timekeeping.c 47.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;

63 64 65
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

66 67 68
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
109
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121
/**
122
 * tk_setup_internals - Set up internals to use clocksource clock.
123
 *
124
 * @tk:		The target timekeeper to setup.
125 126 127 128 129 130 131
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
132
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 134
{
	cycle_t interval;
135
	u64 tmp, ntpinterval;
136
	struct clocksource *old_clock;
137

138 139 140 141 142
	old_clock = tk->tkr.clock;
	tk->tkr.clock = clock;
	tk->tkr.read = clock->read;
	tk->tkr.mask = clock->mask;
	tk->tkr.cycle_last = tk->tkr.read(clock);
143 144 145 146

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
147
	ntpinterval = tmp;
148 149
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
150 151 152 153
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
154
	tk->cycle_interval = interval;
155 156

	/* Go back from cycles -> shifted ns */
157 158 159
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
160
		((u64) interval * clock->mult) >> clock->shift;
161

162 163 164 165
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
166
			tk->tkr.xtime_nsec >>= -shift_change;
167
		else
168
			tk->tkr.xtime_nsec <<= shift_change;
169
	}
170
	tk->tkr.shift = clock->shift;
171

172 173
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174 175 176 177 178 179

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
180
	tk->tkr.mult = clock->mult;
181
	tk->ntp_err_mult = 0;
182
}
183

184
/* Timekeeper helper functions. */
185 186

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
187 188
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
189
#else
190
static inline u32 arch_gettimeoffset(void) { return 0; }
191 192
#endif

193
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
194
{
195
	cycle_t cycle_now, delta;
196
	s64 nsec;
197 198

	/* read clocksource: */
199
	cycle_now = tkr->read(tkr->clock);
200 201

	/* calculate the delta since the last update_wall_time: */
202
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
203

204 205
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
206

207
	/* If arch requires, add in get_arch_timeoffset() */
208
	return nsec + arch_gettimeoffset();
209 210
}

211
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
212
{
213
	struct clocksource *clock = tk->tkr.clock;
214
	cycle_t cycle_now, delta;
215
	s64 nsec;
216 217

	/* read clocksource: */
218
	cycle_now = tk->tkr.read(clock);
219 220

	/* calculate the delta since the last update_wall_time: */
221
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
222

223
	/* convert delta to nanoseconds. */
224
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
225

226
	/* If arch requires, add in get_arch_timeoffset() */
227
	return nsec + arch_gettimeoffset();
228 229
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 * @tk:		The timekeeper from which we take the update
 * @tkf:	The fast timekeeper to update
 * @tbase:	The time base for the fast timekeeper (mono/raw)
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
 * update(tkf->base[0], tk);
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
 * update(tkf->base[1], tk);
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
static void update_fast_timekeeper(struct timekeeper *tk)
{
	struct tk_read_base *base = tk_fast_mono.base;

	/* Force readers off to base[1] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[0] */
	memcpy(base, &tk->tkr, sizeof(*base));

	/* Force readers back to base[0] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
u64 notrace ktime_get_mono_fast_ns(void)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount(&tk_fast_mono.seq);
		tkr = tk_fast_mono.base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);

	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
	return now;
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

336 337 338 339 340 341
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
	struct timespec xt;

342
	xt = timespec64_to_timespec(tk_xtime(tk));
343 344
	update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->tkr.clock, tk->tkr.mult,
			    tk->tkr.cycle_last);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
361 362 363
	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
	tk->tkr.xtime_nsec -= remainder;
	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
364
	tk->ntp_error += remainder << tk->ntp_error_shift;
365
	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
366 367 368 369 370
}
#else
#define old_vsyscall_fixup(tk)
#endif

371 372
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

373
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
374
{
375
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
376 377 378 379 380 381 382
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
383
	struct timekeeper *tk = &tk_core.timekeeper;
384 385 386
	unsigned long flags;
	int ret;

387
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
388
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
389
	update_pvclock_gtod(tk, true);
390
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
391 392 393 394 395 396 397 398 399 400 401 402 403 404

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

405
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
406
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
407
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
408 409 410 411 412

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
	s64 nsec;

