timekeeping.c 50.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;

63 64 65
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

66 67 68
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
109
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121
/**
122
 * tk_setup_internals - Set up internals to use clocksource clock.
123
 *
124
 * @tk:		The target timekeeper to setup.
125 126 127 128 129 130 131
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
132
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 134
{
	cycle_t interval;
135
	u64 tmp, ntpinterval;
136
	struct clocksource *old_clock;
137

138 139 140 141 142
	old_clock = tk->tkr.clock;
	tk->tkr.clock = clock;
	tk->tkr.read = clock->read;
	tk->tkr.mask = clock->mask;
	tk->tkr.cycle_last = tk->tkr.read(clock);
143 144 145 146

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
147
	ntpinterval = tmp;
148 149
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
150 151 152 153
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
154
	tk->cycle_interval = interval;
155 156

	/* Go back from cycles -> shifted ns */
157 158 159
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
160
		((u64) interval * clock->mult) >> clock->shift;
161

162 163 164 165
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
166
			tk->tkr.xtime_nsec >>= -shift_change;
167
		else
168
			tk->tkr.xtime_nsec <<= shift_change;
169
	}
170
	tk->tkr.shift = clock->shift;
171

172 173
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175 176 177 178 179 180

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
181
	tk->tkr.mult = clock->mult;
182
	tk->ntp_err_mult = 0;
183
}
184

185
/* Timekeeper helper functions. */
186 187

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 189
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190
#else
191
static inline u32 arch_gettimeoffset(void) { return 0; }
192 193
#endif

194
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195
{
196
	cycle_t cycle_now, delta;
197
	s64 nsec;
198 199

	/* read clocksource: */
200
	cycle_now = tkr->read(tkr->clock);
201 202

	/* calculate the delta since the last update_wall_time: */
203
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204

205 206
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
207

208
	/* If arch requires, add in get_arch_timeoffset() */
209
	return nsec + arch_gettimeoffset();
210 211
}

212
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213
{
214
	struct clocksource *clock = tk->tkr.clock;
215
	cycle_t cycle_now, delta;
216
	s64 nsec;
217 218

	/* read clocksource: */
219
	cycle_now = tk->tkr.read(clock);
220 221

	/* calculate the delta since the last update_wall_time: */
222
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223

224
	/* convert delta to nanoseconds. */
225
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226

227
	/* If arch requires, add in get_arch_timeoffset() */
228
	return nsec + arch_gettimeoffset();
229 230
}

231 232
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233
 * @tkr: Timekeeping readout base from which we take the update
234 235 236 237 238 239 240 241 242 243 244
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
245
 * update(tkf->base[0], tkr);
246 247 248
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
249
 * update(tkf->base[1], tkr);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
270
static void update_fast_timekeeper(struct tk_read_base *tkr)
271 272 273 274 275 276 277
{
	struct tk_read_base *base = tk_fast_mono.base;

	/* Force readers off to base[1] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[0] */
278
	memcpy(base, tkr, sizeof(*base));
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

	/* Force readers back to base[0] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
u64 notrace ktime_get_mono_fast_ns(void)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount(&tk_fast_mono.seq);
		tkr = tk_fast_mono.base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);

	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
	return now;
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
	struct tk_read_base *tkr = &tk->tkr;

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy);
}

364 365 366 367
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
368
	struct timespec xt, wm;
369

370
	xt = timespec64_to_timespec(tk_xtime(tk));
371 372
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
373
			    tk->tkr.cycle_last);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
390 391 392
	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
	tk->tkr.xtime_nsec -= remainder;
	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
393
	tk->ntp_error += remainder << tk->ntp_error_shift;
394
	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
395 396 397 398 399
}
#else
#define old_vsyscall_fixup(tk)
#endif

400 401
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

402
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
403
{
404
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
405 406 407 408 409 410 411
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
412
	struct timekeeper *tk = &tk_core.timekeeper;
413 414 415
	unsigned long flags;
	int ret;

416
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
417
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
418
	update_pvclock_gtod(tk, true);
419
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
420 421 422 423 424 425 426 427 428 429 430 431 432 433

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

434
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
435
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
436
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
437 438 439 440 441

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

442 443 444 445 446
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
447 448
	u64 seconds;
	u32 nsec;
449 450 451 452 453 454 455 456

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
457 458 459
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
	tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
460 461 462

