timekeeping.c 35.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* NTP adjusted clock multiplier */
	u32	mult;
30 31
	/* The shift value of the current clocksource. */
	int	shift;
32 33 34 35 36

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
37 38
	/* shifted nano seconds left over when rounding cycle_interval */
	s64	xtime_remainder;
39 40 41 42 43 44 45 46
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
47 48 49
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
50

51 52
	/* The current time */
	struct timespec xtime;
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
	/*
	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
	 * at zero at system boot time, so wall_to_monotonic will be negative,
	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
	 * the usual normalization.
	 *
	 * wall_to_monotonic is moved after resume from suspend for the
	 * monotonic time not to jump. We need to add total_sleep_time to
	 * wall_to_monotonic to get the real boot based time offset.
	 *
	 * - wall_to_monotonic is no longer the boot time, getboottime must be
	 * used instead.
	 */
	struct timespec wall_to_monotonic;
68 69
	/* time spent in suspend */
	struct timespec total_sleep_time;
70 71
	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
	struct timespec raw_time;
J
John Stultz 已提交
72

73 74 75 76 77 78
	/* Offset clock monotonic -> clock realtime */
	ktime_t offs_real;

	/* Offset clock monotonic -> clock boottime */
	ktime_t offs_boot;

J
John Stultz 已提交
79 80
	/* Seqlock for all timekeeper values */
	seqlock_t lock;
81 82
};

83
static struct timekeeper timekeeper;
84

85 86 87 88 89 90 91 92 93 94 95 96
/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime.
 */
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);


/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;



97 98 99 100 101 102 103 104 105 106 107 108 109
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
110
	u64 tmp, ntpinterval;
111 112 113 114 115 116 117

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
118
	ntpinterval = tmp;
119 120
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
121 122 123 124 125 126 127 128
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
129
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
130
	timekeeper.raw_interval =
131
		((u64) interval * clock->mult) >> clock->shift;
132 133

	timekeeper.xtime_nsec = 0;
134
	timekeeper.shift = clock->shift;
135 136

	timekeeper.ntp_error = 0;
137
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
138 139 140 141 142 143 144

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
145
}
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

177
	/* return delta convert to nanoseconds. */
178 179 180
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

181 182 183 184 185 186 187 188
static void update_rt_offset(void)
{
	struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic;

	set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
	timekeeper.offs_real = timespec_to_ktime(tmp);
}

189 190 191 192 193 194 195
/* must hold write on timekeeper.lock */
static void timekeeping_update(bool clearntp)
{
	if (clearntp) {
		timekeeper.ntp_error = 0;
		ntp_clear();
	}
196
	update_rt_offset();
197 198 199 200 201
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			 timekeeper.clock, timekeeper.mult);
}


202
/**
203
 * timekeeping_forward_now - update clock to the current time
204
 *
205 206 207
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
208
 */
209
static void timekeeping_forward_now(void)
210 211
{
	cycle_t cycle_now, cycle_delta;
212
	struct clocksource *clock;
213
	s64 nsec;
214

215
	clock = timekeeper.clock;
216
	cycle_now = clock->read(clock);
217
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
218
	clock->cycle_last = cycle_now;
219

220 221
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
222 223 224 225

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

226
	timespec_add_ns(&timekeeper.xtime, nsec);
227

228
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
229
	timespec_add_ns(&timekeeper.raw_time, nsec);
230 231 232
}

/**
233
 * getnstimeofday - Returns the time of day in a timespec
234 235
 * @ts:		pointer to the timespec to be set
 *
236
 * Returns the time of day in a timespec.
237
 */
238
void getnstimeofday(struct timespec *ts)
239 240 241 242
{
	unsigned long seq;
	s64 nsecs;

243 244
	WARN_ON(timekeeping_suspended);

245
	do {
J
John Stultz 已提交
246
		seq = read_seqbegin(&timekeeper.lock);
247

248
		*ts = timekeeper.xtime;
249
		nsecs = timekeeping_get_ns();
250

251 252 253
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

J
John Stultz 已提交
254
	} while (read_seqretry(&timekeeper.lock, seq));
255 256 257 258 259

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getnstimeofday);

260 261 262 263 264 265 266 267
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
268
		seq = read_seqbegin(&timekeeper.lock);
269 270 271 272
		secs = timekeeper.xtime.tv_sec +
				timekeeper.wall_to_monotonic.tv_sec;
		nsecs = timekeeper.xtime.tv_nsec +
				timekeeper.wall_to_monotonic.tv_nsec;
273
		nsecs += timekeeping_get_ns();
274 275
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
276

