timekeeping.c 64.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/syscore_ops.h>
21 22 23 24
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
25
#include <linux/stop_machine.h>
26
#include <linux/pvclock_gtod.h>
27
#include <linux/compiler.h>
28

29
#include "tick-internal.h"
30
#include "ntp_internal.h"
31
#include "timekeeping_internal.h"
32

33 34
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
35
#define TK_CLOCK_WAS_SET	(1 << 2)
36

37 38 39 40 41 42 43 44 45
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

46
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47
static struct timekeeper shadow_timekeeper;
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};
84

85 86 87
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

88 89
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
90 91
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92 93
		tk->xtime_sec++;
	}
94 95 96 97
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
98 99
}

100 101 102 103 104
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
105
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106 107 108
	return ts;
}

109
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 111
{
	tk->xtime_sec = ts->tv_sec;
112
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 114
}

115
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 117
{
	tk->xtime_sec += ts->tv_sec;
118
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119
	tk_normalize_xtime(tk);
120
}
121

122
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123
{
124
	struct timespec64 tmp;
125 126 127 128 129

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
130
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
132
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133
	tk->wall_to_monotonic = wtm;
134 135
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
136
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 138
}

139
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140
{
141
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
142 143
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
static inline u64 tk_clock_read(struct tk_read_base *tkr)
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

164
#ifdef CONFIG_DEBUG_TIMEKEEPING
165 166
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

167
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
168 169
{

170
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
171
	const char *name = tk->tkr_mono.clock->name;
172 173

	if (offset > max_cycles) {
174
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
175
				offset, name, max_cycles);
176
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
177 178
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
179
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
180 181 182 183
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
184

185 186
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
187 188 189
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
190
			tk->last_warning = jiffies;
191
		}
192
		tk->underflow_seen = 0;
193 194
	}

195 196
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
197 198 199
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
200
			tk->last_warning = jiffies;
201
		}
202
		tk->overflow_seen = 0;
203
	}
204
}
205

206
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
207
{
208
	struct timekeeper *tk = &tk_core.timekeeper;
209
	u64 now, last, mask, max, delta;
210
	unsigned int seq;
211

212 213 214 215 216 217 218 219 220
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
221
		now = tk_clock_read(tkr);
222 223 224 225
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
226

227
	delta = clocksource_delta(now, last, mask);
228

229 230 231 232
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
233
	if (unlikely((~delta & mask) < (mask >> 3))) {
234
		tk->underflow_seen = 1;
235
		delta = 0;
236
	}
237

238
	/* Cap delta value to the max_cycles values to avoid mult overflows */
239
	if (unlikely(delta > max)) {
240
		tk->overflow_seen = 1;
241
		delta = tkr->clock->max_cycles;
242
	}
243 244 245

	return delta;
}
246
#else
247
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
248 249
{
}
250
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
251
{
252
	u64 cycle_now, delta;
253 254

	/* read clocksource */
255
	cycle_now = tk_clock_read(tkr);
256 257 258 259 260 261

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
262 263
#endif

264
/**
265
 * tk_setup_internals - Set up internals to use clocksource clock.
266
 *
267
 * @tk:		The target timekeeper to setup.
268 269 270 271 272 273 274
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
275
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
276
{
277
	u64 interval;
278
	u64 tmp, ntpinterval;
279
	struct clocksource *old_clock;
280

281
	++tk->cs_was_changed_seq;
282 283 284
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
285
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
286

P
Peter Zijlstra 已提交
287 288 289 290
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

291 292 293
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
294
	ntpinterval = tmp;
295 296
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
297 298 299
	if (tmp == 0)
		tmp = 1;

300
	interval = (u64) tmp;
301
	tk->cycle_interval = interval;
302 303

	/* Go back from cycles -> shifted ns */
304
	tk->xtime_interval = interval * clock->mult;
305
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
306
	tk->raw_interval = interval * clock->mult;
307

308 309 310
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
311
		if (shift_change < 0) {
312
			tk->tkr_mono.xtime_nsec >>= -shift_change;
313 314
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
315
			tk->tkr_mono.xtime_nsec <<= shift_change;
316 317
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
318
	}
P
Peter Zijlstra 已提交
319

320
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
321
	tk->tkr_raw.shift = clock->shift;
322

323 324
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
325
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
326 327 328 329 330 331

