timekeeping.c 45.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

50 51 52
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

53 54 55 56 57 58 59 60
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

61 62 63 64 65 66 67 68 69
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
	return ts;
}

70
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
71 72
{
	tk->xtime_sec = ts->tv_sec;
73
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
74 75
}

76
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
77 78
{
	tk->xtime_sec += ts->tv_sec;
79
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
80
	tk_normalize_xtime(tk);
81
}
82

83
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
84
{
85
	struct timespec64 tmp;
86 87 88 89 90

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
91
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
92
					-tk->wall_to_monotonic.tv_nsec);
93
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
94
	tk->wall_to_monotonic = wtm;
95 96
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
97
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
98 99
}

100
static void tk_set_sleep_time(struct timekeeper *tk, struct timespec64 t)
101 102
{
	/* Verify consistency before modifying */
103
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec64_to_ktime(tk->total_sleep_time).tv64);
104 105

	tk->total_sleep_time	= t;
106
	tk->offs_boot		= timespec64_to_ktime(t);
107 108
}

109
/**
110
 * tk_setup_internals - Set up internals to use clocksource clock.
111
 *
112
 * @tk:		The target timekeeper to setup.
113 114 115 116 117 118 119
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
120
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
121 122
{
	cycle_t interval;
123
	u64 tmp, ntpinterval;
124
	struct clocksource *old_clock;
125

126 127
	old_clock = tk->clock;
	tk->clock = clock;
128
	tk->cycle_last = clock->cycle_last = clock->read(clock);
129 130 131 132

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
133
	ntpinterval = tmp;
134 135
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
136 137 138 139
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
140
	tk->cycle_interval = interval;
141 142

	/* Go back from cycles -> shifted ns */
143 144 145
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
146
		((u64) interval * clock->mult) >> clock->shift;
147

148 149 150 151
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
152
			tk->xtime_nsec >>= -shift_change;
153
		else
154
			tk->xtime_nsec <<= shift_change;
155
	}
156
	tk->shift = clock->shift;
157

158 159
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
160 161 162 163 164 165

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
166
	tk->mult = clock->mult;
167
}
168

169
/* Timekeeper helper functions. */
170 171

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
172 173
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
174
#else
175
static inline u32 arch_gettimeoffset(void) { return 0; }
176 177
#endif

178
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
179 180 181
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
182
	s64 nsec;
183 184

	/* read clocksource: */
185
	clock = tk->clock;
186 187 188 189 190
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

191 192
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
193

194
	/* If arch requires, add in get_arch_timeoffset() */
195
	return nsec + arch_gettimeoffset();
196 197
}

198
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
199 200 201
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
202
	s64 nsec;
203 204

	/* read clocksource: */
205
	clock = tk->clock;
206 207 208 209 210
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

211 212 213
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

214
	/* If arch requires, add in get_arch_timeoffset() */
215
	return nsec + arch_gettimeoffset();
216 217
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
	struct timespec xt;

	xt = tk_xtime(tk);
	update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;
	tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
}
#else
#define old_vsyscall_fixup(tk)
#endif

252 253
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

254
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
255
{
256
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
257 258 259 260 261 262 263
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
264
	struct timekeeper *tk = &tk_core.timekeeper;
265 266 267
	unsigned long flags;
	int ret;

268
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
269
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
270
	update_pvclock_gtod(tk, true);
271
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
272 273 274 275 276 277 278 279 280 281 282 283 284 285

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

286
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
287
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
288
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
289 290 291 292 293

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
	s64 nsec;

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
	nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec *= NSEC_PER_SEC;
	nsec += tk->wall_to_monotonic.tv_nsec;
	tk->base_mono = ns_to_ktime(nsec);
}

314
/* must hold timekeeper_lock */
315
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
316
{
317
	if (action & TK_CLEAR_NTP) {
318
		tk->ntp_error = 0;
319 320
		ntp_clear();
	}
321
	update_vsyscall(tk);
322
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
323

324 325
	tk_update_ktime_data(tk);

326
	if (action & TK_MIRROR)
327 328
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
329 330
}

