timekeeping.c 63.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

122 123 124
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

125 126
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
127 128

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
134
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 136 137 138
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
139

140 141
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 143 144
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
145
			tk->last_warning = jiffies;
146
		}
147
		tk->underflow_seen = 0;
148 149
	}

150 151
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 153 154
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
155
			tk->last_warning = jiffies;
156
		}
157
		tk->overflow_seen = 0;
158
	}
159
}
160 161 162

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
163
	struct timekeeper *tk = &tk_core.timekeeper;
164 165
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
181

182
	delta = clocksource_delta(now, last, mask);
183

184 185 186 187
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
188
	if (unlikely((~delta & mask) < (mask >> 3))) {
189
		tk->underflow_seen = 1;
190
		delta = 0;
191
	}
192

193
	/* Cap delta value to the max_cycles values to avoid mult overflows */
194
	if (unlikely(delta > max)) {
195
		tk->overflow_seen = 1;
196
		delta = tkr->clock->max_cycles;
197
	}
198 199 200

	return delta;
}
201 202 203 204
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
205 206 207 208 209 210 211 212 213 214 215 216
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
217 218
#endif

219
/**
220
 * tk_setup_internals - Set up internals to use clocksource clock.
221
 *
222
 * @tk:		The target timekeeper to setup.
223 224 225 226 227 228 229
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
230
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 232
{
	cycle_t interval;
233
	u64 tmp, ntpinterval;
234
	struct clocksource *old_clock;
235

236
	++tk->cs_was_changed_seq;
237 238 239 240 241
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242

P
Peter Zijlstra 已提交
243 244 245 246 247
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

248 249 250
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
251
	ntpinterval = tmp;
252 253
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
254 255 256 257
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
258
	tk->cycle_interval = interval;
259 260

	/* Go back from cycles -> shifted ns */
261 262 263
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
264
		((u64) interval * clock->mult) >> clock->shift;
265

266 267 268 269
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
270
			tk->tkr_mono.xtime_nsec >>= -shift_change;
271
		else
272
			tk->tkr_mono.xtime_nsec <<= shift_change;
273
	}
P
Peter Zijlstra 已提交
274 275
	tk->tkr_raw.xtime_nsec = 0;

276
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
277
	tk->tkr_raw.shift = clock->shift;
278

279 280
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282 283 284 285 286 287

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
288
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
289
	tk->tkr_raw.mult = clock->mult;
290
	tk->ntp_err_mult = 0;
291
}
292

293
/* Timekeeper helper functions. */
294 295

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 297
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298
#else
299
static inline u32 arch_gettimeoffset(void) { return 0; }
300 301
#endif

302 303 304 305 306 307 308 309 310 311 312 313
static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
					  cycle_t delta)
{
	s64 nsec;

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

314
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315
{
316
	cycle_t delta;
317

318
	delta = timekeeping_get_delta(tkr);
319 320
	return timekeeping_delta_to_ns(tkr, delta);
}
321

322 323 324 325
static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
					    cycle_t cycles)
{
	cycle_t delta;
326

327 328 329
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
330 331
}

332 333
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334
 * @tkr: Timekeeping readout base from which we take the update
335 336 337 338
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
339
 * Employ the latch technique; see @raw_write_seqcount_latch.
340 341 342 343 344 345
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
346
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347
{
348
	struct tk_read_base *base = tkf->base;
349 350

	/* Force readers off to base[1] */
351
	raw_write_seqcount_latch(&tkf->seq);
352 353

	/* Update base[0] */
354
	memcpy(base, tkr, sizeof(*base));
355 356

	/* Force readers back to base[0] */
357
	raw_write_seqcount_latch(&tkf->seq);
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
395
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 397 398 399 400 401
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
402
		seq = raw_read_seqcount_latch(&tkf->seq);
403
		tkr = tkf->base + (seq & 0x01);
404
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
405
	} while (read_seqcount_retry(&tkf->seq, seq));
406 407 408

	return now;
}
409 410 411 412 413

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
414 415
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
416 417 418 419 420 421
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
443
	struct tk_read_base *tkr = &tk->tkr_mono;
444 445 446 447

