timekeeping.c 52.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;

63 64 65
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

66 67 68
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
109
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121 122 123 124 125 126 127 128
#ifdef CONFIG_DEBUG_TIMEKEEPING
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

	cycle_t max_cycles = tk->tkr.clock->max_cycles;
	const char *name = tk->tkr.clock->name;

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133 134 135 136 137 138 139
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
}
140 141 142 143 144 145 146 147 148 149 150

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

151 152 153 154 155 156 157
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
	if (unlikely((~delta & tkr->mask) < (tkr->mask >> 3)))
		delta = 0;

158 159 160 161 162 163
	/* Cap delta value to the max_cycles values to avoid mult overflows */
	if (unlikely(delta > tkr->clock->max_cycles))
		delta = tkr->clock->max_cycles;

	return delta;
}
164 165 166 167
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
168 169 170 171 172 173 174 175 176 177 178 179
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
180 181
#endif

182
/**
183
 * tk_setup_internals - Set up internals to use clocksource clock.
184
 *
185
 * @tk:		The target timekeeper to setup.
186 187 188 189 190 191 192
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
193
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
194 195
{
	cycle_t interval;
196
	u64 tmp, ntpinterval;
197
	struct clocksource *old_clock;
198

199 200 201 202 203
	old_clock = tk->tkr.clock;
	tk->tkr.clock = clock;
	tk->tkr.read = clock->read;
	tk->tkr.mask = clock->mask;
	tk->tkr.cycle_last = tk->tkr.read(clock);
204 205 206 207

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
208
	ntpinterval = tmp;
209 210
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
211 212 213 214
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
215
	tk->cycle_interval = interval;
216 217

	/* Go back from cycles -> shifted ns */
218 219 220
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
221
		((u64) interval * clock->mult) >> clock->shift;
222

223 224 225 226
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
227
			tk->tkr.xtime_nsec >>= -shift_change;
228
		else
229
			tk->tkr.xtime_nsec <<= shift_change;
230
	}
231
	tk->tkr.shift = clock->shift;
232

233 234
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
235
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
236 237 238 239 240 241

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
242
	tk->tkr.mult = clock->mult;
243
	tk->ntp_err_mult = 0;
244
}
245

246
/* Timekeeper helper functions. */
247 248

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
249 250
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
251
#else
252
static inline u32 arch_gettimeoffset(void) { return 0; }
253 254
#endif

255
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
256
{
257
	cycle_t delta;
258
	s64 nsec;
259

260
	delta = timekeeping_get_delta(tkr);
261

262 263
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
264

265
	/* If arch requires, add in get_arch_timeoffset() */
266
	return nsec + arch_gettimeoffset();
267 268
}

269
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
270
{
271
	struct clocksource *clock = tk->tkr.clock;
272
	cycle_t delta;
273
	s64 nsec;
274

275
	delta = timekeeping_get_delta(&tk->tkr);
276

277
	/* convert delta to nanoseconds. */
278
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
279

280
	/* If arch requires, add in get_arch_timeoffset() */
281
	return nsec + arch_gettimeoffset();
282 283
}

284 285
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
286
 * @tkr: Timekeeping readout base from which we take the update
287 288 289 290 291 292 293 294 295 296 297
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
298
 * update(tkf->base[0], tkr);
299 300 301
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
302
 * update(tkf->base[1], tkr);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
323
static void update_fast_timekeeper(struct tk_read_base *tkr)
324 325 326 327 328 329 330
{
	struct tk_read_base *base = tk_fast_mono.base;

	/* Force readers off to base[1] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[0] */
331
	memcpy(base, tkr, sizeof(*base));
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

	/* Force readers back to base[0] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
u64 notrace ktime_get_mono_fast_ns(void)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount(&tk_fast_mono.seq);
		tkr = tk_fast_mono.base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);

	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
	return now;
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
	struct tk_read_base *tkr = &tk->tkr;

