timekeeping.c 44.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25

26
#include "tick-internal.h"
27
#include "ntp_internal.h"
28
#include "timekeeping_internal.h"
29

30
static struct timekeeper timekeeper;
31 32
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
static seqcount_t timekeeper_seq;
33
static struct timekeeper shadow_timekeeper;
34

35 36 37
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

38 39 40
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

41 42 43 44 45 46 47 48 49 50 51
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
52
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
53 54 55 56 57
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
58
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
59
	tk_normalize_xtime(tk);
60
}
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
76
	tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tk->tai_offset, 0));
77 78 79 80 81 82 83 84 85 86 87
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

88 89 90 91 92 93 94 95 96 97
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
98
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
99 100
{
	cycle_t interval;
101
	u64 tmp, ntpinterval;
102
	struct clocksource *old_clock;
103

104 105
	old_clock = tk->clock;
	tk->clock = clock;
106
	tk->cycle_last = clock->cycle_last = clock->read(clock);
107 108 109 110

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
111
	ntpinterval = tmp;
112 113
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
114 115 116 117
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
118
	tk->cycle_interval = interval;
119 120

	/* Go back from cycles -> shifted ns */
121 122 123
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
124
		((u64) interval * clock->mult) >> clock->shift;
125

126 127 128 129
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
130
			tk->xtime_nsec >>= -shift_change;
131
		else
132
			tk->xtime_nsec <<= shift_change;
133
	}
134
	tk->shift = clock->shift;
135

136 137
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
138 139 140 141 142 143

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
144
	tk->mult = clock->mult;
145
}
146

147
/* Timekeeper helper functions. */
148 149 150 151 152 153 154 155 156 157 158 159 160 161

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
u32 (*arch_gettimeoffset)(void);

u32 get_arch_timeoffset(void)
{
	if (likely(arch_gettimeoffset))
		return arch_gettimeoffset();
	return 0;
}
#else
static inline u32 get_arch_timeoffset(void) { return 0; }
#endif

162
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
163 164 165
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
166
	s64 nsec;
167 168

	/* read clocksource: */
169
	clock = tk->clock;
170 171 172 173 174
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

175 176
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
177

178 179
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
180 181
}

182
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
183 184 185
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
186
	s64 nsec;
187 188

	/* read clocksource: */
189
	clock = tk->clock;
190 191 192 193 194
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

195 196 197
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

198 199
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
200 201
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

static void update_pvclock_gtod(struct timekeeper *tk)
{
	raw_notifier_call_chain(&pvclock_gtod_chain, 0, tk);
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;
	int ret;

218
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
219 220
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
	update_pvclock_gtod(tk);
221
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
222 223 224 225 226 227 228 229 230 231 232 233 234 235

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

236
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
237
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
238
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
239 240 241 242 243

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

244
/* must hold timekeeper_lock */
245
static void timekeeping_update(struct timekeeper *tk, bool clearntp, bool mirror)
246 247
{
	if (clearntp) {
248
		tk->ntp_error = 0;
249 250
		ntp_clear();
	}
251
	update_vsyscall(tk);
252
	update_pvclock_gtod(tk);
253 254 255

	if (mirror)
		memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
256 257
}

258
/**
259
 * timekeeping_forward_now - update clock to the current time
260
 *
261 262 263
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
264
 */
265
static void timekeeping_forward_now(struct timekeeper *tk)
266 267
{
	cycle_t cycle_now, cycle_delta;
268
	struct clocksource *clock;
269
	s64 nsec;
270

271
	clock = tk->clock;
272
	cycle_now = clock->read(clock);
273
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
274
	tk->cycle_last = clock->cycle_last = cycle_now;
275

276
	tk->xtime_nsec += cycle_delta * tk->mult;
277

278 279
	/* If arch requires, add in get_arch_timeoffset() */
	tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
280

281
	tk_normalize_xtime(tk);
282

283
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
284
	timespec_add_ns(&tk->raw_time, nsec);
285 286 287
}