J
John Stultz 已提交
277
	} while (read_seqretry(&timekeeper.lock, seq));
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
303
		seq = read_seqbegin(&timekeeper.lock);
304
		*ts = timekeeper.xtime;
305
		tomono = timekeeper.wall_to_monotonic;
306
		nsecs = timekeeping_get_ns();
307 308
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
309

J
John Stultz 已提交
310
	} while (read_seqretry(&timekeeper.lock, seq));
311 312 313 314 315 316

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
		u32 arch_offset;

J
John Stultz 已提交
338
		seq = read_seqbegin(&timekeeper.lock);
339

340
		*ts_raw = timekeeper.raw_time;
341
		*ts_real = timekeeper.xtime;
342 343 344 345 346 347 348 349 350

		nsecs_raw = timekeeping_get_ns_raw();
		nsecs_real = timekeeping_get_ns();

		/* If arch requires, add in gettimeoffset() */
		arch_offset = arch_gettimeoffset();
		nsecs_raw += arch_offset;
		nsecs_real += arch_offset;

J
John Stultz 已提交
351
	} while (read_seqretry(&timekeeper.lock, seq));
352 353 354 355 356 357 358 359

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

360 361 362 363
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
364
 * NOTE: Users should be converted to using getnstimeofday()
365 366 367 368 369
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

370
	getnstimeofday(&now);
371 372 373 374
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
375

376 377 378 379 380 381
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
382
int do_settimeofday(const struct timespec *tv)
383
{
384
	struct timespec ts_delta;
385
	unsigned long flags;
386 387 388 389

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

390
	write_seqlock_irqsave(&timekeeper.lock, flags);
391

392
	timekeeping_forward_now();
393

394 395
	ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
396 397
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
398

399
	timekeeper.xtime = *tv;
400
	timekeeping_update(true);
401

402
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
403 404 405 406 407 408 409 410

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

411 412 413 414 415 416 417 418 419

/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
420
	unsigned long flags;
421 422 423 424

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

425
	write_seqlock_irqsave(&timekeeper.lock, flags);
426 427 428

	timekeeping_forward_now();

429
	timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
430 431
	timekeeper.wall_to_monotonic =
				timespec_sub(timekeeper.wall_to_monotonic, *ts);
432

433
	timekeeping_update(true);
434

435
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
436 437 438 439 440 441 442 443

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(timekeeping_inject_offset);

444 445 446 447 448
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
449
static int change_clocksource(void *data)
450
{
451
	struct clocksource *new, *old;
452
	unsigned long flags;
453

454
	new = (struct clocksource *) data;
455

456 457
	write_seqlock_irqsave(&timekeeper.lock, flags);

458
	timekeeping_forward_now();
459 460 461 462 463 464
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
465 466 467 468
	timekeeping_update(true);

	write_sequnlock_irqrestore(&timekeeper.lock, flags);

469 470
	return 0;
}
471

472 473 474 475 476 477 478 479 480 481
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
482
		return;
483
	stop_machine(change_clocksource, clock, NULL);
484 485
	tick_clock_notify();
}
486

487 488 489 490 491 492 493 494 495 496 497 498 499 500
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
501

502 503 504 505 506 507 508 509 510 511 512 513
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
J
John Stultz 已提交
514
		seq = read_seqbegin(&timekeeper.lock);
515
		nsecs = timekeeping_get_ns_raw();
516
		*ts = timekeeper.raw_time;
517

J
John Stultz 已提交
518
	} while (read_seqretry(&timekeeper.lock, seq));
519 520 521 522 523 524

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


525
/**
526
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
527
 */
528
int timekeeping_valid_for_hres(void)
529 530 531 532 533
{
	unsigned long seq;
	int ret;

	do {
J
John Stultz 已提交
534
		seq = read_seqbegin(&timekeeper.lock);
535

536
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
537

J
John Stultz 已提交
538
	} while (read_seqretry(&timekeeper.lock, seq));
539 540 541 542

	return ret;
}

543 544 545 546 547
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
J
John Stultz 已提交
548 549 550 551 552 553 554 555 556 557
	unsigned long seq;
	u64 ret;
	do {
		seq = read_seqbegin(&timekeeper.lock);

		ret = timekeeper.clock->max_idle_ns;

