timekeeping.c 64.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/syscore_ops.h>
21 22 23 24
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
25
#include <linux/stop_machine.h>
26
#include <linux/pvclock_gtod.h>
27
#include <linux/compiler.h>
28

29
#include "tick-internal.h"
30
#include "ntp_internal.h"
31
#include "timekeeping_internal.h"
32

33 34
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
35
#define TK_CLOCK_WAS_SET	(1 << 2)
36

37 38 39 40 41 42 43 44 45
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

46
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47
static struct timekeeper shadow_timekeeper;
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};
84

85 86 87
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

88 89
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
90 91
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92 93
		tk->xtime_sec++;
	}
94 95 96 97
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
98 99
}

100 101 102 103 104
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
105
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106 107 108
	return ts;
}

109
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 111
{
	tk->xtime_sec = ts->tv_sec;
112
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 114
}

115
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 117
{
	tk->xtime_sec += ts->tv_sec;
118
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119
	tk_normalize_xtime(tk);
120
}
121

122
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123
{
124
	struct timespec64 tmp;
125 126 127 128 129

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
130
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
132
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133
	tk->wall_to_monotonic = wtm;
134 135
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
136
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 138
}

139
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140
{
141
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
142 143
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
static inline u64 tk_clock_read(struct tk_read_base *tkr)
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

164
#ifdef CONFIG_DEBUG_TIMEKEEPING
165 166
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

167
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
168 169
{

170
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
171
	const char *name = tk->tkr_mono.clock->name;
172 173

	if (offset > max_cycles) {
174
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
175
				offset, name, max_cycles);
176
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
177 178
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
179
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
180 181 182 183
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
184

185 186
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
187 188 189
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
190
			tk->last_warning = jiffies;
191
		}
192
		tk->underflow_seen = 0;
193 194
	}

195 196
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
197 198 199
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
200
			tk->last_warning = jiffies;
201
		}
202
		tk->overflow_seen = 0;
203
	}
204
}
205

206
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
207
{
208
	struct timekeeper *tk = &tk_core.timekeeper;
209
	u64 now, last, mask, max, delta;
210
	unsigned int seq;
211

212 213 214 215 216 217 218 219 220
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
221
		now = tk_clock_read(tkr);
222 223 224 225
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
226

227
	delta = clocksource_delta(now, last, mask);
228

229 230 231 232
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
233
	if (unlikely((~delta & mask) < (mask >> 3))) {
234
		tk->underflow_seen = 1;
235
		delta = 0;
236
	}
237

238
	/* Cap delta value to the max_cycles values to avoid mult overflows */
239
	if (unlikely(delta > max)) {
240
		tk->overflow_seen = 1;
241
		delta = tkr->clock->max_cycles;
242
	}
243 244 245

	return delta;
}
246
#else
247
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
248 249
{
}
250
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
251
{
252
	u64 cycle_now, delta;
253 254

	/* read clocksource */
255
	cycle_now = tk_clock_read(tkr);
256 257 258 259 260 261

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
262 263
#endif

264
/**
265
 * tk_setup_internals - Set up internals to use clocksource clock.
266
 *
267
 * @tk:		The target timekeeper to setup.
268 269 270 271 272 273 274
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
275
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
276
{
277
	u64 interval;
278
	u64 tmp, ntpinterval;
279
	struct clocksource *old_clock;
280

281
	++tk->cs_was_changed_seq;
282 283 284
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
285
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
286

P
Peter Zijlstra 已提交
287 288 289 290
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

291 292 293
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
294
	ntpinterval = tmp;
295 296
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
297 298 299
	if (tmp == 0)
		tmp = 1;

300
	interval = (u64) tmp;
301
	tk->cycle_interval = interval;
302 303

	/* Go back from cycles -> shifted ns */
304
	tk->xtime_interval = interval * clock->mult;
305
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
306
	tk->raw_interval = interval * clock->mult;
307

308 309 310
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
311
		if (shift_change < 0) {
312
			tk->tkr_mono.xtime_nsec >>= -shift_change;
313 314
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
315
			tk->tkr_mono.xtime_nsec <<= shift_change;
316 317
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
318
	}
P
Peter Zijlstra 已提交
319

320
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
321
	tk->tkr_raw.shift = clock->shift;
322

323 324
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
325
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
326 327 328 329 330 331

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
332
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
333
	tk->tkr_raw.mult = clock->mult;
334
	tk->ntp_err_mult = 0;
335
	tk->skip_second_overflow = 0;
336
}
337

