timekeeping.c 63.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/syscore_ops.h>
21 22 23 24
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
25
#include <linux/stop_machine.h>
26
#include <linux/pvclock_gtod.h>
27
#include <linux/compiler.h>
28

29
#include "tick-internal.h"
30
#include "ntp_internal.h"
31
#include "timekeeping_internal.h"
32

33 34
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
35
#define TK_CLOCK_WAS_SET	(1 << 2)
36

37 38 39 40 41 42 43 44 45
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

46
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47
static struct timekeeper shadow_timekeeper;
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
64
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
65

66 67 68
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
109
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121
#ifdef CONFIG_DEBUG_TIMEKEEPING
122 123
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

124
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
125 126
{

127
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
128
	const char *name = tk->tkr_mono.clock->name;
129 130

	if (offset > max_cycles) {
131
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
132
				offset, name, max_cycles);
133
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
134 135
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
136
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
137 138 139 140
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
141

142 143
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
144 145 146
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
147
			tk->last_warning = jiffies;
148
		}
149
		tk->underflow_seen = 0;
150 151
	}

152 153
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
154 155 156
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
157
			tk->last_warning = jiffies;
158
		}
159
		tk->overflow_seen = 0;
160
	}
161
}
162

163
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
164
{
165
	struct timekeeper *tk = &tk_core.timekeeper;
166
	u64 now, last, mask, max, delta;
167
	unsigned int seq;
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
183

184
	delta = clocksource_delta(now, last, mask);
185

186 187 188 189
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
190
	if (unlikely((~delta & mask) < (mask >> 3))) {
191
		tk->underflow_seen = 1;
192
		delta = 0;
193
	}
194

195
	/* Cap delta value to the max_cycles values to avoid mult overflows */
196
	if (unlikely(delta > max)) {
197
		tk->overflow_seen = 1;
198
		delta = tkr->clock->max_cycles;
199
	}
200 201 202

	return delta;
}
203
#else
204
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
205 206
{
}
207
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
208
{
209
	u64 cycle_now, delta;
210 211 212 213 214 215 216 217 218

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
219 220
#endif

221
/**
222
 * tk_setup_internals - Set up internals to use clocksource clock.
223
 *
224
 * @tk:		The target timekeeper to setup.
225 226 227 228 229 230 231
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
232
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
233
{
234
	u64 interval;
235
	u64 tmp, ntpinterval;
236
	struct clocksource *old_clock;
237

238
	++tk->cs_was_changed_seq;
239 240 241 242 243
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
244

P
Peter Zijlstra 已提交
245 246 247 248 249
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

250 251 252
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
253
	ntpinterval = tmp;
254 255
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
256 257 258
	if (tmp == 0)
		tmp = 1;

259
	interval = (u64) tmp;
260
	tk->cycle_interval = interval;
261 262

	/* Go back from cycles -> shifted ns */
263
	tk->xtime_interval = interval * clock->mult;
264
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
265
	tk->raw_interval = (interval * clock->mult) >> clock->shift;
266

267 268 269 270
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
271
			tk->tkr_mono.xtime_nsec >>= -shift_change;
272
		else
273
			tk->tkr_mono.xtime_nsec <<= shift_change;
274
	}
P
Peter Zijlstra 已提交
275 276
	tk->tkr_raw.xtime_nsec = 0;

277
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
278
	tk->tkr_raw.shift = clock->shift;
279

280 281
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
282
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
283 284 285 286 287 288

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
289
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
290
	tk->tkr_raw.mult = clock->mult;
291
	tk->ntp_err_mult = 0;
292
}
293

294
/* Timekeeper helper functions. */
295 296

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
297 298
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
299
#else
300
static inline u32 arch_gettimeoffset(void) { return 0; }
301 302
#endif

303
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
304
{
305
	u64 nsec;
306 307 308 309 310 311 312 313

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

314
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
315
{
316
	u64 delta;
317

318
	delta = timekeeping_get_delta(tkr);
319 320
	return timekeeping_delta_to_ns(tkr, delta);
}
321

322
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
323
{
324
	u64 delta;
325

