timekeeping.c 54.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68 69
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

70 71
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
72 73
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
74 75 76 77
		tk->xtime_sec++;
	}
}

78 79 80 81 82
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
83
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
84 85 86
	return ts;
}

87
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
88 89
{
	tk->xtime_sec = ts->tv_sec;
90
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
91 92
}

93
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
94 95
{
	tk->xtime_sec += ts->tv_sec;
96
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
97
	tk_normalize_xtime(tk);
98
}
99

100
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
101
{
102
	struct timespec64 tmp;
103 104 105 106 107

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
108
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
109
					-tk->wall_to_monotonic.tv_nsec);
110
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
111
	tk->wall_to_monotonic = wtm;
112 113
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
114
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
115 116
}

117
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
118
{
119
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
120 121
}

122
#ifdef CONFIG_DEBUG_TIMEKEEPING
123 124 125 126 127 128 129 130 131 132 133 134 135 136
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
/*
 * These simple flag variables are managed
 * without locks, which is racy, but ok since
 * we don't really care about being super
 * precise about how many events were seen,
 * just that a problem was observed.
 */
static int timekeeping_underflow_seen;
static int timekeeping_overflow_seen;

/* last_warning is only modified under the timekeeping lock */
static long timekeeping_last_warning;

137 138 139
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

140 141
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
142 143

	if (offset > max_cycles) {
144
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
145
				offset, name, max_cycles);
146
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
147 148 149 150 151 152 153
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

	if (timekeeping_underflow_seen) {
		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
			timekeeping_last_warning = jiffies;
		}
		timekeeping_underflow_seen = 0;
	}

	if (timekeeping_overflow_seen) {
		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
			timekeeping_last_warning = jiffies;
		}
		timekeeping_overflow_seen = 0;
	}
174
}
175 176 177

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
178 179
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
195

196
	delta = clocksource_delta(now, last, mask);
197

198 199 200 201
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
202 203
	if (unlikely((~delta & mask) < (mask >> 3))) {
		timekeeping_underflow_seen = 1;
204
		delta = 0;
205
	}
206

207
	/* Cap delta value to the max_cycles values to avoid mult overflows */
208 209
	if (unlikely(delta > max)) {
		timekeeping_overflow_seen = 1;
210
		delta = tkr->clock->max_cycles;
211
	}
212 213 214

	return delta;
}
215 216 217 218
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
219 220 221 222 223 224 225 226 227 228 229 230
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
231 232
#endif

233
/**
234
 * tk_setup_internals - Set up internals to use clocksource clock.
235
 *
236
 * @tk:		The target timekeeper to setup.
237 238 239 240 241 242 243
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
244
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
245 246
{
	cycle_t interval;
247
	u64 tmp, ntpinterval;
248
	struct clocksource *old_clock;
249

250 251 252 253 254
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
255

P
Peter Zijlstra 已提交
256 257 258 259 260
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

261 262 263
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
264
	ntpinterval = tmp;
265 266
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
267 268 269 270
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
271
	tk->cycle_interval = interval;
272 273

	/* Go back from cycles -> shifted ns */
274 275 276
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
277
		((u64) interval * clock->mult) >> clock->shift;
278

279 280 281 282
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
283
			tk->tkr_mono.xtime_nsec >>= -shift_change;
284
		else
285
			tk->tkr_mono.xtime_nsec <<= shift_change;
286
	}
P
Peter Zijlstra 已提交
287 288
	tk->tkr_raw.xtime_nsec = 0;

289
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
290
	tk->tkr_raw.shift = clock->shift;
291

292 293
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
294
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
295 296 297 298 299 300

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
301
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
302
	tk->tkr_raw.mult = clock->mult;
303
	tk->ntp_err_mult = 0;
304
}
305

306
/* Timekeeper helper functions. */
307 308

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
309 310
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
311
#else
312
static inline u32 arch_gettimeoffset(void) { return 0; }
313 314
#endif

315
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
316
{
317
	cycle_t delta;
318
	s64 nsec;
319

