timekeeping.c 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25

26
#include "tick-internal.h"
27
#include "ntp_internal.h"
28
#include "timekeeping_internal.h"
29

30 31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)

33
static struct timekeeper timekeeper;
34 35
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
static seqcount_t timekeeper_seq;
36
static struct timekeeper shadow_timekeeper;
37

38 39 40
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

41 42 43
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

44 45 46 47 48 49 50 51 52 53 54
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
55
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
56 57 58 59 60
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
61
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
62
	tk_normalize_xtime(tk);
63
}
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
79
	tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tk->tai_offset, 0));
80 81 82 83 84 85 86 87 88 89 90
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

91 92 93 94 95 96 97 98 99 100
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
101
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
102 103
{
	cycle_t interval;
104
	u64 tmp, ntpinterval;
105
	struct clocksource *old_clock;
106

107 108
	old_clock = tk->clock;
	tk->clock = clock;
109
	tk->cycle_last = clock->cycle_last = clock->read(clock);
110 111 112 113

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
114
	ntpinterval = tmp;
115 116
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
117 118 119 120
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
121
	tk->cycle_interval = interval;
122 123

	/* Go back from cycles -> shifted ns */
124 125 126
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
127
		((u64) interval * clock->mult) >> clock->shift;
128

129 130 131 132
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
133
			tk->xtime_nsec >>= -shift_change;
134
		else
135
			tk->xtime_nsec <<= shift_change;
136
	}
137
	tk->shift = clock->shift;
138

139 140
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
141 142 143 144 145 146

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
147
	tk->mult = clock->mult;
148
}
149

150
/* Timekeeper helper functions. */
151 152 153 154 155 156 157 158 159 160 161 162 163 164

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
u32 (*arch_gettimeoffset)(void);

u32 get_arch_timeoffset(void)
{
	if (likely(arch_gettimeoffset))
		return arch_gettimeoffset();
	return 0;
}
#else
static inline u32 get_arch_timeoffset(void) { return 0; }
#endif

165
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
166 167 168
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
169
	s64 nsec;
170 171

	/* read clocksource: */
172
	clock = tk->clock;
173 174 175 176 177
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

178 179
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
180

181 182
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
183 184
}

185
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
186 187 188
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
189
	s64 nsec;
190 191

	/* read clocksource: */
192
	clock = tk->clock;
193 194 195 196 197
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

198 199 200
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

201 202
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
203 204
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

static void update_pvclock_gtod(struct timekeeper *tk)
{
	raw_notifier_call_chain(&pvclock_gtod_chain, 0, tk);
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;
	int ret;

221
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
222 223
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
	update_pvclock_gtod(tk);
224
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
225 226 227 228 229 230 231 232 233 234 235 236 237 238

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

239
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
240
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
241
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
242 243 244 245 246

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

247
/* must hold timekeeper_lock */
248
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
249
{
250
	if (action & TK_CLEAR_NTP) {
251
		tk->ntp_error = 0;
252 253
		ntp_clear();
	}
254
	update_vsyscall(tk);
255
	update_pvclock_gtod(tk);
256

257
	if (action & TK_MIRROR)
258
		memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
259 260
}

261
/**
262
 * timekeeping_forward_now - update clock to the current time
263
 *
264 265 266
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
267
 */
268
static void timekeeping_forward_now(struct timekeeper *tk)
269 270
{
	cycle_t cycle_now, cycle_delta;
271
	struct clocksource *clock;
272
	s64 nsec;
273

274
	clock = tk->clock;
275
	cycle_now = clock->read(clock);
276
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
277
	tk->cycle_last = clock->cycle_last = cycle_now;
278

279
	tk->xtime_nsec += cycle_delta * tk->mult;
280

281 282
	/* If arch requires, add in get_arch_timeoffset() */
	tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
283

284
	tk_normalize_xtime(tk);
285

286
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
287
	timespec_add_ns(&tk->raw_time, nsec);
288 289 290
}