338
/* Timekeeper helper functions. */
339 340

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
341 342
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
343
#else
344
static inline u32 arch_gettimeoffset(void) { return 0; }
345 346
#endif

347
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
348
{
349
	u64 nsec;
350 351 352 353 354 355 356 357

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

358
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
359
{
360
	u64 delta;
361

362
	delta = timekeeping_get_delta(tkr);
363 364
	return timekeeping_delta_to_ns(tkr, delta);
}
365

366
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
367
{
368
	u64 delta;
369

370 371 372
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
373 374
}

375 376
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
377
 * @tkr: Timekeeping readout base from which we take the update
378 379 380 381
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
382
 * Employ the latch technique; see @raw_write_seqcount_latch.
383 384 385 386 387 388
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
389
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
390
{
391
	struct tk_read_base *base = tkf->base;
392 393

	/* Force readers off to base[1] */
394
	raw_write_seqcount_latch(&tkf->seq);
395 396

	/* Update base[0] */
397
	memcpy(base, tkr, sizeof(*base));
398 399

	/* Force readers back to base[0] */
400
	raw_write_seqcount_latch(&tkf->seq);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
438
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
439 440 441 442 443 444
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
445
		seq = raw_read_seqcount_latch(&tkf->seq);
446
		tkr = tkf->base + (seq & 0x01);
447 448
		now = ktime_to_ns(tkr->base);

449 450
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
451
					tk_clock_read(tkr),
452 453
					tkr->cycle_last,
					tkr->mask));
454
	} while (read_seqcount_retry(&tkf->seq, seq));
455 456 457

	return now;
}
458 459 460 461 462

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
463 464
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
465 466 467 468 469 470
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);


501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 */
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_real);

		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tk_clock_read(tkr),
					tkr->cycle_last,
					tkr->mask));
	} while (read_seqcount_retry(&tkf->seq, seq));

	return now;
}

/**
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 */
u64 ktime_get_real_fast_ns(void)
{
	return __ktime_get_real_fast_ns(&tk_fast_mono);
}
532
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
533

534 535 536 537 538 539 540 541 542 543 544 545 546
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
547
	struct tk_read_base *tkr = &tk->tkr_mono;
548 549

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
550 551
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
552
	tkr_dummy.base_real = tkr->base + tk->offs_real;
553
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
554 555 556

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
557
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
558
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
559 560
}

561 562
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

563
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
564
{
565
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
566 567 568 569 570 571 572
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
573
	struct timekeeper *tk = &tk_core.timekeeper;
574 575 576
	unsigned long flags;
	int ret;

577
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
578
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
579
	update_pvclock_gtod(tk, true);
580
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
581 582 583 584 585 586 587 588 589 590 591 592 593 594

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

595
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
596
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
597
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
598 599 600 601 602

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

603 604 605 606 607 608
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
609
	if (tk->next_leap_ktime != KTIME_MAX)
610 611 612 613
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

614 615 616 617 618
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
619 620
	u64 seconds;
	u32 nsec;
621 622 623 624 625 626 627 628

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
629 630
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
631
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
632

633 634 635 636 637
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
638
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
639 640 641
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
642 643

	/* Update the monotonic raw base */
644
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
645 646
}

647
/* must hold timekeeper_lock */
648
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
649
{
650
	if (action & TK_CLEAR_NTP) {
651
		tk->ntp_error = 0;
652 653
		ntp_clear();
	}
654

655
	tk_update_leap_state(tk);
656 657
	tk_update_ktime_data(tk);

658 659 660
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

661
	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
662
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
663
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
664 665 666

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
667 668 669 670 671 672 673 674
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
675 676
}

677
/**
678
 * timekeeping_forward_now - update clock to the current time
679
 *
680 681 682
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
683
 */
684
static void timekeeping_forward_now(struct timekeeper *tk)
685
{
686
	u64 cycle_now, delta;
687

688
	cycle_now = tk_clock_read(&tk->tkr_mono);
689 690
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
691
	tk->tkr_raw.cycle_last  = cycle_now;
692

693
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
694

695
	/* If arch requires, add in get_arch_timeoffset() */
696
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
697

698

699 700 701 702 703 704
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
705 706 707
}

/**
708
 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
709 710
 * @ts:		pointer to the timespec to be set
 *
711
 * Returns the time of day in a timespec64 (WARN if suspended).
712
 */
713
void ktime_get_real_ts64(struct timespec64 *ts)
714
{
715
	struct timekeeper *tk = &tk_core.timekeeper;
716
	unsigned long seq;
717
	u64 nsecs;
718

719 720
	WARN_ON(timekeeping_suspended);

