timekeeping.c 33.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* The shift value of the current clocksource. */
	int	shift;
30 31 32 33 34

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
35 36
	/* shifted nano seconds left over when rounding cycle_interval */
	s64	xtime_remainder;
37 38 39 40 41 42 43 44
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
45 46 47
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
48 49
	/* NTP adjusted clock multiplier */
	u32	mult;
50

51 52
	/* The current time */
	struct timespec xtime;
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
	/*
	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
	 * at zero at system boot time, so wall_to_monotonic will be negative,
	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
	 * the usual normalization.
	 *
	 * wall_to_monotonic is moved after resume from suspend for the
	 * monotonic time not to jump. We need to add total_sleep_time to
	 * wall_to_monotonic to get the real boot based time offset.
	 *
	 * - wall_to_monotonic is no longer the boot time, getboottime must be
	 * used instead.
	 */
	struct timespec wall_to_monotonic;
68 69
	/* time spent in suspend */
	struct timespec total_sleep_time;
70 71
	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
	struct timespec raw_time;
72 73
};

74
static struct timekeeper timekeeper;
75 76 77 78 79 80 81 82 83 84 85 86 87 88

/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
89
	u64 tmp, ntpinterval;
90 91 92 93 94 95 96

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
97
	ntpinterval = tmp;
98 99
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
100 101 102 103 104 105 106 107
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
108
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
109
	timekeeper.raw_interval =
110
		((u64) interval * clock->mult) >> clock->shift;
111 112

	timekeeper.xtime_nsec = 0;
113
	timekeeper.shift = clock->shift;
114 115

	timekeeper.ntp_error = 0;
116
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
117 118 119 120 121 122 123

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
124
}
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

156
	/* return delta convert to nanoseconds. */
157 158 159
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

160 161
/*
 * This read-write spinlock protects us from races in SMP while
162
 * playing with xtime.
163
 */
A
Adrian Bunk 已提交
164
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
165 166 167



168

169 170 171
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

172 173 174
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
175
	timekeeper.xtime.tv_sec += leapsecond;
176
	timekeeper.wall_to_monotonic.tv_sec -= leapsecond;
177 178
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			 timekeeper.clock, timekeeper.mult);
179
}
180 181

/**
182
 * timekeeping_forward_now - update clock to the current time
183
 *
184 185 186
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
187
 */
188
static void timekeeping_forward_now(void)
189 190
{
	cycle_t cycle_now, cycle_delta;
191
	struct clocksource *clock;
192
	s64 nsec;
193

194
	clock = timekeeper.clock;
195
	cycle_now = clock->read(clock);
196
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197
	clock->cycle_last = cycle_now;
198

199 200
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
201 202 203 204

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

205
	timespec_add_ns(&timekeeper.xtime, nsec);
206

207
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208
	timespec_add_ns(&timekeeper.raw_time, nsec);
209 210 211
}

/**
212
 * getnstimeofday - Returns the time of day in a timespec
213 214
 * @ts:		pointer to the timespec to be set
 *
215
 * Returns the time of day in a timespec.
216
 */
217
void getnstimeofday(struct timespec *ts)
218 219 220 221
{
	unsigned long seq;
	s64 nsecs;

222 223
	WARN_ON(timekeeping_suspended);

224 225 226
	do {
		seq = read_seqbegin(&xtime_lock);

227
		*ts = timekeeper.xtime;
228
		nsecs = timekeeping_get_ns();
229

230 231 232
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

233 234 235 236 237 238 239
	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

240 241 242 243 244 245 246 247 248
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
249 250 251 252
		secs = timekeeper.xtime.tv_sec +
				timekeeper.wall_to_monotonic.tv_sec;
		nsecs = timekeeper.xtime.tv_nsec +
				timekeeper.wall_to_monotonic.tv_nsec;
253
		nsecs += timekeeping_get_ns();
254 255
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

	} while (read_seqretry(&xtime_lock, seq));
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
284
		*ts = timekeeper.xtime;
285
		tomono = timekeeper.wall_to_monotonic;
286
		nsecs = timekeeping_get_ns();
287 288
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
289 290 291 292 293 294 295 296

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
		u32 arch_offset;

		seq = read_seqbegin(&xtime_lock);

320
		*ts_raw = timekeeper.raw_time;
321
		*ts_real = timekeeper.xtime;
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

		nsecs_raw = timekeeping_get_ns_raw();
		nsecs_real = timekeeping_get_ns();