	/* Update the monotonic raw base */
	tk->base_raw = timespec64_to_ktime(tk->raw_time);
463 464 465 466 467 468 469 470 471 472

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
	nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
473 474
}

475
/* must hold timekeeper_lock */
476
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
477
{
478
	if (action & TK_CLEAR_NTP) {
479
		tk->ntp_error = 0;
480 481
		ntp_clear();
	}
482

483 484
	tk_update_ktime_data(tk);

485 486 487
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

488
	if (action & TK_MIRROR)
489 490
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
491

492
	update_fast_timekeeper(&tk->tkr);
493 494
}

495
/**
496
 * timekeeping_forward_now - update clock to the current time
497
 *
498 499 500
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
501
 */
502
static void timekeeping_forward_now(struct timekeeper *tk)
503
{
504
	struct clocksource *clock = tk->tkr.clock;
505
	cycle_t cycle_now, delta;
506
	s64 nsec;
507

508 509 510
	cycle_now = tk->tkr.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
	tk->tkr.cycle_last = cycle_now;
511

512
	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
513

514
	/* If arch requires, add in get_arch_timeoffset() */
515
	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
516

517
	tk_normalize_xtime(tk);
518

519
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
520
	timespec64_add_ns(&tk->raw_time, nsec);
521 522 523
}

/**
524
 * __getnstimeofday64 - Returns the time of day in a timespec64.
525 526
 * @ts:		pointer to the timespec to be set
 *
527 528
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
529
 */
530
int __getnstimeofday64(struct timespec64 *ts)
531
{
532
	struct timekeeper *tk = &tk_core.timekeeper;
533
	unsigned long seq;
534
	s64 nsecs = 0;
535 536

	do {
537
		seq = read_seqcount_begin(&tk_core.seq);
538

539
		ts->tv_sec = tk->xtime_sec;
540
		nsecs = timekeeping_get_ns(&tk->tkr);
541

542
	} while (read_seqcount_retry(&tk_core.seq, seq));
543

544
	ts->tv_nsec = 0;
545
	timespec64_add_ns(ts, nsecs);
546 547 548 549 550 551 552 553 554

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
555
EXPORT_SYMBOL(__getnstimeofday64);
556 557

/**
558
 * getnstimeofday64 - Returns the time of day in a timespec64.
559
 * @ts:		pointer to the timespec64 to be set
560
 *
561
 * Returns the time of day in a timespec64 (WARN if suspended).
562
 */
563
void getnstimeofday64(struct timespec64 *ts)
564
{
565
	WARN_ON(__getnstimeofday64(ts));
566
}
567
EXPORT_SYMBOL(getnstimeofday64);
568

569 570
ktime_t ktime_get(void)
{
571
	struct timekeeper *tk = &tk_core.timekeeper;
572
	unsigned int seq;
573 574
	ktime_t base;
	s64 nsecs;
575 576 577 578

	WARN_ON(timekeeping_suspended);

	do {
579
		seq = read_seqcount_begin(&tk_core.seq);
580
		base = tk->tkr.base_mono;
581
		nsecs = timekeeping_get_ns(&tk->tkr);
582

583
	} while (read_seqcount_retry(&tk_core.seq, seq));
584

585
	return ktime_add_ns(base, nsecs);
586 587 588
}
EXPORT_SYMBOL_GPL(ktime_get);

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
606
		base = ktime_add(tk->tkr.base_mono, *offset);
607
		nsecs = timekeeping_get_ns(&tk->tkr);
608 609 610 611 612 613 614 615

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->base_raw;
		nsecs = timekeeping_get_ns_raw(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

657
/**
658
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
659 660 661 662
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
663
 * in normalized timespec64 format in the variable pointed to by @ts.
664
 */
665
void ktime_get_ts64(struct timespec64 *ts)
666
{
667
	struct timekeeper *tk = &tk_core.timekeeper;
668
	struct timespec64 tomono;
669
	s64 nsec;
670 671 672 673 674
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
675
		seq = read_seqcount_begin(&tk_core.seq);
676
		ts->tv_sec = tk->xtime_sec;
677
		nsec = timekeeping_get_ns(&tk->tkr);
678
		tomono = tk->wall_to_monotonic;
679

