timekeeping.c 64.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

122 123 124
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

125 126
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
127 128

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
134
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 136 137 138
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
139

140 141
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 143 144
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
145
			tk->last_warning = jiffies;
146
		}
147
		tk->underflow_seen = 0;
148 149
	}

150 151
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 153 154
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
155
			tk->last_warning = jiffies;
156
		}
157
		tk->overflow_seen = 0;
158
	}
159
}
160 161 162

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
163
	struct timekeeper *tk = &tk_core.timekeeper;
164 165
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
181

182
	delta = clocksource_delta(now, last, mask);
183

184 185 186 187
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
188
	if (unlikely((~delta & mask) < (mask >> 3))) {
189
		tk->underflow_seen = 1;
190
		delta = 0;
191
	}
192

193
	/* Cap delta value to the max_cycles values to avoid mult overflows */
194
	if (unlikely(delta > max)) {
195
		tk->overflow_seen = 1;
196
		delta = tkr->clock->max_cycles;
197
	}
198 199 200

	return delta;
}
201 202 203 204
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
205 206 207 208 209 210 211 212 213 214 215 216
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
217 218
#endif

219
/**
220
 * tk_setup_internals - Set up internals to use clocksource clock.
221
 *
222
 * @tk:		The target timekeeper to setup.
223 224 225 226 227 228 229
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
230
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 232
{
	cycle_t interval;
233
	u64 tmp, ntpinterval;
234
	struct clocksource *old_clock;
235

236
	++tk->cs_was_changed_seq;
237 238 239 240 241
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242

P
Peter Zijlstra 已提交
243 244 245 246 247
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

248 249 250
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
251
	ntpinterval = tmp;
252 253
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
254 255 256 257
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
258
	tk->cycle_interval = interval;
259 260

	/* Go back from cycles -> shifted ns */
261 262 263
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
264
		((u64) interval * clock->mult) >> clock->shift;
265

266 267 268 269
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
270
			tk->tkr_mono.xtime_nsec >>= -shift_change;
271
		else
272
			tk->tkr_mono.xtime_nsec <<= shift_change;
273
	}
P
Peter Zijlstra 已提交
274 275
	tk->tkr_raw.xtime_nsec = 0;

276
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
277
	tk->tkr_raw.shift = clock->shift;
278

279 280
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
281
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
282 283 284 285 286 287

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
288
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
289
	tk->tkr_raw.mult = clock->mult;
290
	tk->ntp_err_mult = 0;
291
}
292

293
/* Timekeeper helper functions. */
294 295

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
296 297
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
298
#else
299
static inline u32 arch_gettimeoffset(void) { return 0; }
300 301
#endif

302
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 304
					  cycle_t delta)
{
305
	u64 nsec;
306 307 308 309 310 311 312 313

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

314
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315
{
316
	cycle_t delta;
317

318
	delta = timekeeping_get_delta(tkr);
319 320
	return timekeeping_delta_to_ns(tkr, delta);
}
321

322 323 324 325
static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
					    cycle_t cycles)
{
	cycle_t delta;
326

327 328 329
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
330 331
}

332 333
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
334
 * @tkr: Timekeeping readout base from which we take the update
335 336 337 338
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
339
 * Employ the latch technique; see @raw_write_seqcount_latch.
340 341 342 343 344 345
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
346
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
347
{
348
	struct tk_read_base *base = tkf->base;
349 350

	/* Force readers off to base[1] */
351
	raw_write_seqcount_latch(&tkf->seq);
352 353

	/* Update base[0] */
354
	memcpy(base, tkr, sizeof(*base));
355 356

	/* Force readers back to base[0] */
357
	raw_write_seqcount_latch(&tkf->seq);
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
395
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
396 397 398 399 400 401
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
402
		seq = raw_read_seqcount_latch(&tkf->seq);
403
		tkr = tkf->base + (seq & 0x01);
404 405
		now = ktime_to_ns(tkr->base);