721
	do {
722
		seq = read_seqcount_begin(&tk_core.seq);
723

724
		ts->tv_sec = tk->xtime_sec;
725
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
726

727
	} while (read_seqcount_retry(&tk_core.seq, seq));
728

729
	ts->tv_nsec = 0;
730
	timespec64_add_ns(ts, nsecs);
731
}
732
EXPORT_SYMBOL(ktime_get_real_ts64);
733

734 735
ktime_t ktime_get(void)
{
736
	struct timekeeper *tk = &tk_core.timekeeper;
737
	unsigned int seq;
738
	ktime_t base;
739
	u64 nsecs;
740 741 742 743

	WARN_ON(timekeeping_suspended);

	do {
744
		seq = read_seqcount_begin(&tk_core.seq);
745 746
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
747

748
	} while (read_seqcount_retry(&tk_core.seq, seq));
749

750
	return ktime_add_ns(base, nsecs);
751 752 753
}
EXPORT_SYMBOL_GPL(ktime_get);

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

771 772
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
773
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
774 775 776 777 778 779 780 781
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
782
	u64 nsecs;
783 784 785 786 787

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
788 789
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
790 791 792 793 794 795 796 797

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

818 819 820 821 822 823 824 825
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
826
	u64 nsecs;
827 828 829

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
830 831
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
832 833 834 835 836 837 838

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

839
/**
840
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
841 842 843 844
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
845
 * in normalized timespec64 format in the variable pointed to by @ts.
846
 */
847
void ktime_get_ts64(struct timespec64 *ts)
848
{
849
	struct timekeeper *tk = &tk_core.timekeeper;
850
	struct timespec64 tomono;
851
	unsigned int seq;
852
	u64 nsec;
853 854 855 856

	WARN_ON(timekeeping_suspended);

	do {
857
		seq = read_seqcount_begin(&tk_core.seq);
858
		ts->tv_sec = tk->xtime_sec;
859
		nsec = timekeeping_get_ns(&tk->tkr_mono);
860
		tomono = tk->wall_to_monotonic;
861

862
	} while (read_seqcount_retry(&tk_core.seq, seq));
863

864 865 866
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
867
}
868
EXPORT_SYMBOL_GPL(ktime_get_ts64);
869

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

918 919 920 921 922 923 924 925 926 927 928 929
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

930 931 932 933 934 935 936 937 938 939
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
940 941
	u64 nsec_raw;
	u64 nsec_real;
942
	u64 now;
943

944 945
	WARN_ON_ONCE(timekeeping_suspended);

946 947
	do {
		seq = read_seqcount_begin(&tk_core.seq);
948
		now = tk_clock_read(&tk->tkr_mono);
949 950
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
951 952 953 954 955 956 957 958 959 960 961 962
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
963

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1000 1001
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1014
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1064
static bool cycle_between(u64 before, u64 test, u64 after)
1065 1066 1067 1068 1069 1070 1071 1072
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1073 1074
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1075
 * @get_time_fn:	Callback to get simultaneous device time and
1076
 *	system counter from the device driver
1077 1078 1079
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1080 1081 1082 1083 1084 1085 1086 1087 1088
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1089
				  struct system_time_snapshot *history_begin,
1090 1091 1092 1093
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1094
	u64 cycles, now, interval_start;
1095
	unsigned int clock_was_set_seq = 0;
1096
	ktime_t base_real, base_raw;
1097
	u64 nsec_real, nsec_raw;
1098
	u8 cs_was_changed_seq;
1099
	unsigned long seq;
1100
	bool do_interp;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1120 1121 1122 1123 1124 1125
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1126
		now = tk_clock_read(&tk->tkr_mono);
1127 1128 1129 1130 1131 1132 1133 1134 1135
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1149 1150 1151 1152 1153 1154

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1155
		u64 partial_history_cycles, total_history_cycles;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1181 1182 1183 1184
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1185 1186 1187 1188
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1189
 * NOTE: Users should be converted to using getnstimeofday()
1190 1191 1192
 */
void do_gettimeofday(struct timeval *tv)
{
1193
	struct timespec64 now;
1194

1195
	getnstimeofday64(&now);
1196 1197 1198 1199
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1200

1201
/**
1202 1203
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1204 1205 1206
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1207
int do_settimeofday64(const struct timespec64 *ts)
1208
{
1209
	struct timekeeper *tk = &tk_core.timekeeper;
1210
	struct timespec64 ts_delta, xt;
1211
	unsigned long flags;
1212
	int ret = 0;
1213