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
332
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
333
	tk->tkr_raw.mult = clock->mult;
334
	tk->ntp_err_mult = 0;
335
}
336

337
/* Timekeeper helper functions. */
338 339

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
340 341
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
342
#else
343
static inline u32 arch_gettimeoffset(void) { return 0; }
344 345
#endif

346
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
347
{
348
	u64 nsec;
349 350 351 352 353 354 355 356

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

357
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
358
{
359
	u64 delta;
360

361
	delta = timekeeping_get_delta(tkr);
362 363
	return timekeeping_delta_to_ns(tkr, delta);
}
364

365
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
366
{
367
	u64 delta;
368

369 370 371
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
372 373
}

374 375
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
376
 * @tkr: Timekeeping readout base from which we take the update
377 378 379 380
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
381
 * Employ the latch technique; see @raw_write_seqcount_latch.
382 383 384 385 386 387
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
388
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
389
{
390
	struct tk_read_base *base = tkf->base;
391 392

	/* Force readers off to base[1] */
393
	raw_write_seqcount_latch(&tkf->seq);
394 395

	/* Update base[0] */
396
	memcpy(base, tkr, sizeof(*base));
397 398

	/* Force readers back to base[0] */
399
	raw_write_seqcount_latch(&tkf->seq);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
437
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
438 439 440 441 442 443
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
444
		seq = raw_read_seqcount_latch(&tkf->seq);
445
		tkr = tkf->base + (seq & 0x01);
446 447
		now = ktime_to_ns(tkr->base);

448 449
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
450
					tk_clock_read(tkr),
451 452
					tkr->cycle_last,
					tkr->mask));
453
	} while (read_seqcount_retry(&tkf->seq, seq));
454 455 456

	return now;
}
457 458 459 460 461

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
462 463
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
464 465 466 467 468 469
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);

499 500 501 502 503 504 505 506 507 508 509 510 511
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
512
	struct tk_read_base *tkr = &tk->tkr_mono;
513 514

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
515 516
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
517
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
518 519 520

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
521
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
522
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
523 524
}

525
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
526
#warning Please contact your maintainers, as GENERIC_TIME_VSYSCALL_OLD compatibity will disappear soon.
527 528 529

static inline void update_vsyscall(struct timekeeper *tk)
{
530
	struct timespec xt, wm;
531

532
	xt = timespec64_to_timespec(tk_xtime(tk));
533
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
534 535
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
552
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
553 554 555 556 557 558
	if (remainder != 0) {
		tk->tkr_mono.xtime_nsec -= remainder;
		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
		tk->ntp_error += remainder << tk->ntp_error_shift;
		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
	}
559 560 561 562 563
}
#else
#define old_vsyscall_fixup(tk)
#endif

564 565
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

566
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
567
{
568
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
569 570 571 572 573 574 575
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
576
	struct timekeeper *tk = &tk_core.timekeeper;
577 578 579
	unsigned long flags;
	int ret;

580
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
581
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
582
	update_pvclock_gtod(tk, true);
583
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
584 585 586 587 588 589 590 591 592 593 594 595 596 597

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

598
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
599
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
600
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
601 602 603 604 605

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

606 607 608 609 610 611
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
612
	if (tk->next_leap_ktime != KTIME_MAX)
613 614 615 616
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

617 618 619 620 621
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
622 623
	u64 seconds;
	u32 nsec;
624 625 626 627 628 629 630 631

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
632 633
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
634
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
635

636 637 638 639 640
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
641
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
642 643 644
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
645 646

	/* Update the monotonic raw base */
647
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
648 649
}

650
/* must hold timekeeper_lock */
651
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
652
{
653
	if (action & TK_CLEAR_NTP) {
654
		tk->ntp_error = 0;
655 656
		ntp_clear();
	}
657

658
	tk_update_leap_state(tk);
659 660
	tk_update_ktime_data(tk);

661 662 663
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

664
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
665
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
666 667 668

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
669 670 671 672 673 674 675 676
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
677 678
}

679
/**
680
 * timekeeping_forward_now - update clock to the current time
681
 *
682 683 684
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
685
 */
686
static void timekeeping_forward_now(struct timekeeper *tk)
687
{
688
	u64 cycle_now, delta;
689