/**
291
 * __getnstimeofday - Returns the time of day in a timespec.
292 293
 * @ts:		pointer to the timespec to be set
 *
294 295
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
296
 */
297
int __getnstimeofday(struct timespec *ts)
298
{
299
	struct timekeeper *tk = &timekeeper;
300
	unsigned long seq;
301
	s64 nsecs = 0;
302 303

	do {
304
		seq = read_seqcount_begin(&timekeeper_seq);
305

306
		ts->tv_sec = tk->xtime_sec;
307
		nsecs = timekeeping_get_ns(tk);
308

309
	} while (read_seqcount_retry(&timekeeper_seq, seq));
310

311
	ts->tv_nsec = 0;
312
	timespec_add_ns(ts, nsecs);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
EXPORT_SYMBOL(__getnstimeofday);

/**
 * getnstimeofday - Returns the time of day in a timespec.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
void getnstimeofday(struct timespec *ts)
{
	WARN_ON(__getnstimeofday(ts));
333 334 335
}
EXPORT_SYMBOL(getnstimeofday);

336 337
ktime_t ktime_get(void)
{
338
	struct timekeeper *tk = &timekeeper;
339 340 341 342 343 344
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
345
		seq = read_seqcount_begin(&timekeeper_seq);
346 347
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
348

349
	} while (read_seqcount_retry(&timekeeper_seq, seq));
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
368
	struct timekeeper *tk = &timekeeper;
369
	struct timespec tomono;
370
	s64 nsec;
371 372 373 374 375
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
376
		seq = read_seqcount_begin(&timekeeper_seq);
377
		ts->tv_sec = tk->xtime_sec;
378
		nsec = timekeeping_get_ns(tk);
379
		tomono = tk->wall_to_monotonic;
380

381
	} while (read_seqcount_retry(&timekeeper_seq, seq));
382

383 384 385
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec);
386 387 388
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

J
John Stultz 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

/**
 * timekeeping_clocktai - Returns the TAI time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void timekeeping_clocktai(struct timespec *ts)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long seq;
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
405
		seq = read_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
406 407 408 409

		ts->tv_sec = tk->xtime_sec + tk->tai_offset;
		nsecs = timekeeping_get_ns(tk);

410
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
411 412 413 414 415 416 417 418

	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsecs);

}
EXPORT_SYMBOL(timekeeping_clocktai);


419 420 421 422 423 424 425 426 427 428 429 430 431 432
/**
 * ktime_get_clocktai - Returns the TAI time of day in a ktime
 *
 * Returns the time of day in a ktime.
 */
ktime_t ktime_get_clocktai(void)
{
	struct timespec ts;

	timekeeping_clocktai(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL(ktime_get_clocktai);

433 434 435 436 437 438 439 440 441 442 443 444 445
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
446
	struct timekeeper *tk = &timekeeper;
447 448 449 450 451 452
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
453
		seq = read_seqcount_begin(&timekeeper_seq);
454

455 456
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
457
		ts_real->tv_nsec = 0;
458

459 460
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
461

462
	} while (read_seqcount_retry(&timekeeper_seq, seq));
463 464 465 466 467 468 469 470

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

471 472 473 474
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
475
 * NOTE: Users should be converted to using getnstimeofday()
476 477 478 479 480
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

481
	getnstimeofday(&now);
482 483 484 485
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
486

487 488 489 490 491 492
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
493
int do_settimeofday(const struct timespec *tv)
494
{
495
	struct timekeeper *tk = &timekeeper;
496
	struct timespec ts_delta, xt;
497
	unsigned long flags;
498

499
	if (!timespec_valid_strict(tv))
500 501
		return -EINVAL;

502 503
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
504

505
	timekeeping_forward_now(tk);
506

507
	xt = tk_xtime(tk);
508 509 510
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

511
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
512

513
	tk_set_xtime(tk, tv);
514

515
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR);
516

517 518
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
519 520 521 522 523 524 525 526

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

527 528 529 530 531 532 533 534
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
535
	struct timekeeper *tk = &timekeeper;
536
	unsigned long flags;
537 538
	struct timespec tmp;
	int ret = 0;
539 540 541 542