1214
	if (!timespec64_valid_strict(ts))
1215 1216
		return -EINVAL;

1217
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1218
	write_seqcount_begin(&tk_core.seq);
1219

1220
	timekeeping_forward_now(tk);
1221

1222
	xt = tk_xtime(tk);
1223 1224
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1225

1226 1227 1228 1229 1230
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1231
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1232

1233
	tk_set_xtime(tk, ts);
1234
out:
1235
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1236

1237
	write_seqcount_end(&tk_core.seq);
1238
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1239 1240 1241 1242

	/* signal hrtimers about time change */
	clock_was_set();

1243
	return ret;
1244
}
1245
EXPORT_SYMBOL(do_settimeofday64);
1246

1247 1248 1249 1250 1251 1252
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
1253
static int timekeeping_inject_offset(struct timespec64 *ts)
1254
{
1255
	struct timekeeper *tk = &tk_core.timekeeper;
1256
	unsigned long flags;
1257
	struct timespec64 tmp;
1258
	int ret = 0;
1259

1260
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1261 1262
		return -EINVAL;

1263
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1264
	write_seqcount_begin(&tk_core.seq);
1265

1266
	timekeeping_forward_now(tk);
1267

1268
	/* Make sure the proposed value is valid */
1269 1270
	tmp = timespec64_add(tk_xtime(tk), *ts);
	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1271
	    !timespec64_valid_strict(&tmp)) {
1272 1273 1274
		ret = -EINVAL;
		goto error;
	}
1275

1276 1277
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1278

1279
error: /* even if we error out, we forwarded the time, so call update */
1280
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1281

1282
	write_seqcount_end(&tk_core.seq);
1283
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1284 1285 1286 1287

	/* signal hrtimers about time change */
	clock_was_set();

1288
	return ret;
1289
}
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
1316
		struct timespec64 adjust;
1317 1318 1319 1320 1321 1322 1323

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}
1324

1325
/**
1326
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1327 1328
 *
 */
1329
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1330 1331
{
	tk->tai_offset = tai_offset;
1332
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1333 1334
}

1335 1336 1337 1338 1339
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1340
static int change_clocksource(void *data)
1341
{
1342
	struct timekeeper *tk = &tk_core.timekeeper;
1343
	struct clocksource *new, *old;
1344
	unsigned long flags;
1345

1346
	new = (struct clocksource *) data;
1347

1348
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1349
	write_seqcount_begin(&tk_core.seq);
1350

1351
	timekeeping_forward_now(tk);
1352 1353 1354 1355 1356 1357
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1358
			old = tk->tkr_mono.clock;
1359 1360 1361 1362 1363 1364 1365
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1366
	}
1367
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1368

1369
	write_seqcount_end(&tk_core.seq);
1370
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1371

1372 1373
	return 0;
}
1374

1375 1376 1377 1378 1379 1380 1381
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1382
int timekeeping_notify(struct clocksource *clock)
1383
{
1384
	struct timekeeper *tk = &tk_core.timekeeper;
1385

1386
	if (tk->tkr_mono.clock == clock)
1387
		return 0;
1388
	stop_machine(change_clocksource, clock, NULL);
1389
	tick_clock_notify();
1390
	return tk->tkr_mono.clock == clock ? 0 : -1;
1391
}
1392

1393
/**
1394
 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1395
 * @ts:		pointer to the timespec64 to be set
1396 1397 1398
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1399
void ktime_get_raw_ts64(struct timespec64 *ts)
1400
{
1401
	struct timekeeper *tk = &tk_core.timekeeper;
1402
	unsigned long seq;
1403
	u64 nsecs;
1404 1405

	do {
1406
		seq = read_seqcount_begin(&tk_core.seq);
1407
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1408
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1409

1410
	} while (read_seqcount_retry(&tk_core.seq, seq));
1411

1412 1413
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1414
}
1415
EXPORT_SYMBOL(ktime_get_raw_ts64);
1416

1417

1418
/**
1419
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1420
 */
1421
int timekeeping_valid_for_hres(void)
1422
{
1423
	struct timekeeper *tk = &tk_core.timekeeper;
1424 1425 1426 1427
	unsigned long seq;
	int ret;

	do {
1428
		seq = read_seqcount_begin(&tk_core.seq);
1429

1430
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1431

1432
	} while (read_seqcount_retry(&tk_core.seq, seq));
1433 1434 1435 1436

	return ret;
}

1437 1438 1439 1440 1441
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1442
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1443 1444
	unsigned long seq;
	u64 ret;
1445