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy);
}

417 418 419 420
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
421
	struct timespec xt, wm;
422

423
	xt = timespec64_to_timespec(tk_xtime(tk));
424 425
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
426
			    tk->tkr.cycle_last);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
443 444 445
	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
	tk->tkr.xtime_nsec -= remainder;
	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
446
	tk->ntp_error += remainder << tk->ntp_error_shift;
447
	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
448 449 450 451 452
}
#else
#define old_vsyscall_fixup(tk)
#endif

453 454
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

455
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
456
{
457
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
458 459 460 461 462 463 464
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
465
	struct timekeeper *tk = &tk_core.timekeeper;
466 467 468
	unsigned long flags;
	int ret;

469
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
470
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
471
	update_pvclock_gtod(tk, true);
472
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
473 474 475 476 477 478 479 480 481 482 483 484 485 486

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

487
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
488
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
489
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
490 491 492 493 494

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

495 496 497 498 499
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
500 501
	u64 seconds;
	u32 nsec;
502 503 504 505 506 507 508 509

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
510 511 512
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
	tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
513 514 515

	/* Update the monotonic raw base */
	tk->base_raw = timespec64_to_ktime(tk->raw_time);
516 517 518 519 520 521 522 523 524 525

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
	nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
526 527
}

528
/* must hold timekeeper_lock */
529
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
530
{
531
	if (action & TK_CLEAR_NTP) {
532
		tk->ntp_error = 0;
533 534
		ntp_clear();
	}
535

536 537
	tk_update_ktime_data(tk);

538 539 540
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

541
	if (action & TK_MIRROR)
542 543
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
544

545
	update_fast_timekeeper(&tk->tkr);
546 547
}

548
/**
549
 * timekeeping_forward_now - update clock to the current time
550
 *
551 552 553
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
554
 */
555
static void timekeeping_forward_now(struct timekeeper *tk)
556
{
557
	struct clocksource *clock = tk->tkr.clock;
558
	cycle_t cycle_now, delta;
559
	s64 nsec;
560

561 562 563
	cycle_now = tk->tkr.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
	tk->tkr.cycle_last = cycle_now;
564

565
	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
566

567
	/* If arch requires, add in get_arch_timeoffset() */
568
	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
569

570
	tk_normalize_xtime(tk);
571

572
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
573
	timespec64_add_ns(&tk->raw_time, nsec);
574 575 576
}

/**
577
 * __getnstimeofday64 - Returns the time of day in a timespec64.
578 579
 * @ts:		pointer to the timespec to be set
 *
580 581
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
582
 */
583
int __getnstimeofday64(struct timespec64 *ts)
584
{
585
	struct timekeeper *tk = &tk_core.timekeeper;
586
	unsigned long seq;
587
	s64 nsecs = 0;
588 589

	do {
590
		seq = read_seqcount_begin(&tk_core.seq);
591

592
		ts->tv_sec = tk->xtime_sec;
593
		nsecs = timekeeping_get_ns(&tk->tkr);
594

595
	} while (read_seqcount_retry(&tk_core.seq, seq));
596

597
	ts->tv_nsec = 0;
598
	timespec64_add_ns(ts, nsecs);
599 600 601 602 603 604 605 606 607

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
608
EXPORT_SYMBOL(__getnstimeofday64);
609 610

/**
611
 * getnstimeofday64 - Returns the time of day in a timespec64.
612
 * @ts:		pointer to the timespec64 to be set
613
 *
614
 * Returns the time of day in a timespec64 (WARN if suspended).
615
 */
616
void getnstimeofday64(struct timespec64 *ts)
617
{
618
	WARN_ON(__getnstimeofday64(ts));
619
}
620
EXPORT_SYMBOL(getnstimeofday64);
621

622 623
ktime_t ktime_get(void)
{
624
	struct timekeeper *tk = &tk_core.timekeeper;
625
	unsigned int seq;
626 627
	ktime_t base;
	s64 nsecs;
628 629 630 631