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
	nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec *= NSEC_PER_SEC;
	nsec += tk->wall_to_monotonic.tv_nsec;
430
	tk->tkr.base_mono = ns_to_ktime(nsec);
431 432 433

	/* Update the monotonic raw base */
	tk->base_raw = timespec64_to_ktime(tk->raw_time);
434 435
}

436
/* must hold timekeeper_lock */
437
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
438
{
439
	if (action & TK_CLEAR_NTP) {
440
		tk->ntp_error = 0;
441 442
		ntp_clear();
	}
443
	update_vsyscall(tk);
444
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
445

446 447
	tk_update_ktime_data(tk);

448
	if (action & TK_MIRROR)
449 450
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
451 452

	update_fast_timekeeper(tk);
453 454
}

455
/**
456
 * timekeeping_forward_now - update clock to the current time
457
 *
458 459 460
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
461
 */
462
static void timekeeping_forward_now(struct timekeeper *tk)
463
{
464
	struct clocksource *clock = tk->tkr.clock;
465
	cycle_t cycle_now, delta;
466
	s64 nsec;
467

468 469 470
	cycle_now = tk->tkr.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
	tk->tkr.cycle_last = cycle_now;
471

472
	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
473

474
	/* If arch requires, add in get_arch_timeoffset() */
475
	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
476

477
	tk_normalize_xtime(tk);
478

479
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
480
	timespec64_add_ns(&tk->raw_time, nsec);
481 482 483
}

/**
484
 * __getnstimeofday64 - Returns the time of day in a timespec64.
485 486
 * @ts:		pointer to the timespec to be set
 *
487 488
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
489
 */
490
int __getnstimeofday64(struct timespec64 *ts)
491
{
492
	struct timekeeper *tk = &tk_core.timekeeper;
493
	unsigned long seq;
494
	s64 nsecs = 0;
495 496

	do {
497
		seq = read_seqcount_begin(&tk_core.seq);
498

499
		ts->tv_sec = tk->xtime_sec;
500
		nsecs = timekeeping_get_ns(&tk->tkr);
501

502
	} while (read_seqcount_retry(&tk_core.seq, seq));
503

504
	ts->tv_nsec = 0;
505
	timespec64_add_ns(ts, nsecs);
506 507 508 509 510 511 512 513 514

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
515
EXPORT_SYMBOL(__getnstimeofday64);
516 517

/**
518
 * getnstimeofday64 - Returns the time of day in a timespec64.
519 520 521 522
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
523
void getnstimeofday64(struct timespec64 *ts)
524
{
525
	WARN_ON(__getnstimeofday64(ts));
526
}
527
EXPORT_SYMBOL(getnstimeofday64);
528

529 530
ktime_t ktime_get(void)
{
531
	struct timekeeper *tk = &tk_core.timekeeper;
532
	unsigned int seq;
533 534
	ktime_t base;
	s64 nsecs;
535 536 537 538

	WARN_ON(timekeeping_suspended);

	do {
539
		seq = read_seqcount_begin(&tk_core.seq);
540
		base = tk->tkr.base_mono;
541
		nsecs = timekeeping_get_ns(&tk->tkr);
542

543
	} while (read_seqcount_retry(&tk_core.seq, seq));
544

545
	return ktime_add_ns(base, nsecs);
546 547 548
}
EXPORT_SYMBOL_GPL(ktime_get);

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
566
		base = ktime_add(tk->tkr.base_mono, *offset);
567
		nsecs = timekeeping_get_ns(&tk->tkr);
568 569 570 571 572 573 574 575

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->base_raw;
		nsecs = timekeeping_get_ns_raw(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

617
/**
618
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
619 620 621 622 623 624
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
625
void ktime_get_ts64(struct timespec64 *ts)
626
{
627
	struct timekeeper *tk = &tk_core.timekeeper;
628
	struct timespec64 tomono;
629
	s64 nsec;
630 631 632 633 634
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
635
		seq = read_seqcount_begin(&tk_core.seq);
636
		ts->tv_sec = tk->xtime_sec;
637
		nsec = timekeeping_get_ns(&tk->tkr);
638
		tomono = tk->wall_to_monotonic;
639

640
	} while (read_seqcount_retry(&tk_core.seq, seq));
641

642 643 644
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
645
}
646
EXPORT_SYMBOL_GPL(ktime_get_ts64);
647