/**
288
 * __getnstimeofday - Returns the time of day in a timespec.
289 290
 * @ts:		pointer to the timespec to be set
 *
291 292
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
293
 */
294
int __getnstimeofday(struct timespec *ts)
295
{
296
	struct timekeeper *tk = &timekeeper;
297
	unsigned long seq;
298
	s64 nsecs = 0;
299 300

	do {
301
		seq = read_seqcount_begin(&timekeeper_seq);
302

303
		ts->tv_sec = tk->xtime_sec;
304
		nsecs = timekeeping_get_ns(tk);
305

306
	} while (read_seqcount_retry(&timekeeper_seq, seq));
307

308
	ts->tv_nsec = 0;
309
	timespec_add_ns(ts, nsecs);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
EXPORT_SYMBOL(__getnstimeofday);

/**
 * getnstimeofday - Returns the time of day in a timespec.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
void getnstimeofday(struct timespec *ts)
{
	WARN_ON(__getnstimeofday(ts));
330 331 332
}
EXPORT_SYMBOL(getnstimeofday);

333 334
ktime_t ktime_get(void)
{
335
	struct timekeeper *tk = &timekeeper;
336 337 338 339 340 341
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
342
		seq = read_seqcount_begin(&timekeeper_seq);
343 344
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
345

346
	} while (read_seqcount_retry(&timekeeper_seq, seq));
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
365
	struct timekeeper *tk = &timekeeper;
366
	struct timespec tomono;
367
	s64 nsec;
368 369 370 371 372
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
373
		seq = read_seqcount_begin(&timekeeper_seq);
374
		ts->tv_sec = tk->xtime_sec;
375
		nsec = timekeeping_get_ns(tk);
376
		tomono = tk->wall_to_monotonic;
377

378
	} while (read_seqcount_retry(&timekeeper_seq, seq));
379

380 381 382
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec);
383 384 385
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

J
John Stultz 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

/**
 * timekeeping_clocktai - Returns the TAI time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void timekeeping_clocktai(struct timespec *ts)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long seq;
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
402
		seq = read_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
403 404 405 406

		ts->tv_sec = tk->xtime_sec + tk->tai_offset;
		nsecs = timekeeping_get_ns(tk);

407
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
408 409 410 411 412 413 414 415

	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsecs);

}
EXPORT_SYMBOL(timekeeping_clocktai);


416 417 418 419 420 421 422 423 424 425 426 427 428 429
/**
 * ktime_get_clocktai - Returns the TAI time of day in a ktime
 *
 * Returns the time of day in a ktime.
 */
ktime_t ktime_get_clocktai(void)
{
	struct timespec ts;

	timekeeping_clocktai(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL(ktime_get_clocktai);

430 431 432 433 434 435 436 437 438 439 440 441 442
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
443
	struct timekeeper *tk = &timekeeper;
444 445 446 447 448 449
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
450
		seq = read_seqcount_begin(&timekeeper_seq);
451

452 453
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
454
		ts_real->tv_nsec = 0;
455

456 457
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
458

459
	} while (read_seqcount_retry(&timekeeper_seq, seq));
460 461 462 463 464 465 466 467

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

468 469 470 471
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
472
 * NOTE: Users should be converted to using getnstimeofday()
473 474 475 476 477
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

478
	getnstimeofday(&now);
479 480 481 482
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
483

484 485 486 487 488 489
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
490
int do_settimeofday(const struct timespec *tv)
491
{
492
	struct timekeeper *tk = &timekeeper;
493
	struct timespec ts_delta, xt;
494
	unsigned long flags;
495

496
	if (!timespec_valid_strict(tv))
497 498
		return -EINVAL;

499 500
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
501

502
	timekeeping_forward_now(tk);
503

504
	xt = tk_xtime(tk);
505 506 507
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

508
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
509

510
	tk_set_xtime(tk, tv);
511

512
	timekeeping_update(tk, true, true);
513

514 515
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
516 517 518 519 520 521 522 523

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

524 525 526 527 528 529 530 531
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
532
	struct timekeeper *tk = &timekeeper;
533
	unsigned long flags;
534 535
	struct timespec tmp;
	int ret = 0;
536 537 538 539