680
	} while (read_seqcount_retry(&tk_core.seq, seq));
681

682 683 684
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
685
}
686
EXPORT_SYMBOL_GPL(ktime_get_ts64);
687

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

736 737 738 739 740 741 742 743 744 745 746 747 748
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
749
	struct timekeeper *tk = &tk_core.timekeeper;
750 751 752 753 754 755
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
756
		seq = read_seqcount_begin(&tk_core.seq);
757

758
		*ts_raw = timespec64_to_timespec(tk->raw_time);
759
		ts_real->tv_sec = tk->xtime_sec;
760
		ts_real->tv_nsec = 0;
761

762
		nsecs_raw = timekeeping_get_ns_raw(tk);
763
		nsecs_real = timekeeping_get_ns(&tk->tkr);
764

765
	} while (read_seqcount_retry(&tk_core.seq, seq));
766 767 768 769 770 771 772 773

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

774 775 776 777
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
778
 * NOTE: Users should be converted to using getnstimeofday()
779 780 781
 */
void do_gettimeofday(struct timeval *tv)
{
782
	struct timespec64 now;
783

784
	getnstimeofday64(&now);
785 786 787 788
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
789

790
/**
791 792
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
793 794 795
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
796
int do_settimeofday64(const struct timespec64 *ts)
797
{
798
	struct timekeeper *tk = &tk_core.timekeeper;
799
	struct timespec64 ts_delta, xt;
800
	unsigned long flags;
801

802
	if (!timespec64_valid_strict(ts))
803 804
		return -EINVAL;

805
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
806
	write_seqcount_begin(&tk_core.seq);
807

808
	timekeeping_forward_now(tk);
809

810
	xt = tk_xtime(tk);
811 812
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
813

814
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
815

816
	tk_set_xtime(tk, ts);
817

818
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
819

820
	write_seqcount_end(&tk_core.seq);
821
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
822 823 824 825 826 827

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
828
EXPORT_SYMBOL(do_settimeofday64);
829

830 831 832 833 834 835 836 837
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
838
	struct timekeeper *tk = &tk_core.timekeeper;
839
	unsigned long flags;
840
	struct timespec64 ts64, tmp;
841
	int ret = 0;
842 843 844 845

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

846 847
	ts64 = timespec_to_timespec64(*ts);

848
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
849
	write_seqcount_begin(&tk_core.seq);
850

851
	timekeeping_forward_now(tk);
852

853
	/* Make sure the proposed value is valid */
854 855
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
856 857 858
		ret = -EINVAL;
		goto error;
	}
859

860 861
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
862

863
error: /* even if we error out, we forwarded the time, so call update */
864
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
865

866
	write_seqcount_end(&tk_core.seq);
867
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
868 869 870 871

	/* signal hrtimers about time change */
	clock_was_set();

872
	return ret;
873 874 875
}
EXPORT_SYMBOL(timekeeping_inject_offset);

876 877 878 879 880 881 882

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
883
	struct timekeeper *tk = &tk_core.timekeeper;
884 885 886 887
	unsigned int seq;
	s32 ret;

	do {
888
		seq = read_seqcount_begin(&tk_core.seq);
889
		ret = tk->tai_offset;
890
	} while (read_seqcount_retry(&tk_core.seq, seq));
891 892 893 894 895 896 897 898

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
899
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
900 901
{
	tk->tai_offset = tai_offset;
902
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
903 904 905 906 907 908 909 910
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
911
	struct timekeeper *tk = &tk_core.timekeeper;
912 913
	unsigned long flags;

914
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
915
	write_seqcount_begin(&tk_core.seq);
916
	__timekeeping_set_tai_offset(tk, tai_offset);
917
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
918
	write_seqcount_end(&tk_core.seq);
919
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
920
	clock_was_set();
921 922
}

923 924 925 926 927
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
928
static int change_clocksource(void *data)
929
{
930
	struct timekeeper *tk = &tk_core.timekeeper;
931
	struct clocksource *new, *old;
932
	unsigned long flags;
933

934
	new = (struct clocksource *) data;
935

936
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
937
	write_seqcount_begin(&tk_core.seq);
938

939
	timekeeping_forward_now(tk);
940 941 942 943 944 945
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
946
			old = tk->tkr.clock;
947 948 949 950 951 952 953
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
954
	}
955
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
956

957
	write_seqcount_end(&tk_core.seq);
958
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
959