331
/**
332
 * timekeeping_forward_now - update clock to the current time
333
 *
334 335 336
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
337
 */
338
static void timekeeping_forward_now(struct timekeeper *tk)
339 340
{
	cycle_t cycle_now, cycle_delta;
341
	struct clocksource *clock;
342
	s64 nsec;
343

344
	clock = tk->clock;
345
	cycle_now = clock->read(clock);
346
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
347
	tk->cycle_last = clock->cycle_last = cycle_now;
348

349
	tk->xtime_nsec += cycle_delta * tk->mult;
350

351
	/* If arch requires, add in get_arch_timeoffset() */
352
	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
353

354
	tk_normalize_xtime(tk);
355

356
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
357
	timespec64_add_ns(&tk->raw_time, nsec);
358 359 360
}

/**
361
 * __getnstimeofday64 - Returns the time of day in a timespec64.
362 363
 * @ts:		pointer to the timespec to be set
 *
364 365
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
366
 */
367
int __getnstimeofday64(struct timespec64 *ts)
368
{
369
	struct timekeeper *tk = &tk_core.timekeeper;
370
	unsigned long seq;
371
	s64 nsecs = 0;
372 373

	do {
374
		seq = read_seqcount_begin(&tk_core.seq);
375

376
		ts->tv_sec = tk->xtime_sec;
377
		nsecs = timekeeping_get_ns(tk);
378

379
	} while (read_seqcount_retry(&tk_core.seq, seq));
380

381
	ts->tv_nsec = 0;
382
	timespec64_add_ns(ts, nsecs);
383 384 385 386 387 388 389 390 391

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
392
EXPORT_SYMBOL(__getnstimeofday64);
393 394

/**
395
 * getnstimeofday64 - Returns the time of day in a timespec64.
396 397 398 399
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
400
void getnstimeofday64(struct timespec64 *ts)
401
{
402
	WARN_ON(__getnstimeofday64(ts));
403
}
404
EXPORT_SYMBOL(getnstimeofday64);
405

406 407
ktime_t ktime_get(void)
{
408
	struct timekeeper *tk = &tk_core.timekeeper;
409
	unsigned int seq;
410 411
	ktime_t base;
	s64 nsecs;
412 413 414 415

	WARN_ON(timekeeping_suspended);

	do {
416
		seq = read_seqcount_begin(&tk_core.seq);
417 418
		base = tk->base_mono;
		nsecs = timekeeping_get_ns(tk);
419

420
	} while (read_seqcount_retry(&tk_core.seq, seq));
421

422
	return ktime_add_ns(base, nsecs);
423 424 425
}
EXPORT_SYMBOL_GPL(ktime_get);

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = ktime_add(tk->base_mono, *offset);
		nsecs = timekeeping_get_ns(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

473
/**
474
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
475 476 477 478 479 480
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
481
void ktime_get_ts64(struct timespec64 *ts)
482
{
483
	struct timekeeper *tk = &tk_core.timekeeper;
484
	struct timespec64 tomono;
485
	s64 nsec;
486 487 488 489 490
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
491
		seq = read_seqcount_begin(&tk_core.seq);
492
		ts->tv_sec = tk->xtime_sec;
493
		nsec = timekeeping_get_ns(tk);
494
		tomono = tk->wall_to_monotonic;
495

496
	} while (read_seqcount_retry(&tk_core.seq, seq));
497

498 499 500
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
501
}
502
EXPORT_SYMBOL_GPL(ktime_get_ts64);
503

J
John Stultz 已提交
504 505 506 507 508 509 510 511 512

/**
 * timekeeping_clocktai - Returns the TAI time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void timekeeping_clocktai(struct timespec *ts)
{
513
	struct timekeeper *tk = &tk_core.timekeeper;
514
	struct timespec64 ts64;
J
John Stultz 已提交
515 516 517 518 519 520
	unsigned long seq;
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
521
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
522

523
		ts64.tv_sec = tk->xtime_sec + tk->tai_offset;
J
John Stultz 已提交
524 525
		nsecs = timekeeping_get_ns(tk);

526
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
527

528 529 530
	ts64.tv_nsec = 0;
	timespec64_add_ns(&ts64, nsecs);
	*ts = timespec64_to_timespec(ts64);
J
John Stultz 已提交
531 532 533 534