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

540 541
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
542

543
	timekeeping_forward_now(tk);
544

545 546
	/* Make sure the proposed value is valid */
	tmp = timespec_add(tk_xtime(tk),  *ts);
547
	if (!timespec_valid_strict(&tmp)) {
548 549 550
		ret = -EINVAL;
		goto error;
	}
551

552 553
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
554

555
error: /* even if we error out, we forwarded the time, so call update */
556
	timekeeping_update(tk, true, true);
557

558 559
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
560 561 562 563

	/* signal hrtimers about time change */
	clock_was_set();

564
	return ret;
565 566 567
}
EXPORT_SYMBOL(timekeeping_inject_offset);

568 569 570 571 572 573 574 575 576 577 578 579

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
	struct timekeeper *tk = &timekeeper;
	unsigned int seq;
	s32 ret;

	do {
580
		seq = read_seqcount_begin(&timekeeper_seq);
581
		ret = tk->tai_offset;
582
	} while (read_seqcount_retry(&timekeeper_seq, seq));
583 584 585 586 587 588 589 590

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
591
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
592 593
{
	tk->tai_offset = tai_offset;
594
	tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tai_offset, 0));
595 596 597 598 599 600 601 602 603 604 605
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;

606 607
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
608
	__timekeeping_set_tai_offset(tk, tai_offset);
609 610
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
611
	clock_was_set();
612 613
}

614 615 616 617 618
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
619
static int change_clocksource(void *data)
620
{
621
	struct timekeeper *tk = &timekeeper;
622
	struct clocksource *new, *old;
623
	unsigned long flags;
624

625
	new = (struct clocksource *) data;
626

627 628
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
629

630
	timekeeping_forward_now(tk);
631 632 633 634 635 636 637 638 639 640 641 642 643 644
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
			old = tk->clock;
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
645
	}
646
	timekeeping_update(tk, true, true);
647

648 649
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
650

651 652
	return 0;
}
653

654 655 656 657 658 659 660
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
661
int timekeeping_notify(struct clocksource *clock)
662
{
663 664 665
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
666
		return 0;
667
	stop_machine(change_clocksource, clock, NULL);
668
	tick_clock_notify();
669
	return tk->clock == clock ? 0 : -1;
670
}
671

672 673 674 675 676 677 678 679 680 681 682 683 684 685
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
686

687 688 689 690 691 692 693 694
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
695
	struct timekeeper *tk = &timekeeper;
696 697 698 699
	unsigned long seq;
	s64 nsecs;

	do {
700
		seq = read_seqcount_begin(&timekeeper_seq);
701 702
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
703

704
	} while (read_seqcount_retry(&timekeeper_seq, seq));
705 706 707 708 709

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

710
/**
711
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
712
 */
713
int timekeeping_valid_for_hres(void)
714
{
715
	struct timekeeper *tk = &timekeeper;
716 717 718 719
	unsigned long seq;
	int ret;

	do {
720
		seq = read_seqcount_begin(&timekeeper_seq);
721

722
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
723

724
	} while (read_seqcount_retry(&timekeeper_seq, seq));
725 726 727 728

	return ret;
}

729 730 731 732 733
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
734
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
735 736
	unsigned long seq;
	u64 ret;
737

J
John Stultz 已提交
738
	do {
739
		seq = read_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
740

741
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
742

743
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
744 745

	return ret;
746 747
}

748
/**
749
 * read_persistent_clock -  Return time from the persistent clock.
750 751
 *
 * Weak dummy function for arches that do not yet support it.
752 753
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
754 755 756
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
757
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
758
{
759 760
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
761 762
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

778 779 780 781 782
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
783
	struct timekeeper *tk = &timekeeper;
784
	struct clocksource *clock;
785
	unsigned long flags;
786
	struct timespec now, boot, tmp;
787 788

	read_persistent_clock(&now);
789

790
	if (!timespec_valid_strict(&now)) {
791 792 793 794
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
795 796
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
797

798
	read_boot_clock(&boot);
799
	if (!timespec_valid_strict(&boot)) {
800 801 802 803 804
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
805

806 807
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
808 809
	ntp_init();