326 327 328
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
329 330
}

331 332
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
333
 * @tkr: Timekeeping readout base from which we take the update
334 335 336 337
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
338
 * Employ the latch technique; see @raw_write_seqcount_latch.
339 340 341 342 343 344
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
345
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
346
{
347
	struct tk_read_base *base = tkf->base;
348 349

	/* Force readers off to base[1] */
350
	raw_write_seqcount_latch(&tkf->seq);
351 352

	/* Update base[0] */
353
	memcpy(base, tkr, sizeof(*base));
354 355

	/* Force readers back to base[0] */
356
	raw_write_seqcount_latch(&tkf->seq);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
394
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
395 396 397 398 399 400
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
401
		seq = raw_read_seqcount_latch(&tkf->seq);
402
		tkr = tkf->base + (seq & 0x01);
403 404
		now = ktime_to_ns(tkr->base);

405 406 407 408 409
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tkr->read(tkr->clock),
					tkr->cycle_last,
					tkr->mask));
410
	} while (read_seqcount_retry(&tkf->seq, seq));
411 412 413

	return now;
}
414 415 416 417 418

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
419 420
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
421 422 423 424 425 426
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);

456
/* Suspend-time cycles value for halted fast timekeeper. */
457
static u64 cycles_at_suspend;
458

459
static u64 dummy_clock_read(struct clocksource *cs)
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
477
	struct tk_read_base *tkr = &tk->tkr_mono;
478 479 480 481

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
482
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
483 484 485 486 487

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
488 489
}

490 491 492 493
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
494
	struct timespec xt, wm;
495

496
	xt = timespec64_to_timespec(tk_xtime(tk));
497
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
498 499
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
516
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
517 518 519 520 521 522
	if (remainder != 0) {
		tk->tkr_mono.xtime_nsec -= remainder;
		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
		tk->ntp_error += remainder << tk->ntp_error_shift;
		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
	}
523 524 525 526 527
}
#else
#define old_vsyscall_fixup(tk)
#endif

528 529
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

530
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
531
{
532
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
533 534 535 536 537 538 539
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
540
	struct timekeeper *tk = &tk_core.timekeeper;
541 542 543
	unsigned long flags;
	int ret;

544
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
545
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
546
	update_pvclock_gtod(tk, true);
547
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
548 549 550 551 552 553 554 555 556 557 558 559 560 561

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

562
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
563
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
564
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
565 566 567 568 569

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

570 571 572 573 574 575
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
576
	if (tk->next_leap_ktime != KTIME_MAX)
577 578 579 580
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

581 582 583 584 585
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
586 587
	u64 seconds;
	u32 nsec;
588 589 590 591 592 593 594 595

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
596 597
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
598
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
599 600

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
601
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
602 603 604 605 606 607

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
608
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
609 610 611
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
612 613
}

614
/* must hold timekeeper_lock */
615
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
616
{
617
	if (action & TK_CLEAR_NTP) {
618
		tk->ntp_error = 0;
619 620
		ntp_clear();
	}
621

622
	tk_update_leap_state(tk);
623 624
	tk_update_ktime_data(tk);

625 626 627
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

628
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
629
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
630 631 632

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
633 634 635 636 637 638 639 640
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
641 642
}

643
/**
644
 * timekeeping_forward_now - update clock to the current time
645
 *
646 647 648
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
649
 */
650
static void timekeeping_forward_now(struct timekeeper *tk)
651
{
652
	struct clocksource *clock = tk->tkr_mono.clock;
653
	u64 cycle_now, delta;
654
	u64 nsec;
655

656 657 658
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
659
	tk->tkr_raw.cycle_last  = cycle_now;
660

661
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
662

663
	/* If arch requires, add in get_arch_timeoffset() */
664
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
665

666
	tk_normalize_xtime(tk);
667

P
Peter Zijlstra 已提交
668
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
669
	timespec64_add_ns(&tk->raw_time, nsec);
670 671 672
}

/**
673
 * __getnstimeofday64 - Returns the time of day in a timespec64.
674 675
 * @ts:		pointer to the timespec to be set
 *
676 677
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
678
 */
679
int __getnstimeofday64(struct timespec64 *ts)
680
{
681
	struct timekeeper *tk = &tk_core.timekeeper;
682
	unsigned long seq;
683
	u64 nsecs;
684 685

	do {
686
		seq = read_seqcount_begin(&tk_core.seq);
687

688
		ts->tv_sec = tk->xtime_sec;
689
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
690