}
EXPORT_SYMBOL(timekeeping_clocktai);

535 536 537 538 539 540 541 542 543 544 545 546 547
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
548
	struct timekeeper *tk = &tk_core.timekeeper;
549 550 551 552 553 554
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
555
		seq = read_seqcount_begin(&tk_core.seq);
556

557
		*ts_raw = timespec64_to_timespec(tk->raw_time);
558
		ts_real->tv_sec = tk->xtime_sec;
559
		ts_real->tv_nsec = 0;
560

561 562
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
563

564
	} while (read_seqcount_retry(&tk_core.seq, seq));
565 566 567 568 569 570 571 572

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

573 574 575 576
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
577
 * NOTE: Users should be converted to using getnstimeofday()
578 579 580
 */
void do_gettimeofday(struct timeval *tv)
{
581
	struct timespec64 now;
582

583
	getnstimeofday64(&now);
584 585 586 587
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
588

589 590 591 592 593 594
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
595
int do_settimeofday(const struct timespec *tv)
596
{
597
	struct timekeeper *tk = &tk_core.timekeeper;
598
	struct timespec64 ts_delta, xt, tmp;
599
	unsigned long flags;
600

601
	if (!timespec_valid_strict(tv))
602 603
		return -EINVAL;

604
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
605
	write_seqcount_begin(&tk_core.seq);
606

607
	timekeeping_forward_now(tk);
608

609
	xt = tk_xtime(tk);
610 611 612
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

613
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
614

615 616
	tmp = timespec_to_timespec64(*tv);
	tk_set_xtime(tk, &tmp);
617

618
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
619

620
	write_seqcount_end(&tk_core.seq);
621
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
622 623 624 625 626 627 628 629

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

630 631 632 633 634 635 636 637
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
638
	struct timekeeper *tk = &tk_core.timekeeper;
639
	unsigned long flags;
640
	struct timespec64 ts64, tmp;
641
	int ret = 0;
642 643 644 645

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

646 647
	ts64 = timespec_to_timespec64(*ts);

648
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
649
	write_seqcount_begin(&tk_core.seq);
650

651
	timekeeping_forward_now(tk);
652

653
	/* Make sure the proposed value is valid */
654 655
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
656 657 658
		ret = -EINVAL;
		goto error;
	}
659

660 661
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
662

663
error: /* even if we error out, we forwarded the time, so call update */
664
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
665

666
	write_seqcount_end(&tk_core.seq);
667
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
668 669 670 671

	/* signal hrtimers about time change */
	clock_was_set();

672
	return ret;
673 674 675
}
EXPORT_SYMBOL(timekeeping_inject_offset);

676 677 678 679 680 681 682

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
683
	struct timekeeper *tk = &tk_core.timekeeper;
684 685 686 687
	unsigned int seq;
	s32 ret;

	do {
688
		seq = read_seqcount_begin(&tk_core.seq);
689
		ret = tk->tai_offset;
690
	} while (read_seqcount_retry(&tk_core.seq, seq));
691 692 693 694 695 696 697 698

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
699
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
700 701
{
	tk->tai_offset = tai_offset;
702
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
703 704 705 706 707 708 709 710
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
711
	struct timekeeper *tk = &tk_core.timekeeper;
712 713
	unsigned long flags;

714
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
715
	write_seqcount_begin(&tk_core.seq);
716
	__timekeeping_set_tai_offset(tk, tai_offset);
717
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
718
	write_seqcount_end(&tk_core.seq);
719
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
720
	clock_was_set();
721 722
}

723 724 725 726 727
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
728
static int change_clocksource(void *data)
729
{
730
	struct timekeeper *tk = &tk_core.timekeeper;
731
	struct clocksource *new, *old;
732
	unsigned long flags;
733

734
	new = (struct clocksource *) data;
735

736
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
737
	write_seqcount_begin(&tk_core.seq);
738

739
	timekeeping_forward_now(tk);
740 741 742 743 744 745 746 747 748 749 750 751 752 753
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
			old = tk->clock;
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
754
	}
755
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
756

757
	write_seqcount_end(&tk_core.seq);
758
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
759