690
	cycle_now = tk_clock_read(&tk->tkr_mono);
691 692
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
693
	tk->tkr_raw.cycle_last  = cycle_now;
694

695
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
696

697
	/* If arch requires, add in get_arch_timeoffset() */
698
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
699

700

701 702 703 704 705 706
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
707 708 709
}

/**
710
 * __getnstimeofday64 - Returns the time of day in a timespec64.
711 712
 * @ts:		pointer to the timespec to be set
 *
713 714
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
715
 */
716
int __getnstimeofday64(struct timespec64 *ts)
717
{
718
	struct timekeeper *tk = &tk_core.timekeeper;
719
	unsigned long seq;
720
	u64 nsecs;
721 722

	do {
723
		seq = read_seqcount_begin(&tk_core.seq);
724

725
		ts->tv_sec = tk->xtime_sec;
726
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
727

728
	} while (read_seqcount_retry(&tk_core.seq, seq));
729

730
	ts->tv_nsec = 0;
731
	timespec64_add_ns(ts, nsecs);
732 733 734 735 736 737 738 739 740

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
741
EXPORT_SYMBOL(__getnstimeofday64);
742 743

/**
744
 * getnstimeofday64 - Returns the time of day in a timespec64.
745
 * @ts:		pointer to the timespec64 to be set
746
 *
747
 * Returns the time of day in a timespec64 (WARN if suspended).
748
 */
749
void getnstimeofday64(struct timespec64 *ts)
750
{
751
	WARN_ON(__getnstimeofday64(ts));
752
}
753
EXPORT_SYMBOL(getnstimeofday64);
754

755 756
ktime_t ktime_get(void)
{
757
	struct timekeeper *tk = &tk_core.timekeeper;
758
	unsigned int seq;
759
	ktime_t base;
760
	u64 nsecs;
761 762 763 764

	WARN_ON(timekeeping_suspended);

	do {
765
		seq = read_seqcount_begin(&tk_core.seq);
766 767
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
768

769
	} while (read_seqcount_retry(&tk_core.seq, seq));
770

771
	return ktime_add_ns(base, nsecs);
772 773 774
}
EXPORT_SYMBOL_GPL(ktime_get);

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

792 793 794 795 796 797 798 799 800 801 802
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
803
	u64 nsecs;
804 805 806 807 808

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
809 810
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
811 812 813 814 815 816 817 818

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

839 840 841 842 843 844 845 846
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
847
	u64 nsecs;
848 849 850

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
851 852
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
853 854 855 856 857 858 859

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

860
/**
861
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
862 863 864 865
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
866
 * in normalized timespec64 format in the variable pointed to by @ts.
867
 */
868
void ktime_get_ts64(struct timespec64 *ts)
869
{
870
	struct timekeeper *tk = &tk_core.timekeeper;
871
	struct timespec64 tomono;
872
	unsigned int seq;
873
	u64 nsec;
874 875 876 877

	WARN_ON(timekeeping_suspended);

	do {
878
		seq = read_seqcount_begin(&tk_core.seq);
879
		ts->tv_sec = tk->xtime_sec;
880
		nsec = timekeeping_get_ns(&tk->tkr_mono);
881
		tomono = tk->wall_to_monotonic;
882

883
	} while (read_seqcount_retry(&tk_core.seq, seq));
884

885 886 887
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
888
}
889
EXPORT_SYMBOL_GPL(ktime_get_ts64);
890

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

939 940 941 942 943 944 945 946 947 948 949 950
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

951 952 953 954 955 956 957 958 959 960
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
961 962
	u64 nsec_raw;
	u64 nsec_real;
963
	u64 now;
964

965 966
	WARN_ON_ONCE(timekeeping_suspended);

967 968
	do {
		seq = read_seqcount_begin(&tk_core.seq);
969
		now = tk_clock_read(&tk->tkr_mono);
970 971
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
972 973 974 975 976 977 978 979 980 981 982 983
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1021 1022
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1035
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1085
static bool cycle_between(u64 before, u64 test, u64 after)
1086 1087 1088 1089 1090 1091 1092 1093
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1094 1095
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1096
 * @get_time_fn:	Callback to get simultaneous device time and
1097
 *	system counter from the device driver
1098 1099 1100
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1101 1102 1103 1104 1105 1106 1107 1108 1109
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1110
				  struct system_time_snapshot *history_begin,
1111 1112 1113 1114
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1115
	u64 cycles, now, interval_start;
1116
	unsigned int clock_was_set_seq = 0;
1117
	ktime_t base_real, base_raw;
1118
	u64 nsec_real, nsec_raw;
1119
	u8 cs_was_changed_seq;
1120
	unsigned long seq;
1121
	bool do_interp;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1141 1142 1143 1144 1145 1146
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1147
		now = tk_clock_read(&tk->tkr_mono);
1148 1149 1150 1151 1152 1153 1154 1155 1156
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1170 1171 1172 1173 1174 1175