J
John Stultz 已提交
1446
	do {
1447
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1448

1449
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1450

1451
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1452 1453

	return ret;
1454 1455
}

1456
/**
1457
 * read_persistent_clock -  Return time from the persistent clock.
1458 1459
 *
 * Weak dummy function for arches that do not yet support it.
1460 1461
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1462 1463 1464
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1465
void __weak read_persistent_clock(struct timespec *ts)
1466
{
1467 1468
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1469 1470
}

1471 1472 1473 1474 1475 1476 1477 1478
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1479
/**
X
Xunlei Pang 已提交
1480
 * read_boot_clock64 -  Return time of the system start.
1481 1482 1483
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1484
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1485 1486 1487
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1488
void __weak read_boot_clock64(struct timespec64 *ts)
1489 1490 1491 1492 1493
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1494 1495 1496 1497 1498 1499
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1500 1501 1502 1503 1504
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1505
	struct timekeeper *tk = &tk_core.timekeeper;
1506
	struct clocksource *clock;
1507
	unsigned long flags;
1508
	struct timespec64 now, boot, tmp;
1509

1510
	read_persistent_clock64(&now);
1511
	if (!timespec64_valid_strict(&now)) {
1512 1513 1514 1515
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1516
	} else if (now.tv_sec || now.tv_nsec)
1517
		persistent_clock_exists = true;
1518

1519
	read_boot_clock64(&boot);
1520
	if (!timespec64_valid_strict(&boot)) {
1521 1522 1523 1524 1525
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1526

1527
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1528
	write_seqcount_begin(&tk_core.seq);
1529 1530
	ntp_init();

1531
	clock = clocksource_default_clock();
1532 1533
	if (clock->enable)
		clock->enable(clock);
1534
	tk_setup_internals(tk, clock);
1535

1536
	tk_set_xtime(tk, &now);
1537
	tk->raw_sec = 0;
1538
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1539
		boot = tk_xtime(tk);
1540

1541
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1542
	tk_set_wall_to_mono(tk, tmp);
1543

1544
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1545

1546
	write_seqcount_end(&tk_core.seq);
1547
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1548 1549
}

1550
/* time in seconds when suspend began for persistent clock */
1551
static struct timespec64 timekeeping_suspend_time;
1552

1553 1554 1555 1556 1557 1558 1559
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1560
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1561
					   struct timespec64 *delta)
1562
{
1563
	if (!timespec64_valid_strict(delta)) {
1564 1565 1566
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1567 1568
		return;
	}
1569
	tk_xtime_add(tk, delta);
1570
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1571
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1572
	tk_debug_account_sleep_time(delta);
1573 1574
}

1575
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1611
/**
1612 1613
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1614
 *
1615
 * This hook is for architectures that cannot support read_persistent_clock64
1616
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1617
 * and also don't have an effective nonstop clocksource.
1618 1619 1620 1621
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1622
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1623
{
1624
	struct timekeeper *tk = &tk_core.timekeeper;
1625
	unsigned long flags;
1626

1627
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1628
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1629

1630
	timekeeping_forward_now(tk);
1631

1632
	__timekeeping_inject_sleeptime(tk, delta);
1633

1634
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1635

1636
	write_seqcount_end(&tk_core.seq);
1637
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1638 1639 1640 1641

	/* signal hrtimers about time change */
	clock_was_set();
}
1642
#endif
1643

1644 1645 1646
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1647
void timekeeping_resume(void)
1648
{
1649
	struct timekeeper *tk = &tk_core.timekeeper;
1650
	struct clocksource *clock = tk->tkr_mono.clock;
1651
	unsigned long flags;
1652
	struct timespec64 ts_new, ts_delta;
1653
	u64 cycle_now;
1654

1655
	sleeptime_injected = false;
1656
	read_persistent_clock64(&ts_new);
1657

1658
	clockevents_resume();
1659 1660
	clocksource_resume();

1661
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1662
	write_seqcount_begin(&tk_core.seq);
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1676
	cycle_now = tk_clock_read(&tk->tkr_mono);
1677
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1678
		cycle_now > tk->tkr_mono.cycle_last) {
1679
		u64 nsec, cyc_delta;
1680

1681 1682 1683
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
					      tk->tkr_mono.mask);
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1684
		ts_delta = ns_to_timespec64(nsec);
1685
		sleeptime_injected = true;
1686 1687
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1688
		sleeptime_injected = true;
1689
	}
1690

1691
	if (sleeptime_injected)
1692 1693 1694
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1695
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1696 1697
	tk->tkr_raw.cycle_last  = cycle_now;