760 761
	return 0;
}
762

763 764 765 766 767 768 769
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
770
int timekeeping_notify(struct clocksource *clock)
771
{
772
	struct timekeeper *tk = &tk_core.timekeeper;
773 774

	if (tk->clock == clock)
775
		return 0;
776
	stop_machine(change_clocksource, clock, NULL);
777
	tick_clock_notify();
778
	return tk->clock == clock ? 0 : -1;
779
}
780

781 782 783 784 785 786 787 788
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
789
	struct timekeeper *tk = &tk_core.timekeeper;
790
	struct timespec64 ts64;
791 792 793 794
	unsigned long seq;
	s64 nsecs;

	do {
795
		seq = read_seqcount_begin(&tk_core.seq);
796
		nsecs = timekeeping_get_ns_raw(tk);
797
		ts64 = tk->raw_time;
798

799
	} while (read_seqcount_retry(&tk_core.seq, seq));
800

801 802
	timespec64_add_ns(&ts64, nsecs);
	*ts = timespec64_to_timespec(ts64);
803 804 805
}
EXPORT_SYMBOL(getrawmonotonic);

806
/**
807
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
808
 */
809
int timekeeping_valid_for_hres(void)
810
{
811
	struct timekeeper *tk = &tk_core.timekeeper;
812 813 814 815
	unsigned long seq;
	int ret;

	do {
816
		seq = read_seqcount_begin(&tk_core.seq);
817

818
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
819

820
	} while (read_seqcount_retry(&tk_core.seq, seq));
821 822 823 824

	return ret;
}

825 826 827 828 829
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
830
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
831 832
	unsigned long seq;
	u64 ret;
833

J
John Stultz 已提交
834
	do {
835
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
836

837
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
838

839
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
840 841

	return ret;
842 843
}

844
/**
845
 * read_persistent_clock -  Return time from the persistent clock.
846 847
 *
 * Weak dummy function for arches that do not yet support it.
848 849
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
850 851 852
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
853
void __weak read_persistent_clock(struct timespec *ts)
854
{
855 856
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
857 858
}

859 860 861 862 863 864 865 866 867
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
868
void __weak read_boot_clock(struct timespec *ts)
869 870 871 872 873
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

874 875 876 877 878
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
879
	struct timekeeper *tk = &tk_core.timekeeper;
880
	struct clocksource *clock;
881
	unsigned long flags;
882 883
	struct timespec64 now, boot, tmp;
	struct timespec ts;
884

885 886 887
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
888 889 890 891
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
892 893
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
894

895 896 897
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
898 899 900 901 902
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
903

904
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
905
	write_seqcount_begin(&tk_core.seq);
906 907
	ntp_init();

908
	clock = clocksource_default_clock();
909 910
	if (clock->enable)
		clock->enable(clock);
911
	tk_setup_internals(tk, clock);
912

913 914 915
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
916
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
917
		boot = tk_xtime(tk);
918

919
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
920
	tk_set_wall_to_mono(tk, tmp);
921 922 923

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
924
	tk_set_sleep_time(tk, tmp);
925

926
	timekeeping_update(tk, TK_MIRROR);
927

928
	write_seqcount_end(&tk_core.seq);
929
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
930 931 932
}

/* time in seconds when suspend began */
933
static struct timespec64 timekeeping_suspend_time;
934

935 936 937 938 939 940 941
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
942
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
943
					   struct timespec64 *delta)
944
{
945
	if (!timespec64_valid_strict(delta)) {
946 947 948
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
949 950
		return;
	}
951
	tk_xtime_add(tk, delta);
952 953
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec64_add(tk->total_sleep_time, *delta));
954
	tk_debug_account_sleep_time(delta);
955 956 957 958 959 960 961 962 963 964 965 966 967 968
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
969
	struct timekeeper *tk = &tk_core.timekeeper;
970
	struct timespec64 tmp;
971
	unsigned long flags;
972

973 974 975 976 977
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
978 979
		return;

980
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
981
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
982

983
	timekeeping_forward_now(tk);
984

985 986
	tmp = timespec_to_timespec64(*delta);
	__timekeeping_inject_sleeptime(tk, &tmp);
987

