timekeeping.c 37.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
27
	struct clocksource	*clock;
28
	/* NTP adjusted clock multiplier */
29
	u32			mult;
30
	/* The shift value of the current clocksource. */
31
	u32			shift;
32
	/* Number of clock cycles in one NTP interval. */
33
	cycle_t			cycle_interval;
34
	/* Number of clock shifted nano seconds in one NTP interval. */
35
	u64			xtime_interval;
36
	/* shifted nano seconds left over when rounding cycle_interval */
37
	s64			xtime_remainder;
38
	/* Raw nano seconds accumulated per NTP interval. */
39
	u32			raw_interval;
40

41 42 43
	/* Current CLOCK_REALTIME time in seconds */
	u64			xtime_sec;
	/* Clock shifted nano seconds */
44
	u64			xtime_nsec;
45

46 47
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
48
	s64			ntp_error;
49 50
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
51
	u32			ntp_error_shift;
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66
	/*
	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
	 * at zero at system boot time, so wall_to_monotonic will be negative,
	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
	 * the usual normalization.
	 *
	 * wall_to_monotonic is moved after resume from suspend for the
	 * monotonic time not to jump. We need to add total_sleep_time to
	 * wall_to_monotonic to get the real boot based time offset.
	 *
	 * - wall_to_monotonic is no longer the boot time, getboottime must be
	 * used instead.
	 */
67
	struct timespec		wall_to_monotonic;
68
	/* Offset clock monotonic -> clock realtime */
69
	ktime_t			offs_real;
70 71
	/* time spent in suspend */
	struct timespec		total_sleep_time;
72
	/* Offset clock monotonic -> clock boottime */
73
	ktime_t			offs_boot;
74 75
	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
	struct timespec		raw_time;
J
John Stultz 已提交
76
	/* Seqlock for all timekeeper values */
77
	seqlock_t		lock;
78 79
};

80
static struct timekeeper timekeeper;
81

82 83 84 85 86 87 88 89 90
/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime.
 */
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);

/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static struct timespec tk_xtime(struct timekeeper *tk)
{
	struct timespec ts;

	ts.tv_sec = tk->xtime_sec;
	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
	return ts;
}
107

108 109 110
static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
111
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
112 113 114 115 116
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
117
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
118
	tk_normalize_xtime(tk);
119
}
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

146 147 148 149 150 151 152 153 154 155
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
156
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
157 158
{
	cycle_t interval;
159
	u64 tmp, ntpinterval;
160
	struct clocksource *old_clock;
161

162 163
	old_clock = tk->clock;
	tk->clock = clock;
164 165 166 167 168
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
169
	ntpinterval = tmp;
170 171
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
172 173 174 175
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
176
	tk->cycle_interval = interval;
177 178

	/* Go back from cycles -> shifted ns */
179 180 181
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
182
		((u64) interval * clock->mult) >> clock->shift;
183

184 185 186 187
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
188
			tk->xtime_nsec >>= -shift_change;
189
		else
190
			tk->xtime_nsec <<= shift_change;
191
	}
192
	tk->shift = clock->shift;
193

194 195
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
196 197 198 199 200 201

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
202
	tk->mult = clock->mult;
203
}
204

205
/* Timekeeper helper functions. */
206
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
207 208 209
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
210
	s64 nsec;
211 212

	/* read clocksource: */
213
	clock = tk->clock;
214 215 216 217 218
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

219 220
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
221 222 223

	/* If arch requires, add in gettimeoffset() */
	return nsec + arch_gettimeoffset();
224 225
}

226
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
227 228 229
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
230
	s64 nsec;
231 232

	/* read clocksource: */
233
	clock = tk->clock;
234 235 236 237 238
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

239 240 241 242 243
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

	/* If arch requires, add in gettimeoffset() */
	return nsec + arch_gettimeoffset();
244 245
}

246
/* must hold write on timekeeper.lock */
247
static void timekeeping_update(struct timekeeper *tk, bool clearntp)
248
{
249 250
	struct timespec xt;

251
	if (clearntp) {
252
		tk->ntp_error = 0;
253 254
		ntp_clear();
	}
255 256
	xt = tk_xtime(tk);
	update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
257 258
}

259
/**
260
 * timekeeping_forward_now - update clock to the current time
261
 *
262 263 264
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
265
 */
266
static void timekeeping_forward_now(struct timekeeper *tk)
267 268
{
	cycle_t cycle_now, cycle_delta;
269
	struct clocksource *clock;
270
	s64 nsec;
271