406 407 408 409 410
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tkr->read(tkr->clock),
					tkr->cycle_last,
					tkr->mask));
411
	} while (read_seqcount_retry(&tkf->seq, seq));
412 413 414

	return now;
}
415 416 417 418 419

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
420 421
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
422 423 424 425 426 427
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
478
	struct tk_read_base *tkr = &tk->tkr_mono;
479 480 481 482

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
483
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
484 485 486 487 488

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
489 490
}

491 492 493 494
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
495
	struct timespec xt, wm;
496

497
	xt = timespec64_to_timespec(tk_xtime(tk));
498
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
499 500
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
517
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
518 519 520 521 522 523
	if (remainder != 0) {
		tk->tkr_mono.xtime_nsec -= remainder;
		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
		tk->ntp_error += remainder << tk->ntp_error_shift;
		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
	}
524 525 526 527 528
}
#else
#define old_vsyscall_fixup(tk)
#endif

529 530
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

531
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
532
{
533
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
534 535 536 537 538 539 540
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
541
	struct timekeeper *tk = &tk_core.timekeeper;
542 543 544
	unsigned long flags;
	int ret;

545
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
546
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
547
	update_pvclock_gtod(tk, true);
548
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
549 550 551 552 553 554 555 556 557 558 559 560 561 562

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

563
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
564
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
565
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
566 567 568 569 570

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

571 572 573 574 575 576 577 578 579 580 581
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

582 583 584 585 586
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
587 588
	u64 seconds;
	u32 nsec;
589 590 591 592 593 594 595 596

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
597 598
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
599
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
600 601

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
602
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
603 604 605 606 607 608

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
609
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
610 611 612
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
613 614
}

615
/* must hold timekeeper_lock */
616
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
617
{
618
	if (action & TK_CLEAR_NTP) {
619
		tk->ntp_error = 0;
620 621
		ntp_clear();
	}
622

623
	tk_update_leap_state(tk);
624 625
	tk_update_ktime_data(tk);

626 627 628
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

629
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
630
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
631 632 633

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
634 635 636 637 638 639 640 641
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
642 643
}

644
/**
645
 * timekeeping_forward_now - update clock to the current time
646
 *
647 648 649
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
650
 */
651
static void timekeeping_forward_now(struct timekeeper *tk)
652
{
653
	struct clocksource *clock = tk->tkr_mono.clock;
654
	cycle_t cycle_now, delta;
655
	s64 nsec;
656

657 658 659
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
660
	tk->tkr_raw.cycle_last  = cycle_now;
661

662
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
663

664
	/* If arch requires, add in get_arch_timeoffset() */
665
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
666

667
	tk_normalize_xtime(tk);
668

P
Peter Zijlstra 已提交
669
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
670
	timespec64_add_ns(&tk->raw_time, nsec);
671 672 673
}

/**
674
 * __getnstimeofday64 - Returns the time of day in a timespec64.
675 676
 * @ts:		pointer to the timespec to be set
 *
677 678
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
679
 */
680
int __getnstimeofday64(struct timespec64 *ts)
681
{
682
	struct timekeeper *tk = &tk_core.timekeeper;
683
	unsigned long seq;
684
	s64 nsecs = 0;
685 686

	do {
687
		seq = read_seqcount_begin(&tk_core.seq);
688

689
		ts->tv_sec = tk->xtime_sec;
690
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
691

692
	} while (read_seqcount_retry(&tk_core.seq, seq));
693

694
	ts->tv_nsec = 0;
695
	timespec64_add_ns(ts, nsecs);
696 697 698 699 700 701 702 703 704

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
705
EXPORT_SYMBOL(__getnstimeofday64);
706 707

/**
708
 * getnstimeofday64 - Returns the time of day in a timespec64.
709
 * @ts:		pointer to the timespec64 to be set
710
 *
711
 * Returns the time of day in a timespec64 (WARN if suspended).
712
 */
713
void getnstimeofday64(struct timespec64 *ts)
714
{
715
	WARN_ON(__getnstimeofday64(ts));
716
}
717
EXPORT_SYMBOL(getnstimeofday64);
718

719 720
ktime_t ktime_get(void)
{
721
	struct timekeeper *tk = &tk_core.timekeeper;
722
	unsigned int seq;
723 724
	ktime_t base;
	s64 nsecs;
725 726 727 728