960 961
	return 0;
}
962

963 964 965 966 967 968 969
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
970
int timekeeping_notify(struct clocksource *clock)
971
{
972
	struct timekeeper *tk = &tk_core.timekeeper;
973

974
	if (tk->tkr.clock == clock)
975
		return 0;
976
	stop_machine(change_clocksource, clock, NULL);
977
	tick_clock_notify();
978
	return tk->tkr.clock == clock ? 0 : -1;
979
}
980

981
/**
982 983
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
984 985 986
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
987
void getrawmonotonic64(struct timespec64 *ts)
988
{
989
	struct timekeeper *tk = &tk_core.timekeeper;
990
	struct timespec64 ts64;
991 992 993 994
	unsigned long seq;
	s64 nsecs;

	do {
995
		seq = read_seqcount_begin(&tk_core.seq);
996
		nsecs = timekeeping_get_ns_raw(tk);
997
		ts64 = tk->raw_time;
998

999
	} while (read_seqcount_retry(&tk_core.seq, seq));
1000

1001
	timespec64_add_ns(&ts64, nsecs);
1002
	*ts = ts64;
1003
}
1004 1005
EXPORT_SYMBOL(getrawmonotonic64);

1006

1007
/**
1008
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1009
 */
1010
int timekeeping_valid_for_hres(void)
1011
{
1012
	struct timekeeper *tk = &tk_core.timekeeper;
1013 1014 1015 1016
	unsigned long seq;
	int ret;

	do {
1017
		seq = read_seqcount_begin(&tk_core.seq);
1018

1019
		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1020

1021
	} while (read_seqcount_retry(&tk_core.seq, seq));
1022 1023 1024 1025

	return ret;
}

1026 1027 1028 1029 1030
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1031
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1032 1033
	unsigned long seq;
	u64 ret;
1034

J
John Stultz 已提交
1035
	do {
1036
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1037

1038
		ret = tk->tkr.clock->max_idle_ns;
J
John Stultz 已提交
1039

1040
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1041 1042

	return ret;
1043 1044
}

1045
/**
1046
 * read_persistent_clock -  Return time from the persistent clock.
1047 1048
 *
 * Weak dummy function for arches that do not yet support it.
1049 1050
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1051 1052 1053
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1054
void __weak read_persistent_clock(struct timespec *ts)
1055
{
1056 1057
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1058 1059
}

1060 1061 1062 1063 1064 1065 1066 1067 1068
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1069
void __weak read_boot_clock(struct timespec *ts)
1070 1071 1072 1073 1074
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1075 1076 1077 1078 1079
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1080
	struct timekeeper *tk = &tk_core.timekeeper;
1081
	struct clocksource *clock;
1082
	unsigned long flags;
1083 1084
	struct timespec64 now, boot, tmp;
	struct timespec ts;
1085

1086 1087 1088
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1089 1090 1091 1092
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1093 1094
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1095

1096 1097 1098
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1099 1100 1101 1102 1103
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1104

1105
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1106
	write_seqcount_begin(&tk_core.seq);
1107 1108
	ntp_init();

1109
	clock = clocksource_default_clock();
1110 1111
	if (clock->enable)
		clock->enable(clock);
1112
	tk_setup_internals(tk, clock);
1113

1114 1115 1116
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1117
	tk->base_raw.tv64 = 0;
1118
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1119
		boot = tk_xtime(tk);
1120

1121
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1122
	tk_set_wall_to_mono(tk, tmp);
1123

1124
	timekeeping_update(tk, TK_MIRROR);
1125

1126
	write_seqcount_end(&tk_core.seq);
1127
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1128 1129 1130
}

/* time in seconds when suspend began */
1131
static struct timespec64 timekeeping_suspend_time;
1132

1133 1134 1135 1136 1137 1138 1139
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1140
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1141
					   struct timespec64 *delta)
1142
{
1143
	if (!timespec64_valid_strict(delta)) {
1144 1145 1146
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1147 1148
		return;
	}
1149
	tk_xtime_add(tk, delta);
1150
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1151
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1152
	tk_debug_account_sleep_time(delta);
1153 1154 1155
}

/**
1156 1157
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1158 1159 1160 1161 1162 1163 1164
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1165
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1166
{
1167
	struct timekeeper *tk = &tk_core.timekeeper;
1168
	unsigned long flags;
1169

