (read_seqretry(&tk->lock, seq));
332 333 334 335 336 337 338 339

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

340 341 342 343
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
344
 * NOTE: Users should be converted to using getnstimeofday()
345 346 347 348 349
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

350
	getnstimeofday(&now);
351 352 353 354
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
355

356 357 358 359 360 361
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
362
int do_settimeofday(const struct timespec *tv)
363
{
364
	struct timekeeper *tk = &timekeeper;
365
	struct timespec ts_delta, xt;
366
	unsigned long flags;
367

368
	if (!timespec_valid_strict(tv))
369 370
		return -EINVAL;

371
	write_seqlock_irqsave(&tk->lock, flags);
372

373
	timekeeping_forward_now(tk);
374

375
	xt = tk_xtime(tk);
376 377 378
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

379
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
380

381
	tk_set_xtime(tk, tv);
382

383
	timekeeping_update(tk, true);
384

385
	write_sequnlock_irqrestore(&tk->lock, flags);
386 387 388 389 390 391 392 393

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

394 395 396 397 398 399 400 401
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
402
	struct timekeeper *tk = &timekeeper;
403
	unsigned long flags;
404 405
	struct timespec tmp;
	int ret = 0;
406 407 408 409

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

410
	write_seqlock_irqsave(&tk->lock, flags);
411

412
	timekeeping_forward_now(tk);
413

414 415
	/* Make sure the proposed value is valid */
	tmp = timespec_add(tk_xtime(tk),  *ts);
416
	if (!timespec_valid_strict(&tmp)) {
417 418 419
		ret = -EINVAL;
		goto error;
	}
420

421 422
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
423

424
error: /* even if we error out, we forwarded the time, so call update */
425
	timekeeping_update(tk, true);
426

427
	write_sequnlock_irqrestore(&tk->lock, flags);
428 429 430 431

	/* signal hrtimers about time change */
	clock_was_set();

432
	return ret;
433 434 435
}
EXPORT_SYMBOL(timekeeping_inject_offset);

436 437 438 439 440
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
441
static int change_clocksource(void *data)
442
{
443
	struct timekeeper *tk = &timekeeper;
444
	struct clocksource *new, *old;
445
	unsigned long flags;
446

447
	new = (struct clocksource *) data;
448

449
	write_seqlock_irqsave(&tk->lock, flags);
450

451
	timekeeping_forward_now(tk);
452
	if (!new->enable || new->enable(new) == 0) {
453 454
		old = tk->clock;
		tk_setup_internals(tk, new);
455 456 457
		if (old->disable)
			old->disable(old);
	}
458
	timekeeping_update(tk, true);
459

460
	write_sequnlock_irqrestore(&tk->lock, flags);
461

462 463
	return 0;
}
464

465 466 467 468 469 470 471 472 473
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
474 475 476
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
477
		return;
478
	stop_machine(change_clocksource, clock, NULL);
479 480
	tick_clock_notify();
}
481

482 483 484 485 486 487 488 489 490 491 492 493 494 495
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
496

497 498 499 500 501 502 503 504
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
505
	struct timekeeper *tk = &timekeeper;
506 507 508 509
	unsigned long seq;
	s64 nsecs;

	do {
510 511 512
		seq = read_seqbegin(&tk->lock);
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
513

514
	} while (read_seqretry(&tk->lock, seq));
515 516 517 518 519

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

520
/**
521
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
522
 */
523
int timekeeping_valid_for_hres(void)
524
{
525
	struct timekeeper *tk = &timekeeper;
526 527 528 529
	unsigned long seq;
	int ret;

	do {
530
		seq = read_seqbegin(&tk->lock);
531

532
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
533

534
	} while (read_seqretry(&tk->lock, seq));
535 536 537 538

	return ret;
}

539 540 541 542 543
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
544
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
545 546
	unsigned long seq;
	u64 ret;
547

J
John Stultz 已提交
548
	do {
549
		seq = read_seqbegin(&tk->lock);
J
John Stultz 已提交
550