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
448
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
449 450 451 452 453

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
454 455
}

456 457 458 459
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
460
	struct timespec xt, wm;
461

462
	xt = timespec64_to_timespec(tk_xtime(tk));
463
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
464 465
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
482
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
483 484 485 486 487 488
	if (remainder != 0) {
		tk->tkr_mono.xtime_nsec -= remainder;
		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
		tk->ntp_error += remainder << tk->ntp_error_shift;
		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
	}
489 490 491 492 493
}
#else
#define old_vsyscall_fixup(tk)
#endif

494 495
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

496
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
497
{
498
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
499 500 501 502 503 504 505
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
506
	struct timekeeper *tk = &tk_core.timekeeper;
507 508 509
	unsigned long flags;
	int ret;

510
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
511
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
512
	update_pvclock_gtod(tk, true);
513
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
514 515 516 517 518 519 520 521 522 523 524 525 526 527

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

528
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
529
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
530
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
531 532 533 534 535

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

536 537 538 539 540 541 542 543 544 545 546
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

547 548 549 550 551
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
552 553
	u64 seconds;
	u32 nsec;
554 555 556 557 558 559 560 561

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
562 563
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
564
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
565 566

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
567
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
568 569 570 571 572 573

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
574
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
575 576 577
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
578 579
}

580
/* must hold timekeeper_lock */
581
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
582
{
583
	if (action & TK_CLEAR_NTP) {
584
		tk->ntp_error = 0;
585 586
		ntp_clear();
	}
587

588
	tk_update_leap_state(tk);
589 590
	tk_update_ktime_data(tk);

591 592 593
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

594
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
595
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
596 597 598

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
599 600 601 602 603 604 605 606
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
607 608
}

609
/**
610
 * timekeeping_forward_now - update clock to the current time
611
 *
612 613 614
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
615
 */
616
static void timekeeping_forward_now(struct timekeeper *tk)
617
{
618
	struct clocksource *clock = tk->tkr_mono.clock;
619
	cycle_t cycle_now, delta;
620
	s64 nsec;
621

622 623 624
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
625
	tk->tkr_raw.cycle_last  = cycle_now;
626

627
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
628

629
	/* If arch requires, add in get_arch_timeoffset() */
630
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
631

632
	tk_normalize_xtime(tk);
633

P
Peter Zijlstra 已提交
634
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
635
	timespec64_add_ns(&tk->raw_time, nsec);
636 637 638
}

/**
639
 * __getnstimeofday64 - Returns the time of day in a timespec64.
640 641
 * @ts:		pointer to the timespec to be set
 *
642 643
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
644
 */
645
int __getnstimeofday64(struct timespec64 *ts)
646
{
647
	struct timekeeper *tk = &tk_core.timekeeper;
648
	unsigned long seq;
649
	s64 nsecs = 0;
650 651

	do {
652
		seq = read_seqcount_begin(&tk_core.seq);
653

654
		ts->tv_sec = tk->xtime_sec;
655
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
656

657
	} while (read_seqcount_retry(&tk_core.seq, seq));
658

659
	ts->tv_nsec = 0;
660
	timespec64_add_ns(ts, nsecs);
661 662 663 664 665 666 667 668 669

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
670
EXPORT_SYMBOL(__getnstimeofday64);
671 672

/**
673
 * getnstimeofday64 - Returns the time of day in a timespec64.
674
 * @ts:		pointer to the timespec64 to be set
675
 *
676
 * Returns the time of day in a timespec64 (WARN if suspended).
677
 */
678
void getnstimeofday64(struct timespec64 *ts)
679
{
680
	WARN_ON(__getnstimeofday64(ts));
681
}
682
EXPORT_SYMBOL(getnstimeofday64);
683

684 685
ktime_t ktime_get(void)
{
686
	struct timekeeper *tk = &tk_core.timekeeper;
687
	unsigned int seq;
688 689
	ktime_t base;
	s64 nsecs;
690 691 692 693

	WARN_ON(timekeeping_suspended);

	do {
694
		seq = read_seqcount_begin(&tk_core.seq);
695 696
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
697