1170 1171 1172 1173 1174
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1175 1176
		return;

1177
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1178
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1179

1180
	timekeeping_forward_now(tk);
1181

1182
	__timekeeping_inject_sleeptime(tk, delta);
1183

1184
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1185

1186
	write_seqcount_end(&tk_core.seq);
1187
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1188 1189 1190 1191 1192

	/* signal hrtimers about time change */
	clock_was_set();
}

1193 1194 1195 1196 1197 1198 1199
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1200
void timekeeping_resume(void)
1201
{
1202
	struct timekeeper *tk = &tk_core.timekeeper;
1203
	struct clocksource *clock = tk->tkr.clock;
1204
	unsigned long flags;
1205 1206
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1207 1208
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1209

1210 1211
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1212

1213
	clockevents_resume();
1214 1215
	clocksource_resume();

1216
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1217
	write_seqcount_begin(&tk_core.seq);
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1231
	cycle_now = tk->tkr.read(clock);
1232
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1233
		cycle_now > tk->tkr.cycle_last) {
1234 1235 1236 1237 1238
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1239 1240
		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
						tk->tkr.mask);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1255
		ts_delta = ns_to_timespec64(nsec);
1256
		suspendtime_found = true;
1257 1258
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1259
		suspendtime_found = true;
1260
	}
1261 1262 1263 1264 1265

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1266
	tk->tkr.cycle_last = cycle_now;
1267
	tk->ntp_error = 0;
1268
	timekeeping_suspended = 0;
1269
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1270
	write_seqcount_end(&tk_core.seq);
1271
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1272 1273 1274 1275 1276 1277

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1278
	hrtimers_resume();
1279 1280
}

1281
int timekeeping_suspend(void)
1282
{
1283
	struct timekeeper *tk = &tk_core.timekeeper;
1284
	unsigned long flags;
1285 1286 1287
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1288

1289 1290
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1291

1292 1293 1294 1295 1296 1297 1298 1299
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1300
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1301
	write_seqcount_begin(&tk_core.seq);
1302
	timekeeping_forward_now(tk);
1303
	timekeeping_suspended = 1;
1304 1305 1306 1307 1308 1309 1310

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1311 1312
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1313 1314 1315 1316 1317 1318 1319 1320 1321
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1322
			timespec64_add(timekeeping_suspend_time, delta_delta);
1323
	}
1324 1325

	timekeeping_update(tk, TK_MIRROR);
1326
	halt_fast_timekeeper(tk);
1327
	write_seqcount_end(&tk_core.seq);
1328
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1329 1330

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1331
	clocksource_suspend();
1332
	clockevents_suspend();
1333 1334 1335 1336 1337

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1338
static struct syscore_ops timekeeping_syscore_ops = {
1339 1340 1341 1342
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1343
static int __init timekeeping_init_ops(void)
1344
{
1345 1346
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1347
}
1348
device_initcall(timekeeping_init_ops);
1349 1350

/*
1351
 * Apply a multiplier adjustment to the timekeeper
1352
 */
1353 1354 1355 1356
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1357
{
1358 1359
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1360

1361 1362 1363 1364
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1365
	}
1366 1367 1368
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1369

1370 1371 1372
	/*
	 * So the following can be confusing.
	 *
1373
	 * To keep things simple, lets assume mult_adj == 1 for now.
1374
	 *
1375
	 * When mult_adj != 1, remember that the interval and offset values
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1419
	if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1420 1421 1422 1423 1424
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1425
	tk->tkr.mult += mult_adj;
1426
	tk->xtime_interval += interval;
1427
	tk->tkr.xtime_nsec -= offset;
1428
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1448 1449
	tk->ntp_tick = ntp_tick_length();

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

	if (unlikely(tk->tkr.clock->maxadj &&
1490 1491
		(abs(tk->tkr.mult - tk->tkr.clock->mult)
			> tk->tkr.clock->maxadj))) {
1492 1493 1494 1495 1496
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
			tk->tkr.clock->name, (long)tk->tkr.mult,
			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
	}
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1512 1513 1514
	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr.xtime_nsec;
		tk->tkr.xtime_nsec = 0;
1515
		tk->ntp_error += neg << tk->ntp_error_shift;
1516
	}
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1527
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1528
{
1529
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1530
	unsigned int clock_set = 0;
1531