	} while (read_seqretry(&timekeeper.lock, seq));

	return ret;
558 559
}

560
/**
561
 * read_persistent_clock -  Return time from the persistent clock.
562 563
 *
 * Weak dummy function for arches that do not yet support it.
564 565
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
566 567 568
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
569
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
570
{
571 572
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
573 574
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

590 591 592 593 594
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
595
	struct clocksource *clock;
596
	unsigned long flags;
597
	struct timespec now, boot;
598 599

	read_persistent_clock(&now);
600
	read_boot_clock(&boot);
601

J
John Stultz 已提交
602
	seqlock_init(&timekeeper.lock);
603

R
Roman Zippel 已提交
604
	ntp_init();
605

J
John Stultz 已提交
606
	write_seqlock_irqsave(&timekeeper.lock, flags);
607
	clock = clocksource_default_clock();
608 609
	if (clock->enable)
		clock->enable(clock);
610
	timekeeper_setup_internals(clock);
611

612 613
	timekeeper.xtime.tv_sec = now.tv_sec;
	timekeeper.xtime.tv_nsec = now.tv_nsec;
614 615
	timekeeper.raw_time.tv_sec = 0;
	timekeeper.raw_time.tv_nsec = 0;
616
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
617 618
		boot.tv_sec = timekeeper.xtime.tv_sec;
		boot.tv_nsec = timekeeper.xtime.tv_nsec;
619
	}
620
	set_normalized_timespec(&timekeeper.wall_to_monotonic,
621
				-boot.tv_sec, -boot.tv_nsec);
622
	update_rt_offset();
623 624
	timekeeper.total_sleep_time.tv_sec = 0;
	timekeeper.total_sleep_time.tv_nsec = 0;
J
John Stultz 已提交
625
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
626 627 628
}

/* time in seconds when suspend began */
629
static struct timespec timekeeping_suspend_time;
630

631 632 633 634 635 636
static void update_sleep_time(struct timespec t)
{
	timekeeper.total_sleep_time = t;
	timekeeper.offs_boot = timespec_to_ktime(t);
}

637 638 639 640 641 642 643 644 645
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
static void __timekeeping_inject_sleeptime(struct timespec *delta)
{
646
	if (!timespec_valid(delta)) {
647
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
648 649 650 651
					"sleep delta value!\n");
		return;
	}

652
	timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
653 654
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, *delta);
655
	update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta));
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
}


/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
671
	unsigned long flags;
672 673 674 675 676 677 678
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

679
	write_seqlock_irqsave(&timekeeper.lock, flags);
J
John Stultz 已提交
680

681 682 683 684
	timekeeping_forward_now();

	__timekeeping_inject_sleeptime(delta);

685
	timekeeping_update(true);
686

687
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
688 689 690 691 692 693

	/* signal hrtimers about time change */
	clock_was_set();
}


694 695 696 697 698 699 700
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
701
static void timekeeping_resume(void)
702
{
703
	unsigned long flags;
704 705 706
	struct timespec ts;

	read_persistent_clock(&ts);
707

708 709
	clocksource_resume();

710
	write_seqlock_irqsave(&timekeeper.lock, flags);
711

712 713
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
714
		__timekeeping_inject_sleeptime(&ts);
715 716
	}
	/* re-base the last cycle value */
717 718
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
719
	timekeeping_suspended = 0;
720
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
721 722 723 724 725 726

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
727
	hrtimers_resume();
728 729
}

730
static int timekeeping_suspend(void)
731
{
732
	unsigned long flags;
733 734
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
735

736
	read_persistent_clock(&timekeeping_suspend_time);
737

738
	write_seqlock_irqsave(&timekeeper.lock, flags);
739
	timekeeping_forward_now();
740
	timekeeping_suspended = 1;
741 742 743 744 745 746 747

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
748
	delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
749 750 751 752 753 754 755 756 757 758 759 760
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
761
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
762 763

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
764
	clocksource_suspend();
765 766 767 768 769

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
770
static struct syscore_ops timekeeping_syscore_ops = {
771 772 773 774
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

775
static int __init timekeeping_init_ops(void)
776
{
777 778
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
779 780
}

781
device_initcall(timekeeping_init_ops);
782 783 784 785 786

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
787
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
788 789 790 791 792 793 794 795 796 797 798 799
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
800
	 * here.  This is tuned so that an error of about 1 msec is adjusted
801 802
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
803
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
804 805 806 807 808 809 810 811
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
812
	tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
813
	tick_error -= timekeeper.xtime_interval >> 1;
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
838
static void timekeeping_adjust(s64 offset)
839
{
840
	s64 error, interval = timekeeper.cycle_interval;
841 842
	int adj;