1698
	tk->ntp_error = 0;
1699
	timekeeping_suspended = 0;
1700
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1701
	write_seqcount_end(&tk_core.seq);
1702
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1703 1704 1705

	touch_softlockup_watchdog();

1706
	tick_resume();
1707
	hrtimers_resume();
1708 1709
}

1710
int timekeeping_suspend(void)
1711
{
1712
	struct timekeeper *tk = &tk_core.timekeeper;
1713
	unsigned long flags;
1714 1715
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1716

1717
	read_persistent_clock64(&timekeeping_suspend_time);
1718

1719 1720 1721 1722 1723 1724
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1725
		persistent_clock_exists = true;
1726

1727
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1728
	write_seqcount_begin(&tk_core.seq);
1729
	timekeeping_forward_now(tk);
1730
	timekeeping_suspended = 1;
1731

1732
	if (persistent_clock_exists) {
1733
		/*
1734 1735 1736 1737
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1738
		 */
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1752
	}
1753 1754

	timekeeping_update(tk, TK_MIRROR);
1755
	halt_fast_timekeeper(tk);
1756
	write_seqcount_end(&tk_core.seq);
1757
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1758

1759
	tick_suspend();
M
Magnus Damm 已提交
1760
	clocksource_suspend();
1761
	clockevents_suspend();
1762 1763 1764 1765 1766

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1767
static struct syscore_ops timekeeping_syscore_ops = {
1768 1769 1770 1771
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1772
static int __init timekeeping_init_ops(void)
1773
{
1774 1775
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1776
}
1777
device_initcall(timekeeping_init_ops);
1778 1779

/*
1780
 * Apply a multiplier adjustment to the timekeeper
1781
 */
1782 1783
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
1784
							 s32 mult_adj)
1785
{
1786
	s64 interval = tk->cycle_interval;
1787

1788 1789 1790
	if (mult_adj == 0) {
		return;
	} else if (mult_adj == -1) {
1791
		interval = -interval;
1792 1793 1794 1795
		offset = -offset;
	} else if (mult_adj != 1) {
		interval *= mult_adj;
		offset *= mult_adj;
1796
	}
1797

1798 1799 1800
	/*
	 * So the following can be confusing.
	 *
1801
	 * To keep things simple, lets assume mult_adj == 1 for now.
1802
	 *
1803
	 * When mult_adj != 1, remember that the interval and offset values
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 */
1845
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1846 1847 1848 1849 1850
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1851
	tk->tkr_mono.mult += mult_adj;
1852
	tk->xtime_interval += interval;
1853
	tk->tkr_mono.xtime_nsec -= offset;
1854 1855 1856
}

/*
1857 1858
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
1859
 */
1860
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1861
{
1862
	u32 mult;
1863

1864
	/*
1865 1866
	 * Determine the multiplier from the current NTP tick length.
	 * Avoid expensive division when the tick length doesn't change.
1867
	 */
1868 1869 1870 1871 1872 1873
	if (likely(tk->ntp_tick == ntp_tick_length())) {
		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
	} else {
		tk->ntp_tick = ntp_tick_length();
		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
				 tk->xtime_remainder, tk->cycle_interval);
1874
	}
1875

1876 1877 1878 1879 1880 1881 1882 1883
	/*
	 * If the clock is behind the NTP time, increase the multiplier by 1
	 * to catch up with it. If it's ahead and there was a remainder in the
	 * tick division, the clock will slow down. Otherwise it will stay
	 * ahead until the tick length changes to a non-divisible value.
	 */
	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
	mult += tk->ntp_err_mult;
1884

1885
	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1886

1887 1888 1889
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1890 1891
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1892 1893
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1894
	}
1895 1896 1897 1898 1899 1900 1901

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
1902 1903 1904
	 * Now, since we have already accumulated the second and the NTP
	 * subsystem has been notified via second_overflow(), we need to skip
	 * the next update.
1905
	 */
1906
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1907 1908 1909 1910
		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
							tk->tkr_mono.shift;
		tk->xtime_sec--;
		tk->skip_second_overflow = 1;
1911
	}
1912 1913
}

1914 1915 1916
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1917
 * Helper function that accumulates the nsecs greater than a second
1918 1919 1920 1921
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1922
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1923
{
1924
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1925
	unsigned int clock_set = 0;
1926

1927
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1928 1929
		int leap;

1930
		tk->tkr_mono.xtime_nsec -= nsecps;
1931 1932
		tk->xtime_sec++;