988
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
989

990
	write_seqcount_end(&tk_core.seq);
991
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
992 993 994 995 996

	/* signal hrtimers about time change */
	clock_was_set();
}

997 998 999 1000 1001 1002 1003
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1004
static void timekeeping_resume(void)
1005
{
1006
	struct timekeeper *tk = &tk_core.timekeeper;
1007
	struct clocksource *clock = tk->clock;
1008
	unsigned long flags;
1009 1010
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1011 1012
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1013

1014 1015
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1016

1017
	clockevents_resume();
1018 1019
	clocksource_resume();

1020
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1021
	write_seqcount_begin(&tk_core.seq);
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = clock->read(clock);
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
		cycle_now > clock->cycle_last) {
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1058
		ts_delta = ns_to_timespec64(nsec);
1059
		suspendtime_found = true;
1060 1061
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1062
		suspendtime_found = true;
1063
	}
1064 1065 1066 1067 1068

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1069
	tk->cycle_last = clock->cycle_last = cycle_now;
1070
	tk->ntp_error = 0;
1071
	timekeeping_suspended = 0;
1072
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1073
	write_seqcount_end(&tk_core.seq);
1074
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1075 1076 1077 1078 1079 1080

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1081
	hrtimers_resume();
1082 1083
}

1084
static int timekeeping_suspend(void)
1085
{
1086
	struct timekeeper *tk = &tk_core.timekeeper;
1087
	unsigned long flags;
1088 1089 1090
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1091

1092 1093
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1094

1095 1096 1097 1098 1099 1100 1101 1102
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1103
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1104
	write_seqcount_begin(&tk_core.seq);
1105
	timekeeping_forward_now(tk);
1106
	timekeeping_suspended = 1;
1107 1108 1109 1110 1111 1112 1113

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1114 1115
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1116 1117 1118 1119 1120 1121 1122 1123 1124
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1125
			timespec64_add(timekeeping_suspend_time, delta_delta);
1126
	}
1127 1128

	timekeeping_update(tk, TK_MIRROR);
1129
	write_seqcount_end(&tk_core.seq);
1130
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1131 1132

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1133
	clocksource_suspend();
1134
	clockevents_suspend();
1135 1136 1137 1138 1139

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1140
static struct syscore_ops timekeeping_syscore_ops = {
1141 1142 1143 1144
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1145
static int __init timekeeping_init_ops(void)
1146
{
1147 1148
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1149 1150
}

1151
device_initcall(timekeeping_init_ops);
1152 1153 1154 1155 1156

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
1157 1158
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
1171
	 * here.  This is tuned so that an error of about 1 msec is adjusted
1172 1173
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
1174
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1175 1176 1177 1178 1179 1180 1181 1182
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
1183 1184
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
1209
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1210
{
1211
	s64 error, interval = tk->cycle_interval;
1212 1213
	int adj;

1214
	/*
1215
	 * The point of this is to check if the error is greater than half
1216 1217 1218 1219 1220
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
1221 1222
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
1223
	 * larger than half an interval.
1224
	 *
1225
	 * Note: It does not "save" on aggravation when reading the code.
1226
	 */
1227
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1228
	if (error > interval) {
1229 1230
		/*
		 * We now divide error by 4(via shift), which checks if
1231
		 * the error is greater than twice the interval.
1232 1233 1234
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1235 1236 1237 1238
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1255

1256 1257
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1258
		printk_deferred_once(KERN_WARNING
1259
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1260 1261
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
1262
	}
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1312 1313 1314 1315
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1316

1317
out_adjust:
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1332 1333 1334 1335
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1336 1337
	}

1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1348
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1349 1350
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1351
	unsigned int clock_set = 0;
1352 1353 1354 1355 1356 1357 1358 1359 1360

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1361
		if (unlikely(leap)) {
1362
			struct timespec64 ts;
1363 1364

			tk->xtime_sec += leap;
1365

1366 1367 1368
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1369
				timespec64_sub(tk->wall_to_monotonic, ts));
1370

1371 1372
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1373
			clock_set = TK_CLOCK_WAS_SET;
1374
		}
1375
	}
1376
	return clock_set;
1377 1378
}