320
	delta = timekeeping_get_delta(tkr);
321

322 323
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
324

325
	/* If arch requires, add in get_arch_timeoffset() */
326
	return nsec + arch_gettimeoffset();
327 328
}

329 330
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
331
 * @tkr: Timekeeping readout base from which we take the update
332 333 334 335 336 337 338 339 340 341 342
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
343
 * update(tkf->base[0], tkr);
344 345 346
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
347
 * update(tkf->base[1], tkr);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
368
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
369
{
370
	struct tk_read_base *base = tkf->base;
371 372

	/* Force readers off to base[1] */
373
	raw_write_seqcount_latch(&tkf->seq);
374 375

	/* Update base[0] */
376
	memcpy(base, tkr, sizeof(*base));
377 378

	/* Force readers back to base[0] */
379
	raw_write_seqcount_latch(&tkf->seq);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
417
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
418 419 420 421 422 423
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
424 425
		seq = raw_read_seqcount(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
426
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
427
	} while (read_seqcount_retry(&tkf->seq, seq));
428 429 430

	return now;
}
431 432 433 434 435

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
436 437
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
438 439 440 441 442 443
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
465
	struct tk_read_base *tkr = &tk->tkr_mono;
466 467 468 469

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
470
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
471 472 473 474 475

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
476 477
}

478 479 480 481
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
482
	struct timespec xt, wm;
483

484
	xt = timespec64_to_timespec(tk_xtime(tk));
485
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
486 487
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
504 505 506
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
	tk->tkr_mono.xtime_nsec -= remainder;
	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
507
	tk->ntp_error += remainder << tk->ntp_error_shift;
508
	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
509 510 511 512 513
}
#else
#define old_vsyscall_fixup(tk)
#endif

514 515
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

516
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
517
{
518
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
519 520 521 522 523 524 525
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
526
	struct timekeeper *tk = &tk_core.timekeeper;
527 528 529
	unsigned long flags;
	int ret;

530
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
531
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
532
	update_pvclock_gtod(tk, true);
533
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
534 535 536 537 538 539 540 541 542 543 544 545 546 547

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

548
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
549
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
550
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
551 552 553 554 555

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

556 557 558 559 560
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
561 562
	u64 seconds;
	u32 nsec;
563 564 565 566 567 568 569 570

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
571 572
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
573
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
574 575

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
576
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
577 578 579 580 581 582

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
583
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
584 585 586
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
587 588
}

589
/* must hold timekeeper_lock */
590
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
591
{
592
	if (action & TK_CLEAR_NTP) {
593
		tk->ntp_error = 0;
594 595
		ntp_clear();
	}
596

597 598
	tk_update_ktime_data(tk);

599 600 601
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

602
	if (action & TK_MIRROR)
603 604
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
605

606
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
607
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
608 609
}

610
/**
611
 * timekeeping_forward_now - update clock to the current time
612
 *
613 614 615
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
616
 */
617
static void timekeeping_forward_now(struct timekeeper *tk)
618
{
619
	struct clocksource *clock = tk->tkr_mono.clock;
620
	cycle_t cycle_now, delta;
621
	s64 nsec;
622

623 624 625
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
626
	tk->tkr_raw.cycle_last  = cycle_now;
627

628
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
629

630
	/* If arch requires, add in get_arch_timeoffset() */
631
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
632

633
	tk_normalize_xtime(tk);
634

P
Peter Zijlstra 已提交
635
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
636
	timespec64_add_ns(&tk->raw_time, nsec);
637 638 639
}

/**
640
 * __getnstimeofday64 - Returns the time of day in a timespec64.
641 642
 * @ts:		pointer to the timespec to be set
 *
643 644
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
645
 */
646
int __getnstimeofday64(struct timespec64 *ts)
647
{
648
	struct timekeeper *tk = &tk_core.timekeeper;
649
	unsigned long seq;
650
	s64 nsecs = 0;
651 652

	do {
653
		seq = read_seqcount_begin(&tk_core.seq);
654

655
		ts->tv_sec = tk->xtime_sec;
656
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
657