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

543 544
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
545

546
	timekeeping_forward_now(tk);
547

548 549
	/* Make sure the proposed value is valid */
	tmp = timespec_add(tk_xtime(tk),  *ts);
550
	if (!timespec_valid_strict(&tmp)) {
551 552 553
		ret = -EINVAL;
		goto error;
	}
554

555 556
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
557

558
error: /* even if we error out, we forwarded the time, so call update */
559
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR);
560

561 562
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
563 564 565 566

	/* signal hrtimers about time change */
	clock_was_set();

567
	return ret;
568 569 570
}
EXPORT_SYMBOL(timekeeping_inject_offset);

571 572 573 574 575 576 577 578 579 580 581 582

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
	struct timekeeper *tk = &timekeeper;
	unsigned int seq;
	s32 ret;

	do {
583
		seq = read_seqcount_begin(&timekeeper_seq);
584
		ret = tk->tai_offset;
585
	} while (read_seqcount_retry(&timekeeper_seq, seq));
586 587 588 589 590 591 592 593

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
594
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
595 596
{
	tk->tai_offset = tai_offset;
597
	tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tai_offset, 0));
598 599 600 601 602 603 604 605 606 607 608
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;

609 610
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
611
	__timekeeping_set_tai_offset(tk, tai_offset);
612 613
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
614
	clock_was_set();
615 616
}

617 618 619 620 621
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
622
static int change_clocksource(void *data)
623
{
624
	struct timekeeper *tk = &timekeeper;
625
	struct clocksource *new, *old;
626
	unsigned long flags;
627

628
	new = (struct clocksource *) data;
629

630 631
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
632

633
	timekeeping_forward_now(tk);
634 635 636 637 638 639 640 641 642 643 644 645 646 647
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
			old = tk->clock;
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
648
	}
649
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR);
650

651 652
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
653

654 655
	return 0;
}
656

657 658 659 660 661 662 663
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
664
int timekeeping_notify(struct clocksource *clock)
665
{
666 667 668
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
669
		return 0;
670
	stop_machine(change_clocksource, clock, NULL);
671
	tick_clock_notify();
672
	return tk->clock == clock ? 0 : -1;
673
}
674

675 676 677 678 679 680 681 682 683 684 685 686 687 688
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
689

690 691 692 693 694 695 696 697
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
698
	struct timekeeper *tk = &timekeeper;
699 700 701 702
	unsigned long seq;
	s64 nsecs;

	do {
703
		seq = read_seqcount_begin(&timekeeper_seq);
704 705
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
706

707
	} while (read_seqcount_retry(&timekeeper_seq, seq));
708 709 710 711 712

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

713
/**
714
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
715
 */
716
int timekeeping_valid_for_hres(void)
717
{
718
	struct timekeeper *tk = &timekeeper;
719 720 721 722
	unsigned long seq;
	int ret;

	do {
723
		seq = read_seqcount_begin(&timekeeper_seq);
724

725
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
726

727
	} while (read_seqcount_retry(&timekeeper_seq, seq));
728 729 730 731

	return ret;
}

732 733 734 735 736
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
737
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
738 739
	unsigned long seq;
	u64 ret;
740

J
John Stultz 已提交
741
	do {
742
		seq = read_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
743

744
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
745

746
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
747 748

	return ret;
749 750
}

751
/**
752
 * read_persistent_clock -  Return time from the persistent clock.
753 754
 *
 * Weak dummy function for arches that do not yet support it.
755 756
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
757 758 759
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
760
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
761
{
762 763
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
764 765
}

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

781 782 783 784 785
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
786
	struct timekeeper *tk = &timekeeper;
787
	struct clocksource *clock;
788
	unsigned long flags;
789
	struct timespec now, boot, tmp;
790 791

	read_persistent_clock(&now);
792

793
	if (!timespec_valid_strict(&now)) {
794 795 796 797
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
798 799
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
800

801
	read_boot_clock(&boot);
802
	if (!timespec_valid_strict(&boot)) {
803 804 805 806 807
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
808

809 810
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
811 812
	ntp_init();