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1176
		u64 partial_history_cycles, total_history_cycles;
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1202 1203 1204 1205
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1206 1207 1208 1209
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1210
 * NOTE: Users should be converted to using getnstimeofday()
1211 1212 1213
 */
void do_gettimeofday(struct timeval *tv)
{
1214
	struct timespec64 now;
1215

1216
	getnstimeofday64(&now);
1217 1218 1219 1220
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1221

1222
/**
1223 1224
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1225 1226 1227
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1228
int do_settimeofday64(const struct timespec64 *ts)
1229
{
1230
	struct timekeeper *tk = &tk_core.timekeeper;
1231
	struct timespec64 ts_delta, xt;
1232
	unsigned long flags;
1233
	int ret = 0;
1234

1235
	if (!timespec64_valid_strict(ts))
1236 1237
		return -EINVAL;

1238
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1239
	write_seqcount_begin(&tk_core.seq);
1240

1241
	timekeeping_forward_now(tk);
1242

1243
	xt = tk_xtime(tk);
1244 1245
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1246

1247 1248 1249 1250 1251
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1252
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1253

1254
	tk_set_xtime(tk, ts);
1255
out:
1256
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1257

1258
	write_seqcount_end(&tk_core.seq);
1259
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1260 1261 1262 1263

	/* signal hrtimers about time change */
	clock_was_set();

1264
	return ret;
1265
}
1266
EXPORT_SYMBOL(do_settimeofday64);
1267

1268 1269 1270 1271 1272 1273 1274 1275
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
1276
	struct timekeeper *tk = &tk_core.timekeeper;
1277
	unsigned long flags;
1278
	struct timespec64 ts64, tmp;
1279
	int ret = 0;
1280

1281
	if (!timespec_inject_offset_valid(ts))
1282 1283
		return -EINVAL;

1284 1285
	ts64 = timespec_to_timespec64(*ts);

1286
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1287
	write_seqcount_begin(&tk_core.seq);
1288

1289
	timekeeping_forward_now(tk);
1290

1291
	/* Make sure the proposed value is valid */
1292
	tmp = timespec64_add(tk_xtime(tk),  ts64);
1293 1294
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
1295 1296 1297
		ret = -EINVAL;
		goto error;
	}
1298

1299 1300
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1301

1302
error: /* even if we error out, we forwarded the time, so call update */
1303
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1304

1305
	write_seqcount_end(&tk_core.seq);
1306
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1307 1308 1309 1310

	/* signal hrtimers about time change */
	clock_was_set();

1311
	return ret;
1312 1313 1314
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1315
/**
1316
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1317 1318
 *
 */
1319
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1320 1321
{
	tk->tai_offset = tai_offset;
1322
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1323 1324
}

1325 1326 1327 1328 1329
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1330
static int change_clocksource(void *data)
1331
{
1332
	struct timekeeper *tk = &tk_core.timekeeper;
1333
	struct clocksource *new, *old;
1334
	unsigned long flags;
1335

1336
	new = (struct clocksource *) data;
1337

1338
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1339
	write_seqcount_begin(&tk_core.seq);
1340

1341
	timekeeping_forward_now(tk);
1342 1343 1344 1345 1346 1347
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1348
			old = tk->tkr_mono.clock;
1349 1350 1351 1352 1353 1354 1355
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1356
	}
1357
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1358

1359
	write_seqcount_end(&tk_core.seq);
1360
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1361

1362 1363
	return 0;
}
1364

1365 1366 1367 1368 1369 1370 1371
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1372
int timekeeping_notify(struct clocksource *clock)
1373
{
1374
	struct timekeeper *tk = &tk_core.timekeeper;
1375