1379 1380 1381 1382 1383 1384 1385 1386 1387
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1388
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1389 1390
						u32 shift,
						unsigned int *clock_set)
1391
{
T
Thomas Gleixner 已提交
1392
	cycle_t interval = tk->cycle_interval << shift;
1393
	u64 raw_nsecs;
1394

1395
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1396
	if (offset < interval)
1397 1398 1399
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1400
	offset -= interval;
1401
	tk->cycle_last += interval;
1402

1403
	tk->xtime_nsec += tk->xtime_interval << shift;
1404
	*clock_set |= accumulate_nsecs_to_secs(tk);
1405

1406
	/* Accumulate raw time */
1407
	raw_nsecs = (u64)tk->raw_interval << shift;
1408
	raw_nsecs += tk->raw_time.tv_nsec;
1409 1410 1411
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1412
		tk->raw_time.tv_sec += raw_secs;
1413
	}
1414
	tk->raw_time.tv_nsec = raw_nsecs;
1415 1416

	/* Accumulate error between NTP and clock interval */
1417 1418 1419
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1420 1421 1422 1423

	return offset;
}

1424 1425 1426 1427
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1428
void update_wall_time(void)
1429
{
1430
	struct clocksource *clock;
1431
	struct timekeeper *real_tk = &tk_core.timekeeper;
1432
	struct timekeeper *tk = &shadow_timekeeper;
1433
	cycle_t offset;
1434
	int shift = 0, maxshift;
1435
	unsigned int clock_set = 0;
J
John Stultz 已提交
1436 1437
	unsigned long flags;

1438
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1439 1440 1441

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1442
		goto out;
1443

1444
	clock = real_tk->clock;
J
John Stultz 已提交
1445 1446

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1447
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1448 1449
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1450 1451
#endif

1452
	/* Check if there's really nothing to do */
1453
	if (offset < real_tk->cycle_interval)
1454 1455
		goto out;

1456 1457 1458 1459
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1460
	 * that is smaller than the offset.  We then accumulate that
1461 1462
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1463
	 */
1464
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1465
	shift = max(0, shift);
1466
	/* Bound shift to one less than what overflows tick_length */
1467
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1468
	shift = min(shift, maxshift);
1469
	while (offset >= tk->cycle_interval) {
1470 1471
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1472
		if (offset < tk->cycle_interval<<shift)
1473
			shift--;
1474 1475 1476
	}

	/* correct the clock when NTP error is too big */
1477
	timekeeping_adjust(tk, offset);
1478

J
John Stultz 已提交
1479
	/*
1480 1481 1482 1483
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1484

J
John Stultz 已提交
1485 1486
	/*
	 * Finally, make sure that after the rounding
1487
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1488
	 */
1489
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1490

1491
	write_seqcount_begin(&tk_core.seq);
1492 1493
	/* Update clock->cycle_last with the new value */
	clock->cycle_last = tk->cycle_last;
1494 1495 1496 1497 1498 1499 1500
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1501
	 * memcpy under the tk_core.seq against one before we start
1502 1503 1504
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1505
	timekeeping_update(real_tk, clock_set);
1506
	write_seqcount_end(&tk_core.seq);
1507
out:
1508
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1509
	if (clock_set)
1510 1511
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1512
}
T
Tomas Janousek 已提交
1513 1514 1515 1516 1517

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1518
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1519 1520 1521 1522 1523 1524 1525 1526
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1527
	struct timekeeper *tk = &tk_core.timekeeper;
1528 1529 1530
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

	*ts = ktime_to_timespec(t);
T
Tomas Janousek 已提交
1531
}
1532
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1533

1534 1535
unsigned long get_seconds(void)
{
1536
	struct timekeeper *tk = &tk_core.timekeeper;
1537 1538

	return tk->xtime_sec;
1539 1540 1541
}
EXPORT_SYMBOL(get_seconds);

1542 1543
struct timespec __current_kernel_time(void)
{
1544
	struct timekeeper *tk = &tk_core.timekeeper;
1545