658
	} while (read_seqcount_retry(&tk_core.seq, seq));
659

660
	ts->tv_nsec = 0;
661
	timespec64_add_ns(ts, nsecs);
662 663 664 665 666 667 668 669 670

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
671
EXPORT_SYMBOL(__getnstimeofday64);
672 673

/**
674
 * getnstimeofday64 - Returns the time of day in a timespec64.
675
 * @ts:		pointer to the timespec64 to be set
676
 *
677
 * Returns the time of day in a timespec64 (WARN if suspended).
678
 */
679
void getnstimeofday64(struct timespec64 *ts)
680
{
681
	WARN_ON(__getnstimeofday64(ts));
682
}
683
EXPORT_SYMBOL(getnstimeofday64);
684

685 686
ktime_t ktime_get(void)
{
687
	struct timekeeper *tk = &tk_core.timekeeper;
688
	unsigned int seq;
689 690
	ktime_t base;
	s64 nsecs;
691 692 693 694

	WARN_ON(timekeeping_suspended);

	do {
695
		seq = read_seqcount_begin(&tk_core.seq);
696 697
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
698

699
	} while (read_seqcount_retry(&tk_core.seq, seq));
700

701
	return ktime_add_ns(base, nsecs);
702 703 704
}
EXPORT_SYMBOL_GPL(ktime_get);

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
722 723
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
724 725 726 727 728 729 730 731

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

752 753 754 755 756 757 758 759 760 761 762 763
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
764 765
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
766 767 768 769 770 771 772

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

773
/**
774
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
775 776 777 778
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
779
 * in normalized timespec64 format in the variable pointed to by @ts.
780
 */
781
void ktime_get_ts64(struct timespec64 *ts)
782
{
783
	struct timekeeper *tk = &tk_core.timekeeper;
784
	struct timespec64 tomono;
785
	s64 nsec;
786 787 788 789 790
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
791
		seq = read_seqcount_begin(&tk_core.seq);
792
		ts->tv_sec = tk->xtime_sec;
793
		nsec = timekeeping_get_ns(&tk->tkr_mono);
794
		tomono = tk->wall_to_monotonic;
795

796
	} while (read_seqcount_retry(&tk_core.seq, seq));
797

798 799 800
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
801
}
802
EXPORT_SYMBOL_GPL(ktime_get_ts64);
803

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

852 853 854 855 856 857 858 859 860 861 862 863 864
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
865
	struct timekeeper *tk = &tk_core.timekeeper;
866 867 868 869 870 871
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
872
		seq = read_seqcount_begin(&tk_core.seq);
873

874
		*ts_raw = timespec64_to_timespec(tk->raw_time);
875
		ts_real->tv_sec = tk->xtime_sec;
876
		ts_real->tv_nsec = 0;
877

P
Peter Zijlstra 已提交
878
		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
879
		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
880

881
	} while (read_seqcount_retry(&tk_core.seq, seq));
882 883 884 885 886 887 888 889

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

890 891 892 893
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
894
 * NOTE: Users should be converted to using getnstimeofday()
895 896 897
 */
void do_gettimeofday(struct timeval *tv)
{
898
	struct timespec64 now;
899

900
	getnstimeofday64(&now);
901 902 903 904
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
905

906
/**
907 908
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
909 910 911
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
912
int do_settimeofday64(const struct timespec64 *ts)
913
{
914
	struct timekeeper *tk = &tk_core.timekeeper;
915
	struct timespec64 ts_delta, xt;
916
	unsigned long flags;
917

918
	if (!timespec64_valid_strict(ts))
919 920
		return -EINVAL;

921
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
922
	write_seqcount_begin(&tk_core.seq);
923

924
	timekeeping_forward_now(tk);
925

926
	xt = tk_xtime(tk);
927 928
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
929

930
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
931

932
	tk_set_xtime(tk, ts);
933

934
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
935

936
	write_seqcount_end(&tk_core.seq);
937
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
938 939 940 941 942 943