843
	/*
844
	 * The point of this is to check if the error is greater than half
845 846 847 848 849
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
850 851
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
852
	 * larger than half an interval.
853
	 *
854
	 * Note: It does not "save" on aggravation when reading the code.
855
	 */
856
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
857
	if (error > interval) {
858 859
		/*
		 * We now divide error by 4(via shift), which checks if
860
		 * the error is greater than twice the interval.
861 862 863
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
864
		error >>= 2;
865 866 867 868 869
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
870
		 * The proper fix is to avoid rounding up by using
871 872 873 874
		 * the high precision timekeeper.xtime_nsec instead of
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
875 876 877
		if (likely(error <= interval))
			adj = 1;
		else
878
			adj = timekeeping_bigadjust(error, &interval, &offset);
879
	} else if (error < -interval) {
880
		/* See comment above, this is just switched for the negative */
881 882 883 884 885 886
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
887
			adj = timekeeping_bigadjust(error, &interval, &offset);
888
	} else /* No adjustment needed */
889 890
		return;

891 892 893 894 895
	if (unlikely(timekeeper.clock->maxadj &&
			(timekeeper.mult + adj >
			timekeeper.clock->mult + timekeeper.clock->maxadj))) {
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
896 897 898
			timekeeper.clock->name, (long)timekeeper.mult + adj,
			(long)timekeeper.clock->mult +
				timekeeper.clock->maxadj);
899
	}
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
949
	timekeeper.mult += adj;
950 951 952
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
953
				timekeeper.ntp_error_shift;
954 955
}

L
Linus Torvalds 已提交
956

957 958 959 960 961 962 963 964 965 966 967 968
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
969
	u64 raw_nsecs;
970

971
	/* If the offset is smaller than a shifted interval, do nothing */
972 973 974 975 976 977 978 979 980
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
981
		int leap;
982
		timekeeper.xtime_nsec -= nsecps;
983
		timekeeper.xtime.tv_sec++;
984 985
		leap = second_overflow(timekeeper.xtime.tv_sec);
		timekeeper.xtime.tv_sec += leap;
986
		timekeeper.wall_to_monotonic.tv_sec -= leap;
987 988
		if (leap)
			clock_was_set_delayed();
989 990
	}

991 992
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
993
	raw_nsecs += timekeeper.raw_time.tv_nsec;
994 995 996
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
997
		timekeeper.raw_time.tv_sec += raw_secs;
998
	}
999
	timekeeper.raw_time.tv_nsec = raw_nsecs;
1000 1001

	/* Accumulate error between NTP and clock interval */
1002
	timekeeper.ntp_error += ntp_tick_length() << shift;
1003 1004
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
1005 1006 1007 1008 1009
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
1010

1011 1012 1013 1014
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1015
static void update_wall_time(void)
1016
{
1017
	struct clocksource *clock;
1018
	cycle_t offset;
1019
	int shift = 0, maxshift;
J
John Stultz 已提交
1020 1021 1022
	unsigned long flags;

	write_seqlock_irqsave(&timekeeper.lock, flags);
1023 1024 1025

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1026
		goto out;
1027

1028
	clock = timekeeper.clock;
J
John Stultz 已提交
1029 1030

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1031
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
1032 1033
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1034
#endif
1035 1036
	timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
						timekeeper.shift;
1037

1038 1039 1040 1041
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1042
	 * that is smaller than the offset.  We then accumulate that
1043 1044
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1045
	 */
1046 1047
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
1048
	/* Bound shift to one less than what overflows tick_length */
1049
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1050
	shift = min(shift, maxshift);
1051
	while (offset >= timekeeper.cycle_interval) {
1052
		offset = logarithmic_accumulation(offset, shift);
1053 1054
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
1055 1056 1057
	}

	/* correct the clock when NTP error is too big */
1058
	timekeeping_adjust(offset);
1059

1060 1061 1062 1063
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
1064
	 * slightly speeding the clocksource up in timekeeping_adjust(),
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1076 1077 1078
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
1079
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1080 1081
	}

J
John Stultz 已提交
1082 1083 1084

	/*
	 * Store full nanoseconds into xtime after rounding it up and
1085 1086
	 * add the remainder to the error difference.
	 */
1087 1088 1089 1090
	timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
						timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
						timekeeper.shift;
1091 1092
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
1093