698
	} while (read_seqcount_retry(&tk_core.seq, seq));
699

700
	return ktime_add_ns(base, nsecs);
701 702 703
}
EXPORT_SYMBOL_GPL(ktime_get);

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
738 739
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
740 741 742 743 744 745 746 747

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

768 769 770 771 772 773 774 775 776 777 778 779
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
780 781
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
782 783 784 785 786 787 788

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

789
/**
790
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
791 792 793 794
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
795
 * in normalized timespec64 format in the variable pointed to by @ts.
796
 */
797
void ktime_get_ts64(struct timespec64 *ts)
798
{
799
	struct timekeeper *tk = &tk_core.timekeeper;
800
	struct timespec64 tomono;
801
	s64 nsec;
802 803 804 805 806
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
807
		seq = read_seqcount_begin(&tk_core.seq);
808
		ts->tv_sec = tk->xtime_sec;
809
		nsec = timekeeping_get_ns(&tk->tkr_mono);
810
		tomono = tk->wall_to_monotonic;
811

812
	} while (read_seqcount_retry(&tk_core.seq, seq));
813

814 815 816
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
817
}
818
EXPORT_SYMBOL_GPL(ktime_get_ts64);
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

868 869 870 871 872 873 874 875 876 877 878 879
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
	s64 nsec_raw;
	s64 nsec_real;
	cycle_t now;

894 895
	WARN_ON_ONCE(timekeeping_suspended);

896 897 898 899
	do {
		seq = read_seqcount_begin(&tk_core.seq);

		now = tk->tkr_mono.read(tk->tkr_mono.clock);
900 901
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
902 903 904 905 906 907 908 909 910 911 912 913
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
914

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
					 cycle_t partial_history_cycles,
					 cycle_t total_history_cycles,
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
	interp_forward = partial_history_cycles > total_history_cycles/2 ?
		true : false;
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1025 1026
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1027
 * @get_time_fn:	Callback to get simultaneous device time and
1028
 *	system counter from the device driver
1029 1030 1031
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1032 1033 1034 1035 1036 1037 1038 1039 1040
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1041
				  struct system_time_snapshot *history_begin,
1042 1043 1044 1045
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1046
	cycle_t cycles, now, interval_start;
1047
	unsigned int clock_was_set_seq = 0;
1048 1049
	ktime_t base_real, base_raw;
	s64 nsec_real, nsec_raw;
1050
	u8 cs_was_changed_seq;
1051
	unsigned long seq;
1052
	bool do_interp;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
		now = tk->tkr_mono.read(tk->tkr_mono.clock);
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
		cycle_t partial_history_cycles, total_history_cycles;
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1133 1134 1135 1136
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1137 1138 1139 1140
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1141
 * NOTE: Users should be converted to using getnstimeofday()
1142 1143 1144
 */
void do_gettimeofday(struct timeval *tv)
{
1145
	struct timespec64 now;
1146

1147
	getnstimeofday64(&now);
1148 1149 1150 1151
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1152

1153
/**
1154 1155
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1156 1157 1158
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1159
int do_settimeofday64(const struct timespec64 *ts)
1160
{
1161
	struct timekeeper *tk = &tk_core.timekeeper;
1162
	struct timespec64 ts_delta, xt;
1163
	unsigned long flags;
1164
	int ret = 0;
1165

1166
	if (!timespec64_valid_strict(ts))
1167 1168
		return -EINVAL;

1169
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1170
	write_seqcount_begin(&tk_core.seq);
1171

1172
	timekeeping_forward_now(tk);
1173

1174
	xt = tk_xtime(tk);
1175 1176
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1177

1178 1179 1180 1181 1182
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1183
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1184

1185
	tk_set_xtime(tk, ts);
1186
out:
1187
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1188

1189
	write_seqcount_end(&tk_core.seq);
1190
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1191 1192 1193 1194

	/* signal hrtimers about time change */
	clock_was_set();

