timekeeping.c 23.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17 18 19 20 21
#include <linux/sysdev.h>
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* The shift value of the current clocksource. */
	int	shift;
30 31 32 33 34 35 36 37 38 39 40 41 42

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
43 44 45
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
46 47
	/* NTP adjusted clock multiplier */
	u32	mult;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
};

struct timekeeper timekeeper;

/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
	u64 tmp;

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
73 74
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
75 76 77 78 79 80 81 82 83
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
	timekeeper.raw_interval =
84
		((u64) interval * clock->mult) >> clock->shift;
85 86

	timekeeper.xtime_nsec = 0;
87
	timekeeper.shift = clock->shift;
88 89

	timekeeper.ntp_error = 0;
90
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
91 92 93 94 95 96 97

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
98
}
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

134 135
/*
 * This read-write spinlock protects us from races in SMP while
136
 * playing with xtime.
137
 */
A
Adrian Bunk 已提交
138
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
139 140 141 142 143 144 145 146 147


/*
 * The current time
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
T
Tomas Janousek 已提交
148 149 150 151 152 153 154
 *
 * wall_to_monotonic is moved after resume from suspend for the monotonic
 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
 * to get the real boot based time offset.
 *
 * - wall_to_monotonic is no longer the boot time, getboottime must be
 * used instead.
155 156 157
 */
struct timespec xtime __attribute__ ((aligned (16)));
struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
158
static struct timespec total_sleep_time;
159

160 161 162 163 164
/*
 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
 */
struct timespec raw_time;

165 166 167
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

L
Linus Torvalds 已提交
168 169 170 171 172 173 174
static struct timespec xtime_cache __attribute__ ((aligned (16)));
void update_xtime_cache(u64 nsec)
{
	xtime_cache = xtime;
	timespec_add_ns(&xtime_cache, nsec);
}

175 176 177 178 179
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
	xtime.tv_sec += leapsecond;
	wall_to_monotonic.tv_sec -= leapsecond;
180
	update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
181
}
182 183

#ifdef CONFIG_GENERIC_TIME
184

185
/**
186
 * timekeeping_forward_now - update clock to the current time
187
 *
188 189 190
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
191
 */
192
static void timekeeping_forward_now(void)
193 194
{
	cycle_t cycle_now, cycle_delta;
195
	struct clocksource *clock;
196
	s64 nsec;
197

198
	clock = timekeeper.clock;
199
	cycle_now = clock->read(clock);
200
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
201
	clock->cycle_last = cycle_now;
202

203 204
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
205 206 207 208

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

209
	timespec_add_ns(&xtime, nsec);
210

211
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
212
	timespec_add_ns(&raw_time, nsec);
213 214 215
}

/**
216
 * getnstimeofday - Returns the time of day in a timespec
217 218
 * @ts:		pointer to the timespec to be set
 *
219
 * Returns the time of day in a timespec.
220
 */
221
void getnstimeofday(struct timespec *ts)
222 223 224 225
{
	unsigned long seq;
	s64 nsecs;

226 227
	WARN_ON(timekeeping_suspended);

228 229 230 231
	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
232
		nsecs = timekeeping_get_ns();
233

234 235 236
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

237 238 239 240 241 242 243
	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

244 245 246 247 248 249 250 251 252 253 254
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
255
		nsecs += timekeeping_get_ns();
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

	} while (read_seqretry(&xtime_lock, seq));
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
286
		nsecs = timekeeping_get_ns();
287 288 289 290 291 292 293 294

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

295 296 297 298
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
299
 * NOTE: Users should be converted to using getnstimeofday()
300 301 302 303 304
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

305
	getnstimeofday(&now);
306 307 308 309 310 311 312 313 314 315 316 317 318
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
int do_settimeofday(struct timespec *tv)
{
319
	struct timespec ts_delta;
320 321 322 323 324 325 326
	unsigned long flags;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

327
	timekeeping_forward_now();
328 329 330 331

	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
332

333
	xtime = *tv;
334

L
Linus Torvalds 已提交
335 336
	update_xtime_cache(0);

337
	timekeeper.ntp_error = 0;
338 339
	ntp_clear();

340
	update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
357
static int change_clocksource(void *data)
358
{
359
	struct clocksource *new, *old;
360

361
	new = (struct clocksource *) data;
362

363
	timekeeping_forward_now();
364 365 366 367 368 369 370 371
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
	return 0;
}
372

373 374 375 376 377 378 379 380 381 382
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
383
		return;
384
	stop_machine(change_clocksource, clock, NULL);
385 386
	tick_clock_notify();
}
387

388
#else /* GENERIC_TIME */
389

390
static inline void timekeeping_forward_now(void) { }
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get(void)
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);
431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
#endif /* !GENERIC_TIME */

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
448

449 450 451 452 453 454 455 456 457 458 459 460 461
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);
462
		nsecs = timekeeping_get_ns_raw();
463
		*ts = raw_time;
464 465 466 467 468 469 470 471