648 649 650 651 652 653 654 655 656 657 658 659 660
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
661
	struct timekeeper *tk = &tk_core.timekeeper;
662 663 664 665 666 667
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
668
		seq = read_seqcount_begin(&tk_core.seq);
669

670
		*ts_raw = timespec64_to_timespec(tk->raw_time);
671
		ts_real->tv_sec = tk->xtime_sec;
672
		ts_real->tv_nsec = 0;
673

674
		nsecs_raw = timekeeping_get_ns_raw(tk);
675
		nsecs_real = timekeeping_get_ns(&tk->tkr);
676

677
	} while (read_seqcount_retry(&tk_core.seq, seq));
678 679 680 681 682 683 684 685

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

686 687 688 689
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
690
 * NOTE: Users should be converted to using getnstimeofday()
691 692 693
 */
void do_gettimeofday(struct timeval *tv)
{
694
	struct timespec64 now;
695

696
	getnstimeofday64(&now);
697 698 699 700
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
701

702 703 704 705 706 707
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
708
int do_settimeofday(const struct timespec *tv)
709
{
710
	struct timekeeper *tk = &tk_core.timekeeper;
711
	struct timespec64 ts_delta, xt, tmp;
712
	unsigned long flags;
713

714
	if (!timespec_valid_strict(tv))
715 716
		return -EINVAL;

717
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
718
	write_seqcount_begin(&tk_core.seq);
719

720
	timekeeping_forward_now(tk);
721

722
	xt = tk_xtime(tk);
723 724 725
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

726
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
727

728 729
	tmp = timespec_to_timespec64(*tv);
	tk_set_xtime(tk, &tmp);
730

731
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
732

733
	write_seqcount_end(&tk_core.seq);
734
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
735 736 737 738 739 740 741 742

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

743 744 745 746 747 748 749 750
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
751
	struct timekeeper *tk = &tk_core.timekeeper;
752
	unsigned long flags;
753
	struct timespec64 ts64, tmp;
754
	int ret = 0;
755 756 757 758

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

759 760
	ts64 = timespec_to_timespec64(*ts);

761
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
762
	write_seqcount_begin(&tk_core.seq);
763

764
	timekeeping_forward_now(tk);
765

766
	/* Make sure the proposed value is valid */
767 768
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
769 770 771
		ret = -EINVAL;
		goto error;
	}
772

773 774
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
775

776
error: /* even if we error out, we forwarded the time, so call update */
777
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
778

779
	write_seqcount_end(&tk_core.seq);
780
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
781 782 783 784

	/* signal hrtimers about time change */
	clock_was_set();

785
	return ret;
786 787 788
}
EXPORT_SYMBOL(timekeeping_inject_offset);

789 790 791 792 793 794 795

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
796
	struct timekeeper *tk = &tk_core.timekeeper;
797 798 799 800
	unsigned int seq;
	s32 ret;

	do {
801
		seq = read_seqcount_begin(&tk_core.seq);
802
		ret = tk->tai_offset;
803
	} while (read_seqcount_retry(&tk_core.seq, seq));
804 805 806 807 808 809 810 811

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
812
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
813 814
{
	tk->tai_offset = tai_offset;
815
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
816 817 818 819 820 821 822 823
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
824
	struct timekeeper *tk = &tk_core.timekeeper;
825 826
	unsigned long flags;

827
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
828
	write_seqcount_begin(&tk_core.seq);
829
	__timekeeping_set_tai_offset(tk, tai_offset);
830
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
831
	write_seqcount_end(&tk_core.seq);
832
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
833
	clock_was_set();
834 835
}

836 837 838 839 840
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
841
static int change_clocksource(void *data)
842
{
843
	struct timekeeper *tk = &tk_core.timekeeper;
844
	struct clocksource *new, *old;
845
	unsigned long flags;
846

847
	new = (struct clocksource *) data;
848

849
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
850
	write_seqcount_begin(&tk_core.seq);
851

852
	timekeeping_forward_now(tk);
853 854 855 856 857 858
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
859
			old = tk->tkr.clock;
860 861 862 863 864 865 866
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
867
	}
868
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
869

