timekeeping.c 33.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* NTP adjusted clock multiplier */
	u32	mult;
30 31
	/* The shift value of the current clocksource. */
	int	shift;
32 33 34 35 36

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
37 38
	/* shifted nano seconds left over when rounding cycle_interval */
	s64	xtime_remainder;
39 40 41 42 43 44 45 46
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
47 48 49
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
50

51 52
	/* The current time */
	struct timespec xtime;
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
	/*
	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
	 * at zero at system boot time, so wall_to_monotonic will be negative,
	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
	 * the usual normalization.
	 *
	 * wall_to_monotonic is moved after resume from suspend for the
	 * monotonic time not to jump. We need to add total_sleep_time to
	 * wall_to_monotonic to get the real boot based time offset.
	 *
	 * - wall_to_monotonic is no longer the boot time, getboottime must be
	 * used instead.
	 */
	struct timespec wall_to_monotonic;
68 69
	/* time spent in suspend */
	struct timespec total_sleep_time;
70 71
	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
	struct timespec raw_time;
J
John Stultz 已提交
72 73 74

	/* Seqlock for all timekeeper values */
	seqlock_t lock;
75 76
};

77
static struct timekeeper timekeeper;
78

79 80 81 82 83 84 85 86 87 88 89 90
/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime.
 */
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);


/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;



91 92 93 94 95 96 97 98 99 100 101 102 103
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
104
	u64 tmp, ntpinterval;
105 106 107 108 109 110 111

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
112
	ntpinterval = tmp;
113 114
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
115 116 117 118 119 120 121 122
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
123
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
124
	timekeeper.raw_interval =
125
		((u64) interval * clock->mult) >> clock->shift;
126 127

	timekeeper.xtime_nsec = 0;
128
	timekeeper.shift = clock->shift;
129 130

	timekeeper.ntp_error = 0;
131
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
132 133 134 135 136 137 138

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
139
}
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

171
	/* return delta convert to nanoseconds. */
172 173 174
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

175 176 177 178 179 180 181 182 183 184 185 186
/* must hold write on timekeeper.lock */
static void timekeeping_update(bool clearntp)
{
	if (clearntp) {
		timekeeper.ntp_error = 0;
		ntp_clear();
	}
	update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
			 timekeeper.clock, timekeeper.mult);
}


187
/**
188
 * timekeeping_forward_now - update clock to the current time
189
 *
190 191 192
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
193
 */
194
static void timekeeping_forward_now(void)
195 196
{
	cycle_t cycle_now, cycle_delta;
197
	struct clocksource *clock;
198
	s64 nsec;
199

200
	clock = timekeeper.clock;
201
	cycle_now = clock->read(clock);
202
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
203
	clock->cycle_last = cycle_now;
204

205 206
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
207 208 209 210

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

211
	timespec_add_ns(&timekeeper.xtime, nsec);
212

213
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
214
	timespec_add_ns(&timekeeper.raw_time, nsec);
215 216 217
}

/**
218
 * getnstimeofday - Returns the time of day in a timespec
219 220
 * @ts:		pointer to the timespec to be set
 *
221
 * Returns the time of day in a timespec.
222
 */
223
void getnstimeofday(struct timespec *ts)
224 225 226 227
{
	unsigned long seq;
	s64 nsecs;

228 229
	WARN_ON(timekeeping_suspended);

230
	do {
J
John Stultz 已提交
231
		seq = read_seqbegin(&timekeeper.lock);
232

233
		*ts = timekeeper.xtime;
234
		nsecs = timekeeping_get_ns();
235

236 237 238
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

J
John Stultz 已提交
239
	} while (read_seqretry(&timekeeper.lock, seq));
240 241 242 243 244 245

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

246 247 248 249 250 251 252 253
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
254
		seq = read_seqbegin(&timekeeper.lock);
255 256 257 258
		secs = timekeeper.xtime.tv_sec +
				timekeeper.wall_to_monotonic.tv_sec;
		nsecs = timekeeper.xtime.tv_nsec +
				timekeeper.wall_to_monotonic.tv_nsec;
259
		nsecs += timekeeping_get_ns();
260 261
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
262