		/* If arch requires, add in gettimeoffset() */
		arch_offset = arch_gettimeoffset();
		nsecs_raw += arch_offset;
		nsecs_real += arch_offset;

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

340 341 342 343
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
344
 * NOTE: Users should be converted to using getnstimeofday()
345 346 347 348 349
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

350
	getnstimeofday(&now);
351 352 353 354 355 356 357 358 359 360 361
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
362
int do_settimeofday(const struct timespec *tv)
363
{
364
	struct timespec ts_delta;
365 366 367 368 369 370 371
	unsigned long flags;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

372
	timekeeping_forward_now();
373

374 375
	ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
376 377
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
378

379
	timekeeper.xtime = *tv;
380

381
	timekeeper.ntp_error = 0;
382 383
	ntp_clear();

384 385
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			timekeeper.clock, timekeeper.mult);
386 387 388 389 390 391 392 393 394 395 396

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
	unsigned long flags;

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

	timekeeping_forward_now();

415
	timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
416 417
	timekeeper.wall_to_monotonic =
				timespec_sub(timekeeper.wall_to_monotonic, *ts);
418 419 420 421

	timekeeper.ntp_error = 0;
	ntp_clear();

422 423
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			timekeeper.clock, timekeeper.mult);
424 425 426 427 428 429 430 431 432 433

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(timekeeping_inject_offset);

434 435 436 437 438
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
439
static int change_clocksource(void *data)
440
{
441
	struct clocksource *new, *old;
442

443
	new = (struct clocksource *) data;
444

445
	timekeeping_forward_now();
446 447 448 449 450 451 452 453
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
	return 0;
}
454

455 456 457 458 459 460 461 462 463 464
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
465
		return;
466
	stop_machine(change_clocksource, clock, NULL);
467 468
	tick_clock_notify();
}
469

470 471 472 473 474 475 476 477 478 479 480 481 482 483
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
484

485 486 487 488 489 490 491 492 493 494 495 496 497
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);
498
		nsecs = timekeeping_get_ns_raw();
499
		*ts = timekeeper.raw_time;
500 501 502 503 504 505 506 507

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


508
/**
509
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
510
 */
511
int timekeeping_valid_for_hres(void)
512 513 514 515 516 517 518
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

519
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
520 521 522 523 524 525

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

526 527 528 529 530 531 532 533 534 535 536
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 *
 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
 * ensure that the clocksource does not change!
 */
u64 timekeeping_max_deferment(void)
{
	return timekeeper.clock->max_idle_ns;
}

537
/**
538
 * read_persistent_clock -  Return time from the persistent clock.
539 540
 *
 * Weak dummy function for arches that do not yet support it.
541 542
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
543 544 545
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
546
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
547
{
548 549
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
550 551
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

567 568 569 570 571
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
572
	struct clocksource *clock;
573
	unsigned long flags;
574
	struct timespec now, boot;
575 576

	read_persistent_clock(&now);
577
	read_boot_clock(&boot);
578 579 580

	write_seqlock_irqsave(&xtime_lock, flags);

R
Roman Zippel 已提交
581
	ntp_init();
582

583
	clock = clocksource_default_clock();
584 585
	if (clock->enable)
		clock->enable(clock);
586
	timekeeper_setup_internals(clock);
587

588 589
	timekeeper.xtime.tv_sec = now.tv_sec;
	timekeeper.xtime.tv_nsec = now.tv_nsec;
590 591
	timekeeper.raw_time.tv_sec = 0;
	timekeeper.raw_time.tv_nsec = 0;
592
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
593 594
		boot.tv_sec = timekeeper.xtime.tv_sec;
		boot.tv_nsec = timekeeper.xtime.tv_nsec;
595
	}
596
	set_normalized_timespec(&timekeeper.wall_to_monotonic,
597
				-boot.tv_sec, -boot.tv_nsec);
598 599
	timekeeper.total_sleep_time.tv_sec = 0;
	timekeeper.total_sleep_time.tv_nsec = 0;
600 601 602 603
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* time in seconds when suspend began */
604
static struct timespec timekeeping_suspend_time;
605

606 607 608 609 610 611 612 613 614
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
static void __timekeeping_inject_sleeptime(struct timespec *delta)
{
615
	if (!timespec_valid(delta)) {
616
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
617 618 619 620
					"sleep delta value!\n");
		return;
	}