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
944
EXPORT_SYMBOL(do_settimeofday64);
945

946 947 948 949 950 951 952 953
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
954
	struct timekeeper *tk = &tk_core.timekeeper;
955
	unsigned long flags;
956
	struct timespec64 ts64, tmp;
957
	int ret = 0;
958 959 960 961

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

962 963
	ts64 = timespec_to_timespec64(*ts);

964
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
965
	write_seqcount_begin(&tk_core.seq);
966

967
	timekeeping_forward_now(tk);
968

969
	/* Make sure the proposed value is valid */
970 971
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
972 973 974
		ret = -EINVAL;
		goto error;
	}
975

976 977
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
978

979
error: /* even if we error out, we forwarded the time, so call update */
980
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
981

982
	write_seqcount_end(&tk_core.seq);
983
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
984 985 986 987

	/* signal hrtimers about time change */
	clock_was_set();

988
	return ret;
989 990 991
}
EXPORT_SYMBOL(timekeeping_inject_offset);

992 993 994 995 996 997 998

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
999
	struct timekeeper *tk = &tk_core.timekeeper;
1000 1001 1002 1003
	unsigned int seq;
	s32 ret;

	do {
1004
		seq = read_seqcount_begin(&tk_core.seq);
1005
		ret = tk->tai_offset;
1006
	} while (read_seqcount_retry(&tk_core.seq, seq));
1007 1008 1009 1010 1011 1012 1013 1014

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1015
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1016 1017
{
	tk->tai_offset = tai_offset;
1018
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1019 1020 1021 1022 1023 1024 1025 1026
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1027
	struct timekeeper *tk = &tk_core.timekeeper;
1028 1029
	unsigned long flags;

1030
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1031
	write_seqcount_begin(&tk_core.seq);
1032
	__timekeeping_set_tai_offset(tk, tai_offset);
1033
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1034
	write_seqcount_end(&tk_core.seq);
1035
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1036
	clock_was_set();
1037 1038
}

1039 1040 1041 1042 1043
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1044
static int change_clocksource(void *data)
1045
{
1046
	struct timekeeper *tk = &tk_core.timekeeper;
1047
	struct clocksource *new, *old;
1048
	unsigned long flags;
1049

1050
	new = (struct clocksource *) data;
1051

1052
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1053
	write_seqcount_begin(&tk_core.seq);
1054

1055
	timekeeping_forward_now(tk);
1056 1057 1058 1059 1060 1061
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1062
			old = tk->tkr_mono.clock;
1063 1064 1065 1066 1067 1068 1069
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1070
	}
1071
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1072

1073
	write_seqcount_end(&tk_core.seq);
1074
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1075

1076 1077
	return 0;
}
1078

1079 1080 1081 1082 1083 1084 1085
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1086
int timekeeping_notify(struct clocksource *clock)
1087
{
1088
	struct timekeeper *tk = &tk_core.timekeeper;
1089

1090
	if (tk->tkr_mono.clock == clock)
1091
		return 0;
1092
	stop_machine(change_clocksource, clock, NULL);
1093
	tick_clock_notify();
1094
	return tk->tkr_mono.clock == clock ? 0 : -1;
1095
}
1096

1097
/**
1098 1099
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1100 1101 1102
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1103
void getrawmonotonic64(struct timespec64 *ts)
1104
{
1105
	struct timekeeper *tk = &tk_core.timekeeper;
1106
	struct timespec64 ts64;
1107 1108 1109 1110
	unsigned long seq;
	s64 nsecs;

	do {
1111
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1112
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1113
		ts64 = tk->raw_time;
1114

1115
	} while (read_seqcount_retry(&tk_core.seq, seq));
1116

1117
	timespec64_add_ns(&ts64, nsecs);
1118
	*ts = ts64;
1119
}
1120 1121
EXPORT_SYMBOL(getrawmonotonic64);