J
John Stultz 已提交
1094 1095
	/*
	 * Finally, make sure that after the rounding
1096
	 * xtime.tv_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1097
	 */
1098
	if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1099
		int leap;
1100 1101
		timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
		timekeeper.xtime.tv_sec++;
1102 1103
		leap = second_overflow(timekeeper.xtime.tv_sec);
		timekeeper.xtime.tv_sec += leap;
1104
		timekeeper.wall_to_monotonic.tv_sec -= leap;
1105 1106
		if (leap)
			clock_was_set_delayed();
J
John Stultz 已提交
1107
	}
L
Linus Torvalds 已提交
1108

1109
	timekeeping_update(false);
J
John Stultz 已提交
1110 1111 1112 1113

out:
	write_sequnlock_irqrestore(&timekeeper.lock, flags);

1114
}
T
Tomas Janousek 已提交
1115 1116 1117 1118 1119

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1120
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1121 1122 1123 1124 1125 1126 1127 1128
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1129
	struct timespec boottime = {
1130
		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1131
				timekeeper.total_sleep_time.tv_sec,
1132
		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1133
				timekeeper.total_sleep_time.tv_nsec
1134
	};
1135 1136

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1137
}
1138
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
	struct timespec tomono, sleep;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
1159
		seq = read_seqbegin(&timekeeper.lock);
1160
		*ts = timekeeper.xtime;
1161
		tomono = timekeeper.wall_to_monotonic;
1162
		sleep = timekeeper.total_sleep_time;
1163 1164
		nsecs = timekeeping_get_ns();

J
John Stultz 已提交
1165
	} while (read_seqretry(&timekeeper.lock, seq));
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1189 1190 1191 1192 1193 1194
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1195
	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
T
Tomas Janousek 已提交
1196
}
1197
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1198

1199 1200
unsigned long get_seconds(void)
{
1201
	return timekeeper.xtime.tv_sec;
1202 1203 1204
}
EXPORT_SYMBOL(get_seconds);

1205 1206
struct timespec __current_kernel_time(void)
{
1207
	return timekeeper.xtime;
1208
}
1209

1210 1211 1212 1213 1214 1215
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
J
John Stultz 已提交
1216
		seq = read_seqbegin(&timekeeper.lock);
L
Linus Torvalds 已提交
1217

1218
		now = timekeeper.xtime;
J
John Stultz 已提交
1219
	} while (read_seqretry(&timekeeper.lock, seq));
1220 1221 1222 1223

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1224 1225 1226 1227 1228 1229 1230

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
J
John Stultz 已提交
1231
		seq = read_seqbegin(&timekeeper.lock);
L
Linus Torvalds 已提交
1232

1233
		now = timekeeper.xtime;
1234
		mono = timekeeper.wall_to_monotonic;
J
John Stultz 已提交
1235
	} while (read_seqretry(&timekeeper.lock, seq));
1236 1237 1238 1239 1240

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1253 1254

/**
1255 1256
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1257 1258
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1259
 * @sleep:	pointer to timespec to be set with time in suspend
1260
 */
1261 1262
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1263 1264 1265 1266
{
	unsigned long seq;

	do {
J
John Stultz 已提交
1267
		seq = read_seqbegin(&timekeeper.lock);
1268
		*xtim = timekeeper.xtime;
1269
		*wtom = timekeeper.wall_to_monotonic;
1270
		*sleep = timekeeper.total_sleep_time;
J
John Stultz 已提交
1271
	} while (read_seqretry(&timekeeper.lock, seq));
1272
}
T
Torben Hohn 已提交
1273

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
{
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
		seq = read_seqbegin(&timekeeper.lock);

		secs = timekeeper.xtime.tv_sec;
		nsecs = timekeeper.xtime.tv_nsec;
		nsecs += timekeeping_get_ns();
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

		*offs_real = timekeeper.offs_real;
		*offs_boot = timekeeper.offs_boot;
	} while (read_seqretry(&timekeeper.lock, seq));

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1308 1309 1310 1311 1312 1313 1314 1315 1316
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
	unsigned long seq;
	struct timespec wtom;

	do {
J
John Stultz 已提交
1317
		seq = read_seqbegin(&timekeeper.lock);
1318
		wtom = timekeeper.wall_to_monotonic;
J
John Stultz 已提交
1319 1320
	} while (read_seqretry(&timekeeper.lock, seq));

1321 1322
	return timespec_to_ktime(wtom);
}
1323 1324
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

1325

T
Torben Hohn 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}