1376
	if (tk->tkr_mono.clock == clock)
1377
		return 0;
1378
	stop_machine(change_clocksource, clock, NULL);
1379
	tick_clock_notify();
1380
	return tk->tkr_mono.clock == clock ? 0 : -1;
1381
}
1382

1383
/**
1384 1385
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1386 1387 1388
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1389
void getrawmonotonic64(struct timespec64 *ts)
1390
{
1391
	struct timekeeper *tk = &tk_core.timekeeper;
1392
	unsigned long seq;
1393
	u64 nsecs;
1394 1395

	do {
1396
		seq = read_seqcount_begin(&tk_core.seq);
1397
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1398
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1399

1400
	} while (read_seqcount_retry(&tk_core.seq, seq));
1401

1402 1403
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1404
}
1405 1406
EXPORT_SYMBOL(getrawmonotonic64);

1407

1408
/**
1409
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1410
 */
1411
int timekeeping_valid_for_hres(void)
1412
{
1413
	struct timekeeper *tk = &tk_core.timekeeper;
1414 1415 1416 1417
	unsigned long seq;
	int ret;

	do {
1418
		seq = read_seqcount_begin(&tk_core.seq);
1419

1420
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1421

1422
	} while (read_seqcount_retry(&tk_core.seq, seq));
1423 1424 1425 1426

	return ret;
}

1427 1428 1429 1430 1431
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1432
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1433 1434
	unsigned long seq;
	u64 ret;
1435

J
John Stultz 已提交
1436
	do {
1437
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1438

1439
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1440

1441
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1442 1443

	return ret;
1444 1445
}

1446
/**
1447
 * read_persistent_clock -  Return time from the persistent clock.
1448 1449
 *
 * Weak dummy function for arches that do not yet support it.
1450 1451
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1452 1453 1454
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1455
void __weak read_persistent_clock(struct timespec *ts)
1456
{
1457 1458
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1459 1460
}

1461 1462 1463 1464 1465 1466 1467 1468
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1469
/**
X
Xunlei Pang 已提交
1470
 * read_boot_clock64 -  Return time of the system start.
1471 1472 1473
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1474
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1475 1476 1477
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1478
void __weak read_boot_clock64(struct timespec64 *ts)
1479 1480 1481 1482 1483
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1484 1485 1486 1487 1488 1489
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1490 1491 1492 1493 1494
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1495
	struct timekeeper *tk = &tk_core.timekeeper;
1496
	struct clocksource *clock;
1497
	unsigned long flags;
1498
	struct timespec64 now, boot, tmp;
1499

1500
	read_persistent_clock64(&now);
1501
	if (!timespec64_valid_strict(&now)) {
1502 1503 1504 1505
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1506
	} else if (now.tv_sec || now.tv_nsec)
1507
		persistent_clock_exists = true;
1508

1509
	read_boot_clock64(&boot);
1510
	if (!timespec64_valid_strict(&boot)) {
1511 1512 1513 1514 1515
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1516

1517
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1518
	write_seqcount_begin(&tk_core.seq);
1519 1520
	ntp_init();

1521
	clock = clocksource_default_clock();
1522 1523
	if (clock->enable)
		clock->enable(clock);
1524
	tk_setup_internals(tk, clock);
1525

1526
	tk_set_xtime(tk, &now);
1527
	tk->raw_sec = 0;
1528
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1529
		boot = tk_xtime(tk);
1530

1531
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1532
	tk_set_wall_to_mono(tk, tmp);
1533

1534
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1535

1536
	write_seqcount_end(&tk_core.seq);
1537
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1538 1539
}

1540
/* time in seconds when suspend began for persistent clock */
1541
static struct timespec64 timekeeping_suspend_time;
1542

1543 1544 1545 1546 1547 1548 1549
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1550
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1551
					   struct timespec64 *delta)
1552
{
1553
	if (!timespec64_valid_strict(delta)) {
1554 1555 1556
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1557 1558
		return;
	}
1559
	tk_xtime_add(tk, delta);
1560
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1561
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1562
	tk_debug_account_sleep_time(delta);
1563 1564
}

1565
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1601
/**
1602 1603
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1604
 *
1605
 * This hook is for architectures that cannot support read_persistent_clock64
1606
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1607
 * and also don't have an effective nonstop clocksource.
1608 1609 1610 1611
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1612
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1613
{
1614
	struct timekeeper *tk = &tk_core.timekeeper;
1615
	unsigned long flags;
1616