1195
	return ret;
1196
}
1197
EXPORT_SYMBOL(do_settimeofday64);
1198

1199 1200 1201 1202 1203 1204 1205 1206
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
1207
	struct timekeeper *tk = &tk_core.timekeeper;
1208
	unsigned long flags;
1209
	struct timespec64 ts64, tmp;
1210
	int ret = 0;
1211

1212
	if (!timespec_inject_offset_valid(ts))
1213 1214
		return -EINVAL;

1215 1216
	ts64 = timespec_to_timespec64(*ts);

1217
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1218
	write_seqcount_begin(&tk_core.seq);
1219

1220
	timekeeping_forward_now(tk);
1221

1222
	/* Make sure the proposed value is valid */
1223
	tmp = timespec64_add(tk_xtime(tk),  ts64);
1224 1225
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
1226 1227 1228
		ret = -EINVAL;
		goto error;
	}
1229

1230 1231
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1232

1233
error: /* even if we error out, we forwarded the time, so call update */
1234
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1235

1236
	write_seqcount_end(&tk_core.seq);
1237
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1238 1239 1240 1241

	/* signal hrtimers about time change */
	clock_was_set();

1242
	return ret;
1243 1244 1245
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1246 1247 1248 1249 1250 1251 1252

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
1253
	struct timekeeper *tk = &tk_core.timekeeper;
1254 1255 1256 1257
	unsigned int seq;
	s32 ret;

	do {
1258
		seq = read_seqcount_begin(&tk_core.seq);
1259
		ret = tk->tai_offset;
1260
	} while (read_seqcount_retry(&tk_core.seq, seq));
1261 1262 1263 1264 1265 1266 1267 1268

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1269
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1270 1271
{
	tk->tai_offset = tai_offset;
1272
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1273 1274 1275 1276 1277 1278 1279 1280
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1281
	struct timekeeper *tk = &tk_core.timekeeper;
1282 1283
	unsigned long flags;

1284
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1285
	write_seqcount_begin(&tk_core.seq);
1286
	__timekeeping_set_tai_offset(tk, tai_offset);
1287
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1288
	write_seqcount_end(&tk_core.seq);
1289
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1290
	clock_was_set();
1291 1292
}

1293 1294 1295 1296 1297
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1298
static int change_clocksource(void *data)
1299
{
1300
	struct timekeeper *tk = &tk_core.timekeeper;
1301
	struct clocksource *new, *old;
1302
	unsigned long flags;
1303

1304
	new = (struct clocksource *) data;
1305

1306
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1307
	write_seqcount_begin(&tk_core.seq);
1308

1309
	timekeeping_forward_now(tk);
1310 1311 1312 1313 1314 1315
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1316
			old = tk->tkr_mono.clock;
1317 1318 1319 1320 1321 1322 1323
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1324
	}
1325
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1326

1327
	write_seqcount_end(&tk_core.seq);
1328
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1329

1330 1331
	return 0;
}
1332

1333 1334 1335 1336 1337 1338 1339
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1340
int timekeeping_notify(struct clocksource *clock)
1341
{
1342
	struct timekeeper *tk = &tk_core.timekeeper;
1343

1344
	if (tk->tkr_mono.clock == clock)
1345
		return 0;
1346
	stop_machine(change_clocksource, clock, NULL);
1347
	tick_clock_notify();
1348
	return tk->tkr_mono.clock == clock ? 0 : -1;
1349
}
1350

1351
/**
1352 1353
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1354 1355 1356
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1357
void getrawmonotonic64(struct timespec64 *ts)
1358
{
1359
	struct timekeeper *tk = &tk_core.timekeeper;
1360
	struct timespec64 ts64;
1361 1362 1363 1364
	unsigned long seq;
	s64 nsecs;

	do {
1365
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1366
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1367
		ts64 = tk->raw_time;
1368

1369
	} while (read_seqcount_retry(&tk_core.seq, seq));
1370

1371
	timespec64_add_ns(&ts64, nsecs);
1372
	*ts = ts64;
1373
}
1374 1375
EXPORT_SYMBOL(getrawmonotonic64);