810
	clock = clocksource_default_clock();
811 812
	if (clock->enable)
		clock->enable(clock);
813
	tk_setup_internals(tk, clock);
814

815 816 817
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
818
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
819
		boot = tk_xtime(tk);
820

821
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
822
	tk_set_wall_to_mono(tk, tmp);
823 824 825

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
826
	tk_set_sleep_time(tk, tmp);
827

828 829
	memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));

830 831
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
832 833 834
}

/* time in seconds when suspend began */
835
static struct timespec timekeeping_suspend_time;
836

837 838 839 840 841 842 843
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
844 845
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
846
{
847
	if (!timespec_valid_strict(delta)) {
848
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
849 850 851
					"sleep delta value!\n");
		return;
	}
852
	tk_xtime_add(tk, delta);
853 854
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
855
	tk_debug_account_sleep_time(delta);
856 857 858 859 860 861 862 863 864 865 866 867 868 869
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
870
	struct timekeeper *tk = &timekeeper;
871
	unsigned long flags;
872

873 874 875 876 877
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
878 879
		return;

880 881
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
882

883
	timekeeping_forward_now(tk);
884

885
	__timekeeping_inject_sleeptime(tk, delta);
886

887
	timekeeping_update(tk, true, true);
888

889 890
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
891 892 893 894 895

	/* signal hrtimers about time change */
	clock_was_set();
}

896 897 898 899 900 901 902
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
903
static void timekeeping_resume(void)
904
{
905
	struct timekeeper *tk = &timekeeper;
906
	struct clocksource *clock = tk->clock;
907
	unsigned long flags;
908 909 910
	struct timespec ts_new, ts_delta;
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
911

912
	read_persistent_clock(&ts_new);
913

914
	clockevents_resume();
915 916
	clocksource_resume();

917 918
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = clock->read(clock);
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
		cycle_now > clock->cycle_last) {
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

		ts_delta = ns_to_timespec(nsec);
		suspendtime_found = true;
	} else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
		suspendtime_found = true;
960
	}
961 962 963 964 965

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
966
	tk->cycle_last = clock->cycle_last = cycle_now;
967
	tk->ntp_error = 0;
968
	timekeeping_suspended = 0;
969
	timekeeping_update(tk, false, true);
970 971
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
972 973 974 975 976 977

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
978
	hrtimers_resume();
979 980
}

981
static int timekeeping_suspend(void)
982
{
983
	struct timekeeper *tk = &timekeeper;
984
	unsigned long flags;
985 986
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
987

988
	read_persistent_clock(&timekeeping_suspend_time);
989

990 991
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
992
	timekeeping_forward_now(tk);
993
	timekeeping_suspended = 1;
994 995 996 997 998 999 1000

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1001
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
1014 1015
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1016 1017

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1018
	clocksource_suspend();
1019
	clockevents_suspend();
1020 1021 1022 1023 1024

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1025
static struct syscore_ops timekeeping_syscore_ops = {
1026 1027 1028 1029
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1030
static int __init timekeeping_init_ops(void)
1031
{
1032 1033
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1034 1035
}

1036
device_initcall(timekeeping_init_ops);
1037 1038 1039 1040 1041

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
1042 1043
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
1056
	 * here.  This is tuned so that an error of about 1 msec is adjusted
1057 1058
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
1059
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1060 1061 1062 1063 1064 1065 1066 1067
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
1068 1069
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
1094
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1095
{
1096
	s64 error, interval = tk->cycle_interval;
1097 1098
	int adj;

1099
	/*
1100
	 * The point of this is to check if the error is greater than half
1101 1102 1103 1104 1105
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
1106 1107
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
1108
	 * larger than half an interval.
1109
	 *
1110
	 * Note: It does not "save" on aggravation when reading the code.
1111
	 */
1112
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1113
	if (error > interval) {
1114 1115
		/*
		 * We now divide error by 4(via shift), which checks if
1116
		 * the error is greater than twice the interval.
1117 1118 1119
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1120
		error >>= 2;
1121 1122 1123 1124 1125
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
1126
		 * The proper fix is to avoid rounding up by using
1127
		 * the high precision tk->xtime_nsec instead of
1128 1129 1130
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
1131 1132 1133
		if (likely(error <= interval))
			adj = 1;
		else
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1150