272
	clock = tk->clock;
273
	cycle_now = clock->read(clock);
274
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
275
	clock->cycle_last = cycle_now;
276

277
	tk->xtime_nsec += cycle_delta * tk->mult;
278 279

	/* If arch requires, add in gettimeoffset() */
280
	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
281

282
	tk_normalize_xtime(tk);
283

284
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
285
	timespec_add_ns(&tk->raw_time, nsec);
286 287 288
}

/**
289
 * getnstimeofday - Returns the time of day in a timespec
290 291
 * @ts:		pointer to the timespec to be set
 *
292
 * Returns the time of day in a timespec.
293
 */
294
void getnstimeofday(struct timespec *ts)
295
{
296
	struct timekeeper *tk = &timekeeper;
297
	unsigned long seq;
298
	s64 nsecs = 0;
299

300 301
	WARN_ON(timekeeping_suspended);

302
	do {
303
		seq = read_seqbegin(&tk->lock);
304

305
		ts->tv_sec = tk->xtime_sec;
306
		nsecs = timekeeping_get_ns(tk);
307

308
	} while (read_seqretry(&tk->lock, seq));
309

310
	ts->tv_nsec = 0;
311 312 313 314
	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getnstimeofday);

315 316
ktime_t ktime_get(void)
{
317
	struct timekeeper *tk = &timekeeper;
318 319 320 321 322 323
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
324 325 326
		seq = read_seqbegin(&tk->lock);
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
327

328
	} while (read_seqretry(&tk->lock, seq));
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
347
	struct timekeeper *tk = &timekeeper;
348
	struct timespec tomono;
349
	s64 nsec;
350 351 352 353 354
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
355 356
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
357
		nsec = timekeeping_get_ns(tk);
358
		tomono = tk->wall_to_monotonic;
359

360
	} while (read_seqretry(&tk->lock, seq));
361

362 363 364
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec);
365 366 367
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

368 369 370 371 372 373 374 375 376 377 378 379 380
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
381
	struct timekeeper *tk = &timekeeper;
382 383 384 385 386 387
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
388
		seq = read_seqbegin(&tk->lock);
389

390 391
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
392
		ts_real->tv_nsec = 0;
393

394 395
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
396

397
	} while (read_seqretry(&tk->lock, seq));
398 399 400 401 402 403 404 405

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

406 407 408 409
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
410
 * NOTE: Users should be converted to using getnstimeofday()
411 412 413 414 415
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

416
	getnstimeofday(&now);
417 418 419 420
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
421

422 423 424 425 426 427
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
428
int do_settimeofday(const struct timespec *tv)
429
{
430
	struct timekeeper *tk = &timekeeper;
431
	struct timespec ts_delta, xt;
432
	unsigned long flags;
433

434
	if (!timespec_valid_strict(tv))
435 436
		return -EINVAL;

437
	write_seqlock_irqsave(&tk->lock, flags);
438

439
	timekeeping_forward_now(tk);
440

441
	xt = tk_xtime(tk);
442 443 444
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

445
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
446

447
	tk_set_xtime(tk, tv);
448

449
	timekeeping_update(tk, true);
450

451
	write_sequnlock_irqrestore(&tk->lock, flags);
452 453 454 455 456 457 458 459

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

460 461 462 463 464 465 466 467
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
468
	struct timekeeper *tk = &timekeeper;
469
	unsigned long flags;
470 471
	struct timespec tmp;
	int ret = 0;
472 473 474 475

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

476
	write_seqlock_irqsave(&tk->lock, flags);
477

478
	timekeeping_forward_now(tk);
479

480 481
	/* Make sure the proposed value is valid */
	tmp = timespec_add(tk_xtime(tk),  *ts);
482
	if (!timespec_valid_strict(&tmp)) {
483 484 485
		ret = -EINVAL;
		goto error;
	}
486

487 488
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
489

490
error: /* even if we error out, we forwarded the time, so call update */
491
	timekeeping_update(tk, true);
492

493
	write_sequnlock_irqrestore(&tk->lock, flags);
494 495 496 497

	/* signal hrtimers about time change */
	clock_was_set();

498
	return ret;
499 500 501
}
EXPORT_SYMBOL(timekeeping_inject_offset);

502 503 504 505 506
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
507
static int change_clocksource(void *data)
508
{
509
	struct timekeeper *tk = &timekeeper;
510
	struct clocksource *new, *old;
511
	unsigned long flags;
512