870
	write_seqcount_end(&tk_core.seq);
871
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
872

873 874
	return 0;
}
875

876 877 878 879 880 881 882
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
883
int timekeeping_notify(struct clocksource *clock)
884
{
885
	struct timekeeper *tk = &tk_core.timekeeper;
886

887
	if (tk->tkr.clock == clock)
888
		return 0;
889
	stop_machine(change_clocksource, clock, NULL);
890
	tick_clock_notify();
891
	return tk->tkr.clock == clock ? 0 : -1;
892
}
893

894 895 896 897 898 899 900 901
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
902
	struct timekeeper *tk = &tk_core.timekeeper;
903
	struct timespec64 ts64;
904 905 906 907
	unsigned long seq;
	s64 nsecs;

	do {
908
		seq = read_seqcount_begin(&tk_core.seq);
909
		nsecs = timekeeping_get_ns_raw(tk);
910
		ts64 = tk->raw_time;
911

912
	} while (read_seqcount_retry(&tk_core.seq, seq));
913

914 915
	timespec64_add_ns(&ts64, nsecs);
	*ts = timespec64_to_timespec(ts64);
916 917 918
}
EXPORT_SYMBOL(getrawmonotonic);

919
/**
920
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
921
 */
922
int timekeeping_valid_for_hres(void)
923
{
924
	struct timekeeper *tk = &tk_core.timekeeper;
925 926 927 928
	unsigned long seq;
	int ret;

	do {
929
		seq = read_seqcount_begin(&tk_core.seq);
930

931
		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
932

933
	} while (read_seqcount_retry(&tk_core.seq, seq));
934 935 936 937

	return ret;
}

938 939 940 941 942
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
943
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
944 945
	unsigned long seq;
	u64 ret;
946

J
John Stultz 已提交
947
	do {
948
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
949

950
		ret = tk->tkr.clock->max_idle_ns;
J
John Stultz 已提交
951

952
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
953 954

	return ret;
955 956
}

957
/**
958
 * read_persistent_clock -  Return time from the persistent clock.
959 960
 *
 * Weak dummy function for arches that do not yet support it.
961 962
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
963 964 965
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
966
void __weak read_persistent_clock(struct timespec *ts)
967
{
968 969
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
970 971
}

972 973 974 975 976 977 978 979 980
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
981
void __weak read_boot_clock(struct timespec *ts)
982 983 984 985 986
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

987 988 989 990 991
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
992
	struct timekeeper *tk = &tk_core.timekeeper;
993
	struct clocksource *clock;
994
	unsigned long flags;
995 996
	struct timespec64 now, boot, tmp;
	struct timespec ts;
997

998 999 1000
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1001 1002 1003 1004
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1005 1006
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1007

1008 1009 1010
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1011 1012 1013 1014 1015
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1016

1017
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1018
	write_seqcount_begin(&tk_core.seq);
1019 1020
	ntp_init();

1021
	clock = clocksource_default_clock();
1022 1023
	if (clock->enable)
		clock->enable(clock);
1024
	tk_setup_internals(tk, clock);
1025

1026 1027 1028
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1029
	tk->base_raw.tv64 = 0;
1030
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1031
		boot = tk_xtime(tk);
1032

1033
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1034
	tk_set_wall_to_mono(tk, tmp);
1035

1036
	timekeeping_update(tk, TK_MIRROR);
1037

1038
	write_seqcount_end(&tk_core.seq);
1039
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1040 1041 1042
}

/* time in seconds when suspend began */
1043
static struct timespec64 timekeeping_suspend_time;
1044

1045 1046 1047 1048 1049 1050 1051
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1052
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1053
					   struct timespec64 *delta)
1054
{
1055
	if (!timespec64_valid_strict(delta)) {
1056 1057 1058
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1059 1060
		return;
	}
1061
	tk_xtime_add(tk, delta);
1062
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1063
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1064
	tk_debug_account_sleep_time(delta);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
1079
	struct timekeeper *tk = &tk_core.timekeeper;
1080
	struct timespec64 tmp;
1081
	unsigned long flags;
1082

1083 1084 1085 1086 1087
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1088 1089
		return;

1090
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1091
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1092