1376

1377
/**
1378
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1379
 */
1380
int timekeeping_valid_for_hres(void)
1381
{
1382
	struct timekeeper *tk = &tk_core.timekeeper;
1383 1384 1385 1386
	unsigned long seq;
	int ret;

	do {
1387
		seq = read_seqcount_begin(&tk_core.seq);
1388

1389
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1390

1391
	} while (read_seqcount_retry(&tk_core.seq, seq));
1392 1393 1394 1395

	return ret;
}

1396 1397 1398 1399 1400
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1401
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1402 1403
	unsigned long seq;
	u64 ret;
1404

J
John Stultz 已提交
1405
	do {
1406
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1407

1408
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1409

1410
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1411 1412

	return ret;
1413 1414
}

1415
/**
1416
 * read_persistent_clock -  Return time from the persistent clock.
1417 1418
 *
 * Weak dummy function for arches that do not yet support it.
1419 1420
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1421 1422 1423
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1424
void __weak read_persistent_clock(struct timespec *ts)
1425
{
1426 1427
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1428 1429
}

1430 1431 1432 1433 1434 1435 1436 1437
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1438
/**
X
Xunlei Pang 已提交
1439
 * read_boot_clock64 -  Return time of the system start.
1440 1441 1442
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1443
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1444 1445 1446
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1447
void __weak read_boot_clock64(struct timespec64 *ts)
1448 1449 1450 1451 1452
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1453 1454 1455 1456 1457 1458
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1459 1460 1461 1462 1463
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1464
	struct timekeeper *tk = &tk_core.timekeeper;
1465
	struct clocksource *clock;
1466
	unsigned long flags;
1467
	struct timespec64 now, boot, tmp;
1468

1469
	read_persistent_clock64(&now);
1470
	if (!timespec64_valid_strict(&now)) {
1471 1472 1473 1474
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1475
	} else if (now.tv_sec || now.tv_nsec)
1476
		persistent_clock_exists = true;
1477

1478
	read_boot_clock64(&boot);
1479
	if (!timespec64_valid_strict(&boot)) {
1480 1481 1482 1483 1484
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1485

1486
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1487
	write_seqcount_begin(&tk_core.seq);
1488 1489
	ntp_init();

1490
	clock = clocksource_default_clock();
1491 1492
	if (clock->enable)
		clock->enable(clock);
1493
	tk_setup_internals(tk, clock);
1494

1495 1496 1497
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1498
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1499
		boot = tk_xtime(tk);
1500

1501
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1502
	tk_set_wall_to_mono(tk, tmp);
1503

1504
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1505

1506
	write_seqcount_end(&tk_core.seq);
1507
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1508 1509
}

1510
/* time in seconds when suspend began for persistent clock */
1511
static struct timespec64 timekeeping_suspend_time;
1512

1513 1514 1515 1516 1517 1518 1519
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1520
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1521
					   struct timespec64 *delta)
1522
{
1523
	if (!timespec64_valid_strict(delta)) {
1524 1525 1526
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1527 1528
		return;
	}
1529
	tk_xtime_add(tk, delta);
1530
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1531
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1532
	tk_debug_account_sleep_time(delta);
1533 1534
}

1535
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1571
/**
1572 1573
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1574
 *
1575
 * This hook is for architectures that cannot support read_persistent_clock64
1576
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1577
 * and also don't have an effective nonstop clocksource.
1578 1579 1580 1581
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1582
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1583
{
1584
	struct timekeeper *tk = &tk_core.timekeeper;
1585
	unsigned long flags;
1586

1587
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1588
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1589

1590
	timekeeping_forward_now(tk);
1591

1592
	__timekeeping_inject_sleeptime(tk, delta);
1593

1594
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1595

1596
	write_seqcount_end(&tk_core.seq);
1597
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1598 1599 1600 1601

	/* signal hrtimers about time change */
	clock_was_set();
}
1602
#endif
1603

1604 1605 1606
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1607
void timekeeping_resume(void)
1608
{
1609
	struct timekeeper *tk = &tk_core.timekeeper;
1610
	struct clocksource *clock = tk->tkr_mono.clock;
1611
	unsigned long flags;
1612
	struct timespec64 ts_new, ts_delta;
1613
	cycle_t cycle_now, cycle_delta;
1614