1122

1123
/**
1124
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1125
 */
1126
int timekeeping_valid_for_hres(void)
1127
{
1128
	struct timekeeper *tk = &tk_core.timekeeper;
1129 1130 1131 1132
	unsigned long seq;
	int ret;

	do {
1133
		seq = read_seqcount_begin(&tk_core.seq);
1134

1135
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1136

1137
	} while (read_seqcount_retry(&tk_core.seq, seq));
1138 1139 1140 1141

	return ret;
}

1142 1143 1144 1145 1146
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1147
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1148 1149
	unsigned long seq;
	u64 ret;
1150

J
John Stultz 已提交
1151
	do {
1152
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1153

1154
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1155

1156
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1157 1158

	return ret;
1159 1160
}

1161
/**
1162
 * read_persistent_clock -  Return time from the persistent clock.
1163 1164
 *
 * Weak dummy function for arches that do not yet support it.
1165 1166
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1167 1168 1169
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1170
void __weak read_persistent_clock(struct timespec *ts)
1171
{
1172 1173
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1184 1185 1186 1187 1188 1189 1190 1191 1192
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1193
void __weak read_boot_clock(struct timespec *ts)
1194 1195 1196 1197 1198
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1199 1200 1201 1202 1203 1204 1205 1206
void __weak read_boot_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_boot_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1207 1208 1209 1210 1211
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1212
	struct timekeeper *tk = &tk_core.timekeeper;
1213
	struct clocksource *clock;
1214
	unsigned long flags;
1215
	struct timespec64 now, boot, tmp;
1216

1217
	read_persistent_clock64(&now);
1218
	if (!timespec64_valid_strict(&now)) {
1219 1220 1221 1222
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1223 1224
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1225

1226
	read_boot_clock64(&boot);
1227
	if (!timespec64_valid_strict(&boot)) {
1228 1229 1230 1231 1232
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1233

1234
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1235
	write_seqcount_begin(&tk_core.seq);
1236 1237
	ntp_init();

1238
	clock = clocksource_default_clock();
1239 1240
	if (clock->enable)
		clock->enable(clock);
1241
	tk_setup_internals(tk, clock);
1242

1243 1244 1245
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1246
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1247
		boot = tk_xtime(tk);
1248

1249
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1250
	tk_set_wall_to_mono(tk, tmp);
1251

1252
	timekeeping_update(tk, TK_MIRROR);
1253

1254
	write_seqcount_end(&tk_core.seq);
1255
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1256 1257 1258
}

/* time in seconds when suspend began */
1259
static struct timespec64 timekeeping_suspend_time;
1260

1261 1262 1263 1264 1265 1266 1267
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1268
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1269
					   struct timespec64 *delta)
1270
{
1271
	if (!timespec64_valid_strict(delta)) {
1272 1273 1274
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1275 1276
		return;
	}
1277
	tk_xtime_add(tk, delta);
1278
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1279
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1280
	tk_debug_account_sleep_time(delta);
1281 1282
}

1283
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1284
/**
1285 1286
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1287
 *
1288
 * This hook is for architectures that cannot support read_persistent_clock64
1289 1290 1291 1292 1293
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1294
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1295
{
1296
	struct timekeeper *tk = &tk_core.timekeeper;
1297
	unsigned long flags;
1298

1299 1300 1301 1302 1303
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1304 1305
		return;

1306
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1307
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1308

1309
	timekeeping_forward_now(tk);
1310

1311
	__timekeeping_inject_sleeptime(tk, delta);
1312

1313
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1314

1315
	write_seqcount_end(&tk_core.seq);
1316
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1317 1318 1319 1320

	/* signal hrtimers about time change */
	clock_was_set();
}
1321
#endif
1322

1323 1324 1325 1326 1327 1328 1329
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1330
void timekeeping_resume(void)
1331
{
1332
	struct timekeeper *tk = &tk_core.timekeeper;
1333
	struct clocksource *clock = tk->tkr_mono.clock;
1334
	unsigned long flags;
1335
	struct timespec64 ts_new, ts_delta;
1336 1337
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1338