691
	} while (read_seqcount_retry(&tk_core.seq, seq));
692

693
	ts->tv_nsec = 0;
694
	timespec64_add_ns(ts, nsecs);
695 696 697 698 699 700 701 702 703

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
704
EXPORT_SYMBOL(__getnstimeofday64);
705 706

/**
707
 * getnstimeofday64 - Returns the time of day in a timespec64.
708
 * @ts:		pointer to the timespec64 to be set
709
 *
710
 * Returns the time of day in a timespec64 (WARN if suspended).
711
 */
712
void getnstimeofday64(struct timespec64 *ts)
713
{
714
	WARN_ON(__getnstimeofday64(ts));
715
}
716
EXPORT_SYMBOL(getnstimeofday64);
717

718 719
ktime_t ktime_get(void)
{
720
	struct timekeeper *tk = &tk_core.timekeeper;
721
	unsigned int seq;
722
	ktime_t base;
723
	u64 nsecs;
724 725 726 727

	WARN_ON(timekeeping_suspended);

	do {
728
		seq = read_seqcount_begin(&tk_core.seq);
729 730
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
731

732
	} while (read_seqcount_retry(&tk_core.seq, seq));
733

734
	return ktime_add_ns(base, nsecs);
735 736 737
}
EXPORT_SYMBOL_GPL(ktime_get);

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

755 756 757 758 759 760 761 762 763 764 765
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
766
	u64 nsecs;
767 768 769 770 771

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
772 773
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
774 775 776 777 778 779 780 781

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

802 803 804 805 806 807 808 809
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
810
	u64 nsecs;
811 812 813

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
814 815
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
816 817 818 819 820 821 822

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

823
/**
824
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
825 826 827 828
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
829
 * in normalized timespec64 format in the variable pointed to by @ts.
830
 */
831
void ktime_get_ts64(struct timespec64 *ts)
832
{
833
	struct timekeeper *tk = &tk_core.timekeeper;
834
	struct timespec64 tomono;
835
	unsigned int seq;
836
	u64 nsec;
837 838 839 840

	WARN_ON(timekeeping_suspended);

	do {
841
		seq = read_seqcount_begin(&tk_core.seq);
842
		ts->tv_sec = tk->xtime_sec;
843
		nsec = timekeeping_get_ns(&tk->tkr_mono);
844
		tomono = tk->wall_to_monotonic;
845

846
	} while (read_seqcount_retry(&tk_core.seq, seq));
847

848 849 850
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
851
}
852
EXPORT_SYMBOL_GPL(ktime_get_ts64);
853

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

902 903 904 905 906 907 908 909 910 911 912 913
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

914 915 916 917 918 919 920 921 922 923
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
924 925
	u64 nsec_raw;
	u64 nsec_real;
926
	u64 now;
927

928 929
	WARN_ON_ONCE(timekeeping_suspended);

930 931 932 933
	do {
		seq = read_seqcount_begin(&tk_core.seq);

		now = tk->tkr_mono.read(tk->tkr_mono.clock);
934 935
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
936 937 938 939 940 941 942 943 944 945 946 947
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
948

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
985 986
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
987 988 989 990 991 992 993 994 995 996 997 998
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
999
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1049
static bool cycle_between(u64 before, u64 test, u64 after)
1050 1051 1052 1053 1054 1055 1056 1057
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1058 1059
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1060
 * @get_time_fn:	Callback to get simultaneous device time and
1061
 *	system counter from the device driver
1062 1063 1064
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1065 1066 1067 1068 1069 1070 1071 1072 1073
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1074
				  struct system_time_snapshot *history_begin,
1075 1076 1077 1078
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1079
	u64 cycles, now, interval_start;
1080
	unsigned int clock_was_set_seq = 0;
1081
	ktime_t base_real, base_raw;
1082
	u64 nsec_real, nsec_raw;
1083
	u8 cs_was_changed_seq;
1084
	unsigned long seq;
1085
	bool do_interp;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
		now = tk->tkr_mono.read(tk->tkr_mono.clock);
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1134 1135 1136 1137 1138 1139