1151 1152
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1153 1154
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1155 1156
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
1157
	}
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1207 1208 1209 1210
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1211

1212
out_adjust:
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1227 1228 1229 1230
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1231 1232
	}

1233 1234
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1255 1256 1257 1258
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1259

1260 1261 1262 1263 1264
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

1265 1266
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1267 1268
			clock_was_set_delayed();
		}
1269 1270 1271
	}
}

1272 1273 1274 1275 1276 1277 1278 1279 1280
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1281 1282
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
						u32 shift)
1283
{
T
Thomas Gleixner 已提交
1284
	cycle_t interval = tk->cycle_interval << shift;
1285
	u64 raw_nsecs;
1286

1287
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1288
	if (offset < interval)
1289 1290 1291
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1292
	offset -= interval;
1293
	tk->cycle_last += interval;
1294

1295 1296
	tk->xtime_nsec += tk->xtime_interval << shift;
	accumulate_nsecs_to_secs(tk);
1297

1298
	/* Accumulate raw time */
1299
	raw_nsecs = (u64)tk->raw_interval << shift;
1300
	raw_nsecs += tk->raw_time.tv_nsec;
1301 1302 1303
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1304
		tk->raw_time.tv_sec += raw_secs;
1305
	}
1306
	tk->raw_time.tv_nsec = raw_nsecs;
1307 1308

	/* Accumulate error between NTP and clock interval */
1309 1310 1311
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1312 1313 1314 1315

	return offset;
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;

}
#else
#define old_vsyscall_fixup(tk)
#endif



1343 1344 1345 1346
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1347
static void update_wall_time(void)
1348
{
1349
	struct clocksource *clock;
1350 1351
	struct timekeeper *real_tk = &timekeeper;
	struct timekeeper *tk = &shadow_timekeeper;
1352
	cycle_t offset;
1353
	int shift = 0, maxshift;
J
John Stultz 已提交
1354 1355
	unsigned long flags;

1356
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1357 1358 1359

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1360
		goto out;
1361

1362
	clock = real_tk->clock;
J
John Stultz 已提交
1363 1364

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1365
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1366 1367
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1368 1369
#endif

1370
	/* Check if there's really nothing to do */
1371
	if (offset < real_tk->cycle_interval)
1372 1373
		goto out;

1374 1375 1376 1377
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1378
	 * that is smaller than the offset.  We then accumulate that
1379 1380
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1381
	 */
1382
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1383
	shift = max(0, shift);
1384
	/* Bound shift to one less than what overflows tick_length */
1385
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1386
	shift = min(shift, maxshift);
1387 1388 1389
	while (offset >= tk->cycle_interval) {
		offset = logarithmic_accumulation(tk, offset, shift);
		if (offset < tk->cycle_interval<<shift)
1390
			shift--;
1391 1392 1393
	}

	/* correct the clock when NTP error is too big */
1394
	timekeeping_adjust(tk, offset);
1395

J
John Stultz 已提交
1396
	/*
1397 1398 1399 1400
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1401

J
John Stultz 已提交
1402 1403
	/*
	 * Finally, make sure that after the rounding
1404
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1405
	 */
1406
	accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1407

1408
	write_seqcount_begin(&timekeeper_seq);
1409 1410
	/* Update clock->cycle_last with the new value */
	clock->cycle_last = tk->cycle_last;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
	 * memcpy under the timekeeper_seq against one before we start
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
	timekeeping_update(real_tk, false, false);
1423
	write_seqcount_end(&timekeeper_seq);
1424
out:
1425
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1426
}
T
Tomas Janousek 已提交
1427 1428 1429 1430 1431

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1432
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1433 1434 1435 1436 1437 1438 1439 1440
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1441
	struct timekeeper *tk = &timekeeper;
1442
	struct timespec boottime = {
1443 1444 1445 1446
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1447
	};
1448 1449