1615
	sleeptime_injected = false;
1616
	read_persistent_clock64(&ts_new);
1617

1618
	clockevents_resume();
1619 1620
	clocksource_resume();

1621
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1622
	write_seqcount_begin(&tk_core.seq);
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1636
	cycle_now = tk->tkr_mono.read(clock);
1637
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1638
		cycle_now > tk->tkr_mono.cycle_last) {
1639 1640 1641 1642 1643
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1644 1645
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1660
		ts_delta = ns_to_timespec64(nsec);
1661
		sleeptime_injected = true;
1662 1663
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1664
		sleeptime_injected = true;
1665
	}
1666

1667
	if (sleeptime_injected)
1668 1669 1670
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1671
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1672 1673
	tk->tkr_raw.cycle_last  = cycle_now;

1674
	tk->ntp_error = 0;
1675
	timekeeping_suspended = 0;
1676
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1677
	write_seqcount_end(&tk_core.seq);
1678
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1679 1680 1681

	touch_softlockup_watchdog();

1682
	tick_resume();
1683
	hrtimers_resume();
1684 1685
}

1686
int timekeeping_suspend(void)
1687
{
1688
	struct timekeeper *tk = &tk_core.timekeeper;
1689
	unsigned long flags;
1690 1691
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1692

1693
	read_persistent_clock64(&timekeeping_suspend_time);
1694

1695 1696 1697 1698 1699 1700
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1701
		persistent_clock_exists = true;
1702

1703
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1704
	write_seqcount_begin(&tk_core.seq);
1705
	timekeeping_forward_now(tk);
1706
	timekeeping_suspended = 1;
1707

1708
	if (persistent_clock_exists) {
1709
		/*
1710 1711 1712 1713
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1714
		 */
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1728
	}
1729 1730

	timekeeping_update(tk, TK_MIRROR);
1731
	halt_fast_timekeeper(tk);
1732
	write_seqcount_end(&tk_core.seq);
1733
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1734

1735
	tick_suspend();
M
Magnus Damm 已提交
1736
	clocksource_suspend();
1737
	clockevents_suspend();
1738 1739 1740 1741 1742

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1743
static struct syscore_ops timekeeping_syscore_ops = {
1744 1745 1746 1747
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1748
static int __init timekeeping_init_ops(void)
1749
{
1750 1751
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1752
}
1753
device_initcall(timekeeping_init_ops);
1754 1755

/*
1756
 * Apply a multiplier adjustment to the timekeeper
1757
 */
1758 1759 1760 1761
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1762
{
1763 1764
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1765

1766 1767 1768 1769
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1770
	}
1771 1772 1773
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1774

1775 1776 1777
	/*
	 * So the following can be confusing.
	 *
1778
	 * To keep things simple, lets assume mult_adj == 1 for now.
1779
	 *
1780
	 * When mult_adj != 1, remember that the interval and offset values
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1824
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1825 1826 1827 1828 1829
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1830
	tk->tkr_mono.mult += mult_adj;
1831
	tk->xtime_interval += interval;
1832
	tk->tkr_mono.xtime_nsec -= offset;
1833
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1845 1846 1847
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1848 1849
	s64 tick_error;
	bool negative;
1850
	u32 adj_scale;
1851 1852 1853 1854 1855

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1856 1857
	tk->ntp_tick = ntp_tick_length();

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1880
	tick_error = abs(tick_error);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1891
		tick_error >>= 1;
1892
	}
1893 1894

	/* scale the corrections */
1895
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1917 1918 1919
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1920 1921
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1922 1923
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1924
	}
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1940 1941 1942
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1943
		tk->ntp_error += neg << tk->ntp_error_shift;
1944
	}
1945 1946
}

1947 1948 1949
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1950
 * Helper function that accumulates the nsecs greater than a second
1951 1952 1953 1954
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1955
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1956
{
1957
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1958
	unsigned int clock_set = 0;
1959

1960
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1961 1962
		int leap;