	WARN_ON(timekeeping_suspended);

	do {
729
		seq = read_seqcount_begin(&tk_core.seq);
730 731
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
732

733
	} while (read_seqcount_retry(&tk_core.seq, seq));
734

735
	return ktime_add_ns(base, nsecs);
736 737 738
}
EXPORT_SYMBOL_GPL(ktime_get);

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
773 774
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
775 776 777 778 779 780 781 782

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

803 804 805 806 807 808 809 810 811 812 813 814
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
815 816
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
817 818 819 820 821 822 823

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

824
/**
825
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
826 827 828 829
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
830
 * in normalized timespec64 format in the variable pointed to by @ts.
831
 */
832
void ktime_get_ts64(struct timespec64 *ts)
833
{
834
	struct timekeeper *tk = &tk_core.timekeeper;
835
	struct timespec64 tomono;
836
	s64 nsec;
837 838 839 840 841
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
842
		seq = read_seqcount_begin(&tk_core.seq);
843
		ts->tv_sec = tk->xtime_sec;
844
		nsec = timekeeping_get_ns(&tk->tkr_mono);
845
		tomono = tk->wall_to_monotonic;
846

847
	} while (read_seqcount_retry(&tk_core.seq, seq));
848

849 850 851
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
852
}
853
EXPORT_SYMBOL_GPL(ktime_get_ts64);
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

903 904 905 906 907 908 909 910 911 912 913 914
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
	s64 nsec_raw;
	s64 nsec_real;
	cycle_t now;

929 930
	WARN_ON_ONCE(timekeeping_suspended);

931 932 933 934
	do {
		seq = read_seqcount_begin(&tk_core.seq);

		now = tk->tkr_mono.read(tk->tkr_mono.clock);
935 936
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
937 938 939 940 941 942 943 944 945 946 947 948
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
949

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
					 cycle_t partial_history_cycles,
					 cycle_t total_history_cycles,
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
	interp_forward = partial_history_cycles > total_history_cycles/2 ?
		true : false;
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1060 1061
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1062
 * @get_time_fn:	Callback to get simultaneous device time and
1063
 *	system counter from the device driver
1064 1065 1066
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1067 1068 1069 1070 1071 1072 1073 1074 1075
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1076
				  struct system_time_snapshot *history_begin,
1077 1078 1079 1080
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1081
	cycle_t cycles, now, interval_start;
1082
	unsigned int clock_was_set_seq = 0;
1083 1084
	ktime_t base_real, base_raw;
	s64 nsec_real, nsec_raw;
1085
	u8 cs_was_changed_seq;
1086
	unsigned long seq;
1087
	bool do_interp;
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
		now = tk->tkr_mono.read(tk->tkr_mono.clock);
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
		cycle_t partial_history_cycles, total_history_cycles;
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1168 1169 1170 1171
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1172 1173 1174 1175
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1176
 * NOTE: Users should be converted to using getnstimeofday()
1177 1178 1179
 */
void do_gettimeofday(struct timeval *tv)
{
1180
	struct timespec64 now;
1181

1182
	getnstimeofday64(&now);
1183 1184 1185 1186
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1187

1188
/**
1189 1190
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1191 1192 1193
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1194
int do_settimeofday64(const struct timespec64 *ts)
1195
{
1196
	struct timekeeper *tk = &tk_core.timekeeper;
1197
	struct timespec64 ts_delta, xt;
1198
	unsigned long flags;
1199
	int ret = 0;
1200

1201
	if (!timespec64_valid_strict(ts))
1202 1203
		return -EINVAL;

1204
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1205
	write_seqcount_begin(&tk_core.seq);
1206

1207
	timekeeping_forward_now(tk);
1208

1209
	xt = tk_xtime(tk);
1210 1211
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1212

1213 1214 1215 1216 1217
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1218
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1219

1220
	tk_set_xtime(tk, ts);
1221
out:
1222
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1223

1224
	write_seqcount_end(&tk_core.seq);
1225
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1226 1227 1228 1229

	/* signal hrtimers about time change */
	clock_was_set();