	WARN_ON(timekeeping_suspended);

	do {
632
		seq = read_seqcount_begin(&tk_core.seq);
633
		base = tk->tkr.base_mono;
634
		nsecs = timekeeping_get_ns(&tk->tkr);
635

636
	} while (read_seqcount_retry(&tk_core.seq, seq));
637

638
	return ktime_add_ns(base, nsecs);
639 640 641
}
EXPORT_SYMBOL_GPL(ktime_get);

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
659
		base = ktime_add(tk->tkr.base_mono, *offset);
660
		nsecs = timekeeping_get_ns(&tk->tkr);
661 662 663 664 665 666 667 668

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->base_raw;
		nsecs = timekeeping_get_ns_raw(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

710
/**
711
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
712 713 714 715
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
716
 * in normalized timespec64 format in the variable pointed to by @ts.
717
 */
718
void ktime_get_ts64(struct timespec64 *ts)
719
{
720
	struct timekeeper *tk = &tk_core.timekeeper;
721
	struct timespec64 tomono;
722
	s64 nsec;
723 724 725 726 727
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
728
		seq = read_seqcount_begin(&tk_core.seq);
729
		ts->tv_sec = tk->xtime_sec;
730
		nsec = timekeeping_get_ns(&tk->tkr);
731
		tomono = tk->wall_to_monotonic;
732

733
	} while (read_seqcount_retry(&tk_core.seq, seq));
734

735 736 737
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
738
}
739
EXPORT_SYMBOL_GPL(ktime_get_ts64);
740

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

789 790 791 792 793 794 795 796 797 798 799 800 801
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
802
	struct timekeeper *tk = &tk_core.timekeeper;
803 804 805 806 807 808
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
809
		seq = read_seqcount_begin(&tk_core.seq);
810

811
		*ts_raw = timespec64_to_timespec(tk->raw_time);
812
		ts_real->tv_sec = tk->xtime_sec;
813
		ts_real->tv_nsec = 0;
814

815
		nsecs_raw = timekeeping_get_ns_raw(tk);
816
		nsecs_real = timekeeping_get_ns(&tk->tkr);
817

818
	} while (read_seqcount_retry(&tk_core.seq, seq));
819 820 821 822 823 824 825 826

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

827 828 829 830
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
831
 * NOTE: Users should be converted to using getnstimeofday()
832 833 834
 */
void do_gettimeofday(struct timeval *tv)
{
835
	struct timespec64 now;
836

837
	getnstimeofday64(&now);
838 839 840 841
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
842

843
/**
844 845
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
846 847 848
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
849
int do_settimeofday64(const struct timespec64 *ts)
850
{
851
	struct timekeeper *tk = &tk_core.timekeeper;
852
	struct timespec64 ts_delta, xt;
853
	unsigned long flags;
854

855
	if (!timespec64_valid_strict(ts))
856 857
		return -EINVAL;

858
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
859
	write_seqcount_begin(&tk_core.seq);
860

861
	timekeeping_forward_now(tk);
862

863
	xt = tk_xtime(tk);
864 865
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
866

867
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
868

869
	tk_set_xtime(tk, ts);
870

871
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
872

873
	write_seqcount_end(&tk_core.seq);
874
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
875 876 877 878 879 880

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
881
EXPORT_SYMBOL(do_settimeofday64);
882

883 884 885 886 887 888 889 890
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
891
	struct timekeeper *tk = &tk_core.timekeeper;
892
	unsigned long flags;
893
	struct timespec64 ts64, tmp;
894
	int ret = 0;
895 896 897 898

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

899 900
	ts64 = timespec_to_timespec64(*ts);

901
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
902
	write_seqcount_begin(&tk_core.seq);
903

904
	timekeeping_forward_now(tk);
905

906
	/* Make sure the proposed value is valid */
907 908
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
909 910 911
		ret = -EINVAL;
		goto error;
	}
912