1546
	return timespec64_to_timespec(tk_xtime(tk));
1547
}
1548

1549 1550
struct timespec current_kernel_time(void)
{
1551
	struct timekeeper *tk = &tk_core.timekeeper;
1552
	struct timespec64 now;
1553 1554 1555
	unsigned long seq;

	do {
1556
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1557

1558
		now = tk_xtime(tk);
1559
	} while (read_seqcount_retry(&tk_core.seq, seq));
1560

1561
	return timespec64_to_timespec(now);
1562 1563
}
EXPORT_SYMBOL(current_kernel_time);
1564 1565 1566

struct timespec get_monotonic_coarse(void)
{
1567
	struct timekeeper *tk = &tk_core.timekeeper;
1568
	struct timespec64 now, mono;
1569 1570 1571
	unsigned long seq;

	do {
1572
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1573

1574 1575
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1576
	} while (read_seqcount_retry(&tk_core.seq, seq));
1577

1578
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1579
				now.tv_nsec + mono.tv_nsec);
1580 1581

	return timespec64_to_timespec(now);
1582
}
1583 1584

/*
1585
 * Must hold jiffies_lock
1586 1587 1588 1589 1590 1591
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1592 1593

/**
1594 1595 1596 1597 1598 1599
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1600
 */
1601 1602
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1603
{
1604
	struct timekeeper *tk = &tk_core.timekeeper;
1605
	unsigned int seq;
1606 1607
	ktime_t base;
	u64 nsecs;
1608 1609

	do {
1610
		seq = read_seqcount_begin(&tk_core.seq);
1611

1612 1613 1614
		base = tk->base_mono;
		nsecs = tk->xtime_nsec >> tk->shift;

1615 1616 1617
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1618
	} while (read_seqcount_retry(&tk_core.seq, seq));
1619

1620
	return ktime_add_ns(base, nsecs);
1621
}
T
Torben Hohn 已提交
1622

1623 1624
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1625
 * ktime_get_update_offsets_now - hrtimer helper
1626 1627
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1628
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1629 1630
 *
 * Returns current monotonic time and updates the offsets
1631
 * Called from hrtimer_interrupt() or retrigger_next_event()
1632
 */
1633
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1634
							ktime_t *offs_tai)
1635
{
1636
	struct timekeeper *tk = &tk_core.timekeeper;
1637
	unsigned int seq;
1638 1639
	ktime_t base;
	u64 nsecs;
1640 1641

	do {
1642
		seq = read_seqcount_begin(&tk_core.seq);
1643

1644
		base = tk->base_mono;
1645
		nsecs = timekeeping_get_ns(tk);
1646

1647 1648
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1649
		*offs_tai = tk->offs_tai;
1650
	} while (read_seqcount_retry(&tk_core.seq, seq));
1651

1652
	return ktime_add_ns(base, nsecs);
1653 1654 1655
}
#endif

1656 1657 1658 1659 1660
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1661
	struct timekeeper *tk = &tk_core.timekeeper;
1662
	unsigned long flags;
1663
	struct timespec64 ts;
1664
	s32 orig_tai, tai;
1665 1666 1667 1668 1669 1670 1671
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1683
	getnstimeofday64(&ts);
1684

1685
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1686
	write_seqcount_begin(&tk_core.seq);
1687

1688
	orig_tai = tai = tk->tai_offset;
1689
	ret = __do_adjtimex(txc, &ts, &tai);
1690

1691 1692
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1693
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1694
	}
1695
	write_seqcount_end(&tk_core.seq);
1696 1697
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1698 1699 1700
	if (tai != orig_tai)
		clock_was_set();

1701 1702
	ntp_notify_cmos_timer();

1703 1704
	return ret;
}
1705 1706 1707 1708 1709 1710 1711

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1712 1713 1714
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1715
	write_seqcount_begin(&tk_core.seq);
1716

1717
	__hardpps(phase_ts, raw_ts);
1718

1719
	write_seqcount_end(&tk_core.seq);
1720
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1721 1722 1723 1724
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1725 1726 1727 1728 1729 1730 1731 1732
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1733
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1734
	do_timer(ticks);
1735
	write_sequnlock(&jiffies_lock);
1736
	update_wall_time();
T
Torben Hohn 已提交
1737
}