1230
	return ret;
1231
}
1232
EXPORT_SYMBOL(do_settimeofday64);
1233

1234 1235 1236 1237 1238 1239 1240 1241
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
1242
	struct timekeeper *tk = &tk_core.timekeeper;
1243
	unsigned long flags;
1244
	struct timespec64 ts64, tmp;
1245
	int ret = 0;
1246

1247
	if (!timespec_inject_offset_valid(ts))
1248 1249
		return -EINVAL;

1250 1251
	ts64 = timespec_to_timespec64(*ts);

1252
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1253
	write_seqcount_begin(&tk_core.seq);
1254

1255
	timekeeping_forward_now(tk);
1256

1257
	/* Make sure the proposed value is valid */
1258
	tmp = timespec64_add(tk_xtime(tk),  ts64);
1259 1260
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
1261 1262 1263
		ret = -EINVAL;
		goto error;
	}
1264

1265 1266
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1267

1268
error: /* even if we error out, we forwarded the time, so call update */
1269
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1270

1271
	write_seqcount_end(&tk_core.seq);
1272
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1273 1274 1275 1276

	/* signal hrtimers about time change */
	clock_was_set();

1277
	return ret;
1278 1279 1280
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1281 1282 1283 1284 1285 1286 1287

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
1288
	struct timekeeper *tk = &tk_core.timekeeper;
1289 1290 1291 1292
	unsigned int seq;
	s32 ret;

	do {
1293
		seq = read_seqcount_begin(&tk_core.seq);
1294
		ret = tk->tai_offset;
1295
	} while (read_seqcount_retry(&tk_core.seq, seq));
1296 1297 1298 1299 1300 1301 1302 1303

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1304
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1305 1306
{
	tk->tai_offset = tai_offset;
1307
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1308 1309 1310 1311 1312 1313 1314 1315
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1316
	struct timekeeper *tk = &tk_core.timekeeper;
1317 1318
	unsigned long flags;

1319
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1320
	write_seqcount_begin(&tk_core.seq);
1321
	__timekeeping_set_tai_offset(tk, tai_offset);
1322
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1323
	write_seqcount_end(&tk_core.seq);
1324
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1325
	clock_was_set();
1326 1327
}

1328 1329 1330 1331 1332
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1333
static int change_clocksource(void *data)
1334
{
1335
	struct timekeeper *tk = &tk_core.timekeeper;
1336
	struct clocksource *new, *old;
1337
	unsigned long flags;
1338

1339
	new = (struct clocksource *) data;
1340

1341
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1342
	write_seqcount_begin(&tk_core.seq);
1343

1344
	timekeeping_forward_now(tk);
1345 1346 1347 1348 1349 1350
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1351
			old = tk->tkr_mono.clock;
1352 1353 1354 1355 1356 1357 1358
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1359
	}
1360
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1361

1362
	write_seqcount_end(&tk_core.seq);
1363
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1364

1365 1366
	return 0;
}
1367

1368 1369 1370 1371 1372 1373 1374
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1375
int timekeeping_notify(struct clocksource *clock)
1376
{
1377
	struct timekeeper *tk = &tk_core.timekeeper;
1378

1379
	if (tk->tkr_mono.clock == clock)
1380
		return 0;
1381
	stop_machine(change_clocksource, clock, NULL);
1382
	tick_clock_notify();
1383
	return tk->tkr_mono.clock == clock ? 0 : -1;
1384
}
1385

1386
/**
1387 1388
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1389 1390 1391
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1392
void getrawmonotonic64(struct timespec64 *ts)
1393
{
1394
	struct timekeeper *tk = &tk_core.timekeeper;
1395
	struct timespec64 ts64;
1396 1397 1398 1399
	unsigned long seq;
	s64 nsecs;

	do {
1400
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1401
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1402
		ts64 = tk->raw_time;
1403

1404
	} while (read_seqcount_retry(&tk_core.seq, seq));
1405

1406
	timespec64_add_ns(&ts64, nsecs);
1407
	*ts = ts64;
1408
}
1409 1410
EXPORT_SYMBOL(getrawmonotonic64);