1093
	timekeeping_forward_now(tk);
1094

1095 1096
	tmp = timespec_to_timespec64(*delta);
	__timekeeping_inject_sleeptime(tk, &tmp);
1097

1098
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1099

1100
	write_seqcount_end(&tk_core.seq);
1101
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1102 1103 1104 1105 1106

	/* signal hrtimers about time change */
	clock_was_set();
}

1107 1108 1109 1110 1111 1112 1113
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1114
static void timekeeping_resume(void)
1115
{
1116
	struct timekeeper *tk = &tk_core.timekeeper;
1117
	struct clocksource *clock = tk->tkr.clock;
1118
	unsigned long flags;
1119 1120
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1121 1122
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1123

1124 1125
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1126

1127
	clockevents_resume();
1128 1129
	clocksource_resume();

1130
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1131
	write_seqcount_begin(&tk_core.seq);
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1145
	cycle_now = tk->tkr.read(clock);
1146
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1147
		cycle_now > tk->tkr.cycle_last) {
1148 1149 1150 1151 1152
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1153 1154
		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
						tk->tkr.mask);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1169
		ts_delta = ns_to_timespec64(nsec);
1170
		suspendtime_found = true;
1171 1172
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1173
		suspendtime_found = true;
1174
	}
1175 1176 1177 1178 1179

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1180
	tk->tkr.cycle_last = cycle_now;
1181
	tk->ntp_error = 0;
1182
	timekeeping_suspended = 0;
1183
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1184
	write_seqcount_end(&tk_core.seq);
1185
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1186 1187 1188 1189 1190 1191

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1192
	hrtimers_resume();
1193 1194
}

1195
static int timekeeping_suspend(void)
1196
{
1197
	struct timekeeper *tk = &tk_core.timekeeper;
1198
	unsigned long flags;
1199 1200 1201
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1202

1203 1204
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1205

1206 1207 1208 1209 1210 1211 1212 1213
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1214
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1215
	write_seqcount_begin(&tk_core.seq);
1216
	timekeeping_forward_now(tk);
1217
	timekeeping_suspended = 1;
1218 1219 1220 1221 1222 1223 1224

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1225 1226
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1227 1228 1229 1230 1231 1232 1233 1234 1235
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1236
			timespec64_add(timekeeping_suspend_time, delta_delta);
1237
	}
1238 1239

	timekeeping_update(tk, TK_MIRROR);
1240
	write_seqcount_end(&tk_core.seq);
1241
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1242 1243

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1244
	clocksource_suspend();
1245
	clockevents_suspend();
1246 1247 1248 1249 1250

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1251
static struct syscore_ops timekeeping_syscore_ops = {
1252 1253 1254 1255
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1256
static int __init timekeeping_init_ops(void)
1257
{
1258 1259
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1260
}
1261
device_initcall(timekeeping_init_ops);
1262 1263

/*
1264
 * Apply a multiplier adjustment to the timekeeper
1265
 */
1266 1267 1268 1269
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1270
{
1271 1272
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1273

1274 1275 1276 1277
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1278
	}
1279 1280 1281
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1282

1283 1284 1285
	/*
	 * So the following can be confusing.
	 *
1286
	 * To keep things simple, lets assume mult_adj == 1 for now.
1287
	 *
1288
	 * When mult_adj != 1, remember that the interval and offset values
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1332
	tk->tkr.mult += mult_adj;
1333
	tk->xtime_interval += interval;
1334
	tk->tkr.xtime_nsec -= offset;
1335
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

	if (unlikely(tk->tkr.clock->maxadj &&
		(tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
			tk->tkr.clock->name, (long)tk->tkr.mult,
			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
	}
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1416 1417 1418
	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr.xtime_nsec;
		tk->tkr.xtime_nsec = 0;
1419
		tk->ntp_error += neg << tk->ntp_error_shift;
1420
	}
1421 1422
}

1423 1424 1425 1426 1427 1428 1429 1430
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1431
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1432
{
1433
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1434
	unsigned int clock_set = 0;
1435

1436
	while (tk->tkr.xtime_nsec >= nsecps) {
1437 1438
		int leap;