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1140
		u64 partial_history_cycles, total_history_cycles;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1166 1167 1168 1169
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1170 1171 1172 1173
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1174
 * NOTE: Users should be converted to using getnstimeofday()
1175 1176 1177
 */
void do_gettimeofday(struct timeval *tv)
{
1178
	struct timespec64 now;
1179

1180
	getnstimeofday64(&now);
1181 1182 1183 1184
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1185

1186
/**
1187 1188
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1189 1190 1191
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1192
int do_settimeofday64(const struct timespec64 *ts)
1193
{
1194
	struct timekeeper *tk = &tk_core.timekeeper;
1195
	struct timespec64 ts_delta, xt;
1196
	unsigned long flags;
1197
	int ret = 0;
1198

1199
	if (!timespec64_valid_strict(ts))
1200 1201
		return -EINVAL;

1202
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1203
	write_seqcount_begin(&tk_core.seq);
1204

1205
	timekeeping_forward_now(tk);
1206

1207
	xt = tk_xtime(tk);
1208 1209
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1210

1211 1212 1213 1214 1215
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1216
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1217

1218
	tk_set_xtime(tk, ts);
1219
out:
1220
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1221

1222
	write_seqcount_end(&tk_core.seq);
1223
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1224 1225 1226 1227

	/* signal hrtimers about time change */
	clock_was_set();

1228
	return ret;
1229
}
1230
EXPORT_SYMBOL(do_settimeofday64);
1231

1232 1233 1234 1235 1236 1237 1238 1239
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
1240
	struct timekeeper *tk = &tk_core.timekeeper;
1241
	unsigned long flags;
1242
	struct timespec64 ts64, tmp;
1243
	int ret = 0;
1244

1245
	if (!timespec_inject_offset_valid(ts))
1246 1247
		return -EINVAL;

1248 1249
	ts64 = timespec_to_timespec64(*ts);

1250
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1251
	write_seqcount_begin(&tk_core.seq);
1252

1253
	timekeeping_forward_now(tk);
1254

1255
	/* Make sure the proposed value is valid */
1256
	tmp = timespec64_add(tk_xtime(tk),  ts64);
1257 1258
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
1259 1260 1261
		ret = -EINVAL;
		goto error;
	}
1262

1263 1264
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1265

1266
error: /* even if we error out, we forwarded the time, so call update */
1267
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1268

1269
	write_seqcount_end(&tk_core.seq);
1270
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1271 1272 1273 1274

	/* signal hrtimers about time change */
	clock_was_set();

1275
	return ret;
1276 1277 1278
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1279
/**
1280
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1281 1282
 *
 */
1283
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1284 1285
{
	tk->tai_offset = tai_offset;
1286
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1287 1288
}

1289 1290 1291 1292 1293
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1294
static int change_clocksource(void *data)
1295
{
1296
	struct timekeeper *tk = &tk_core.timekeeper;
1297
	struct clocksource *new, *old;
1298
	unsigned long flags;
1299

1300
	new = (struct clocksource *) data;
1301

1302
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1303
	write_seqcount_begin(&tk_core.seq);
1304

1305
	timekeeping_forward_now(tk);
1306 1307 1308 1309 1310 1311
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1312
			old = tk->tkr_mono.clock;
1313 1314 1315 1316 1317 1318 1319
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1320
	}
1321
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1322

1323
	write_seqcount_end(&tk_core.seq);
1324
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1325

1326 1327
	return 0;
}
1328

1329 1330 1331 1332 1333 1334 1335
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1336
int timekeeping_notify(struct clocksource *clock)
1337
{
1338
	struct timekeeper *tk = &tk_core.timekeeper;
1339

1340
	if (tk->tkr_mono.clock == clock)
1341
		return 0;
1342
	stop_machine(change_clocksource, clock, NULL);
1343
	tick_clock_notify();
1344
	return tk->tkr_mono.clock == clock ? 0 : -1;
1345
}
1346

1347
/**
1348 1349
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1350 1351 1352
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1353
void getrawmonotonic64(struct timespec64 *ts)
1354
{
1355
	struct timekeeper *tk = &tk_core.timekeeper;
1356
	struct timespec64 ts64;
1357
	unsigned long seq;
1358
	u64 nsecs;
1359 1360

	do {
1361
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1362
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1363
		ts64 = tk->raw_time;
1364