1963
		tk->tkr_mono.xtime_nsec -= nsecps;
1964 1965 1966 1967
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1968
		if (unlikely(leap)) {
1969
			struct timespec64 ts;
1970 1971

			tk->xtime_sec += leap;
1972

1973 1974 1975
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1976
				timespec64_sub(tk->wall_to_monotonic, ts));
1977

1978 1979
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1980
			clock_set = TK_CLOCK_WAS_SET;
1981
		}
1982
	}
1983
	return clock_set;
1984 1985
}

1986 1987 1988 1989 1990 1991 1992 1993 1994
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1995
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1996 1997
						u32 shift,
						unsigned int *clock_set)
1998
{
T
Thomas Gleixner 已提交
1999
	cycle_t interval = tk->cycle_interval << shift;
2000
	u64 raw_nsecs;
2001

Z
Zhen Lei 已提交
2002
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2003
	if (offset < interval)
2004 2005 2006
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2007
	offset -= interval;
2008
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2009
	tk->tkr_raw.cycle_last  += interval;
2010

2011
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2012
	*clock_set |= accumulate_nsecs_to_secs(tk);
2013

2014
	/* Accumulate raw time */
2015
	raw_nsecs = (u64)tk->raw_interval << shift;
2016
	raw_nsecs += tk->raw_time.tv_nsec;
2017 2018 2019
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2020
		tk->raw_time.tv_sec += raw_secs;
2021
	}
2022
	tk->raw_time.tv_nsec = raw_nsecs;
2023 2024

	/* Accumulate error between NTP and clock interval */
2025
	tk->ntp_error += tk->ntp_tick << shift;
2026 2027
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2028 2029 2030 2031

	return offset;
}

2032 2033 2034 2035
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2036
void update_wall_time(void)
2037
{
2038
	struct timekeeper *real_tk = &tk_core.timekeeper;
2039
	struct timekeeper *tk = &shadow_timekeeper;
2040
	cycle_t offset;
2041
	int shift = 0, maxshift;
2042
	unsigned int clock_set = 0;
J
John Stultz 已提交
2043 2044
	unsigned long flags;

2045
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2046 2047 2048

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2049
		goto out;
2050

J
John Stultz 已提交
2051
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2052
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2053
#else
2054 2055
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2056 2057
#endif

2058
	/* Check if there's really nothing to do */
2059
	if (offset < real_tk->cycle_interval)
2060 2061
		goto out;

2062 2063 2064
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

2065 2066 2067 2068
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2069
	 * that is smaller than the offset.  We then accumulate that
2070 2071
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2072
	 */
2073
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2074
	shift = max(0, shift);
2075
	/* Bound shift to one less than what overflows tick_length */
2076
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2077
	shift = min(shift, maxshift);
2078
	while (offset >= tk->cycle_interval) {
2079 2080
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2081
		if (offset < tk->cycle_interval<<shift)
2082
			shift--;
2083 2084 2085
	}

	/* correct the clock when NTP error is too big */
2086
	timekeeping_adjust(tk, offset);
2087

J
John Stultz 已提交
2088
	/*
2089 2090 2091 2092
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
2093

J
John Stultz 已提交
2094 2095
	/*
	 * Finally, make sure that after the rounding
2096
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2097
	 */
2098
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2099

2100
	write_seqcount_begin(&tk_core.seq);
2101 2102 2103 2104 2105 2106 2107
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2108
	 * memcpy under the tk_core.seq against one before we start
2109 2110
	 * updating.
	 */
2111
	timekeeping_update(tk, clock_set);
2112
	memcpy(real_tk, tk, sizeof(*tk));
2113
	/* The memcpy must come last. Do not put anything here! */
2114
	write_seqcount_end(&tk_core.seq);
2115
out:
2116
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2117
	if (clock_set)
2118 2119
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2120
}
T
Tomas Janousek 已提交
2121 2122

/**
2123 2124
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2125
 *
2126
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2127 2128 2129 2130 2131 2132
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2133
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2134
{
2135
	struct timekeeper *tk = &tk_core.timekeeper;
2136 2137
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