813
	clock = clocksource_default_clock();
814 815
	if (clock->enable)
		clock->enable(clock);
816
	tk_setup_internals(tk, clock);
817

818 819 820
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
821
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
822
		boot = tk_xtime(tk);
823

824
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
825
	tk_set_wall_to_mono(tk, tmp);
826 827 828

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
829
	tk_set_sleep_time(tk, tmp);
830

831 832
	memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));

833 834
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
835 836 837
}

/* time in seconds when suspend began */
838
static struct timespec timekeeping_suspend_time;
839

840 841 842 843 844 845 846
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
847 848
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
849
{
850
	if (!timespec_valid_strict(delta)) {
851
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
852 853 854
					"sleep delta value!\n");
		return;
	}
855
	tk_xtime_add(tk, delta);
856 857
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
858
	tk_debug_account_sleep_time(delta);
859 860 861 862 863 864 865 866 867 868 869 870 871 872
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
873
	struct timekeeper *tk = &timekeeper;
874
	unsigned long flags;
875

876 877 878 879 880
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
881 882
		return;

883 884
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
885

886
	timekeeping_forward_now(tk);
887

888
	__timekeeping_inject_sleeptime(tk, delta);
889

890
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR);
891

892 893
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
894 895 896 897 898

	/* signal hrtimers about time change */
	clock_was_set();
}

899 900 901 902 903 904 905
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
906
static void timekeeping_resume(void)
907
{
908
	struct timekeeper *tk = &timekeeper;
909
	struct clocksource *clock = tk->clock;
910
	unsigned long flags;
911 912 913
	struct timespec ts_new, ts_delta;
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
914

915
	read_persistent_clock(&ts_new);
916

917
	clockevents_resume();
918 919
	clocksource_resume();

920 921
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
922

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = clock->read(clock);
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
		cycle_now > clock->cycle_last) {
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

		ts_delta = ns_to_timespec(nsec);
		suspendtime_found = true;
	} else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
		suspendtime_found = true;
963
	}
964 965 966 967 968

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
969
	tk->cycle_last = clock->cycle_last = cycle_now;
970
	tk->ntp_error = 0;
971
	timekeeping_suspended = 0;
972
	timekeeping_update(tk, TK_MIRROR);
973 974
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
975 976 977 978 979 980

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
981
	hrtimers_resume();
982 983
}

984
static int timekeeping_suspend(void)
985
{
986
	struct timekeeper *tk = &timekeeper;
987
	unsigned long flags;
988 989
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
990

991
	read_persistent_clock(&timekeeping_suspend_time);
992

993 994
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
995
	timekeeping_forward_now(tk);
996
	timekeeping_suspended = 1;
997 998 999 1000 1001 1002 1003

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1004
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
1017 1018
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1019 1020

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1021
	clocksource_suspend();
1022
	clockevents_suspend();
1023 1024 1025 1026 1027

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1028
static struct syscore_ops timekeeping_syscore_ops = {
1029 1030 1031 1032
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1033
static int __init timekeeping_init_ops(void)
1034
{
1035 1036
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1037 1038
}

1039
device_initcall(timekeeping_init_ops);
1040 1041 1042 1043 1044

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
1045 1046
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
1059
	 * here.  This is tuned so that an error of about 1 msec is adjusted
1060 1061
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
1062
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1063 1064 1065 1066 1067 1068 1069 1070
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
1071 1072
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
1097
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1098
{
1099
	s64 error, interval = tk->cycle_interval;
1100 1101
	int adj;

1102
	/*
1103
	 * The point of this is to check if the error is greater than half
1104 1105 1106 1107 1108
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
1109 1110
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
1111
	 * larger than half an interval.
1112
	 *
1113
	 * Note: It does not "save" on aggravation when reading the code.
1114
	 */
1115
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1116
	if (error > interval) {
1117 1118
		/*
		 * We now divide error by 4(via shift), which checks if
1119
		 * the error is greater than twice the interval.
1120 1121 1122
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1123
		error >>= 2;
1124 1125 1126 1127 1128
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
1129
		 * The proper fix is to avoid rounding up by using
1130
		 * the high precision tk->xtime_nsec instead of
1131 1132 1133
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
1134 1135 1136
		if (likely(error <= interval))
			adj = 1;
		else
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1153