1365
	} while (read_seqcount_retry(&tk_core.seq, seq));
1366

1367
	timespec64_add_ns(&ts64, nsecs);
1368
	*ts = ts64;
1369
}
1370 1371
EXPORT_SYMBOL(getrawmonotonic64);

1372

1373
/**
1374
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1375
 */
1376
int timekeeping_valid_for_hres(void)
1377
{
1378
	struct timekeeper *tk = &tk_core.timekeeper;
1379 1380 1381 1382
	unsigned long seq;
	int ret;

	do {
1383
		seq = read_seqcount_begin(&tk_core.seq);
1384

1385
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1386

1387
	} while (read_seqcount_retry(&tk_core.seq, seq));
1388 1389 1390 1391

	return ret;
}

1392 1393 1394 1395 1396
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1397
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1398 1399
	unsigned long seq;
	u64 ret;
1400

J
John Stultz 已提交
1401
	do {
1402
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1403

1404
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1405

1406
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1407 1408

	return ret;
1409 1410
}

1411
/**
1412
 * read_persistent_clock -  Return time from the persistent clock.
1413 1414
 *
 * Weak dummy function for arches that do not yet support it.
1415 1416
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1417 1418 1419
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1420
void __weak read_persistent_clock(struct timespec *ts)
1421
{
1422 1423
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1424 1425
}

1426 1427 1428 1429 1430 1431 1432 1433
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1434
/**
X
Xunlei Pang 已提交
1435
 * read_boot_clock64 -  Return time of the system start.
1436 1437 1438
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1439
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1440 1441 1442
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1443
void __weak read_boot_clock64(struct timespec64 *ts)
1444 1445 1446 1447 1448
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1449 1450 1451 1452 1453 1454
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1455 1456 1457 1458 1459
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1460
	struct timekeeper *tk = &tk_core.timekeeper;
1461
	struct clocksource *clock;
1462
	unsigned long flags;
1463
	struct timespec64 now, boot, tmp;
1464

1465
	read_persistent_clock64(&now);
1466
	if (!timespec64_valid_strict(&now)) {
1467 1468 1469 1470
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1471
	} else if (now.tv_sec || now.tv_nsec)
1472
		persistent_clock_exists = true;
1473

1474
	read_boot_clock64(&boot);
1475
	if (!timespec64_valid_strict(&boot)) {
1476 1477 1478 1479 1480
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1481

1482
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1483
	write_seqcount_begin(&tk_core.seq);
1484 1485
	ntp_init();

1486
	clock = clocksource_default_clock();
1487 1488
	if (clock->enable)
		clock->enable(clock);
1489
	tk_setup_internals(tk, clock);
1490

1491 1492 1493
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1494
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1495
		boot = tk_xtime(tk);
1496

1497
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1498
	tk_set_wall_to_mono(tk, tmp);
1499

1500
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1501

1502
	write_seqcount_end(&tk_core.seq);
1503
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1504 1505
}

1506
/* time in seconds when suspend began for persistent clock */
1507
static struct timespec64 timekeeping_suspend_time;
1508

1509 1510 1511 1512 1513 1514 1515
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1516
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1517
					   struct timespec64 *delta)
1518
{
1519
	if (!timespec64_valid_strict(delta)) {
1520 1521 1522
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1523 1524
		return;
	}
1525
	tk_xtime_add(tk, delta);
1526
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1527
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1528
	tk_debug_account_sleep_time(delta);
1529 1530
}

1531
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1567
/**
1568 1569
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1570
 *
1571
 * This hook is for architectures that cannot support read_persistent_clock64
1572
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1573
 * and also don't have an effective nonstop clocksource.
1574 1575 1576 1577
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1578
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1579
{
1580
	struct timekeeper *tk = &tk_core.timekeeper;
1581
	unsigned long flags;
1582

1583
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1584
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1585

1586
	timekeeping_forward_now(tk);
1587

1588
	__timekeeping_inject_sleeptime(tk, delta);
1589

1590
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1591

1592
	write_seqcount_end(&tk_core.seq);
1593
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1594 1595 1596 1597