1617
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1618
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1619

1620
	timekeeping_forward_now(tk);
1621

1622
	__timekeeping_inject_sleeptime(tk, delta);
1623

1624
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1625

1626
	write_seqcount_end(&tk_core.seq);
1627
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1628 1629 1630 1631

	/* signal hrtimers about time change */
	clock_was_set();
}
1632
#endif
1633

1634 1635 1636
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1637
void timekeeping_resume(void)
1638
{
1639
	struct timekeeper *tk = &tk_core.timekeeper;
1640
	struct clocksource *clock = tk->tkr_mono.clock;
1641
	unsigned long flags;
1642
	struct timespec64 ts_new, ts_delta;
1643
	u64 cycle_now;
1644

1645
	sleeptime_injected = false;
1646
	read_persistent_clock64(&ts_new);
1647

1648
	clockevents_resume();
1649 1650
	clocksource_resume();

1651
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1652
	write_seqcount_begin(&tk_core.seq);
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1666
	cycle_now = tk_clock_read(&tk->tkr_mono);
1667
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1668
		cycle_now > tk->tkr_mono.cycle_last) {
1669
		u64 nsec, cyc_delta;
1670

1671 1672 1673
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
					      tk->tkr_mono.mask);
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1674
		ts_delta = ns_to_timespec64(nsec);
1675
		sleeptime_injected = true;
1676 1677
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1678
		sleeptime_injected = true;
1679
	}
1680

1681
	if (sleeptime_injected)
1682 1683 1684
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1685
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1686 1687
	tk->tkr_raw.cycle_last  = cycle_now;

1688
	tk->ntp_error = 0;
1689
	timekeeping_suspended = 0;
1690
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1691
	write_seqcount_end(&tk_core.seq);
1692
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1693 1694 1695

	touch_softlockup_watchdog();

1696
	tick_resume();
1697
	hrtimers_resume();
1698 1699
}

1700
int timekeeping_suspend(void)
1701
{
1702
	struct timekeeper *tk = &tk_core.timekeeper;
1703
	unsigned long flags;
1704 1705
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1706

1707
	read_persistent_clock64(&timekeeping_suspend_time);
1708

1709 1710 1711 1712 1713 1714
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1715
		persistent_clock_exists = true;
1716

1717
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1718
	write_seqcount_begin(&tk_core.seq);
1719
	timekeeping_forward_now(tk);
1720
	timekeeping_suspended = 1;
1721

1722
	if (persistent_clock_exists) {
1723
		/*
1724 1725 1726 1727
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1728
		 */
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1742
	}
1743 1744

	timekeeping_update(tk, TK_MIRROR);
1745
	halt_fast_timekeeper(tk);
1746
	write_seqcount_end(&tk_core.seq);
1747
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1748

1749
	tick_suspend();
M
Magnus Damm 已提交
1750
	clocksource_suspend();
1751
	clockevents_suspend();
1752 1753 1754 1755 1756

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1757
static struct syscore_ops timekeeping_syscore_ops = {
1758 1759 1760 1761
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1762
static int __init timekeeping_init_ops(void)
1763
{
1764 1765
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1766
}
1767
device_initcall(timekeeping_init_ops);
1768 1769

/*
1770
 * Apply a multiplier adjustment to the timekeeper
1771
 */
1772 1773 1774 1775
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1776
{
1777 1778
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1779

1780 1781 1782 1783
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1784
	}
1785 1786 1787
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1788

1789 1790 1791
	/*
	 * So the following can be confusing.
	 *
1792
	 * To keep things simple, lets assume mult_adj == 1 for now.
1793
	 *
1794
	 * When mult_adj != 1, remember that the interval and offset values
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1838
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1839 1840 1841 1842 1843
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1844
	tk->tkr_mono.mult += mult_adj;
1845
	tk->xtime_interval += interval;
1846
	tk->tkr_mono.xtime_nsec -= offset;
1847
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1859 1860 1861
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1862 1863
	s64 tick_error;
	bool negative;
1864
	u32 adj_scale;
1865 1866 1867 1868 1869

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1870 1871
	tk->ntp_tick = ntp_tick_length();

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1894
	tick_error = abs(tick_error);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1905
		tick_error >>= 1;
1906
	}
1907 1908