913 914
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
915

916
error: /* even if we error out, we forwarded the time, so call update */
917
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
918

919
	write_seqcount_end(&tk_core.seq);
920
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
921 922 923 924

	/* signal hrtimers about time change */
	clock_was_set();

925
	return ret;
926 927 928
}
EXPORT_SYMBOL(timekeeping_inject_offset);

929 930 931 932 933 934 935

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
936
	struct timekeeper *tk = &tk_core.timekeeper;
937 938 939 940
	unsigned int seq;
	s32 ret;

	do {
941
		seq = read_seqcount_begin(&tk_core.seq);
942
		ret = tk->tai_offset;
943
	} while (read_seqcount_retry(&tk_core.seq, seq));
944 945 946 947 948 949 950 951

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
952
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
953 954
{
	tk->tai_offset = tai_offset;
955
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
956 957 958 959 960 961 962 963
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
964
	struct timekeeper *tk = &tk_core.timekeeper;
965 966
	unsigned long flags;

967
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
968
	write_seqcount_begin(&tk_core.seq);
969
	__timekeeping_set_tai_offset(tk, tai_offset);
970
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
971
	write_seqcount_end(&tk_core.seq);
972
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
973
	clock_was_set();
974 975
}

976 977 978 979 980
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
981
static int change_clocksource(void *data)
982
{
983
	struct timekeeper *tk = &tk_core.timekeeper;
984
	struct clocksource *new, *old;
985
	unsigned long flags;
986

987
	new = (struct clocksource *) data;
988

989
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
990
	write_seqcount_begin(&tk_core.seq);
991

992
	timekeeping_forward_now(tk);
993 994 995 996 997 998
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
999
			old = tk->tkr.clock;
1000 1001 1002 1003 1004 1005 1006
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1007
	}
1008
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1009

1010
	write_seqcount_end(&tk_core.seq);
1011
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1012

1013 1014
	return 0;
}
1015

1016 1017 1018 1019 1020 1021 1022
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1023
int timekeeping_notify(struct clocksource *clock)
1024
{
1025
	struct timekeeper *tk = &tk_core.timekeeper;
1026

1027
	if (tk->tkr.clock == clock)
1028
		return 0;
1029
	stop_machine(change_clocksource, clock, NULL);
1030
	tick_clock_notify();
1031
	return tk->tkr.clock == clock ? 0 : -1;
1032
}
1033

1034
/**
1035 1036
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1037 1038 1039
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1040
void getrawmonotonic64(struct timespec64 *ts)
1041
{
1042
	struct timekeeper *tk = &tk_core.timekeeper;
1043
	struct timespec64 ts64;
1044 1045 1046 1047
	unsigned long seq;
	s64 nsecs;

	do {
1048
		seq = read_seqcount_begin(&tk_core.seq);
1049
		nsecs = timekeeping_get_ns_raw(tk);
1050
		ts64 = tk->raw_time;
1051

1052
	} while (read_seqcount_retry(&tk_core.seq, seq));
1053

1054
	timespec64_add_ns(&ts64, nsecs);
1055
	*ts = ts64;
1056
}
1057 1058
EXPORT_SYMBOL(getrawmonotonic64);

1059

1060
/**
1061
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1062
 */
1063
int timekeeping_valid_for_hres(void)
1064
{
1065
	struct timekeeper *tk = &tk_core.timekeeper;
1066 1067 1068 1069
	unsigned long seq;
	int ret;

	do {
1070
		seq = read_seqcount_begin(&tk_core.seq);
1071

1072
		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1073

1074
	} while (read_seqcount_retry(&tk_core.seq, seq));
1075 1076 1077 1078

	return ret;
}

1079 1080 1081 1082 1083
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1084
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1085 1086
	unsigned long seq;
	u64 ret;
1087

J
John Stultz 已提交
1088
	do {
1089
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1090