	/* signal hrtimers about time change */
	clock_was_set();
}
1598
#endif
1599

1600 1601 1602
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1603
void timekeeping_resume(void)
1604
{
1605
	struct timekeeper *tk = &tk_core.timekeeper;
1606
	struct clocksource *clock = tk->tkr_mono.clock;
1607
	unsigned long flags;
1608
	struct timespec64 ts_new, ts_delta;
1609
	u64 cycle_now;
1610

1611
	sleeptime_injected = false;
1612
	read_persistent_clock64(&ts_new);
1613

1614
	clockevents_resume();
1615 1616
	clocksource_resume();

1617
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1618
	write_seqcount_begin(&tk_core.seq);
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1632
	cycle_now = tk->tkr_mono.read(clock);
1633
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1634
		cycle_now > tk->tkr_mono.cycle_last) {
1635
		u64 nsec, cyc_delta;
1636

1637 1638 1639
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
					      tk->tkr_mono.mask);
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1640
		ts_delta = ns_to_timespec64(nsec);
1641
		sleeptime_injected = true;
1642 1643
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1644
		sleeptime_injected = true;
1645
	}
1646

1647
	if (sleeptime_injected)
1648 1649 1650
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1651
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1652 1653
	tk->tkr_raw.cycle_last  = cycle_now;

1654
	tk->ntp_error = 0;
1655
	timekeeping_suspended = 0;
1656
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1657
	write_seqcount_end(&tk_core.seq);
1658
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1659 1660 1661

	touch_softlockup_watchdog();

1662
	tick_resume();
1663
	hrtimers_resume();
1664 1665
}

1666
int timekeeping_suspend(void)
1667
{
1668
	struct timekeeper *tk = &tk_core.timekeeper;
1669
	unsigned long flags;
1670 1671
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1672

1673
	read_persistent_clock64(&timekeeping_suspend_time);
1674

1675 1676 1677 1678 1679 1680
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1681
		persistent_clock_exists = true;
1682

1683
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1684
	write_seqcount_begin(&tk_core.seq);
1685
	timekeeping_forward_now(tk);
1686
	timekeeping_suspended = 1;
1687

1688
	if (persistent_clock_exists) {
1689
		/*
1690 1691 1692 1693
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1694
		 */
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1708
	}
1709 1710

	timekeeping_update(tk, TK_MIRROR);
1711
	halt_fast_timekeeper(tk);
1712
	write_seqcount_end(&tk_core.seq);
1713
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1714

1715
	tick_suspend();
M
Magnus Damm 已提交
1716
	clocksource_suspend();
1717
	clockevents_suspend();
1718 1719 1720 1721 1722

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1723
static struct syscore_ops timekeeping_syscore_ops = {
1724 1725 1726 1727
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1728
static int __init timekeeping_init_ops(void)
1729
{
1730 1731
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1732
}
1733
device_initcall(timekeeping_init_ops);
1734 1735

/*
1736
 * Apply a multiplier adjustment to the timekeeper
1737
 */
1738 1739 1740 1741
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1742
{
1743 1744
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1745

1746 1747 1748 1749
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1750
	}
1751 1752 1753
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1754

1755 1756 1757
	/*
	 * So the following can be confusing.
	 *
1758
	 * To keep things simple, lets assume mult_adj == 1 for now.
1759
	 *
1760
	 * When mult_adj != 1, remember that the interval and offset values
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1804
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1805 1806 1807 1808 1809
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1810
	tk->tkr_mono.mult += mult_adj;
1811
	tk->xtime_interval += interval;
1812
	tk->tkr_mono.xtime_nsec -= offset;
1813
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1825 1826 1827
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1828 1829
	s64 tick_error;
	bool negative;
1830
	u32 adj_scale;
1831 1832 1833 1834 1835

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1836 1837
	tk->ntp_tick = ntp_tick_length();

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1860
	tick_error = abs(tick_error);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1871
		tick_error >>= 1;
1872
	}
1873 1874

	/* scale the corrections */
1875
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1897 1898 1899
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1900 1901
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1902 1903
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1904
	}
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1920 1921 1922
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1923
		tk->ntp_error += neg << tk->ntp_error_shift;
1924
	}
1925 1926
}