1154 1155
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1156 1157
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1158 1159
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
1160
	}
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1210 1211 1212 1213
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1214

1215
out_adjust:
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1230 1231 1232 1233
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1234 1235
	}

1236 1237
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1258 1259 1260 1261
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1262

1263 1264 1265 1266 1267
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

1268 1269
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1270 1271
			clock_was_set_delayed();
		}
1272 1273 1274
	}
}

1275 1276 1277 1278 1279 1280 1281 1282 1283
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1284 1285
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
						u32 shift)
1286
{
T
Thomas Gleixner 已提交
1287
	cycle_t interval = tk->cycle_interval << shift;
1288
	u64 raw_nsecs;
1289

1290
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1291
	if (offset < interval)
1292 1293 1294
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1295
	offset -= interval;
1296
	tk->cycle_last += interval;
1297

1298 1299
	tk->xtime_nsec += tk->xtime_interval << shift;
	accumulate_nsecs_to_secs(tk);
1300

1301
	/* Accumulate raw time */
1302
	raw_nsecs = (u64)tk->raw_interval << shift;
1303
	raw_nsecs += tk->raw_time.tv_nsec;
1304 1305 1306
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1307
		tk->raw_time.tv_sec += raw_secs;
1308
	}
1309
	tk->raw_time.tv_nsec = raw_nsecs;
1310 1311

	/* Accumulate error between NTP and clock interval */
1312 1313 1314
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1315 1316 1317 1318

	return offset;
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;

}
#else
#define old_vsyscall_fixup(tk)
#endif



1346 1347 1348 1349
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1350
static void update_wall_time(void)
1351
{
1352
	struct clocksource *clock;
1353 1354
	struct timekeeper *real_tk = &timekeeper;
	struct timekeeper *tk = &shadow_timekeeper;
1355
	cycle_t offset;
1356
	int shift = 0, maxshift;
J
John Stultz 已提交
1357 1358
	unsigned long flags;

1359
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1360 1361 1362

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1363
		goto out;
1364

1365
	clock = real_tk->clock;
J
John Stultz 已提交
1366 1367

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1368
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1369 1370
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1371 1372
#endif

1373
	/* Check if there's really nothing to do */
1374
	if (offset < real_tk->cycle_interval)
1375 1376
		goto out;

1377 1378 1379 1380
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1381
	 * that is smaller than the offset.  We then accumulate that
1382 1383
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1384
	 */
1385
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1386
	shift = max(0, shift);
1387
	/* Bound shift to one less than what overflows tick_length */
1388
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1389
	shift = min(shift, maxshift);
1390 1391 1392
	while (offset >= tk->cycle_interval) {
		offset = logarithmic_accumulation(tk, offset, shift);
		if (offset < tk->cycle_interval<<shift)
1393
			shift--;
1394 1395 1396
	}

	/* correct the clock when NTP error is too big */
1397
	timekeeping_adjust(tk, offset);
1398

J
John Stultz 已提交
1399
	/*
1400 1401 1402 1403
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1404

J
John Stultz 已提交
1405 1406
	/*
	 * Finally, make sure that after the rounding
1407
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1408
	 */
1409
	accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1410

1411
	write_seqcount_begin(&timekeeper_seq);
1412 1413
	/* Update clock->cycle_last with the new value */
	clock->cycle_last = tk->cycle_last;
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
	 * memcpy under the timekeeper_seq against one before we start
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1425
	timekeeping_update(real_tk, 0);
1426
	write_seqcount_end(&timekeeper_seq);
1427
out:
1428
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1429
}
T
Tomas Janousek 已提交
1430 1431 1432 1433 1434

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1435
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1436 1437 1438 1439 1440 1441 1442 1443
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1444
	struct timekeeper *tk = &timekeeper;
1445
	struct timespec boottime = {
1446 1447 1448 1449
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1450
	};
1451 1452