1339
	read_persistent_clock64(&ts_new);
1340

1341
	clockevents_resume();
1342 1343
	clocksource_resume();

1344
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1345
	write_seqcount_begin(&tk_core.seq);
1346

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1359
	cycle_now = tk->tkr_mono.read(clock);
1360
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1361
		cycle_now > tk->tkr_mono.cycle_last) {
1362 1363 1364 1365 1366
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1367 1368
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1383
		ts_delta = ns_to_timespec64(nsec);
1384
		suspendtime_found = true;
1385 1386
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1387
		suspendtime_found = true;
1388
	}
1389 1390 1391 1392 1393

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1394
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1395 1396
	tk->tkr_raw.cycle_last  = cycle_now;

1397
	tk->ntp_error = 0;
1398
	timekeeping_suspended = 0;
1399
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1400
	write_seqcount_end(&tk_core.seq);
1401
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1402 1403 1404

	touch_softlockup_watchdog();

1405
	tick_resume();
1406
	hrtimers_resume();
1407 1408
}

1409
int timekeeping_suspend(void)
1410
{
1411
	struct timekeeper *tk = &tk_core.timekeeper;
1412
	unsigned long flags;
1413 1414
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1415

1416
	read_persistent_clock64(&timekeeping_suspend_time);
1417

1418 1419 1420 1421 1422 1423 1424 1425
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1426
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1427
	write_seqcount_begin(&tk_core.seq);
1428
	timekeeping_forward_now(tk);
1429
	timekeeping_suspended = 1;
1430 1431 1432 1433 1434 1435 1436

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1437 1438
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1439 1440 1441 1442 1443 1444 1445 1446 1447
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1448
			timespec64_add(timekeeping_suspend_time, delta_delta);
1449
	}
1450 1451

	timekeeping_update(tk, TK_MIRROR);
1452
	halt_fast_timekeeper(tk);
1453
	write_seqcount_end(&tk_core.seq);
1454
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1455

1456
	tick_suspend();
M
Magnus Damm 已提交
1457
	clocksource_suspend();
1458
	clockevents_suspend();
1459 1460 1461 1462 1463

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1464
static struct syscore_ops timekeeping_syscore_ops = {
1465 1466 1467 1468
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1469
static int __init timekeeping_init_ops(void)
1470
{
1471 1472
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1473
}
1474
device_initcall(timekeeping_init_ops);
1475 1476

/*
1477
 * Apply a multiplier adjustment to the timekeeper
1478
 */
1479 1480 1481 1482
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1483
{
1484 1485
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1486

1487 1488 1489 1490
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1491
	}
1492 1493 1494
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1495

1496 1497 1498
	/*
	 * So the following can be confusing.
	 *
1499
	 * To keep things simple, lets assume mult_adj == 1 for now.
1500
	 *
1501
	 * When mult_adj != 1, remember that the interval and offset values
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1545
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1546 1547 1548 1549 1550
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1551
	tk->tkr_mono.mult += mult_adj;
1552
	tk->xtime_interval += interval;
1553
	tk->tkr_mono.xtime_nsec -= offset;
1554
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1574 1575
	tk->ntp_tick = ntp_tick_length();

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1615 1616 1617
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1618 1619
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1620 1621
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1622
	}
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1638 1639 1640
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1641
		tk->ntp_error += neg << tk->ntp_error_shift;
1642
	}
1643 1644
}

1645 1646 1647 1648 1649 1650 1651 1652
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1653
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1654
{
1655
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1656
	unsigned int clock_set = 0;
1657

1658
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1659 1660
		int leap;

1661
		tk->tkr_mono.xtime_nsec -= nsecps;
1662 1663 1664 1665
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1666
		if (unlikely(leap)) {
1667
			struct timespec64 ts;
1668 1669

			tk->xtime_sec += leap;
1670

1671 1672 1673
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1674
				timespec64_sub(tk->wall_to_monotonic, ts));
1675

1676 1677
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1678
			clock_set = TK_CLOCK_WAS_SET;
1679
		}
1680
	}
1681
	return clock_set;
1682 1683
}