1933 1934 1935 1936 1937 1938 1939 1940 1941
		/*
		 * Skip NTP update if this second was accumulated before,
		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
		 */
		if (unlikely(tk->skip_second_overflow)) {
			tk->skip_second_overflow = 0;
			continue;
		}

1942 1943
		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1944
		if (unlikely(leap)) {
1945
			struct timespec64 ts;
1946 1947

			tk->xtime_sec += leap;
1948

1949 1950 1951
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1952
				timespec64_sub(tk->wall_to_monotonic, ts));
1953

1954 1955
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1956
			clock_set = TK_CLOCK_WAS_SET;
1957
		}
1958
	}
1959
	return clock_set;
1960 1961
}

1962 1963 1964 1965 1966 1967 1968 1969 1970
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1971 1972
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
1973
{
1974
	u64 interval = tk->cycle_interval << shift;
1975
	u64 snsec_per_sec;
1976

Z
Zhen Lei 已提交
1977
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1978
	if (offset < interval)
1979 1980 1981
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1982
	offset -= interval;
1983
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1984
	tk->tkr_raw.cycle_last  += interval;
1985

1986
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1987
	*clock_set |= accumulate_nsecs_to_secs(tk);
1988

1989
	/* Accumulate raw time */
1990 1991 1992 1993
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
1994
		tk->raw_sec++;
1995 1996 1997
	}

	/* Accumulate error between NTP and clock interval */
1998
	tk->ntp_error += tk->ntp_tick << shift;
1999 2000
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2001 2002 2003 2004

	return offset;
}

2005 2006 2007 2008
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2009
void update_wall_time(void)
2010
{
2011
	struct timekeeper *real_tk = &tk_core.timekeeper;
2012
	struct timekeeper *tk = &shadow_timekeeper;
2013
	u64 offset;
2014
	int shift = 0, maxshift;
2015
	unsigned int clock_set = 0;
J
John Stultz 已提交
2016 2017
	unsigned long flags;

2018
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2019 2020 2021

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2022
		goto out;
2023

J
John Stultz 已提交
2024
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2025
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2026
#else
2027
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2028
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2029 2030
#endif

2031
	/* Check if there's really nothing to do */
2032
	if (offset < real_tk->cycle_interval)
2033 2034
		goto out;

2035
	/* Do some additional sanity checking */
2036
	timekeeping_check_update(tk, offset);
2037

2038 2039 2040 2041
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2042
	 * that is smaller than the offset.  We then accumulate that
2043 2044
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2045
	 */
2046
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2047
	shift = max(0, shift);
2048
	/* Bound shift to one less than what overflows tick_length */
2049
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2050
	shift = min(shift, maxshift);
2051
	while (offset >= tk->cycle_interval) {
2052 2053
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2054
		if (offset < tk->cycle_interval<<shift)
2055
			shift--;
2056 2057
	}

2058
	/* Adjust the multiplier to correct NTP error */
2059
	timekeeping_adjust(tk, offset);
2060

J
John Stultz 已提交
2061 2062
	/*
	 * Finally, make sure that after the rounding
2063
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2064
	 */
2065
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2066

2067
	write_seqcount_begin(&tk_core.seq);
2068 2069 2070 2071 2072 2073 2074
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2075
	 * memcpy under the tk_core.seq against one before we start
2076 2077
	 * updating.
	 */
2078
	timekeeping_update(tk, clock_set);
2079
	memcpy(real_tk, tk, sizeof(*tk));
2080
	/* The memcpy must come last. Do not put anything here! */
2081
	write_seqcount_end(&tk_core.seq);
2082
out:
2083
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2084
	if (clock_set)
2085 2086
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2087
}
T
Tomas Janousek 已提交
2088 2089

/**
2090 2091
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2092
 *
2093
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2094 2095 2096 2097 2098 2099
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2100
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2101
{
2102
	struct timekeeper *tk = &tk_core.timekeeper;
2103
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2104

2105
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2106
}
2107
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2108

2109 2110
unsigned long get_seconds(void)
{
2111
	struct timekeeper *tk = &tk_core.timekeeper;
2112 2113

	return tk->xtime_sec;
2114 2115 2116
}
EXPORT_SYMBOL(get_seconds);

2117
void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2118
{
2119
	struct timekeeper *tk = &tk_core.timekeeper;
2120 2121 2122
	unsigned long seq;

	do {
2123
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2124

2125
		*ts = tk_xtime(tk);
2126
	} while (read_seqcount_retry(&tk_core.seq, seq));
2127
}
2128
EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2129