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1453
}
1454
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1467
	struct timekeeper *tk = &timekeeper;
1468
	struct timespec tomono, sleep;
1469
	s64 nsec;
1470 1471 1472 1473 1474
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1475
		seq = read_seqcount_begin(&timekeeper_seq);
1476
		ts->tv_sec = tk->xtime_sec;
1477
		nsec = timekeeping_get_ns(tk);
1478 1479
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1480

1481
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1482

1483 1484 1485
	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1506 1507 1508 1509 1510 1511
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1512 1513 1514
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1515
}
1516
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1517

1518 1519
unsigned long get_seconds(void)
{
1520 1521 1522
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1523 1524 1525
}
EXPORT_SYMBOL(get_seconds);

1526 1527
struct timespec __current_kernel_time(void)
{
1528 1529 1530
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1531
}
1532

1533 1534
struct timespec current_kernel_time(void)
{
1535
	struct timekeeper *tk = &timekeeper;
1536 1537 1538 1539
	struct timespec now;
	unsigned long seq;

	do {
1540
		seq = read_seqcount_begin(&timekeeper_seq);
L
Linus Torvalds 已提交
1541

1542
		now = tk_xtime(tk);
1543
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1544 1545 1546 1547

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1548 1549 1550

struct timespec get_monotonic_coarse(void)
{
1551
	struct timekeeper *tk = &timekeeper;
1552 1553 1554 1555
	struct timespec now, mono;
	unsigned long seq;

	do {
1556
		seq = read_seqcount_begin(&timekeeper_seq);
L
Linus Torvalds 已提交
1557

1558 1559
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1560
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1561 1562 1563 1564 1565

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1566 1567

/*
1568
 * Must hold jiffies_lock
1569 1570 1571 1572 1573 1574 1575
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1576 1577

/**
1578 1579
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1580 1581
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1582
 * @sleep:	pointer to timespec to be set with time in suspend
1583
 */
1584 1585
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1586
{
1587
	struct timekeeper *tk = &timekeeper;
1588 1589 1590
	unsigned long seq;

	do {
1591
		seq = read_seqcount_begin(&timekeeper_seq);
1592 1593 1594
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
1595
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1596
}
T
Torben Hohn 已提交
1597

1598 1599 1600 1601 1602 1603 1604 1605 1606
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
1607 1608
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1609
{
1610
	struct timekeeper *tk = &timekeeper;
1611 1612 1613 1614 1615
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1616
		seq = read_seqcount_begin(&timekeeper_seq);
1617

1618 1619
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1620

1621 1622
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1623
		*offs_tai = tk->offs_tai;
1624
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1625 1626 1627 1628 1629 1630 1631

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1632 1633 1634 1635 1636
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1637
	struct timekeeper *tk = &timekeeper;
1638 1639 1640 1641
	unsigned long seq;
	struct timespec wtom;

	do {
1642
		seq = read_seqcount_begin(&timekeeper_seq);
1643
		wtom = tk->wall_to_monotonic;
1644
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
1645

1646 1647
	return timespec_to_ktime(wtom);
}
1648 1649
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

1650 1651 1652 1653 1654
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1655
	struct timekeeper *tk = &timekeeper;
1656
	unsigned long flags;
1657
	struct timespec ts;
1658
	s32 orig_tai, tai;
1659 1660 1661 1662 1663 1664 1665
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1677 1678
	getnstimeofday(&ts);

1679 1680 1681
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);

1682
	orig_tai = tai = tk->tai_offset;
1683
	ret = __do_adjtimex(txc, &ts, &tai);
1684

1685 1686 1687 1688
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
		clock_was_set_delayed();
	}
1689 1690 1691
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1692 1693
	return ret;
}
1694 1695 1696 1697 1698 1699 1700

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1701 1702 1703 1704 1705
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);

1706
	__hardpps(phase_ts, raw_ts);
1707 1708 1709

	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1710 1711 1712 1713
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1714 1715 1716 1717 1718 1719 1720 1721
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1722
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1723
	do_timer(ticks);
1724
	write_sequnlock(&jiffies_lock);
T
Torben Hohn 已提交
1725
}