513
	new = (struct clocksource *) data;
514

515
	write_seqlock_irqsave(&tk->lock, flags);
516

517
	timekeeping_forward_now(tk);
518
	if (!new->enable || new->enable(new) == 0) {
519 520
		old = tk->clock;
		tk_setup_internals(tk, new);
521 522 523
		if (old->disable)
			old->disable(old);
	}
524
	timekeeping_update(tk, true);
525

526
	write_sequnlock_irqrestore(&tk->lock, flags);
527

528 529
	return 0;
}
530

531 532 533 534 535 536 537 538 539
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
540 541 542
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
543
		return;
544
	stop_machine(change_clocksource, clock, NULL);
545 546
	tick_clock_notify();
}
547

548 549 550 551 552 553 554 555 556 557 558 559 560 561
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
562

563 564 565 566 567 568 569 570
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
571
	struct timekeeper *tk = &timekeeper;
572 573 574 575
	unsigned long seq;
	s64 nsecs;

	do {
576 577 578
		seq = read_seqbegin(&tk->lock);
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
579

580
	} while (read_seqretry(&tk->lock, seq));
581 582 583 584 585

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

586
/**
587
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
588
 */
589
int timekeeping_valid_for_hres(void)
590
{
591
	struct timekeeper *tk = &timekeeper;
592 593 594 595
	unsigned long seq;
	int ret;

	do {
596
		seq = read_seqbegin(&tk->lock);
597

598
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
599

600
	} while (read_seqretry(&tk->lock, seq));
601 602 603 604

	return ret;
}

605 606 607 608 609
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
610
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
611 612
	unsigned long seq;
	u64 ret;
613

J
John Stultz 已提交
614
	do {
615
		seq = read_seqbegin(&tk->lock);
J
John Stultz 已提交
616

617
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
618

619
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
620 621

	return ret;
622 623
}

624
/**
625
 * read_persistent_clock -  Return time from the persistent clock.
626 627
 *
 * Weak dummy function for arches that do not yet support it.
628 629
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
630 631 632
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
633
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
634
{
635 636
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
637 638
}

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

654 655 656 657 658
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
659
	struct timekeeper *tk = &timekeeper;
660
	struct clocksource *clock;
661
	unsigned long flags;
662
	struct timespec now, boot, tmp;
663 664

	read_persistent_clock(&now);
665
	if (!timespec_valid_strict(&now)) {
666 667 668 669 670 671
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
	}

672
	read_boot_clock(&boot);
673
	if (!timespec_valid_strict(&boot)) {
674 675 676 677 678
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
679

680
	seqlock_init(&tk->lock);
681

R
Roman Zippel 已提交
682
	ntp_init();
683

684
	write_seqlock_irqsave(&tk->lock, flags);
685
	clock = clocksource_default_clock();
686 687
	if (clock->enable)
		clock->enable(clock);
688
	tk_setup_internals(tk, clock);
689

690 691 692
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
693
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
694
		boot = tk_xtime(tk);
695

696
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
697
	tk_set_wall_to_mono(tk, tmp);
698 699 700

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
701
	tk_set_sleep_time(tk, tmp);
702

703
	write_sequnlock_irqrestore(&tk->lock, flags);
704 705 706
}

/* time in seconds when suspend began */
707
static struct timespec timekeeping_suspend_time;
708

709 710 711 712 713 714 715
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
716 717
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
718
{
719
	if (!timespec_valid_strict(delta)) {
720
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
721 722 723
					"sleep delta value!\n");
		return;
	}
724
	tk_xtime_add(tk, delta);
725 726
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
727 728 729 730 731 732 733 734 735 736 737 738 739 740
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
741
	struct timekeeper *tk = &timekeeper;
742
	unsigned long flags;
743 744 745 746 747 748 749
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

750
	write_seqlock_irqsave(&tk->lock, flags);
J
John Stultz 已提交
751

752
	timekeeping_forward_now(tk);
753

754
	__timekeeping_inject_sleeptime(tk, delta);
755

756
	timekeeping_update(tk, true);
757

758
	write_sequnlock_irqrestore(&tk->lock, flags);
759 760 761 762 763

	/* signal hrtimers about time change */
	clock_was_set();
}

764 765 766 767 768 769 770
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
771
static void timekeeping_resume(void)
772
{
773
	struct timekeeper *tk = &timekeeper;
774
	unsigned long flags;
775 776 777
	struct timespec ts;

	read_persistent_clock(&ts);
778

779 780
	clocksource_resume();