621
	timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
622 623
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, *delta);
624 625
	timekeeper.total_sleep_time = timespec_add(
					timekeeper.total_sleep_time, *delta);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
}


/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
	unsigned long flags;
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

	write_seqlock_irqsave(&xtime_lock, flags);
	timekeeping_forward_now();

	__timekeeping_inject_sleeptime(delta);

	timekeeper.ntp_error = 0;
	ntp_clear();
656 657
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			timekeeper.clock, timekeeper.mult);
658 659 660 661 662 663 664 665

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();
}


666 667 668 669 670 671 672
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
673
static void timekeeping_resume(void)
674 675
{
	unsigned long flags;
676 677 678
	struct timespec ts;

	read_persistent_clock(&ts);
679

680 681
	clocksource_resume();

682 683
	write_seqlock_irqsave(&xtime_lock, flags);

684 685
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
686
		__timekeeping_inject_sleeptime(&ts);
687 688
	}
	/* re-base the last cycle value */
689 690
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
691 692 693 694 695 696 697 698
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
699
	hrtimers_resume();
700 701
}

702
static int timekeeping_suspend(void)
703 704
{
	unsigned long flags;
705 706
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
707

708
	read_persistent_clock(&timekeeping_suspend_time);
709

710
	write_seqlock_irqsave(&xtime_lock, flags);
711
	timekeeping_forward_now();
712
	timekeeping_suspended = 1;
713 714 715 716 717 718 719

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
720
	delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
721 722 723 724 725 726 727 728 729 730 731 732
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
733 734 735
	write_sequnlock_irqrestore(&xtime_lock, flags);

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
736
	clocksource_suspend();
737 738 739 740 741

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
742
static struct syscore_ops timekeeping_syscore_ops = {
743 744 745 746
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

747
static int __init timekeeping_init_ops(void)
748
{
749 750
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
751 752
}

753
device_initcall(timekeeping_init_ops);
754 755 756 757 758

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
759
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
760 761 762 763 764 765 766 767 768 769 770 771
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
772
	 * here.  This is tuned so that an error of about 1 msec is adjusted
773 774
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
775
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
776 777 778 779 780 781 782 783
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
784
	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
785
	tick_error -= timekeeper.xtime_interval >> 1;
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
810
static void timekeeping_adjust(s64 offset)
811
{
812
	s64 error, interval = timekeeper.cycle_interval;
813 814
	int adj;

815 816 817 818 819 820 821
	/*
	 * The point of this is to check if the error is greater then half
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
822 823
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
824 825
	 * larger then half an interval.
	 *
826
	 * Note: It does not "save" on aggravation when reading the code.
827
	 */
828
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
829
	if (error > interval) {
830 831 832 833 834 835
		/*
		 * We now divide error by 4(via shift), which checks if
		 * the error is greater then twice the interval.
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
836
		error >>= 2;
837 838 839 840 841
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
842
		 * The proper fix is to avoid rounding up by using
843 844 845 846
		 * the high precision timekeeper.xtime_nsec instead of
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
847 848 849
		if (likely(error <= interval))
			adj = 1;
		else
850
			adj = timekeeping_bigadjust(error, &interval, &offset);
851
	} else if (error < -interval) {
852
		/* See comment above, this is just switched for the negative */
853 854 855 856 857 858
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
859
			adj = timekeeping_bigadjust(error, &interval, &offset);
860
	} else /* No adjustment needed */
861 862
		return;

863 864 865 866 867 868 869
	WARN_ONCE(timekeeper.clock->maxadj &&
			(timekeeper.mult + adj > timekeeper.clock->mult +
						timekeeper.clock->maxadj),
			"Adjusting %s more then 11%% (%ld vs %ld)\n",
			timekeeper.clock->name, (long)timekeeper.mult + adj,
			(long)timekeeper.clock->mult +
				timekeeper.clock->maxadj);
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
919
	timekeeper.mult += adj;
920 921 922
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
923
				timekeeper.ntp_error_shift;
924 925
}

L
Linus Torvalds 已提交
926

927 928 929 930 931 932 933 934 935 936 937 938
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
939
	u64 raw_nsecs;
940 941 942 943 944 945 946 947 948 949 950 951

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
		timekeeper.xtime_nsec -= nsecps;
952
		timekeeper.xtime.tv_sec++;
953 954 955
		second_overflow();
	}

956 957
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
958
	raw_nsecs += timekeeper.raw_time.tv_nsec;
959 960 961
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
962
		timekeeper.raw_time.tv_sec += raw_secs;
963
	}
964
	timekeeper.raw_time.tv_nsec = raw_nsecs;
965 966 967