J
John Stultz 已提交
263
	} while (read_seqretry(&timekeeper.lock, seq));
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
289
		seq = read_seqbegin(&timekeeper.lock);
290
		*ts = timekeeper.xtime;
291
		tomono = timekeeper.wall_to_monotonic;
292
		nsecs = timekeeping_get_ns();
293 294
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
295

J
John Stultz 已提交
296
	} while (read_seqretry(&timekeeper.lock, seq));
297 298 299 300 301 302

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
		u32 arch_offset;

J
John Stultz 已提交
324
		seq = read_seqbegin(&timekeeper.lock);
325

326
		*ts_raw = timekeeper.raw_time;
327
		*ts_real = timekeeper.xtime;
328 329 330 331 332 333 334 335 336

		nsecs_raw = timekeeping_get_ns_raw();
		nsecs_real = timekeeping_get_ns();

		/* If arch requires, add in gettimeoffset() */
		arch_offset = arch_gettimeoffset();
		nsecs_raw += arch_offset;
		nsecs_real += arch_offset;

J
John Stultz 已提交
337
	} while (read_seqretry(&timekeeper.lock, seq));
338 339 340 341 342 343 344 345

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

346 347 348 349
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
350
 * NOTE: Users should be converted to using getnstimeofday()
351 352 353 354 355
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

356
	getnstimeofday(&now);
357 358 359 360 361 362 363 364 365 366 367
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
368
int do_settimeofday(const struct timespec *tv)
369
{
370
	struct timespec ts_delta;
371
	unsigned long flags;
372 373 374 375

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

376
	write_seqlock_irqsave(&timekeeper.lock, flags);
377

378
	timekeeping_forward_now();
379

380 381
	ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
382 383
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
384

385
	timekeeper.xtime = *tv;
386
	timekeeping_update(true);
387

388
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
389 390 391 392 393 394 395 396 397

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

398 399 400 401 402 403 404 405 406

/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
407
	unsigned long flags;
408 409 410 411

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

412
	write_seqlock_irqsave(&timekeeper.lock, flags);
413 414 415

	timekeeping_forward_now();

416
	timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
417 418
	timekeeper.wall_to_monotonic =
				timespec_sub(timekeeper.wall_to_monotonic, *ts);
419

420
	timekeeping_update(true);
421

422
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
423 424 425 426 427 428 429 430

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(timekeeping_inject_offset);

431 432 433 434 435
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
436
static int change_clocksource(void *data)
437
{
438
	struct clocksource *new, *old;
439
	unsigned long flags;
440

441
	new = (struct clocksource *) data;
442

443 444
	write_seqlock_irqsave(&timekeeper.lock, flags);

445
	timekeeping_forward_now();
446 447 448 449 450 451
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
452 453 454 455
	timekeeping_update(true);

	write_sequnlock_irqrestore(&timekeeper.lock, flags);

456 457
	return 0;
}
458

459 460 461 462 463 464 465 466 467 468
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
469
		return;
470
	stop_machine(change_clocksource, clock, NULL);
471 472
	tick_clock_notify();
}
473

474 475 476 477 478 479 480 481 482 483 484 485 486 487
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
488

489 490 491 492 493 494 495 496 497 498 499 500
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
J
John Stultz 已提交
501
		seq = read_seqbegin(&timekeeper.lock);
502
		nsecs = timekeeping_get_ns_raw();
503
		*ts = timekeeper.raw_time;
504

J
John Stultz 已提交
505
	} while (read_seqretry(&timekeeper.lock, seq));
506 507 508 509 510 511

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


512
/**
513
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
514
 */
515
int timekeeping_valid_for_hres(void)
516 517 518 519 520
{
	unsigned long seq;
	int ret;

	do {
J
John Stultz 已提交
521
		seq = read_seqbegin(&timekeeper.lock);
522

523
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
524

J
John Stultz 已提交
525
	} while (read_seqretry(&timekeeper.lock, seq));
526 527 528 529

	return ret;
}

530 531 532 533 534
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
J
John Stultz 已提交
535 536 537 538 539 540 541 542 543 544
	unsigned long seq;
	u64 ret;
	do {
		seq = read_seqbegin(&timekeeper.lock);

		ret = timekeeper.clock->max_idle_ns;