781
	write_seqlock_irqsave(&tk->lock, flags);
782

783 784
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
785
		__timekeeping_inject_sleeptime(tk, &ts);
786 787
	}
	/* re-base the last cycle value */
788 789
	tk->clock->cycle_last = tk->clock->read(tk->clock);
	tk->ntp_error = 0;
790
	timekeeping_suspended = 0;
791 792
	timekeeping_update(tk, false);
	write_sequnlock_irqrestore(&tk->lock, flags);
793 794 795 796 797 798

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
799
	hrtimers_resume();
800 801
}

802
static int timekeeping_suspend(void)
803
{
804
	struct timekeeper *tk = &timekeeper;
805
	unsigned long flags;
806 807
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
808

809
	read_persistent_clock(&timekeeping_suspend_time);
810

811 812
	write_seqlock_irqsave(&tk->lock, flags);
	timekeeping_forward_now(tk);
813
	timekeeping_suspended = 1;
814 815 816 817 818 819 820

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
821
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
822 823 824 825 826 827 828 829 830 831 832 833
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
834
	write_sequnlock_irqrestore(&tk->lock, flags);
835 836

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
837
	clocksource_suspend();
838 839 840 841 842

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
843
static struct syscore_ops timekeeping_syscore_ops = {
844 845 846 847
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

848
static int __init timekeeping_init_ops(void)
849
{
850 851
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
852 853
}

854
device_initcall(timekeeping_init_ops);
855 856 857 858 859

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
860 861
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
862 863 864 865 866 867 868 869 870 871 872 873
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
874
	 * here.  This is tuned so that an error of about 1 msec is adjusted
875 876
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
877
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
878 879 880 881 882 883 884 885
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
886 887
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
912
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
913
{
914
	s64 error, interval = tk->cycle_interval;
915 916
	int adj;

917
	/*
918
	 * The point of this is to check if the error is greater than half
919 920 921 922 923
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
924 925
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
926
	 * larger than half an interval.
927
	 *
928
	 * Note: It does not "save" on aggravation when reading the code.
929
	 */
930
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
931
	if (error > interval) {
932 933
		/*
		 * We now divide error by 4(via shift), which checks if
934
		 * the error is greater than twice the interval.
935 936 937
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
938
		error >>= 2;
939 940 941 942 943
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
944
		 * The proper fix is to avoid rounding up by using
945
		 * the high precision tk->xtime_nsec instead of
946 947 948
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
949 950 951
		if (likely(error <= interval))
			adj = 1;
		else
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
968

969 970
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
971 972
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
973 974
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
975
	}
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1025 1026 1027 1028
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1029

1030
out_adjust:
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1045 1046 1047 1048
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1049 1050
	}

1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1073 1074 1075 1076
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1077

1078 1079 1080 1081 1082 1083 1084
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

			clock_was_set_delayed();
		}
1085 1086 1087
	}
}

1088 1089 1090 1091 1092 1093 1094 1095 1096
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1097 1098
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
						u32 shift)
1099
{
1100
	u64 raw_nsecs;
1101

1102 1103
	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < tk->cycle_interval<<shift)
1104 1105 1106
		return offset;

	/* Accumulate one shifted interval */
1107 1108
	offset -= tk->cycle_interval << shift;
	tk->clock->cycle_last += tk->cycle_interval << shift;
1109

1110 1111
	tk->xtime_nsec += tk->xtime_interval << shift;
	accumulate_nsecs_to_secs(tk);
1112

1113
	/* Accumulate raw time */
1114 1115
	raw_nsecs = tk->raw_interval << shift;
	raw_nsecs += tk->raw_time.tv_nsec;
1116 1117 1118
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1119
		tk->raw_time.tv_sec += raw_secs;
1120
	}
1121
	tk->raw_time.tv_nsec = raw_nsecs;
1122 1123

	/* Accumulate error between NTP and clock interval */
1124 1125 1126
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1127 1128 1129 1130

	return offset;
}

1131 1132 1133 1134
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1135
static void update_wall_time(void)
1136
{
1137
	struct clocksource *clock;
1138
	struct timekeeper *tk = &timekeeper;
1139
	cycle_t offset;
1140
	int shift = 0, maxshift;
J
John Stultz 已提交
1141
	unsigned long flags;
1142
	s64 remainder;
J
John Stultz 已提交
1143

1144
	write_seqlock_irqsave(&tk->lock, flags);
1145 1146 1147

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1148
		goto out;
1149

1150
	clock = tk->clock;
J
John Stultz 已提交
1151 1152

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1153
	offset = tk->cycle_interval;
J
John Stultz 已提交
1154 1155
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1156 1157
#endif