551
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
552

553
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
554 555

	return ret;
556 557
}

558
/**
559
 * read_persistent_clock -  Return time from the persistent clock.
560 561
 *
 * Weak dummy function for arches that do not yet support it.
562 563
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
564 565 566
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
567
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
568
{
569 570
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
571 572
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

588 589 590 591 592
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
593
	struct timekeeper *tk = &timekeeper;
594
	struct clocksource *clock;
595
	unsigned long flags;
596
	struct timespec now, boot, tmp;
597 598

	read_persistent_clock(&now);
599
	if (!timespec_valid_strict(&now)) {
600 601 602 603 604 605
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
	}

606
	read_boot_clock(&boot);
607
	if (!timespec_valid_strict(&boot)) {
608 609 610 611 612
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
613

614
	seqlock_init(&tk->lock);
615

R
Roman Zippel 已提交
616
	ntp_init();
617

618
	write_seqlock_irqsave(&tk->lock, flags);
619
	clock = clocksource_default_clock();
620 621
	if (clock->enable)
		clock->enable(clock);
622
	tk_setup_internals(tk, clock);
623

624 625 626
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
627
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
628
		boot = tk_xtime(tk);
629

630
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
631
	tk_set_wall_to_mono(tk, tmp);
632 633 634

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
635
	tk_set_sleep_time(tk, tmp);
636

637
	write_sequnlock_irqrestore(&tk->lock, flags);
638 639 640
}

/* time in seconds when suspend began */
641
static struct timespec timekeeping_suspend_time;
642

643 644 645 646 647 648 649
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
650 651
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
652
{
653
	if (!timespec_valid_strict(delta)) {
654
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
655 656 657
					"sleep delta value!\n");
		return;
	}
658
	tk_xtime_add(tk, delta);
659 660
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
661 662 663 664 665 666 667 668 669 670 671 672 673 674
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
675
	struct timekeeper *tk = &timekeeper;
676
	unsigned long flags;
677 678 679 680 681 682 683
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

684
	write_seqlock_irqsave(&tk->lock, flags);
J
John Stultz 已提交
685

686
	timekeeping_forward_now(tk);
687

688
	__timekeeping_inject_sleeptime(tk, delta);
689

690
	timekeeping_update(tk, true);
691

692
	write_sequnlock_irqrestore(&tk->lock, flags);
693 694 695 696 697

	/* signal hrtimers about time change */
	clock_was_set();
}

698 699 700 701 702 703 704
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
705
static void timekeeping_resume(void)
706
{
707
	struct timekeeper *tk = &timekeeper;
708
	unsigned long flags;
709 710 711
	struct timespec ts;

	read_persistent_clock(&ts);
712

713
	clockevents_resume();
714 715
	clocksource_resume();

716
	write_seqlock_irqsave(&tk->lock, flags);
717

718 719
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
720
		__timekeeping_inject_sleeptime(tk, &ts);
721 722
	}
	/* re-base the last cycle value */
723 724
	tk->clock->cycle_last = tk->clock->read(tk->clock);
	tk->ntp_error = 0;
725
	timekeeping_suspended = 0;
726 727
	timekeeping_update(tk, false);
	write_sequnlock_irqrestore(&tk->lock, flags);
728 729 730 731 732 733

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
734
	hrtimers_resume();
735 736
}

737
static int timekeeping_suspend(void)
738
{
739
	struct timekeeper *tk = &timekeeper;
740
	unsigned long flags;
741 742
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
743

744
	read_persistent_clock(&timekeeping_suspend_time);
745

746 747
	write_seqlock_irqsave(&tk->lock, flags);
	timekeeping_forward_now(tk);
748
	timekeeping_suspended = 1;
749 750 751 752 753 754 755

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
756
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
757 758 759 760 761 762 763 764 765 766 767 768
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
769
	write_sequnlock_irqrestore(&tk->lock, flags);
770 771