	} while (read_seqretry(&timekeeper.lock, seq));

	return ret;
545 546
}

547
/**
548
 * read_persistent_clock -  Return time from the persistent clock.
549 550
 *
 * Weak dummy function for arches that do not yet support it.
551 552
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
553 554 555
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
556
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
557
{
558 559
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
560 561
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

577 578 579 580 581
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
582
	struct clocksource *clock;
583
	unsigned long flags;
584
	struct timespec now, boot;
585 586

	read_persistent_clock(&now);
587
	read_boot_clock(&boot);
588

J
John Stultz 已提交
589
	seqlock_init(&timekeeper.lock);
590

R
Roman Zippel 已提交
591
	ntp_init();
592

J
John Stultz 已提交
593
	write_seqlock_irqsave(&timekeeper.lock, flags);
594
	clock = clocksource_default_clock();
595 596
	if (clock->enable)
		clock->enable(clock);
597
	timekeeper_setup_internals(clock);
598

599 600
	timekeeper.xtime.tv_sec = now.tv_sec;
	timekeeper.xtime.tv_nsec = now.tv_nsec;
601 602
	timekeeper.raw_time.tv_sec = 0;
	timekeeper.raw_time.tv_nsec = 0;
603
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
604 605
		boot.tv_sec = timekeeper.xtime.tv_sec;
		boot.tv_nsec = timekeeper.xtime.tv_nsec;
606
	}
607
	set_normalized_timespec(&timekeeper.wall_to_monotonic,
608
				-boot.tv_sec, -boot.tv_nsec);
609 610
	timekeeper.total_sleep_time.tv_sec = 0;
	timekeeper.total_sleep_time.tv_nsec = 0;
J
John Stultz 已提交
611
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
612 613 614
}

/* time in seconds when suspend began */
615
static struct timespec timekeeping_suspend_time;
616

617 618 619 620 621 622 623 624 625
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
static void __timekeeping_inject_sleeptime(struct timespec *delta)
{
626
	if (!timespec_valid(delta)) {
627
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
628 629 630 631
					"sleep delta value!\n");
		return;
	}

632
	timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
633 634
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, *delta);
635 636
	timekeeper.total_sleep_time = timespec_add(
					timekeeper.total_sleep_time, *delta);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
}


/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
652
	unsigned long flags;
653 654 655 656 657 658 659
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

660
	write_seqlock_irqsave(&timekeeper.lock, flags);
J
John Stultz 已提交
661

662 663 664 665
	timekeeping_forward_now();

	__timekeeping_inject_sleeptime(delta);

666
	timekeeping_update(true);
667

668
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
669 670 671 672 673 674

	/* signal hrtimers about time change */
	clock_was_set();
}


675 676 677 678 679 680 681
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
682
static void timekeeping_resume(void)
683
{
684
	unsigned long flags;
685 686 687
	struct timespec ts;

	read_persistent_clock(&ts);
688

689 690
	clocksource_resume();

691
	write_seqlock_irqsave(&timekeeper.lock, flags);
692

693 694
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
695
		__timekeeping_inject_sleeptime(&ts);
696 697
	}
	/* re-base the last cycle value */
698 699
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
700
	timekeeping_suspended = 0;
701
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
702 703 704 705 706 707

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
708
	hrtimers_resume();
709 710
}

711
static int timekeeping_suspend(void)
712
{
713
	unsigned long flags;
714 715
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
716

717
	read_persistent_clock(&timekeeping_suspend_time);
718

719
	write_seqlock_irqsave(&timekeeper.lock, flags);
720
	timekeeping_forward_now();
721
	timekeeping_suspended = 1;
722 723 724 725 726 727 728

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
729
	delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
730 731 732 733 734 735 736 737 738 739 740 741
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
742
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
743 744

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
745
	clocksource_suspend();
746 747 748 749 750

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
751
static struct syscore_ops timekeeping_syscore_ops = {
752 753 754 755
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

756
static int __init timekeeping_init_ops(void)
757
{
758 759
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
760 761
}