1411

1412
/**
1413
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1414
 */
1415
int timekeeping_valid_for_hres(void)
1416
{
1417
	struct timekeeper *tk = &tk_core.timekeeper;
1418 1419 1420 1421
	unsigned long seq;
	int ret;

	do {
1422
		seq = read_seqcount_begin(&tk_core.seq);
1423

1424
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1425

1426
	} while (read_seqcount_retry(&tk_core.seq, seq));
1427 1428 1429 1430

	return ret;
}

1431 1432 1433 1434 1435
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1436
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1437 1438
	unsigned long seq;
	u64 ret;
1439

J
John Stultz 已提交
1440
	do {
1441
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1442

1443
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1444

1445
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1446 1447

	return ret;
1448 1449
}

1450
/**
1451
 * read_persistent_clock -  Return time from the persistent clock.
1452 1453
 *
 * Weak dummy function for arches that do not yet support it.
1454 1455
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1456 1457 1458
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1459
void __weak read_persistent_clock(struct timespec *ts)
1460
{
1461 1462
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1463 1464
}

1465 1466 1467 1468 1469 1470 1471 1472
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1473
/**
X
Xunlei Pang 已提交
1474
 * read_boot_clock64 -  Return time of the system start.
1475 1476 1477
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1478
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1479 1480 1481
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1482
void __weak read_boot_clock64(struct timespec64 *ts)
1483 1484 1485 1486 1487
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1488 1489 1490 1491 1492 1493
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1494 1495 1496 1497 1498
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1499
	struct timekeeper *tk = &tk_core.timekeeper;
1500
	struct clocksource *clock;
1501
	unsigned long flags;
1502
	struct timespec64 now, boot, tmp;
1503

1504
	read_persistent_clock64(&now);
1505
	if (!timespec64_valid_strict(&now)) {
1506 1507 1508 1509
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1510
	} else if (now.tv_sec || now.tv_nsec)
1511
		persistent_clock_exists = true;
1512

1513
	read_boot_clock64(&boot);
1514
	if (!timespec64_valid_strict(&boot)) {
1515 1516 1517 1518 1519
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1520

1521
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1522
	write_seqcount_begin(&tk_core.seq);
1523 1524
	ntp_init();

1525
	clock = clocksource_default_clock();
1526 1527
	if (clock->enable)
		clock->enable(clock);
1528
	tk_setup_internals(tk, clock);
1529

1530 1531 1532
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1533
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1534
		boot = tk_xtime(tk);
1535

1536
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1537
	tk_set_wall_to_mono(tk, tmp);
1538

1539
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1540

1541
	write_seqcount_end(&tk_core.seq);
1542
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1543 1544
}

1545
/* time in seconds when suspend began for persistent clock */
1546
static struct timespec64 timekeeping_suspend_time;
1547

1548 1549 1550 1551 1552 1553 1554
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1555
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1556
					   struct timespec64 *delta)
1557
{
1558
	if (!timespec64_valid_strict(delta)) {
1559 1560 1561
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1562 1563
		return;
	}
1564
	tk_xtime_add(tk, delta);
1565
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1566
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1567
	tk_debug_account_sleep_time(delta);
1568 1569
}

1570
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1606
/**
1607 1608
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1609
 *
1610
 * This hook is for architectures that cannot support read_persistent_clock64
1611
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1612
 * and also don't have an effective nonstop clocksource.
1613 1614 1615 1616
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1617
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1618
{
1619
	struct timekeeper *tk = &tk_core.timekeeper;
1620
	unsigned long flags;
1621

1622
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1623
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1624

1625
	timekeeping_forward_now(tk);
1626

1627
	__timekeeping_inject_sleeptime(tk, delta);
1628

1629
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1630

1631
	write_seqcount_end(&tk_core.seq);
1632
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1633 1634 1635 1636

	/* signal hrtimers about time change */
	clock_was_set();
}
1637
#endif
1638

1639 1640 1641
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1642
void timekeeping_resume(void)
1643
{
1644
	struct timekeeper *tk = &tk_core.timekeeper;
1645
	struct clocksource *clock = tk->tkr_mono.clock;
1646
	unsigned long flags;
1647
	struct timespec64 ts_new, ts_delta;
1648
	cycle_t cycle_now, cycle_delta;
1649