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
772
	clocksource_suspend();
773
	clockevents_suspend();
774 775 776 777 778

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
779
static struct syscore_ops timekeeping_syscore_ops = {
780 781 782 783
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

784
static int __init timekeeping_init_ops(void)
785
{
786 787
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
788 789
}

790
device_initcall(timekeeping_init_ops);
791 792 793 794 795

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
796 797
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
798 799 800 801 802 803 804 805 806 807 808 809
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
810
	 * here.  This is tuned so that an error of about 1 msec is adjusted
811 812
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
813
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
814 815 816 817 818 819 820 821
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
822 823
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
848
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
849
{
850
	s64 error, interval = tk->cycle_interval;
851 852
	int adj;

853
	/*
854
	 * The point of this is to check if the error is greater than half
855 856 857 858 859
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
860 861
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
862
	 * larger than half an interval.
863
	 *
864
	 * Note: It does not "save" on aggravation when reading the code.
865
	 */
866
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
867
	if (error > interval) {
868 869
		/*
		 * We now divide error by 4(via shift), which checks if
870
		 * the error is greater than twice the interval.
871 872 873
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
874
		error >>= 2;
875 876 877 878 879
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
880
		 * The proper fix is to avoid rounding up by using
881
		 * the high precision tk->xtime_nsec instead of
882 883 884
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
885 886 887
		if (likely(error <= interval))
			adj = 1;
		else
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
904

905 906
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
907 908
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
909 910
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
911
	}
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
961 962 963 964
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
965

966
out_adjust:
967 968 969 970 971 972 973 974 975 976 977 978 979 980
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
981 982 983 984
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
985 986
	}

987 988
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1009 1010 1011 1012
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1013

1014 1015 1016 1017 1018 1019 1020
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

			clock_was_set_delayed();
		}
1021 1022 1023
	}
}

1024 1025 1026 1027 1028 1029 1030 1031 1032
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1033 1034
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
						u32 shift)
1035
{
1036
	u64 raw_nsecs;
1037

1038 1039
	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < tk->cycle_interval<<shift)
1040 1041 1042
		return offset;

	/* Accumulate one shifted interval */
1043 1044
	offset -= tk->cycle_interval << shift;
	tk->clock->cycle_last += tk->cycle_interval << shift;
1045

1046 1047
	tk->xtime_nsec += tk->xtime_interval << shift;
	accumulate_nsecs_to_secs(tk);
1048

1049
	/* Accumulate raw time */
1050
	raw_nsecs = (u64)tk->raw_interval << shift;
1051
	raw_nsecs += tk->raw_time.tv_nsec;
1052 1053 1054
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1055
		tk->raw_time.tv_sec += raw_secs;
1056
	}
1057
	tk->raw_time.tv_nsec = raw_nsecs;
1058 1059

	/* Accumulate error between NTP and clock interval */
1060 1061 1062
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1063 1064 1065 1066

	return offset;
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;

}
#else
#define old_vsyscall_fixup(tk)
#endif



1094 1095 1096 1097
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1098
static void update_wall_time(void)
1099
{
1100
	struct clocksource *clock;
1101
	struct timekeeper *tk = &timekeeper;
1102
	cycle_t offset;
1103
	int shift = 0, maxshift;
J
John Stultz 已提交
1104 1105
	unsigned long flags;

1106
	write_seqlock_irqsave(&tk->lock, flags);
1107 1108 1109

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1110
		goto out;
1111

1112
	clock = tk->clock;
J
John Stultz 已提交
1113 1114

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1115
	offset = tk->cycle_interval;
J
John Stultz 已提交
1116 1117
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1118 1119
#endif

1120 1121 1122 1123
	/* Check if there's really nothing to do */
	if (offset < tk->cycle_interval)
		goto out;