1091
		ret = tk->tkr.clock->max_idle_ns;
J
John Stultz 已提交
1092

1093
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1094 1095

	return ret;
1096 1097
}

1098
/**
1099
 * read_persistent_clock -  Return time from the persistent clock.
1100 1101
 *
 * Weak dummy function for arches that do not yet support it.
1102 1103
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1104 1105 1106
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1107
void __weak read_persistent_clock(struct timespec *ts)
1108
{
1109 1110
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1111 1112
}

1113 1114 1115 1116 1117 1118 1119 1120 1121
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1122
void __weak read_boot_clock(struct timespec *ts)
1123 1124 1125 1126 1127
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1128 1129 1130 1131 1132
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1133
	struct timekeeper *tk = &tk_core.timekeeper;
1134
	struct clocksource *clock;
1135
	unsigned long flags;
1136 1137
	struct timespec64 now, boot, tmp;
	struct timespec ts;
1138

1139 1140 1141
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1142 1143 1144 1145
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1146 1147
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1148

1149 1150 1151
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1152 1153 1154 1155 1156
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1157

1158
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1159
	write_seqcount_begin(&tk_core.seq);
1160 1161
	ntp_init();

1162
	clock = clocksource_default_clock();
1163 1164
	if (clock->enable)
		clock->enable(clock);
1165
	tk_setup_internals(tk, clock);
1166

1167 1168 1169
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1170
	tk->base_raw.tv64 = 0;
1171
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1172
		boot = tk_xtime(tk);
1173

1174
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1175
	tk_set_wall_to_mono(tk, tmp);
1176

1177
	timekeeping_update(tk, TK_MIRROR);
1178

1179
	write_seqcount_end(&tk_core.seq);
1180
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1181 1182 1183
}

/* time in seconds when suspend began */
1184
static struct timespec64 timekeeping_suspend_time;
1185

1186 1187 1188 1189 1190 1191 1192
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1193
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1194
					   struct timespec64 *delta)
1195
{
1196
	if (!timespec64_valid_strict(delta)) {
1197 1198 1199
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1200 1201
		return;
	}
1202
	tk_xtime_add(tk, delta);
1203
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1204
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1205
	tk_debug_account_sleep_time(delta);
1206 1207 1208
}

/**
1209 1210
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1211 1212 1213 1214 1215 1216 1217
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1218
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1219
{
1220
	struct timekeeper *tk = &tk_core.timekeeper;
1221
	unsigned long flags;
1222

1223 1224 1225 1226 1227
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1228 1229
		return;

1230
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1231
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1232

1233
	timekeeping_forward_now(tk);
1234

1235
	__timekeeping_inject_sleeptime(tk, delta);
1236

1237
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1238

1239
	write_seqcount_end(&tk_core.seq);
1240
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1241 1242 1243 1244 1245

	/* signal hrtimers about time change */
	clock_was_set();
}

1246 1247 1248 1249 1250 1251 1252
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1253
void timekeeping_resume(void)
1254
{
1255
	struct timekeeper *tk = &tk_core.timekeeper;
1256
	struct clocksource *clock = tk->tkr.clock;
1257
	unsigned long flags;
1258 1259
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1260 1261
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1262

1263 1264
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1265

1266
	clockevents_resume();
1267 1268
	clocksource_resume();

1269
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1270
	write_seqcount_begin(&tk_core.seq);
1271

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1284
	cycle_now = tk->tkr.read(clock);
1285
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1286
		cycle_now > tk->tkr.cycle_last) {
1287 1288 1289 1290 1291
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1292 1293
		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
						tk->tkr.mask);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1308
		ts_delta = ns_to_timespec64(nsec);
1309
		suspendtime_found = true;
1310 1311
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1312
		suspendtime_found = true;
1313
	}
1314 1315 1316 1317 1318