1650
	sleeptime_injected = false;
1651
	read_persistent_clock64(&ts_new);
1652

1653
	clockevents_resume();
1654 1655
	clocksource_resume();

1656
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1657
	write_seqcount_begin(&tk_core.seq);
1658

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1671
	cycle_now = tk->tkr_mono.read(clock);
1672
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1673
		cycle_now > tk->tkr_mono.cycle_last) {
1674 1675 1676 1677 1678
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1679 1680
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1695
		ts_delta = ns_to_timespec64(nsec);
1696
		sleeptime_injected = true;
1697 1698
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1699
		sleeptime_injected = true;
1700
	}
1701

1702
	if (sleeptime_injected)
1703 1704 1705
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1706
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1707 1708
	tk->tkr_raw.cycle_last  = cycle_now;

1709
	tk->ntp_error = 0;
1710
	timekeeping_suspended = 0;
1711
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1712
	write_seqcount_end(&tk_core.seq);
1713
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1714 1715 1716

	touch_softlockup_watchdog();

1717
	tick_resume();
1718
	hrtimers_resume();
1719 1720
}

1721
int timekeeping_suspend(void)
1722
{
1723
	struct timekeeper *tk = &tk_core.timekeeper;
1724
	unsigned long flags;
1725 1726
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1727

1728
	read_persistent_clock64(&timekeeping_suspend_time);
1729

1730 1731 1732 1733 1734 1735
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1736
		persistent_clock_exists = true;
1737

1738
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1739
	write_seqcount_begin(&tk_core.seq);
1740
	timekeeping_forward_now(tk);
1741
	timekeeping_suspended = 1;
1742

1743
	if (persistent_clock_exists) {
1744
		/*
1745 1746 1747 1748
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1749
		 */
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1763
	}
1764 1765

	timekeeping_update(tk, TK_MIRROR);
1766
	halt_fast_timekeeper(tk);
1767
	write_seqcount_end(&tk_core.seq);
1768
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1769

1770
	tick_suspend();
M
Magnus Damm 已提交
1771
	clocksource_suspend();
1772
	clockevents_suspend();
1773 1774 1775 1776 1777

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1778
static struct syscore_ops timekeeping_syscore_ops = {
1779 1780 1781 1782
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1783
static int __init timekeeping_init_ops(void)
1784
{
1785 1786
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1787
}
1788
device_initcall(timekeeping_init_ops);
1789 1790

/*
1791
 * Apply a multiplier adjustment to the timekeeper
1792
 */
1793 1794 1795 1796
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1797
{
1798 1799
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1800

1801 1802 1803 1804
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1805
	}
1806 1807 1808
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1809

1810 1811 1812
	/*
	 * So the following can be confusing.
	 *
1813
	 * To keep things simple, lets assume mult_adj == 1 for now.
1814
	 *
1815
	 * When mult_adj != 1, remember that the interval and offset values
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1859
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1860 1861 1862 1863 1864
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1865
	tk->tkr_mono.mult += mult_adj;
1866
	tk->xtime_interval += interval;
1867
	tk->tkr_mono.xtime_nsec -= offset;
1868
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1880 1881 1882
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1883 1884
	s64 tick_error;
	bool negative;
1885
	u32 adj_scale;
1886 1887 1888 1889 1890

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1891 1892
	tk->ntp_tick = ntp_tick_length();

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1915
	tick_error = abs(tick_error);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1926
		tick_error >>= 1;
1927
	}
1928 1929

	/* scale the corrections */
1930
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1952 1953 1954
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1955 1956
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1957 1958
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1959
	}
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1975 1976 1977
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1978
		tk->ntp_error += neg << tk->ntp_error_shift;
1979
	}
1980 1981
}

1982 1983 1984
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1985
 * Helper function that accumulates the nsecs greater than a second
1986 1987 1988 1989
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1990
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1991
{
1992
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1993
	unsigned int clock_set = 0;
1994