	/* scale the corrections */
1909
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1931 1932 1933
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1934 1935
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1936 1937
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1938
	}
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1954 1955 1956
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1957
		tk->ntp_error += neg << tk->ntp_error_shift;
1958
	}
1959 1960
}

1961 1962 1963
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1964
 * Helper function that accumulates the nsecs greater than a second
1965 1966 1967 1968
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1969
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1970
{
1971
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1972
	unsigned int clock_set = 0;
1973

1974
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1975 1976
		int leap;

1977
		tk->tkr_mono.xtime_nsec -= nsecps;
1978 1979 1980 1981
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1982
		if (unlikely(leap)) {
1983
			struct timespec64 ts;
1984 1985

			tk->xtime_sec += leap;
1986

1987 1988 1989
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1990
				timespec64_sub(tk->wall_to_monotonic, ts));
1991

1992 1993
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1994
			clock_set = TK_CLOCK_WAS_SET;
1995
		}
1996
	}
1997
	return clock_set;
1998 1999
}

2000 2001 2002 2003 2004 2005 2006 2007 2008
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
2009 2010
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
2011
{
2012
	u64 interval = tk->cycle_interval << shift;
2013
	u64 snsec_per_sec;
2014

Z
Zhen Lei 已提交
2015
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2016
	if (offset < interval)
2017 2018 2019
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2020
	offset -= interval;
2021
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2022
	tk->tkr_raw.cycle_last  += interval;
2023

2024
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2025
	*clock_set |= accumulate_nsecs_to_secs(tk);
2026

2027
	/* Accumulate raw time */
2028 2029 2030 2031
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2032
		tk->raw_sec++;
2033 2034 2035
	}

	/* Accumulate error between NTP and clock interval */
2036
	tk->ntp_error += tk->ntp_tick << shift;
2037 2038
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2039 2040 2041 2042

	return offset;
}

2043 2044 2045 2046
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2047
void update_wall_time(void)
2048
{
2049
	struct timekeeper *real_tk = &tk_core.timekeeper;
2050
	struct timekeeper *tk = &shadow_timekeeper;
2051
	u64 offset;
2052
	int shift = 0, maxshift;
2053
	unsigned int clock_set = 0;
J
John Stultz 已提交
2054 2055
	unsigned long flags;

2056
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2057 2058 2059

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2060
		goto out;
2061

J
John Stultz 已提交
2062
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2063
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2064
#else
2065
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2066
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2067 2068
#endif

2069
	/* Check if there's really nothing to do */
2070
	if (offset < real_tk->cycle_interval)
2071 2072
		goto out;

2073
	/* Do some additional sanity checking */
2074
	timekeeping_check_update(tk, offset);
2075

2076 2077 2078 2079
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2080
	 * that is smaller than the offset.  We then accumulate that
2081 2082
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2083
	 */
2084
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2085
	shift = max(0, shift);
2086
	/* Bound shift to one less than what overflows tick_length */
2087
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2088
	shift = min(shift, maxshift);
2089
	while (offset >= tk->cycle_interval) {
2090 2091
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2092
		if (offset < tk->cycle_interval<<shift)
2093
			shift--;
2094 2095 2096
	}

	/* correct the clock when NTP error is too big */
2097
	timekeeping_adjust(tk, offset);
2098

J
John Stultz 已提交
2099
	/*
2100 2101 2102 2103
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
2104

J
John Stultz 已提交
2105 2106
	/*
	 * Finally, make sure that after the rounding
2107
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2108
	 */
2109
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2110

2111
	write_seqcount_begin(&tk_core.seq);
2112 2113 2114 2115 2116 2117 2118
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2119
	 * memcpy under the tk_core.seq against one before we start
2120 2121
	 * updating.
	 */
2122
	timekeeping_update(tk, clock_set);
2123
	memcpy(real_tk, tk, sizeof(*tk));
2124
	/* The memcpy must come last. Do not put anything here! */
2125
	write_seqcount_end(&tk_core.seq);
2126
out:
2127
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2128
	if (clock_set)
2129 2130
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2131
}
T
Tomas Janousek 已提交
2132 2133

/**
2134 2135
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2136
 *
2137
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2138 2139 2140 2141 2142 2143
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2144
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2145
{
2146
	struct timekeeper *tk = &tk_core.timekeeper;
2147 2148
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