762
device_initcall(timekeeping_init_ops);
763 764 765 766 767

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
768
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
769 770 771 772 773 774 775 776 777 778 779 780
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
781
	 * here.  This is tuned so that an error of about 1 msec is adjusted
782 783
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
784
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
785 786 787 788 789 790 791 792
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
793
	tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
794
	tick_error -= timekeeper.xtime_interval >> 1;
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
819
static void timekeeping_adjust(s64 offset)
820
{
821
	s64 error, interval = timekeeper.cycle_interval;
822 823
	int adj;

824 825 826 827 828 829 830
	/*
	 * The point of this is to check if the error is greater then half
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
831 832
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
833 834
	 * larger then half an interval.
	 *
835
	 * Note: It does not "save" on aggravation when reading the code.
836
	 */
837
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
838
	if (error > interval) {
839 840 841 842 843 844
		/*
		 * We now divide error by 4(via shift), which checks if
		 * the error is greater then twice the interval.
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
845
		error >>= 2;
846 847 848 849 850
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
851
		 * The proper fix is to avoid rounding up by using
852 853 854 855
		 * the high precision timekeeper.xtime_nsec instead of
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
856 857 858
		if (likely(error <= interval))
			adj = 1;
		else
859
			adj = timekeeping_bigadjust(error, &interval, &offset);
860
	} else if (error < -interval) {
861
		/* See comment above, this is just switched for the negative */
862 863 864 865 866 867
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
868
			adj = timekeeping_bigadjust(error, &interval, &offset);
869
	} else /* No adjustment needed */
870 871
		return;

872 873 874 875 876
	if (unlikely(timekeeper.clock->maxadj &&
			(timekeeper.mult + adj >
			timekeeper.clock->mult + timekeeper.clock->maxadj))) {
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
877 878 879
			timekeeper.clock->name, (long)timekeeper.mult + adj,
			(long)timekeeper.clock->mult +
				timekeeper.clock->maxadj);
880
	}
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
930
	timekeeper.mult += adj;
931 932 933
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
934
				timekeeper.ntp_error_shift;
935 936
}

L
Linus Torvalds 已提交
937

938 939 940 941 942 943 944 945 946 947 948 949
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
950
	u64 raw_nsecs;
951 952 953 954 955 956 957 958 959 960 961

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
962
		int leap;
963
		timekeeper.xtime_nsec -= nsecps;
964
		timekeeper.xtime.tv_sec++;
965 966
		leap = second_overflow(timekeeper.xtime.tv_sec);
		timekeeper.xtime.tv_sec += leap;
967 968
	}

969 970
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
971
	raw_nsecs += timekeeper.raw_time.tv_nsec;
972 973 974
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
975
		timekeeper.raw_time.tv_sec += raw_secs;
976
	}
977
	timekeeper.raw_time.tv_nsec = raw_nsecs;
978 979

	/* Accumulate error between NTP and clock interval */
980
	timekeeper.ntp_error += ntp_tick_length() << shift;
981 982
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
983 984 985 986 987
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
988

989 990 991 992
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
993
static void update_wall_time(void)
994
{
995
	struct clocksource *clock;
996
	cycle_t offset;
997
	int shift = 0, maxshift;
J
John Stultz 已提交
998 999 1000
	unsigned long flags;

	write_seqlock_irqsave(&timekeeper.lock, flags);
1001 1002 1003

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1004
		goto out;
1005

1006
	clock = timekeeper.clock;
J
John Stultz 已提交
1007 1008

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1009
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
1010 1011
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1012
#endif
1013 1014
	timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
						timekeeper.shift;
1015

1016 1017 1018 1019 1020 1021 1022
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1023
	 */
1024 1025 1026
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
1027
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1028
	shift = min(shift, maxshift);
1029
	while (offset >= timekeeper.cycle_interval) {
1030
		offset = logarithmic_accumulation(offset, shift);
1031 1032
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
1033 1034 1035
	}

	/* correct the clock when NTP error is too big */
1036
	timekeeping_adjust(offset);
1037

1038 1039 1040 1041
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
1042
	 * slightly speeding the clocksource up in timekeeping_adjust(),
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1054 1055 1056
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
1057
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1058 1059
	}