1995
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1996 1997
		int leap;

1998
		tk->tkr_mono.xtime_nsec -= nsecps;
1999 2000 2001 2002
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
2003
		if (unlikely(leap)) {
2004
			struct timespec64 ts;
2005 2006

			tk->xtime_sec += leap;
2007

2008 2009 2010
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
2011
				timespec64_sub(tk->wall_to_monotonic, ts));
2012

2013 2014
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

2015
			clock_set = TK_CLOCK_WAS_SET;
2016
		}
2017
	}
2018
	return clock_set;
2019 2020
}

2021 2022 2023 2024 2025 2026 2027 2028 2029
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
2030
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
2031 2032
						u32 shift,
						unsigned int *clock_set)
2033
{
T
Thomas Gleixner 已提交
2034
	cycle_t interval = tk->cycle_interval << shift;
2035
	u64 raw_nsecs;
2036

Z
Zhen Lei 已提交
2037
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2038
	if (offset < interval)
2039 2040 2041
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2042
	offset -= interval;
2043
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2044
	tk->tkr_raw.cycle_last  += interval;
2045

2046
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2047
	*clock_set |= accumulate_nsecs_to_secs(tk);
2048

2049
	/* Accumulate raw time */
2050
	raw_nsecs = (u64)tk->raw_interval << shift;
2051
	raw_nsecs += tk->raw_time.tv_nsec;
2052 2053 2054
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2055
		tk->raw_time.tv_sec += raw_secs;
2056
	}
2057
	tk->raw_time.tv_nsec = raw_nsecs;
2058 2059

	/* Accumulate error between NTP and clock interval */
2060
	tk->ntp_error += tk->ntp_tick << shift;
2061 2062
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2063 2064 2065 2066

	return offset;
}

2067 2068 2069 2070
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2071
void update_wall_time(void)
2072
{
2073
	struct timekeeper *real_tk = &tk_core.timekeeper;
2074
	struct timekeeper *tk = &shadow_timekeeper;
2075
	cycle_t offset;
2076
	int shift = 0, maxshift;
2077
	unsigned int clock_set = 0;
J
John Stultz 已提交
2078 2079
	unsigned long flags;

2080
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2081 2082 2083

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2084
		goto out;
2085

J
John Stultz 已提交
2086
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2087
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2088
#else
2089 2090
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2091 2092
#endif

2093
	/* Check if there's really nothing to do */
2094
	if (offset < real_tk->cycle_interval)
2095 2096
		goto out;

2097 2098 2099
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

2100 2101 2102 2103
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2104
	 * that is smaller than the offset.  We then accumulate that
2105 2106
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2107
	 */
2108
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2109
	shift = max(0, shift);
2110
	/* Bound shift to one less than what overflows tick_length */
2111
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2112
	shift = min(shift, maxshift);
2113
	while (offset >= tk->cycle_interval) {
2114 2115
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2116
		if (offset < tk->cycle_interval<<shift)
2117
			shift--;
2118 2119 2120
	}

	/* correct the clock when NTP error is too big */
2121
	timekeeping_adjust(tk, offset);
2122

J
John Stultz 已提交
2123
	/*
2124 2125 2126 2127
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
2128

J
John Stultz 已提交
2129 2130
	/*
	 * Finally, make sure that after the rounding
2131
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2132
	 */
2133
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2134

2135
	write_seqcount_begin(&tk_core.seq);
2136 2137 2138 2139 2140 2141 2142
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2143
	 * memcpy under the tk_core.seq against one before we start
2144 2145
	 * updating.
	 */
2146
	timekeeping_update(tk, clock_set);
2147
	memcpy(real_tk, tk, sizeof(*tk));
2148
	/* The memcpy must come last. Do not put anything here! */
2149
	write_seqcount_end(&tk_core.seq);
2150
out:
2151
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2152
	if (clock_set)
2153 2154
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2155
}
T
Tomas Janousek 已提交
2156 2157

/**
2158 2159
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2160
 *
2161
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2162 2163 2164 2165 2166 2167
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2168
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2169
{
2170
	struct timekeeper *tk = &tk_core.timekeeper;
2171 2172
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