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1450
}
1451
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1464
	struct timekeeper *tk = &timekeeper;
1465
	struct timespec tomono, sleep;
1466
	s64 nsec;
1467 1468 1469 1470 1471
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1472
		seq = read_seqcount_begin(&timekeeper_seq);
1473
		ts->tv_sec = tk->xtime_sec;
1474
		nsec = timekeeping_get_ns(tk);
1475 1476
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1477

1478
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1479

1480 1481 1482
	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1503 1504 1505 1506 1507 1508
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1509 1510 1511
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1512
}
1513
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1514

1515 1516
unsigned long get_seconds(void)
{
1517 1518 1519
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1520 1521 1522
}
EXPORT_SYMBOL(get_seconds);

1523 1524
struct timespec __current_kernel_time(void)
{
1525 1526 1527
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1528
}
1529

1530 1531
struct timespec current_kernel_time(void)
{
1532
	struct timekeeper *tk = &timekeeper;
1533 1534 1535 1536
	struct timespec now;
	unsigned long seq;

	do {
1537
		seq = read_seqcount_begin(&timekeeper_seq);
L
Linus Torvalds 已提交
1538

1539
		now = tk_xtime(tk);
1540
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1541 1542 1543 1544

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1545 1546 1547

struct timespec get_monotonic_coarse(void)
{
1548
	struct timekeeper *tk = &timekeeper;
1549 1550 1551 1552
	struct timespec now, mono;
	unsigned long seq;

	do {
1553
		seq = read_seqcount_begin(&timekeeper_seq);
L
Linus Torvalds 已提交
1554

1555 1556
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1557
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1558 1559 1560 1561 1562

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1563 1564

/*
1565
 * Must hold jiffies_lock
1566 1567 1568 1569 1570 1571 1572
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1573 1574

/**
1575 1576
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1577 1578
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1579
 * @sleep:	pointer to timespec to be set with time in suspend
1580
 */
1581 1582
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1583
{
1584
	struct timekeeper *tk = &timekeeper;
1585 1586 1587
	unsigned long seq;

	do {
1588
		seq = read_seqcount_begin(&timekeeper_seq);
1589 1590 1591
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
1592
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1593
}
T
Torben Hohn 已提交
1594

1595 1596 1597 1598 1599 1600 1601 1602 1603
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
1604 1605
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1606
{
1607
	struct timekeeper *tk = &timekeeper;
1608 1609 1610 1611 1612
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1613
		seq = read_seqcount_begin(&timekeeper_seq);
1614

1615 1616
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1617

1618 1619
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1620
		*offs_tai = tk->offs_tai;
1621
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1622 1623 1624 1625 1626 1627 1628

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1629 1630 1631 1632 1633
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1634
	struct timekeeper *tk = &timekeeper;
1635 1636 1637 1638
	unsigned long seq;
	struct timespec wtom;

	do {
1639
		seq = read_seqcount_begin(&timekeeper_seq);
1640
		wtom = tk->wall_to_monotonic;
1641
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
1642

1643 1644
	return timespec_to_ktime(wtom);
}
1645 1646
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

1647 1648 1649 1650 1651
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1652
	struct timekeeper *tk = &timekeeper;
1653
	unsigned long flags;
1654
	struct timespec ts;
1655
	s32 orig_tai, tai;
1656 1657 1658 1659 1660 1661 1662
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1674 1675
	getnstimeofday(&ts);

1676 1677 1678
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);

1679
	orig_tai = tai = tk->tai_offset;
1680
	ret = __do_adjtimex(txc, &ts, &tai);
1681

1682 1683 1684 1685
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
		clock_was_set_delayed();
	}
1686 1687 1688
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1689 1690
	return ret;
}
1691 1692 1693 1694 1695 1696 1697

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1698 1699 1700 1701 1702
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);

1703
	__hardpps(phase_ts, raw_ts);
1704 1705 1706

	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1707 1708 1709 1710
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1711 1712 1713 1714 1715 1716 1717 1718
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1719
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1720
	do_timer(ticks);
1721
	write_sequnlock(&jiffies_lock);
T
Torben Hohn 已提交
1722
}