2149
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2150
}
2151
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2152

2153 2154
unsigned long get_seconds(void)
{
2155
	struct timekeeper *tk = &tk_core.timekeeper;
2156 2157

	return tk->xtime_sec;
2158 2159 2160
}
EXPORT_SYMBOL(get_seconds);

2161 2162
struct timespec __current_kernel_time(void)
{
2163
	struct timekeeper *tk = &tk_core.timekeeper;
2164

2165
	return timespec64_to_timespec(tk_xtime(tk));
2166
}
2167

2168
struct timespec64 current_kernel_time64(void)
2169
{
2170
	struct timekeeper *tk = &tk_core.timekeeper;
2171
	struct timespec64 now;
2172 2173 2174
	unsigned long seq;

	do {
2175
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2176

2177
		now = tk_xtime(tk);
2178
	} while (read_seqcount_retry(&tk_core.seq, seq));
2179

2180
	return now;
2181
}
2182
EXPORT_SYMBOL(current_kernel_time64);
2183

2184
struct timespec64 get_monotonic_coarse64(void)
2185
{
2186
	struct timekeeper *tk = &tk_core.timekeeper;
2187
	struct timespec64 now, mono;
2188 2189 2190
	unsigned long seq;

	do {
2191
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2192

2193 2194
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2195
	} while (read_seqcount_retry(&tk_core.seq, seq));
2196

2197
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2198
				now.tv_nsec + mono.tv_nsec);
2199

2200
	return now;
2201
}
2202
EXPORT_SYMBOL(get_monotonic_coarse64);
2203 2204

/*
2205
 * Must hold jiffies_lock
2206 2207 2208 2209 2210 2211
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2212

2213
/**
2214
 * ktime_get_update_offsets_now - hrtimer helper
2215
 * @cwsseq:	pointer to check and store the clock was set sequence number
2216 2217
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2218
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2219
 *
2220 2221 2222 2223
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2224
 * Called from hrtimer_interrupt() or retrigger_next_event()
2225
 */
2226 2227
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2228
{
2229
	struct timekeeper *tk = &tk_core.timekeeper;
2230
	unsigned int seq;
2231 2232
	ktime_t base;
	u64 nsecs;
2233 2234

	do {
2235
		seq = read_seqcount_begin(&tk_core.seq);
2236

2237 2238
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2239 2240
		base = ktime_add_ns(base, nsecs);

2241 2242 2243 2244 2245 2246
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2247 2248

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2249
		if (unlikely(base >= tk->next_leap_ktime))
2250 2251
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2252
	} while (read_seqcount_retry(&tk_core.seq, seq));
2253

2254
	return base;
2255 2256
}

2257 2258 2259 2260 2261
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2262
	struct timekeeper *tk = &tk_core.timekeeper;
2263
	unsigned long flags;
2264
	struct timespec64 ts;
2265
	s32 orig_tai, tai;
2266 2267 2268 2269 2270 2271 2272
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2284
	getnstimeofday64(&ts);
2285

2286
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2287
	write_seqcount_begin(&tk_core.seq);
2288

2289
	orig_tai = tai = tk->tai_offset;
2290
	ret = __do_adjtimex(txc, &ts, &tai);
2291

2292 2293
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2294
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2295
	}
2296 2297
	tk_update_leap_state(tk);

2298
	write_seqcount_end(&tk_core.seq);
2299 2300
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2301 2302 2303
	if (tai != orig_tai)
		clock_was_set();

2304 2305
	ntp_notify_cmos_timer();

2306 2307
	return ret;
}
2308 2309 2310 2311 2312

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2313
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2314
{
2315 2316 2317
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2318
	write_seqcount_begin(&tk_core.seq);
2319

2320
	__hardpps(phase_ts, raw_ts);
2321

2322
	write_seqcount_end(&tk_core.seq);
2323
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2324 2325
}
EXPORT_SYMBOL(hardpps);
2326
#endif /* CONFIG_NTP_PPS */
2327

T
Torben Hohn 已提交
2328 2329 2330 2331 2332 2333 2334 2335
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2336
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2337
	do_timer(ticks);
2338
	write_sequnlock(&jiffies_lock);
2339
	update_wall_time();
T
Torben Hohn 已提交
2340
}