1439
		tk->tkr.xtime_nsec -= nsecps;
1440 1441 1442 1443
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1444
		if (unlikely(leap)) {
1445
			struct timespec64 ts;
1446 1447

			tk->xtime_sec += leap;
1448

1449 1450 1451
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1452
				timespec64_sub(tk->wall_to_monotonic, ts));
1453

1454 1455
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1456
			clock_set = TK_CLOCK_WAS_SET;
1457
		}
1458
	}
1459
	return clock_set;
1460 1461
}

1462 1463 1464 1465 1466 1467 1468 1469 1470
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1471
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1472 1473
						u32 shift,
						unsigned int *clock_set)
1474
{
T
Thomas Gleixner 已提交
1475
	cycle_t interval = tk->cycle_interval << shift;
1476
	u64 raw_nsecs;
1477

1478
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1479
	if (offset < interval)
1480 1481 1482
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1483
	offset -= interval;
1484
	tk->tkr.cycle_last += interval;
1485

1486
	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1487
	*clock_set |= accumulate_nsecs_to_secs(tk);
1488

1489
	/* Accumulate raw time */
1490
	raw_nsecs = (u64)tk->raw_interval << shift;
1491
	raw_nsecs += tk->raw_time.tv_nsec;
1492 1493 1494
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1495
		tk->raw_time.tv_sec += raw_secs;
1496
	}
1497
	tk->raw_time.tv_nsec = raw_nsecs;
1498 1499

	/* Accumulate error between NTP and clock interval */
1500 1501 1502
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1503 1504 1505 1506

	return offset;
}

1507 1508 1509 1510
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1511
void update_wall_time(void)
1512
{
1513
	struct timekeeper *real_tk = &tk_core.timekeeper;
1514
	struct timekeeper *tk = &shadow_timekeeper;
1515
	cycle_t offset;
1516
	int shift = 0, maxshift;
1517
	unsigned int clock_set = 0;
J
John Stultz 已提交
1518 1519
	unsigned long flags;

1520
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1521 1522 1523

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1524
		goto out;
1525

J
John Stultz 已提交
1526
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1527
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1528
#else
1529 1530
	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
				   tk->tkr.cycle_last, tk->tkr.mask);
1531 1532
#endif

1533
	/* Check if there's really nothing to do */
1534
	if (offset < real_tk->cycle_interval)
1535 1536
		goto out;

1537 1538 1539 1540
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1541
	 * that is smaller than the offset.  We then accumulate that
1542 1543
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1544
	 */
1545
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1546
	shift = max(0, shift);
1547
	/* Bound shift to one less than what overflows tick_length */
1548
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1549
	shift = min(shift, maxshift);
1550
	while (offset >= tk->cycle_interval) {
1551 1552
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1553
		if (offset < tk->cycle_interval<<shift)
1554
			shift--;
1555 1556 1557
	}

	/* correct the clock when NTP error is too big */
1558
	timekeeping_adjust(tk, offset);
1559

J
John Stultz 已提交
1560
	/*
1561 1562 1563 1564
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1565

J
John Stultz 已提交
1566 1567
	/*
	 * Finally, make sure that after the rounding
1568
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1569
	 */
1570
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1571

1572
	write_seqcount_begin(&tk_core.seq);
1573 1574 1575 1576 1577 1578 1579
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1580
	 * memcpy under the tk_core.seq against one before we start
1581 1582 1583
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1584
	timekeeping_update(real_tk, clock_set);
1585
	write_seqcount_end(&tk_core.seq);
1586
out:
1587
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1588
	if (clock_set)
1589 1590
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1591
}
T
Tomas Janousek 已提交
1592 1593 1594 1595 1596

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1597
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1598 1599 1600 1601 1602 1603 1604 1605
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1606
	struct timekeeper *tk = &tk_core.timekeeper;
1607 1608 1609
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

	*ts = ktime_to_timespec(t);
T
Tomas Janousek 已提交
1610
}
1611
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1612

1613 1614
unsigned long get_seconds(void)
{
1615
	struct timekeeper *tk = &tk_core.timekeeper;
1616 1617

	return tk->xtime_sec;
1618 1619 1620
}
EXPORT_SYMBOL(get_seconds);

1621 1622
struct timespec __current_kernel_time(void)
{
1623
	struct timekeeper *tk = &tk_core.timekeeper;
1624