1684 1685 1686 1687 1688 1689 1690 1691 1692
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1693
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1694 1695
						u32 shift,
						unsigned int *clock_set)
1696
{
T
Thomas Gleixner 已提交
1697
	cycle_t interval = tk->cycle_interval << shift;
1698
	u64 raw_nsecs;
1699

1700
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1701
	if (offset < interval)
1702 1703 1704
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1705
	offset -= interval;
1706
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1707
	tk->tkr_raw.cycle_last  += interval;
1708

1709
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1710
	*clock_set |= accumulate_nsecs_to_secs(tk);
1711

1712
	/* Accumulate raw time */
1713
	raw_nsecs = (u64)tk->raw_interval << shift;
1714
	raw_nsecs += tk->raw_time.tv_nsec;
1715 1716 1717
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1718
		tk->raw_time.tv_sec += raw_secs;
1719
	}
1720
	tk->raw_time.tv_nsec = raw_nsecs;
1721 1722

	/* Accumulate error between NTP and clock interval */
1723
	tk->ntp_error += tk->ntp_tick << shift;
1724 1725
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1726 1727 1728 1729

	return offset;
}

1730 1731 1732 1733
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1734
void update_wall_time(void)
1735
{
1736
	struct timekeeper *real_tk = &tk_core.timekeeper;
1737
	struct timekeeper *tk = &shadow_timekeeper;
1738
	cycle_t offset;
1739
	int shift = 0, maxshift;
1740
	unsigned int clock_set = 0;
J
John Stultz 已提交
1741 1742
	unsigned long flags;

1743
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1744 1745 1746

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1747
		goto out;
1748

J
John Stultz 已提交
1749
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1750
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1751
#else
1752 1753
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1754 1755
#endif

1756
	/* Check if there's really nothing to do */
1757
	if (offset < real_tk->cycle_interval)
1758 1759
		goto out;

1760 1761 1762
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1763 1764 1765 1766
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1767
	 * that is smaller than the offset.  We then accumulate that
1768 1769
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1770
	 */
1771
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1772
	shift = max(0, shift);
1773
	/* Bound shift to one less than what overflows tick_length */
1774
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1775
	shift = min(shift, maxshift);
1776
	while (offset >= tk->cycle_interval) {
1777 1778
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1779
		if (offset < tk->cycle_interval<<shift)
1780
			shift--;
1781 1782 1783
	}

	/* correct the clock when NTP error is too big */
1784
	timekeeping_adjust(tk, offset);
1785

J
John Stultz 已提交
1786
	/*
1787 1788 1789 1790
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1791

J
John Stultz 已提交
1792 1793
	/*
	 * Finally, make sure that after the rounding
1794
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1795
	 */
1796
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1797

1798
	write_seqcount_begin(&tk_core.seq);
1799 1800 1801 1802 1803 1804 1805
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1806
	 * memcpy under the tk_core.seq against one before we start
1807 1808 1809
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1810
	timekeeping_update(real_tk, clock_set);
1811
	write_seqcount_end(&tk_core.seq);
1812
out:
1813
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1814
	if (clock_set)
1815 1816
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1817
}
T
Tomas Janousek 已提交
1818 1819

/**
1820 1821
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1822
 *
1823
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1824 1825 1826 1827 1828 1829
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1830
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1831
{
1832
	struct timekeeper *tk = &tk_core.timekeeper;
1833 1834
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1835
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1836
}
1837
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1838

1839 1840
unsigned long get_seconds(void)
{
1841
	struct timekeeper *tk = &tk_core.timekeeper;
1842 1843

	return tk->xtime_sec;
1844 1845 1846
}
EXPORT_SYMBOL(get_seconds);

1847 1848
struct timespec __current_kernel_time(void)
{
1849
	struct timekeeper *tk = &tk_core.timekeeper;
1850