1124 1125 1126 1127
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1128
	 * that is smaller than the offset.  We then accumulate that
1129 1130
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1131
	 */
1132
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1133
	shift = max(0, shift);
1134
	/* Bound shift to one less than what overflows tick_length */
1135
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1136
	shift = min(shift, maxshift);
1137 1138 1139
	while (offset >= tk->cycle_interval) {
		offset = logarithmic_accumulation(tk, offset, shift);
		if (offset < tk->cycle_interval<<shift)
1140
			shift--;
1141 1142 1143
	}

	/* correct the clock when NTP error is too big */
1144
	timekeeping_adjust(tk, offset);
1145

J
John Stultz 已提交
1146
	/*
1147 1148 1149 1150
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1151

J
John Stultz 已提交
1152 1153
	/*
	 * Finally, make sure that after the rounding
1154
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1155
	 */
1156
	accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1157

1158
	timekeeping_update(tk, false);
J
John Stultz 已提交
1159 1160

out:
1161
	write_sequnlock_irqrestore(&tk->lock, flags);
J
John Stultz 已提交
1162

1163
}
T
Tomas Janousek 已提交
1164 1165 1166 1167 1168

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1169
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1170 1171 1172 1173 1174 1175 1176 1177
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1178
	struct timekeeper *tk = &timekeeper;
1179
	struct timespec boottime = {
1180 1181 1182 1183
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1184
	};
1185 1186

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1187
}
1188
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1201
	struct timekeeper *tk = &timekeeper;
1202
	struct timespec tomono, sleep;
1203
	s64 nsec;
1204 1205 1206 1207 1208
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1209 1210
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
1211
		nsec = timekeeping_get_ns(tk);
1212 1213
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1214

1215
	} while (read_seqretry(&tk->lock, seq));
1216

1217 1218 1219
	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1240 1241 1242 1243 1244 1245
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1246 1247 1248
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1249
}
1250
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1251

1252 1253
unsigned long get_seconds(void)
{
1254 1255 1256
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1257 1258 1259
}
EXPORT_SYMBOL(get_seconds);

1260 1261
struct timespec __current_kernel_time(void)
{
1262 1263 1264
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1265
}
1266

1267 1268
struct timespec current_kernel_time(void)
{
1269
	struct timekeeper *tk = &timekeeper;
1270 1271 1272 1273
	struct timespec now;
	unsigned long seq;

	do {
1274
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1275

1276 1277
		now = tk_xtime(tk);
	} while (read_seqretry(&tk->lock, seq));
1278 1279 1280 1281

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1282 1283 1284

struct timespec get_monotonic_coarse(void)
{
1285
	struct timekeeper *tk = &timekeeper;
1286 1287 1288 1289
	struct timespec now, mono;
	unsigned long seq;

	do {
1290
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1291

1292 1293 1294
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
1295 1296 1297 1298 1299

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1312 1313

/**
1314 1315
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1316 1317
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1318
 * @sleep:	pointer to timespec to be set with time in suspend
1319
 */
1320 1321
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1322
{
1323
	struct timekeeper *tk = &timekeeper;
1324 1325 1326
	unsigned long seq;

	do {
1327 1328 1329 1330 1331
		seq = read_seqbegin(&tk->lock);
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
	} while (read_seqretry(&tk->lock, seq));
1332
}
T
Torben Hohn 已提交
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
{
1345
	struct timekeeper *tk = &timekeeper;
1346 1347 1348 1349 1350
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1351
		seq = read_seqbegin(&tk->lock);
1352

1353 1354
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1355

1356 1357 1358
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
	} while (read_seqretry(&tk->lock, seq));
1359 1360 1361 1362 1363 1364 1365

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1366 1367 1368 1369 1370
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1371
	struct timekeeper *tk = &timekeeper;
1372 1373 1374 1375
	unsigned long seq;
	struct timespec wtom;

	do {
1376 1377 1378
		seq = read_seqbegin(&tk->lock);
		wtom = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
1379

1380 1381
	return timespec_to_ktime(wtom);
}
1382 1383
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

T
Torben Hohn 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}