2138
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2139
}
2140
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2141

2142 2143
unsigned long get_seconds(void)
{
2144
	struct timekeeper *tk = &tk_core.timekeeper;
2145 2146

	return tk->xtime_sec;
2147 2148 2149
}
EXPORT_SYMBOL(get_seconds);

2150 2151
struct timespec __current_kernel_time(void)
{
2152
	struct timekeeper *tk = &tk_core.timekeeper;
2153

2154
	return timespec64_to_timespec(tk_xtime(tk));
2155
}
2156

2157
struct timespec64 current_kernel_time64(void)
2158
{
2159
	struct timekeeper *tk = &tk_core.timekeeper;
2160
	struct timespec64 now;
2161 2162 2163
	unsigned long seq;

	do {
2164
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2165

2166
		now = tk_xtime(tk);
2167
	} while (read_seqcount_retry(&tk_core.seq, seq));
2168

2169
	return now;
2170
}
2171
EXPORT_SYMBOL(current_kernel_time64);
2172

2173
struct timespec64 get_monotonic_coarse64(void)
2174
{
2175
	struct timekeeper *tk = &tk_core.timekeeper;
2176
	struct timespec64 now, mono;
2177 2178 2179
	unsigned long seq;

	do {
2180
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2181

2182 2183
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2184
	} while (read_seqcount_retry(&tk_core.seq, seq));
2185

2186
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2187
				now.tv_nsec + mono.tv_nsec);
2188

2189
	return now;
2190
}
2191
EXPORT_SYMBOL(get_monotonic_coarse64);
2192 2193

/*
2194
 * Must hold jiffies_lock
2195 2196 2197 2198 2199 2200
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2201

2202
/**
2203
 * ktime_get_update_offsets_now - hrtimer helper
2204
 * @cwsseq:	pointer to check and store the clock was set sequence number
2205 2206
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2207
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2208
 *
2209 2210 2211 2212
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2213
 * Called from hrtimer_interrupt() or retrigger_next_event()
2214
 */
2215 2216
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2217
{
2218
	struct timekeeper *tk = &tk_core.timekeeper;
2219
	unsigned int seq;
2220 2221
	ktime_t base;
	u64 nsecs;
2222 2223

	do {
2224
		seq = read_seqcount_begin(&tk_core.seq);
2225

2226 2227
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2228 2229
		base = ktime_add_ns(base, nsecs);

2230 2231 2232 2233 2234 2235
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2236 2237 2238 2239 2240

		/* Handle leapsecond insertion adjustments */
		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2241
	} while (read_seqcount_retry(&tk_core.seq, seq));
2242

2243
	return base;
2244 2245
}

2246 2247 2248 2249 2250
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2251
	struct timekeeper *tk = &tk_core.timekeeper;
2252
	unsigned long flags;
2253
	struct timespec64 ts;
2254
	s32 orig_tai, tai;
2255 2256 2257 2258 2259 2260 2261
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2273
	getnstimeofday64(&ts);
2274

2275
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2276
	write_seqcount_begin(&tk_core.seq);
2277

2278
	orig_tai = tai = tk->tai_offset;
2279
	ret = __do_adjtimex(txc, &ts, &tai);
2280

2281 2282
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2283
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2284
	}
2285 2286
	tk_update_leap_state(tk);

2287
	write_seqcount_end(&tk_core.seq);
2288 2289
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2290 2291 2292
	if (tai != orig_tai)
		clock_was_set();

2293 2294
	ntp_notify_cmos_timer();

2295 2296
	return ret;
}
2297 2298 2299 2300 2301

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2302
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2303
{
2304 2305 2306
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2307
	write_seqcount_begin(&tk_core.seq);
2308

2309
	__hardpps(phase_ts, raw_ts);
2310

2311
	write_seqcount_end(&tk_core.seq);
2312
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2313 2314 2315 2316
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2317 2318 2319 2320 2321 2322 2323 2324
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2325
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2326
	do_timer(ticks);
2327
	write_sequnlock(&jiffies_lock);
2328
	update_wall_time();
T
Torben Hohn 已提交
2329
}