1158 1159 1160 1161
	/* Check if there's really nothing to do */
	if (offset < tk->cycle_interval)
		goto out;

1162 1163 1164 1165
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1166
	 * that is smaller than the offset.  We then accumulate that
1167 1168
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1169
	 */
1170
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1171
	shift = max(0, shift);
1172
	/* Bound shift to one less than what overflows tick_length */
1173
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1174
	shift = min(shift, maxshift);
1175 1176 1177
	while (offset >= tk->cycle_interval) {
		offset = logarithmic_accumulation(tk, offset, shift);
		if (offset < tk->cycle_interval<<shift)
1178
			shift--;
1179 1180 1181
	}

	/* correct the clock when NTP error is too big */
1182
	timekeeping_adjust(tk, offset);
1183

1184

J
John Stultz 已提交
1185
	/*
1186 1187 1188 1189 1190 1191 1192 1193
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), this can be killed.
	*/
1194
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1195
	tk->xtime_nsec -= remainder;
1196
	tk->xtime_nsec += 1ULL << tk->shift;
1197
	tk->ntp_error += remainder << tk->ntp_error_shift;
1198

J
John Stultz 已提交
1199 1200
	/*
	 * Finally, make sure that after the rounding
1201
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1202
	 */
1203
	accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1204

1205
	timekeeping_update(tk, false);
J
John Stultz 已提交
1206 1207

out:
1208
	write_sequnlock_irqrestore(&tk->lock, flags);
J
John Stultz 已提交
1209

1210
}
T
Tomas Janousek 已提交
1211 1212 1213 1214 1215

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1216
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1217 1218 1219 1220 1221 1222 1223 1224
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1225
	struct timekeeper *tk = &timekeeper;
1226
	struct timespec boottime = {
1227 1228 1229 1230
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1231
	};
1232 1233

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1234
}
1235
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1236

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1248
	struct timekeeper *tk = &timekeeper;
1249
	struct timespec tomono, sleep;
1250
	s64 nsec;
1251 1252 1253 1254 1255
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1256 1257
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
1258
		nsec = timekeeping_get_ns(tk);
1259 1260
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1261

1262
	} while (read_seqretry(&tk->lock, seq));
1263

1264 1265 1266
	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1287 1288 1289 1290 1291 1292
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1293 1294 1295
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1296
}
1297
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1298

1299 1300
unsigned long get_seconds(void)
{
1301 1302 1303
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1304 1305 1306
}
EXPORT_SYMBOL(get_seconds);

1307 1308
struct timespec __current_kernel_time(void)
{
1309 1310 1311
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1312
}
1313

1314 1315
struct timespec current_kernel_time(void)
{
1316
	struct timekeeper *tk = &timekeeper;
1317 1318 1319 1320
	struct timespec now;
	unsigned long seq;

	do {
1321
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1322

1323 1324
		now = tk_xtime(tk);
	} while (read_seqretry(&tk->lock, seq));
1325 1326 1327 1328

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1329 1330 1331

struct timespec get_monotonic_coarse(void)
{
1332
	struct timekeeper *tk = &timekeeper;
1333 1334 1335 1336
	struct timespec now, mono;
	unsigned long seq;

	do {
1337
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1338

1339 1340 1341
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
1342 1343 1344 1345 1346

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1359 1360

/**
1361 1362
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1363 1364
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1365
 * @sleep:	pointer to timespec to be set with time in suspend
1366
 */
1367 1368
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1369
{
1370
	struct timekeeper *tk = &timekeeper;
1371 1372 1373
	unsigned long seq;

	do {
1374 1375 1376 1377 1378
		seq = read_seqbegin(&tk->lock);
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
	} while (read_seqretry(&tk->lock, seq));
1379
}
T
Torben Hohn 已提交
1380

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
{
1392
	struct timekeeper *tk = &timekeeper;
1393 1394 1395 1396 1397
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1398
		seq = read_seqbegin(&tk->lock);
1399

1400 1401
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1402

1403 1404 1405
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
	} while (read_seqretry(&tk->lock, seq));
1406 1407 1408 1409 1410 1411 1412

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1413 1414 1415 1416 1417
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1418
	struct timekeeper *tk = &timekeeper;
1419 1420 1421 1422
	unsigned long seq;
	struct timespec wtom;

	do {
1423 1424 1425
		seq = read_seqbegin(&tk->lock);
		wtom = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
1426

1427 1428
	return timespec_to_ktime(wtom);
}
1429 1430
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

T
Torben Hohn 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}