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1319
	tk->tkr.cycle_last = cycle_now;
1320
	tk->ntp_error = 0;
1321
	timekeeping_suspended = 0;
1322
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1323
	write_seqcount_end(&tk_core.seq);
1324
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1325 1326 1327 1328 1329 1330

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1331
	hrtimers_resume();
1332 1333
}

1334
int timekeeping_suspend(void)
1335
{
1336
	struct timekeeper *tk = &tk_core.timekeeper;
1337
	unsigned long flags;
1338 1339 1340
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1341

1342 1343
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1344

1345 1346 1347 1348 1349 1350 1351 1352
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1353
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1354
	write_seqcount_begin(&tk_core.seq);
1355
	timekeeping_forward_now(tk);
1356
	timekeeping_suspended = 1;
1357 1358 1359 1360 1361 1362 1363

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1364 1365
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1366 1367 1368 1369 1370 1371 1372 1373 1374
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1375
			timespec64_add(timekeeping_suspend_time, delta_delta);
1376
	}
1377 1378

	timekeeping_update(tk, TK_MIRROR);
1379
	halt_fast_timekeeper(tk);
1380
	write_seqcount_end(&tk_core.seq);
1381
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1382 1383

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1384
	clocksource_suspend();
1385
	clockevents_suspend();
1386 1387 1388 1389 1390

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1391
static struct syscore_ops timekeeping_syscore_ops = {
1392 1393 1394 1395
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1396
static int __init timekeeping_init_ops(void)
1397
{
1398 1399
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1400
}
1401
device_initcall(timekeeping_init_ops);
1402 1403

/*
1404
 * Apply a multiplier adjustment to the timekeeper
1405
 */
1406 1407 1408 1409
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1410
{
1411 1412
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1413

1414 1415 1416 1417
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1418
	}
1419 1420 1421
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1422

1423 1424 1425
	/*
	 * So the following can be confusing.
	 *
1426
	 * To keep things simple, lets assume mult_adj == 1 for now.
1427
	 *
1428
	 * When mult_adj != 1, remember that the interval and offset values
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1472
	if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1473 1474 1475 1476 1477
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1478
	tk->tkr.mult += mult_adj;
1479
	tk->xtime_interval += interval;
1480
	tk->tkr.xtime_nsec -= offset;
1481
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1501 1502
	tk->ntp_tick = ntp_tick_length();

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

	if (unlikely(tk->tkr.clock->maxadj &&
1543 1544
		(abs(tk->tkr.mult - tk->tkr.clock->mult)
			> tk->tkr.clock->maxadj))) {
1545 1546 1547 1548 1549
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
			tk->tkr.clock->name, (long)tk->tkr.mult,
			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
	}
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1565 1566 1567
	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr.xtime_nsec;
		tk->tkr.xtime_nsec = 0;
1568
		tk->ntp_error += neg << tk->ntp_error_shift;
1569
	}
1570 1571
}

1572 1573 1574 1575 1576 1577 1578 1579
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1580
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1581
{
1582
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1583
	unsigned int clock_set = 0;
1584

1585
	while (tk->tkr.xtime_nsec >= nsecps) {
1586 1587
		int leap;

1588
		tk->tkr.xtime_nsec -= nsecps;
1589 1590 1591 1592
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1593
		if (unlikely(leap)) {
1594
			struct timespec64 ts;
1595 1596

			tk->xtime_sec += leap;
1597

1598 1599 1600
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1601
				timespec64_sub(tk->wall_to_monotonic, ts));
1602

1603 1604
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1605
			clock_set = TK_CLOCK_WAS_SET;
1606
		}
1607
	}
1608
	return clock_set;
1609 1610
}

1611 1612 1613 1614 1615 1616 1617 1618 1619
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1620
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1621 1622
						u32 shift,
						unsigned int *clock_set)
1623
{
T
Thomas Gleixner 已提交
1624
	cycle_t interval = tk->cycle_interval << shift;
1625
	u64 raw_nsecs;
1626