2130
void ktime_get_coarse_ts64(struct timespec64 *ts)
2131
{
2132
	struct timekeeper *tk = &tk_core.timekeeper;
2133
	struct timespec64 now, mono;
2134 2135 2136
	unsigned long seq;

	do {
2137
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2138

2139 2140
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2141
	} while (read_seqcount_retry(&tk_core.seq, seq));
2142

2143
	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2144 2145
				now.tv_nsec + mono.tv_nsec);
}
2146
EXPORT_SYMBOL(ktime_get_coarse_ts64);
2147 2148

/*
2149
 * Must hold jiffies_lock
2150 2151 2152 2153 2154 2155
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2156

2157
/**
2158
 * ktime_get_update_offsets_now - hrtimer helper
2159
 * @cwsseq:	pointer to check and store the clock was set sequence number
2160
 * @offs_real:	pointer to storage for monotonic -> realtime offset
2161
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2162
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2163
 *
2164 2165 2166 2167
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2168
 * Called from hrtimer_interrupt() or retrigger_next_event()
2169
 */
2170
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2171
				     ktime_t *offs_boot, ktime_t *offs_tai)
2172
{
2173
	struct timekeeper *tk = &tk_core.timekeeper;
2174
	unsigned int seq;
2175 2176
	ktime_t base;
	u64 nsecs;
2177 2178

	do {
2179
		seq = read_seqcount_begin(&tk_core.seq);
2180

2181 2182
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2183 2184
		base = ktime_add_ns(base, nsecs);

2185 2186 2187
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
2188
			*offs_boot = tk->offs_boot;
2189 2190
			*offs_tai = tk->offs_tai;
		}
2191 2192

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2193
		if (unlikely(base >= tk->next_leap_ktime))
2194 2195
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2196
	} while (read_seqcount_retry(&tk_core.seq, seq));
2197

2198
	return base;
2199 2200
}

2201
/**
2202
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2203
 */
2204
static int timekeeping_validate_timex(struct timex *txc)
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		/*
		 * Validate if a timespec/timeval used to inject a time
		 * offset is valid.  Offsets can be postive or negative, so
		 * we don't check tv_sec. The value of the timeval/timespec
		 * is the sum of its fields,but *NOTE*:
		 * The field tv_usec/tv_nsec must always be non-negative and
		 * we can't have more nanoseconds/microseconds than a second.
		 */
		if (txc->time.tv_usec < 0)
			return -EINVAL;
2242

2243 2244
		if (txc->modes & ADJ_NANO) {
			if (txc->time.tv_usec >= NSEC_PER_SEC)
2245 2246
				return -EINVAL;
		} else {
2247
			if (txc->time.tv_usec >= USEC_PER_SEC)
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}


2267 2268 2269 2270 2271
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2272
	struct timekeeper *tk = &tk_core.timekeeper;
2273
	unsigned long flags;
2274
	struct timespec64 ts;
2275
	s32 orig_tai, tai;
2276 2277 2278
	int ret;

	/* Validate the data before disabling interrupts */
2279
	ret = timekeeping_validate_timex(txc);
2280 2281 2282
	if (ret)
		return ret;

2283
	if (txc->modes & ADJ_SETOFFSET) {
2284
		struct timespec64 delta;
2285 2286 2287 2288 2289 2290 2291 2292 2293
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2294
	getnstimeofday64(&ts);
2295

2296
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2297
	write_seqcount_begin(&tk_core.seq);
2298

2299
	orig_tai = tai = tk->tai_offset;
2300
	ret = __do_adjtimex(txc, &ts, &tai);
2301

2302 2303
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2304
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2305
	}
2306 2307
	tk_update_leap_state(tk);

2308
	write_seqcount_end(&tk_core.seq);
2309 2310
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2311 2312 2313
	if (tai != orig_tai)
		clock_was_set();

2314 2315
	ntp_notify_cmos_timer();

2316 2317
	return ret;
}
2318 2319 2320 2321 2322

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2323
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2324
{
2325 2326 2327
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2328
	write_seqcount_begin(&tk_core.seq);
2329

2330
	__hardpps(phase_ts, raw_ts);
2331

2332
	write_seqcount_end(&tk_core.seq);
2333
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2334 2335
}
EXPORT_SYMBOL(hardpps);
2336
#endif /* CONFIG_NTP_PPS */
2337

T
Torben Hohn 已提交
2338 2339 2340 2341 2342 2343 2344 2345
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2346
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2347
	do_timer(ticks);
2348
	write_sequnlock(&jiffies_lock);
2349
	update_wall_time();
T
Torben Hohn 已提交
2350
}