1851
	return timespec64_to_timespec(tk_xtime(tk));
1852
}
1853

1854 1855
struct timespec current_kernel_time(void)
{
1856
	struct timekeeper *tk = &tk_core.timekeeper;
1857
	struct timespec64 now;
1858 1859 1860
	unsigned long seq;

	do {
1861
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1862

1863
		now = tk_xtime(tk);
1864
	} while (read_seqcount_retry(&tk_core.seq, seq));
1865

1866
	return timespec64_to_timespec(now);
1867 1868
}
EXPORT_SYMBOL(current_kernel_time);
1869

1870
struct timespec64 get_monotonic_coarse64(void)
1871
{
1872
	struct timekeeper *tk = &tk_core.timekeeper;
1873
	struct timespec64 now, mono;
1874 1875 1876
	unsigned long seq;

	do {
1877
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1878

1879 1880
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1881
	} while (read_seqcount_retry(&tk_core.seq, seq));
1882

1883
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1884
				now.tv_nsec + mono.tv_nsec);
1885

1886
	return now;
1887
}
1888 1889

/*
1890
 * Must hold jiffies_lock
1891 1892 1893 1894 1895 1896
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1897 1898

/**
1899 1900 1901 1902 1903 1904
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1905
 */
1906 1907
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1908
{
1909
	struct timekeeper *tk = &tk_core.timekeeper;
1910
	unsigned int seq;
1911 1912
	ktime_t base;
	u64 nsecs;
1913 1914

	do {
1915
		seq = read_seqcount_begin(&tk_core.seq);
1916

1917 1918
		base = tk->tkr_mono.base;
		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1919

1920 1921 1922
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1923
	} while (read_seqcount_retry(&tk_core.seq, seq));
1924

1925
	return ktime_add_ns(base, nsecs);
1926
}
T
Torben Hohn 已提交
1927

1928 1929
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1930
 * ktime_get_update_offsets_now - hrtimer helper
1931 1932
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1933
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1934 1935
 *
 * Returns current monotonic time and updates the offsets
1936
 * Called from hrtimer_interrupt() or retrigger_next_event()
1937
 */
1938
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1939
							ktime_t *offs_tai)
1940
{
1941
	struct timekeeper *tk = &tk_core.timekeeper;
1942
	unsigned int seq;
1943 1944
	ktime_t base;
	u64 nsecs;
1945 1946

	do {
1947
		seq = read_seqcount_begin(&tk_core.seq);
1948

1949 1950
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1951

1952 1953
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1954
		*offs_tai = tk->offs_tai;
1955
	} while (read_seqcount_retry(&tk_core.seq, seq));
1956

1957
	return ktime_add_ns(base, nsecs);
1958 1959 1960
}
#endif

1961 1962 1963 1964 1965
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1966
	struct timekeeper *tk = &tk_core.timekeeper;
1967
	unsigned long flags;
1968
	struct timespec64 ts;
1969
	s32 orig_tai, tai;
1970 1971 1972 1973 1974 1975 1976
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1988
	getnstimeofday64(&ts);
1989

1990
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1991
	write_seqcount_begin(&tk_core.seq);
1992

1993
	orig_tai = tai = tk->tai_offset;
1994
	ret = __do_adjtimex(txc, &ts, &tai);
1995

1996 1997
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1998
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1999
	}
2000
	write_seqcount_end(&tk_core.seq);
2001 2002
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2003 2004 2005
	if (tai != orig_tai)
		clock_was_set();

2006 2007
	ntp_notify_cmos_timer();

2008 2009
	return ret;
}
2010 2011 2012 2013 2014 2015 2016

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
2017 2018 2019
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2020
	write_seqcount_begin(&tk_core.seq);
2021

2022
	__hardpps(phase_ts, raw_ts);
2023

2024
	write_seqcount_end(&tk_core.seq);
2025
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2026 2027 2028 2029
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2030 2031 2032 2033 2034 2035 2036 2037
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2038
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2039
	do_timer(ticks);
2040
	write_sequnlock(&jiffies_lock);
2041
	update_wall_time();
T
Torben Hohn 已提交
2042
}