J
John Stultz 已提交
1060 1061 1062

	/*
	 * Store full nanoseconds into xtime after rounding it up and
1063 1064
	 * add the remainder to the error difference.
	 */
1065 1066 1067 1068
	timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
						timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
						timekeeper.shift;
1069 1070
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
1071

J
John Stultz 已提交
1072 1073 1074 1075
	/*
	 * Finally, make sure that after the rounding
	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
	 */
1076
	if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1077
		int leap;
1078 1079
		timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
		timekeeper.xtime.tv_sec++;
1080 1081
		leap = second_overflow(timekeeper.xtime.tv_sec);
		timekeeper.xtime.tv_sec += leap;
J
John Stultz 已提交
1082
	}
L
Linus Torvalds 已提交
1083

1084
	timekeeping_update(false);
J
John Stultz 已提交
1085 1086 1087 1088

out:
	write_sequnlock_irqrestore(&timekeeper.lock, flags);

1089
}
T
Tomas Janousek 已提交
1090 1091 1092 1093 1094

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1095
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1096 1097 1098 1099 1100 1101 1102 1103
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1104
	struct timespec boottime = {
1105
		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1106
				timekeeper.total_sleep_time.tv_sec,
1107
		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1108
				timekeeper.total_sleep_time.tv_nsec
1109
	};
1110 1111

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1112
}
1113
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
	struct timespec tomono, sleep;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
1134
		seq = read_seqbegin(&timekeeper.lock);
1135
		*ts = timekeeper.xtime;
1136
		tomono = timekeeper.wall_to_monotonic;
1137
		sleep = timekeeper.total_sleep_time;
1138 1139
		nsecs = timekeeping_get_ns();

J
John Stultz 已提交
1140
	} while (read_seqretry(&timekeeper.lock, seq));
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1164 1165 1166 1167 1168 1169
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1170
	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
T
Tomas Janousek 已提交
1171
}
1172
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1173

1174 1175
unsigned long get_seconds(void)
{
1176
	return timekeeper.xtime.tv_sec;
1177 1178 1179
}
EXPORT_SYMBOL(get_seconds);

1180 1181
struct timespec __current_kernel_time(void)
{
1182
	return timekeeper.xtime;
1183
}
1184

1185 1186 1187 1188 1189 1190
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
J
John Stultz 已提交
1191
		seq = read_seqbegin(&timekeeper.lock);
L
Linus Torvalds 已提交
1192

1193
		now = timekeeper.xtime;
J
John Stultz 已提交
1194
	} while (read_seqretry(&timekeeper.lock, seq));
1195 1196 1197 1198

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1199 1200 1201 1202 1203 1204 1205

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
J
John Stultz 已提交
1206
		seq = read_seqbegin(&timekeeper.lock);
L
Linus Torvalds 已提交
1207

1208
		now = timekeeper.xtime;
1209
		mono = timekeeper.wall_to_monotonic;
J
John Stultz 已提交
1210
	} while (read_seqretry(&timekeeper.lock, seq));
1211 1212 1213 1214 1215

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1228 1229

/**
1230 1231
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1232 1233
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1234
 * @sleep:	pointer to timespec to be set with time in suspend
1235
 */
1236 1237
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1238 1239 1240 1241
{
	unsigned long seq;

	do {
J
John Stultz 已提交
1242
		seq = read_seqbegin(&timekeeper.lock);
1243
		*xtim = timekeeper.xtime;
1244
		*wtom = timekeeper.wall_to_monotonic;
1245
		*sleep = timekeeper.total_sleep_time;
J
John Stultz 已提交
1246
	} while (read_seqretry(&timekeeper.lock, seq));
1247
}
T
Torben Hohn 已提交
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
	unsigned long seq;
	struct timespec wtom;

	do {
J
John Stultz 已提交
1258
		seq = read_seqbegin(&timekeeper.lock);
1259
		wtom = timekeeper.wall_to_monotonic;
J
John Stultz 已提交
1260 1261
	} while (read_seqretry(&timekeeper.lock, seq));

1262 1263 1264
	return timespec_to_ktime(wtom);
}

T
Torben Hohn 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}