1627
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1628
	if (offset < interval)
1629 1630 1631
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1632
	offset -= interval;
1633
	tk->tkr.cycle_last += interval;
1634

1635
	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1636
	*clock_set |= accumulate_nsecs_to_secs(tk);
1637

1638
	/* Accumulate raw time */
1639
	raw_nsecs = (u64)tk->raw_interval << shift;
1640
	raw_nsecs += tk->raw_time.tv_nsec;
1641 1642 1643
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1644
		tk->raw_time.tv_sec += raw_secs;
1645
	}
1646
	tk->raw_time.tv_nsec = raw_nsecs;
1647 1648

	/* Accumulate error between NTP and clock interval */
1649
	tk->ntp_error += tk->ntp_tick << shift;
1650 1651
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1652 1653 1654 1655

	return offset;
}

1656 1657 1658 1659
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1660
void update_wall_time(void)
1661
{
1662
	struct timekeeper *real_tk = &tk_core.timekeeper;
1663
	struct timekeeper *tk = &shadow_timekeeper;
1664
	cycle_t offset;
1665
	int shift = 0, maxshift;
1666
	unsigned int clock_set = 0;
J
John Stultz 已提交
1667 1668
	unsigned long flags;

1669
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1670 1671 1672

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1673
		goto out;
1674

J
John Stultz 已提交
1675
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1676
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1677
#else
1678 1679
	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
				   tk->tkr.cycle_last, tk->tkr.mask);
1680 1681
#endif

1682
	/* Check if there's really nothing to do */
1683
	if (offset < real_tk->cycle_interval)
1684 1685
		goto out;

1686 1687 1688
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1689 1690 1691 1692
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1693
	 * that is smaller than the offset.  We then accumulate that
1694 1695
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1696
	 */
1697
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1698
	shift = max(0, shift);
1699
	/* Bound shift to one less than what overflows tick_length */
1700
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1701
	shift = min(shift, maxshift);
1702
	while (offset >= tk->cycle_interval) {
1703 1704
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1705
		if (offset < tk->cycle_interval<<shift)
1706
			shift--;
1707 1708 1709
	}

	/* correct the clock when NTP error is too big */
1710
	timekeeping_adjust(tk, offset);
1711

J
John Stultz 已提交
1712
	/*
1713 1714 1715 1716
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1717

J
John Stultz 已提交
1718 1719
	/*
	 * Finally, make sure that after the rounding
1720
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1721
	 */
1722
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1723

1724
	write_seqcount_begin(&tk_core.seq);
1725 1726 1727 1728 1729 1730 1731
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1732
	 * memcpy under the tk_core.seq against one before we start
1733 1734 1735
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1736
	timekeeping_update(real_tk, clock_set);
1737
	write_seqcount_end(&tk_core.seq);
1738
out:
1739
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1740
	if (clock_set)
1741 1742
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1743
}
T
Tomas Janousek 已提交
1744 1745

/**
1746 1747
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1748
 *
1749
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1750 1751 1752 1753 1754 1755
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1756
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1757
{
1758
	struct timekeeper *tk = &tk_core.timekeeper;
1759 1760
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1761
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1762
}
1763
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1764

1765 1766
unsigned long get_seconds(void)
{
1767
	struct timekeeper *tk = &tk_core.timekeeper;
1768 1769

	return tk->xtime_sec;
1770 1771 1772
}
EXPORT_SYMBOL(get_seconds);

1773 1774
struct timespec __current_kernel_time(void)
{
1775
	struct timekeeper *tk = &tk_core.timekeeper;
1776

1777
	return timespec64_to_timespec(tk_xtime(tk));
1778
}
1779

1780 1781
struct timespec current_kernel_time(void)
{
1782
	struct timekeeper *tk = &tk_core.timekeeper;
1783
	struct timespec64 now;
1784 1785 1786
	unsigned long seq;

	do {
1787
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1788

1789
		now = tk_xtime(tk);
1790
	} while (read_seqcount_retry(&tk_core.seq, seq));
1791