1532
	while (tk->tkr.xtime_nsec >= nsecps) {
1533 1534
		int leap;

1535
		tk->tkr.xtime_nsec -= nsecps;
1536 1537 1538 1539
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1540
		if (unlikely(leap)) {
1541
			struct timespec64 ts;
1542 1543

			tk->xtime_sec += leap;
1544

1545 1546 1547
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1548
				timespec64_sub(tk->wall_to_monotonic, ts));
1549

1550 1551
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1552
			clock_set = TK_CLOCK_WAS_SET;
1553
		}
1554
	}
1555
	return clock_set;
1556 1557
}

1558 1559 1560 1561 1562 1563 1564 1565 1566
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1567
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1568 1569
						u32 shift,
						unsigned int *clock_set)
1570
{
T
Thomas Gleixner 已提交
1571
	cycle_t interval = tk->cycle_interval << shift;
1572
	u64 raw_nsecs;
1573

1574
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1575
	if (offset < interval)
1576 1577 1578
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1579
	offset -= interval;
1580
	tk->tkr.cycle_last += interval;
1581

1582
	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1583
	*clock_set |= accumulate_nsecs_to_secs(tk);
1584

1585
	/* Accumulate raw time */
1586
	raw_nsecs = (u64)tk->raw_interval << shift;
1587
	raw_nsecs += tk->raw_time.tv_nsec;
1588 1589 1590
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1591
		tk->raw_time.tv_sec += raw_secs;
1592
	}
1593
	tk->raw_time.tv_nsec = raw_nsecs;
1594 1595

	/* Accumulate error between NTP and clock interval */
1596
	tk->ntp_error += tk->ntp_tick << shift;
1597 1598
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1599 1600 1601 1602

	return offset;
}

1603 1604 1605 1606
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1607
void update_wall_time(void)
1608
{
1609
	struct timekeeper *real_tk = &tk_core.timekeeper;
1610
	struct timekeeper *tk = &shadow_timekeeper;
1611
	cycle_t offset;
1612
	int shift = 0, maxshift;
1613
	unsigned int clock_set = 0;
J
John Stultz 已提交
1614 1615
	unsigned long flags;

1616
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1617 1618 1619

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1620
		goto out;
1621

J
John Stultz 已提交
1622
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1623
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1624
#else
1625 1626
	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
				   tk->tkr.cycle_last, tk->tkr.mask);
1627 1628
#endif

1629
	/* Check if there's really nothing to do */
1630
	if (offset < real_tk->cycle_interval)
1631 1632
		goto out;

1633 1634 1635 1636
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1637
	 * that is smaller than the offset.  We then accumulate that
1638 1639
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1640
	 */
1641
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1642
	shift = max(0, shift);
1643
	/* Bound shift to one less than what overflows tick_length */
1644
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1645
	shift = min(shift, maxshift);
1646
	while (offset >= tk->cycle_interval) {
1647 1648
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1649
		if (offset < tk->cycle_interval<<shift)
1650
			shift--;
1651 1652 1653
	}

	/* correct the clock when NTP error is too big */
1654
	timekeeping_adjust(tk, offset);
1655

J
John Stultz 已提交
1656
	/*
1657 1658 1659 1660
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1661

J
John Stultz 已提交
1662 1663
	/*
	 * Finally, make sure that after the rounding
1664
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1665
	 */
1666
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1667

1668
	write_seqcount_begin(&tk_core.seq);
1669 1670 1671 1672 1673 1674 1675
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1676
	 * memcpy under the tk_core.seq against one before we start
1677 1678 1679
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1680
	timekeeping_update(real_tk, clock_set);
1681
	write_seqcount_end(&tk_core.seq);
1682
out:
1683
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1684
	if (clock_set)
1685 1686
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1687
}
T
Tomas Janousek 已提交
1688 1689

/**
1690 1691
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1692
 *
1693
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1694 1695 1696 1697 1698 1699
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1700
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1701
{
1702
	struct timekeeper *tk = &tk_core.timekeeper;
1703 1704
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1705
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1706
}
1707
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1708

1709 1710
unsigned long get_seconds(void)
{
1711
	struct timekeeper *tk = &tk_core.timekeeper;
1712 1713

	return tk->xtime_sec;
1714 1715 1716
}
EXPORT_SYMBOL(get_seconds);