1927 1928 1929
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1930
 * Helper function that accumulates the nsecs greater than a second
1931 1932 1933 1934
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1935
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1936
{
1937
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1938
	unsigned int clock_set = 0;
1939

1940
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1941 1942
		int leap;

1943
		tk->tkr_mono.xtime_nsec -= nsecps;
1944 1945 1946 1947
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1948
		if (unlikely(leap)) {
1949
			struct timespec64 ts;
1950 1951

			tk->xtime_sec += leap;
1952

1953 1954 1955
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1956
				timespec64_sub(tk->wall_to_monotonic, ts));
1957

1958 1959
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1960
			clock_set = TK_CLOCK_WAS_SET;
1961
		}
1962
	}
1963
	return clock_set;
1964 1965
}

1966 1967 1968 1969 1970 1971 1972 1973 1974
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1975 1976
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
1977
{
1978
	u64 interval = tk->cycle_interval << shift;
1979
	u64 raw_nsecs;
1980

Z
Zhen Lei 已提交
1981
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1982
	if (offset < interval)
1983 1984 1985
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1986
	offset -= interval;
1987
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1988
	tk->tkr_raw.cycle_last  += interval;
1989

1990
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1991
	*clock_set |= accumulate_nsecs_to_secs(tk);
1992

1993
	/* Accumulate raw time */
1994
	raw_nsecs = (u64)tk->raw_interval << shift;
1995
	raw_nsecs += tk->raw_time.tv_nsec;
1996 1997 1998
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1999
		tk->raw_time.tv_sec += raw_secs;
2000
	}
2001
	tk->raw_time.tv_nsec = raw_nsecs;
2002 2003

	/* Accumulate error between NTP and clock interval */
2004
	tk->ntp_error += tk->ntp_tick << shift;
2005 2006
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2007 2008 2009 2010

	return offset;
}

2011 2012 2013 2014
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2015
void update_wall_time(void)
2016
{
2017
	struct timekeeper *real_tk = &tk_core.timekeeper;
2018
	struct timekeeper *tk = &shadow_timekeeper;
2019
	u64 offset;
2020
	int shift = 0, maxshift;
2021
	unsigned int clock_set = 0;
J
John Stultz 已提交
2022 2023
	unsigned long flags;

2024
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2025 2026 2027

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2028
		goto out;
2029

J
John Stultz 已提交
2030
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2031
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2032
#else
2033 2034
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2035 2036
#endif

2037
	/* Check if there's really nothing to do */
2038
	if (offset < real_tk->cycle_interval)
2039 2040
		goto out;

2041 2042 2043
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

2044 2045 2046 2047
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2048
	 * that is smaller than the offset.  We then accumulate that
2049 2050
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2051
	 */
2052
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2053
	shift = max(0, shift);
2054
	/* Bound shift to one less than what overflows tick_length */
2055
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2056
	shift = min(shift, maxshift);
2057
	while (offset >= tk->cycle_interval) {
2058 2059
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2060
		if (offset < tk->cycle_interval<<shift)
2061
			shift--;
2062 2063 2064
	}

	/* correct the clock when NTP error is too big */
2065
	timekeeping_adjust(tk, offset);
2066

J
John Stultz 已提交
2067
	/*
2068 2069 2070 2071
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
2072

J
John Stultz 已提交
2073 2074
	/*
	 * Finally, make sure that after the rounding
2075
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2076
	 */
2077
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2078

2079
	write_seqcount_begin(&tk_core.seq);
2080 2081 2082 2083 2084 2085 2086
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2087
	 * memcpy under the tk_core.seq against one before we start
2088 2089
	 * updating.
	 */
2090
	timekeeping_update(tk, clock_set);
2091
	memcpy(real_tk, tk, sizeof(*tk));
2092
	/* The memcpy must come last. Do not put anything here! */
2093
	write_seqcount_end(&tk_core.seq);
2094
out:
2095
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2096
	if (clock_set)
2097 2098
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2099
}
T
Tomas Janousek 已提交
2100 2101

/**
2102 2103
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2104
 *
2105
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2106 2107 2108 2109 2110 2111
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2112
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2113
{
2114
	struct timekeeper *tk = &tk_core.timekeeper;
2115 2116
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