1792
	return timespec64_to_timespec(now);
1793 1794
}
EXPORT_SYMBOL(current_kernel_time);
1795

1796
struct timespec64 get_monotonic_coarse64(void)
1797
{
1798
	struct timekeeper *tk = &tk_core.timekeeper;
1799
	struct timespec64 now, mono;
1800 1801 1802
	unsigned long seq;

	do {
1803
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1804

1805 1806
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1807
	} while (read_seqcount_retry(&tk_core.seq, seq));
1808

1809
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1810
				now.tv_nsec + mono.tv_nsec);
1811

1812
	return now;
1813
}
1814 1815

/*
1816
 * Must hold jiffies_lock
1817 1818 1819 1820 1821 1822
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1823 1824

/**
1825 1826 1827 1828 1829 1830
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1831
 */
1832 1833
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1834
{
1835
	struct timekeeper *tk = &tk_core.timekeeper;
1836
	unsigned int seq;
1837 1838
	ktime_t base;
	u64 nsecs;
1839 1840

	do {
1841
		seq = read_seqcount_begin(&tk_core.seq);
1842

1843 1844
		base = tk->tkr.base_mono;
		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1845

1846 1847 1848
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1849
	} while (read_seqcount_retry(&tk_core.seq, seq));
1850

1851
	return ktime_add_ns(base, nsecs);
1852
}
T
Torben Hohn 已提交
1853

1854 1855
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1856
 * ktime_get_update_offsets_now - hrtimer helper
1857 1858
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1859
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1860 1861
 *
 * Returns current monotonic time and updates the offsets
1862
 * Called from hrtimer_interrupt() or retrigger_next_event()
1863
 */
1864
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1865
							ktime_t *offs_tai)
1866
{
1867
	struct timekeeper *tk = &tk_core.timekeeper;
1868
	unsigned int seq;
1869 1870
	ktime_t base;
	u64 nsecs;
1871 1872

	do {
1873
		seq = read_seqcount_begin(&tk_core.seq);
1874

1875
		base = tk->tkr.base_mono;
1876
		nsecs = timekeeping_get_ns(&tk->tkr);
1877

1878 1879
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1880
		*offs_tai = tk->offs_tai;
1881
	} while (read_seqcount_retry(&tk_core.seq, seq));
1882

1883
	return ktime_add_ns(base, nsecs);
1884 1885 1886
}
#endif

1887 1888 1889 1890 1891
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1892
	struct timekeeper *tk = &tk_core.timekeeper;
1893
	unsigned long flags;
1894
	struct timespec64 ts;
1895
	s32 orig_tai, tai;
1896 1897 1898 1899 1900 1901 1902
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1914
	getnstimeofday64(&ts);
1915

1916
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1917
	write_seqcount_begin(&tk_core.seq);
1918

1919
	orig_tai = tai = tk->tai_offset;
1920
	ret = __do_adjtimex(txc, &ts, &tai);
1921

1922 1923
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1924
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1925
	}
1926
	write_seqcount_end(&tk_core.seq);
1927 1928
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1929 1930 1931
	if (tai != orig_tai)
		clock_was_set();

1932 1933
	ntp_notify_cmos_timer();

1934 1935
	return ret;
}
1936 1937 1938 1939 1940 1941 1942

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1943 1944 1945
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1946
	write_seqcount_begin(&tk_core.seq);
1947

1948
	__hardpps(phase_ts, raw_ts);
1949

1950
	write_seqcount_end(&tk_core.seq);
1951
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1952 1953 1954 1955
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1956 1957 1958 1959 1960 1961 1962 1963
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1964
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1965
	do_timer(ticks);
1966
	write_sequnlock(&jiffies_lock);
1967
	update_wall_time();
T
Torben Hohn 已提交
1968
}