2173
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2174
}
2175
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2176

2177 2178
unsigned long get_seconds(void)
{
2179
	struct timekeeper *tk = &tk_core.timekeeper;
2180 2181

	return tk->xtime_sec;
2182 2183 2184
}
EXPORT_SYMBOL(get_seconds);

2185 2186
struct timespec __current_kernel_time(void)
{
2187
	struct timekeeper *tk = &tk_core.timekeeper;
2188

2189
	return timespec64_to_timespec(tk_xtime(tk));
2190
}
2191

2192
struct timespec64 current_kernel_time64(void)
2193
{
2194
	struct timekeeper *tk = &tk_core.timekeeper;
2195
	struct timespec64 now;
2196 2197 2198
	unsigned long seq;

	do {
2199
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2200

2201
		now = tk_xtime(tk);
2202
	} while (read_seqcount_retry(&tk_core.seq, seq));
2203

2204
	return now;
2205
}
2206
EXPORT_SYMBOL(current_kernel_time64);
2207

2208
struct timespec64 get_monotonic_coarse64(void)
2209
{
2210
	struct timekeeper *tk = &tk_core.timekeeper;
2211
	struct timespec64 now, mono;
2212 2213 2214
	unsigned long seq;

	do {
2215
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2216

2217 2218
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2219
	} while (read_seqcount_retry(&tk_core.seq, seq));
2220

2221
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2222
				now.tv_nsec + mono.tv_nsec);
2223

2224
	return now;
2225
}
2226
EXPORT_SYMBOL(get_monotonic_coarse64);
2227 2228

/*
2229
 * Must hold jiffies_lock
2230 2231 2232 2233 2234 2235
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2236

2237
/**
2238
 * ktime_get_update_offsets_now - hrtimer helper
2239
 * @cwsseq:	pointer to check and store the clock was set sequence number
2240 2241
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2242
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2243
 *
2244 2245 2246 2247
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2248
 * Called from hrtimer_interrupt() or retrigger_next_event()
2249
 */
2250 2251
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2252
{
2253
	struct timekeeper *tk = &tk_core.timekeeper;
2254
	unsigned int seq;
2255 2256
	ktime_t base;
	u64 nsecs;
2257 2258

	do {
2259
		seq = read_seqcount_begin(&tk_core.seq);
2260

2261 2262
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2263 2264
		base = ktime_add_ns(base, nsecs);

2265 2266 2267 2268 2269 2270
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2271 2272 2273 2274 2275

		/* Handle leapsecond insertion adjustments */
		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2276
	} while (read_seqcount_retry(&tk_core.seq, seq));
2277

2278
	return base;
2279 2280
}

2281 2282 2283 2284 2285
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2286
	struct timekeeper *tk = &tk_core.timekeeper;
2287
	unsigned long flags;
2288
	struct timespec64 ts;
2289
	s32 orig_tai, tai;
2290 2291 2292 2293 2294 2295 2296
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2308
	getnstimeofday64(&ts);
2309

2310
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2311
	write_seqcount_begin(&tk_core.seq);
2312

2313
	orig_tai = tai = tk->tai_offset;
2314
	ret = __do_adjtimex(txc, &ts, &tai);
2315

2316 2317
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2318
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2319
	}
2320 2321
	tk_update_leap_state(tk);

2322
	write_seqcount_end(&tk_core.seq);
2323 2324
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2325 2326 2327
	if (tai != orig_tai)
		clock_was_set();

2328 2329
	ntp_notify_cmos_timer();

2330 2331
	return ret;
}
2332 2333 2334 2335 2336

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2337
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2338
{
2339 2340 2341
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2342
	write_seqcount_begin(&tk_core.seq);
2343

2344
	__hardpps(phase_ts, raw_ts);
2345

2346
	write_seqcount_end(&tk_core.seq);
2347
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2348 2349 2350 2351
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2352 2353 2354 2355 2356 2357 2358 2359
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2360
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2361
	do_timer(ticks);
2362
	write_sequnlock(&jiffies_lock);
2363
	update_wall_time();
T
Torben Hohn 已提交
2364
}