2117
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2118
}
2119
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2120

2121 2122
unsigned long get_seconds(void)
{
2123
	struct timekeeper *tk = &tk_core.timekeeper;
2124 2125

	return tk->xtime_sec;
2126 2127 2128
}
EXPORT_SYMBOL(get_seconds);

2129 2130
struct timespec __current_kernel_time(void)
{
2131
	struct timekeeper *tk = &tk_core.timekeeper;
2132

2133
	return timespec64_to_timespec(tk_xtime(tk));
2134
}
2135

2136
struct timespec64 current_kernel_time64(void)
2137
{
2138
	struct timekeeper *tk = &tk_core.timekeeper;
2139
	struct timespec64 now;
2140 2141 2142
	unsigned long seq;

	do {
2143
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2144

2145
		now = tk_xtime(tk);
2146
	} while (read_seqcount_retry(&tk_core.seq, seq));
2147

2148
	return now;
2149
}
2150
EXPORT_SYMBOL(current_kernel_time64);
2151

2152
struct timespec64 get_monotonic_coarse64(void)
2153
{
2154
	struct timekeeper *tk = &tk_core.timekeeper;
2155
	struct timespec64 now, mono;
2156 2157 2158
	unsigned long seq;

	do {
2159
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2160

2161 2162
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2163
	} while (read_seqcount_retry(&tk_core.seq, seq));
2164

2165
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2166
				now.tv_nsec + mono.tv_nsec);
2167

2168
	return now;
2169
}
2170
EXPORT_SYMBOL(get_monotonic_coarse64);
2171 2172

/*
2173
 * Must hold jiffies_lock
2174 2175 2176 2177 2178 2179
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2180

2181
/**
2182
 * ktime_get_update_offsets_now - hrtimer helper
2183
 * @cwsseq:	pointer to check and store the clock was set sequence number
2184 2185
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2186
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2187
 *
2188 2189 2190 2191
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2192
 * Called from hrtimer_interrupt() or retrigger_next_event()
2193
 */
2194 2195
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2196
{
2197
	struct timekeeper *tk = &tk_core.timekeeper;
2198
	unsigned int seq;
2199 2200
	ktime_t base;
	u64 nsecs;
2201 2202

	do {
2203
		seq = read_seqcount_begin(&tk_core.seq);
2204

2205 2206
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2207 2208
		base = ktime_add_ns(base, nsecs);

2209 2210 2211 2212 2213 2214
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2215 2216

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2217
		if (unlikely(base >= tk->next_leap_ktime))
2218 2219
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2220
	} while (read_seqcount_retry(&tk_core.seq, seq));
2221

2222
	return base;
2223 2224
}

2225 2226 2227 2228 2229
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2230
	struct timekeeper *tk = &tk_core.timekeeper;
2231
	unsigned long flags;
2232
	struct timespec64 ts;
2233
	s32 orig_tai, tai;
2234 2235 2236 2237 2238 2239 2240
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2252
	getnstimeofday64(&ts);
2253

2254
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2255
	write_seqcount_begin(&tk_core.seq);
2256

2257
	orig_tai = tai = tk->tai_offset;
2258
	ret = __do_adjtimex(txc, &ts, &tai);
2259

2260 2261
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2262
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2263
	}
2264 2265
	tk_update_leap_state(tk);

2266
	write_seqcount_end(&tk_core.seq);
2267 2268
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2269 2270 2271
	if (tai != orig_tai)
		clock_was_set();

2272 2273
	ntp_notify_cmos_timer();

2274 2275
	return ret;
}
2276 2277 2278 2279 2280

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2281
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2282
{
2283 2284 2285
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2286
	write_seqcount_begin(&tk_core.seq);
2287

2288
	__hardpps(phase_ts, raw_ts);
2289

2290
	write_seqcount_end(&tk_core.seq);
2291
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2292 2293 2294 2295
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2296 2297 2298 2299 2300 2301 2302 2303
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2304
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2305
	do_timer(ticks);
2306
	write_sequnlock(&jiffies_lock);
2307
	update_wall_time();
T
Torben Hohn 已提交
2308
}