1625
	return timespec64_to_timespec(tk_xtime(tk));
1626
}
1627

1628 1629
struct timespec current_kernel_time(void)
{
1630
	struct timekeeper *tk = &tk_core.timekeeper;
1631
	struct timespec64 now;
1632 1633 1634
	unsigned long seq;

	do {
1635
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1636

1637
		now = tk_xtime(tk);
1638
	} while (read_seqcount_retry(&tk_core.seq, seq));
1639

1640
	return timespec64_to_timespec(now);
1641 1642
}
EXPORT_SYMBOL(current_kernel_time);
1643 1644 1645

struct timespec get_monotonic_coarse(void)
{
1646
	struct timekeeper *tk = &tk_core.timekeeper;
1647
	struct timespec64 now, mono;
1648 1649 1650
	unsigned long seq;

	do {
1651
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1652

1653 1654
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1655
	} while (read_seqcount_retry(&tk_core.seq, seq));
1656

1657
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1658
				now.tv_nsec + mono.tv_nsec);
1659 1660

	return timespec64_to_timespec(now);
1661
}
1662 1663

/*
1664
 * Must hold jiffies_lock
1665 1666 1667 1668 1669 1670
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1671 1672

/**
1673 1674 1675 1676 1677 1678
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1679
 */
1680 1681
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1682
{
1683
	struct timekeeper *tk = &tk_core.timekeeper;
1684
	unsigned int seq;
1685 1686
	ktime_t base;
	u64 nsecs;
1687 1688

	do {
1689
		seq = read_seqcount_begin(&tk_core.seq);
1690

1691 1692
		base = tk->tkr.base_mono;
		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1693

1694 1695 1696
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1697
	} while (read_seqcount_retry(&tk_core.seq, seq));
1698

1699
	return ktime_add_ns(base, nsecs);
1700
}
T
Torben Hohn 已提交
1701

1702 1703
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1704
 * ktime_get_update_offsets_now - hrtimer helper
1705 1706
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1707
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1708 1709
 *
 * Returns current monotonic time and updates the offsets
1710
 * Called from hrtimer_interrupt() or retrigger_next_event()
1711
 */
1712
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1713
							ktime_t *offs_tai)
1714
{
1715
	struct timekeeper *tk = &tk_core.timekeeper;
1716
	unsigned int seq;
1717 1718
	ktime_t base;
	u64 nsecs;
1719 1720

	do {
1721
		seq = read_seqcount_begin(&tk_core.seq);
1722

1723
		base = tk->tkr.base_mono;
1724
		nsecs = timekeeping_get_ns(&tk->tkr);
1725

1726 1727
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1728
		*offs_tai = tk->offs_tai;
1729
	} while (read_seqcount_retry(&tk_core.seq, seq));
1730

1731
	return ktime_add_ns(base, nsecs);
1732 1733 1734
}
#endif

1735 1736 1737 1738 1739
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1740
	struct timekeeper *tk = &tk_core.timekeeper;
1741
	unsigned long flags;
1742
	struct timespec64 ts;
1743
	s32 orig_tai, tai;
1744 1745 1746 1747 1748 1749 1750
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1762
	getnstimeofday64(&ts);
1763

1764
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1765
	write_seqcount_begin(&tk_core.seq);
1766

1767
	orig_tai = tai = tk->tai_offset;
1768
	ret = __do_adjtimex(txc, &ts, &tai);
1769

1770 1771
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1772
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1773
	}
1774
	write_seqcount_end(&tk_core.seq);
1775 1776
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1777 1778 1779
	if (tai != orig_tai)
		clock_was_set();

1780 1781
	ntp_notify_cmos_timer();

1782 1783
	return ret;
}
1784 1785 1786 1787 1788 1789 1790

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1791 1792 1793
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1794
	write_seqcount_begin(&tk_core.seq);
1795

1796
	__hardpps(phase_ts, raw_ts);
1797

1798
	write_seqcount_end(&tk_core.seq);
1799
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1800 1801 1802 1803
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1804 1805 1806 1807 1808 1809 1810 1811
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1812
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1813
	do_timer(ticks);
1814
	write_sequnlock(&jiffies_lock);
1815
	update_wall_time();
T
Torben Hohn 已提交
1816
}