1717 1718
struct timespec __current_kernel_time(void)
{
1719
	struct timekeeper *tk = &tk_core.timekeeper;
1720

1721
	return timespec64_to_timespec(tk_xtime(tk));
1722
}
1723

1724 1725
struct timespec current_kernel_time(void)
{
1726
	struct timekeeper *tk = &tk_core.timekeeper;
1727
	struct timespec64 now;
1728 1729 1730
	unsigned long seq;

	do {
1731
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1732

1733
		now = tk_xtime(tk);
1734
	} while (read_seqcount_retry(&tk_core.seq, seq));
1735

1736
	return timespec64_to_timespec(now);
1737 1738
}
EXPORT_SYMBOL(current_kernel_time);
1739

1740
struct timespec64 get_monotonic_coarse64(void)
1741
{
1742
	struct timekeeper *tk = &tk_core.timekeeper;
1743
	struct timespec64 now, mono;
1744 1745 1746
	unsigned long seq;

	do {
1747
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1748

1749 1750
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1751
	} while (read_seqcount_retry(&tk_core.seq, seq));
1752

1753
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1754
				now.tv_nsec + mono.tv_nsec);
1755

1756
	return now;
1757
}
1758 1759

/*
1760
 * Must hold jiffies_lock
1761 1762 1763 1764 1765 1766
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1767 1768

/**
1769 1770 1771 1772 1773 1774
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1775
 */
1776 1777
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1778
{
1779
	struct timekeeper *tk = &tk_core.timekeeper;
1780
	unsigned int seq;
1781 1782
	ktime_t base;
	u64 nsecs;
1783 1784

	do {
1785
		seq = read_seqcount_begin(&tk_core.seq);
1786

1787 1788
		base = tk->tkr.base_mono;
		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1789

1790 1791 1792
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1793
	} while (read_seqcount_retry(&tk_core.seq, seq));
1794

1795
	return ktime_add_ns(base, nsecs);
1796
}
T
Torben Hohn 已提交
1797

1798 1799
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1800
 * ktime_get_update_offsets_now - hrtimer helper
1801 1802
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1803
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1804 1805
 *
 * Returns current monotonic time and updates the offsets
1806
 * Called from hrtimer_interrupt() or retrigger_next_event()
1807
 */
1808
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1809
							ktime_t *offs_tai)
1810
{
1811
	struct timekeeper *tk = &tk_core.timekeeper;
1812
	unsigned int seq;
1813 1814
	ktime_t base;
	u64 nsecs;
1815 1816

	do {
1817
		seq = read_seqcount_begin(&tk_core.seq);
1818

1819
		base = tk->tkr.base_mono;
1820
		nsecs = timekeeping_get_ns(&tk->tkr);
1821

1822 1823
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1824
		*offs_tai = tk->offs_tai;
1825
	} while (read_seqcount_retry(&tk_core.seq, seq));
1826

1827
	return ktime_add_ns(base, nsecs);
1828 1829 1830
}
#endif

1831 1832 1833 1834 1835
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1836
	struct timekeeper *tk = &tk_core.timekeeper;
1837
	unsigned long flags;
1838
	struct timespec64 ts;
1839
	s32 orig_tai, tai;
1840 1841 1842 1843 1844 1845 1846
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1858
	getnstimeofday64(&ts);
1859

1860
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1861
	write_seqcount_begin(&tk_core.seq);
1862

1863
	orig_tai = tai = tk->tai_offset;
1864
	ret = __do_adjtimex(txc, &ts, &tai);
1865

1866 1867
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1868
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1869
	}
1870
	write_seqcount_end(&tk_core.seq);
1871 1872
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1873 1874 1875
	if (tai != orig_tai)
		clock_was_set();

1876 1877
	ntp_notify_cmos_timer();

1878 1879
	return ret;
}
1880 1881 1882 1883 1884 1885 1886

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1887 1888 1889
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1890
	write_seqcount_begin(&tk_core.seq);
1891

1892
	__hardpps(phase_ts, raw_ts);
1893

1894
	write_seqcount_end(&tk_core.seq);
1895
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1896 1897 1898 1899
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1900 1901 1902 1903 1904 1905 1906 1907
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1908
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1909
	do_timer(ticks);
1910
	write_sequnlock(&jiffies_lock);
1911
	update_wall_time();
T
Torben Hohn 已提交
1912
}