	/* Accumulate error between NTP and clock interval */
	timekeeper.ntp_error += tick_length << shift;
968 969
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
970 971 972 973 974
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
975

976 977 978 979 980
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
981
static void update_wall_time(void)
982
{
983
	struct clocksource *clock;
984
	cycle_t offset;
985
	int shift = 0, maxshift;
986 987 988 989 990

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;

991
	clock = timekeeper.clock;
J
John Stultz 已提交
992 993

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
994
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
995 996
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
997
#endif
998 999
	timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
						timekeeper.shift;
1000

1001 1002 1003 1004 1005 1006 1007
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1008
	 */
1009 1010 1011 1012 1013
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
	shift = min(shift, maxshift);
1014
	while (offset >= timekeeper.cycle_interval) {
1015
		offset = logarithmic_accumulation(offset, shift);
1016 1017
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
1018 1019 1020
	}

	/* correct the clock when NTP error is too big */
1021
	timekeeping_adjust(offset);
1022

1023 1024 1025 1026
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
1027
	 * slightly speeding the clocksource up in timekeeping_adjust(),
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1039 1040 1041
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
1042
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1043 1044
	}

J
John Stultz 已提交
1045 1046 1047

	/*
	 * Store full nanoseconds into xtime after rounding it up and
1048 1049
	 * add the remainder to the error difference.
	 */
1050 1051 1052 1053
	timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
						timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
						timekeeper.shift;
1054 1055
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
1056

J
John Stultz 已提交
1057 1058 1059 1060
	/*
	 * Finally, make sure that after the rounding
	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
	 */
1061 1062 1063
	if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
		timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
		timekeeper.xtime.tv_sec++;
J
John Stultz 已提交
1064 1065
		second_overflow();
	}
L
Linus Torvalds 已提交
1066

1067
	/* check to see if there is a new clocksource to use */
1068 1069
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			timekeeper.clock, timekeeper.mult);
1070
}
T
Tomas Janousek 已提交
1071 1072 1073 1074 1075

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1076
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1077 1078 1079 1080 1081 1082 1083 1084
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1085
	struct timespec boottime = {
1086
		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1087
				timekeeper.total_sleep_time.tv_sec,
1088
		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1089
				timekeeper.total_sleep_time.tv_nsec
1090
	};
1091 1092

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1093
}
1094
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
	struct timespec tomono, sleep;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
1116
		*ts = timekeeper.xtime;
1117
		tomono = timekeeper.wall_to_monotonic;
1118
		sleep = timekeeper.total_sleep_time;
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		nsecs = timekeeping_get_ns();

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1145 1146 1147 1148 1149 1150
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1151
	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
T
Tomas Janousek 已提交
1152
}
1153
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1154

1155 1156
unsigned long get_seconds(void)
{
1157
	return timekeeper.xtime.tv_sec;
1158 1159 1160
}
EXPORT_SYMBOL(get_seconds);

1161 1162
struct timespec __current_kernel_time(void)
{
1163
	return timekeeper.xtime;
1164
}
1165

1166 1167 1168 1169 1170 1171 1172
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
1173

1174
		now = timekeeper.xtime;
1175 1176 1177 1178 1179
	} while (read_seqretry(&xtime_lock, seq));

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1180 1181 1182 1183 1184 1185 1186 1187

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
1188

1189
		now = timekeeper.xtime;
1190
		mono = timekeeper.wall_to_monotonic;
1191 1192 1193 1194 1195 1196
	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1209 1210

/**
1211 1212
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1213 1214
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1215
 * @sleep:	pointer to timespec to be set with time in suspend
1216
 */
1217 1218
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1219 1220 1221 1222 1223
{
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
1224
		*xtim = timekeeper.xtime;
1225
		*wtom = timekeeper.wall_to_monotonic;
1226
		*sleep = timekeeper.total_sleep_time;
1227 1228
	} while (read_seqretry(&xtime_lock, seq));
}
T
Torben Hohn 已提交
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
	unsigned long seq;
	struct timespec wtom;

	do {
		seq = read_seqbegin(&xtime_lock);
1240
		wtom = timekeeper.wall_to_monotonic;
1241 1242 1243 1244
	} while (read_seqretry(&xtime_lock, seq));
	return timespec_to_ktime(wtom);
}

T
Torben Hohn 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}