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


472
/**
473
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
474
 */
475
int timekeeping_valid_for_hres(void)
476 477 478 479 480 481 482
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

483
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
484 485 486 487 488 489

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

490 491 492 493 494 495 496 497 498 499 500
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 *
 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
 * ensure that the clocksource does not change!
 */
u64 timekeeping_max_deferment(void)
{
	return timekeeper.clock->max_idle_ns;
}

501
/**
502
 * read_persistent_clock -  Return time from the persistent clock.
503 504
 *
 * Weak dummy function for arches that do not yet support it.
505 506
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
507 508 509
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
510
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
511
{
512 513
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
514 515
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

531 532 533 534 535
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
536
	struct clocksource *clock;
537
	unsigned long flags;
538
	struct timespec now, boot;
539 540

	read_persistent_clock(&now);
541
	read_boot_clock(&boot);
542 543 544

	write_seqlock_irqsave(&xtime_lock, flags);

R
Roman Zippel 已提交
545
	ntp_init();
546

547
	clock = clocksource_default_clock();
548 549
	if (clock->enable)
		clock->enable(clock);
550
	timekeeper_setup_internals(clock);
551

552 553
	xtime.tv_sec = now.tv_sec;
	xtime.tv_nsec = now.tv_nsec;
554 555
	raw_time.tv_sec = 0;
	raw_time.tv_nsec = 0;
556 557 558 559
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
		boot.tv_sec = xtime.tv_sec;
		boot.tv_nsec = xtime.tv_nsec;
	}
560
	set_normalized_timespec(&wall_to_monotonic,
561
				-boot.tv_sec, -boot.tv_nsec);
L
Linus Torvalds 已提交
562
	update_xtime_cache(0);
563 564
	total_sleep_time.tv_sec = 0;
	total_sleep_time.tv_nsec = 0;
565 566 567 568
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* time in seconds when suspend began */
569
static struct timespec timekeeping_suspend_time;
570 571 572 573 574 575 576 577 578 579 580 581

/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 * @dev:	unused
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
static int timekeeping_resume(struct sys_device *dev)
{
	unsigned long flags;
582 583 584
	struct timespec ts;

	read_persistent_clock(&ts);
585

586 587
	clocksource_resume();

588 589
	write_seqlock_irqsave(&xtime_lock, flags);

590 591 592 593 594
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
		xtime = timespec_add_safe(xtime, ts);
		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
		total_sleep_time = timespec_add_safe(total_sleep_time, ts);
595
	}
L
Linus Torvalds 已提交
596
	update_xtime_cache(0);
597
	/* re-base the last cycle value */
598 599
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
	hres_timers_resume();

	return 0;
}

static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
{
	unsigned long flags;

617
	read_persistent_clock(&timekeeping_suspend_time);
618

619
	write_seqlock_irqsave(&xtime_lock, flags);
620
	timekeeping_forward_now();
621 622 623 624
	timekeeping_suspended = 1;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
625
	clocksource_suspend();
626 627 628 629 630 631

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
static struct sysdev_class timekeeping_sysclass = {
632
	.name		= "timekeeping",
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

static struct sys_device device_timer = {
	.id		= 0,
	.cls		= &timekeeping_sysclass,
};

static int __init timekeeping_init_device(void)
{
	int error = sysdev_class_register(&timekeeping_sysclass);
	if (!error)
		error = sysdev_register(&device_timer);
	return error;
}

device_initcall(timekeeping_init_device);

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
656
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
657 658 659 660 661 662 663 664 665 666 667 668
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
669
	 * here.  This is tuned so that an error of about 1 msec is adjusted
670 671
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
672
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
673 674 675 676 677 678 679 680
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
681
	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
682
	tick_error -= timekeeper.xtime_interval >> 1;
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
707
static void timekeeping_adjust(s64 offset)
708
{
709
	s64 error, interval = timekeeper.cycle_interval;
710 711
	int adj;

712
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
713 714 715 716 717
	if (error > interval) {
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
718
			adj = timekeeping_bigadjust(error, &interval, &offset);
719 720 721 722 723 724 725
	} else if (error < -interval) {
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
726
			adj = timekeeping_bigadjust(error, &interval, &offset);
727 728 729
	} else
		return;

730
	timekeeper.mult += adj;
731 732 733
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
734
				timekeeper.ntp_error_shift;
735 736
}

L
Linus Torvalds 已提交
737

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
		timekeeper.xtime_nsec -= nsecps;
		xtime.tv_sec++;
		second_overflow();
	}

	/* Accumulate into raw time */
	raw_time.tv_nsec += timekeeper.raw_interval << shift;;
	while (raw_time.tv_nsec >= NSEC_PER_SEC) {
		raw_time.tv_nsec -= NSEC_PER_SEC;
		raw_time.tv_sec++;
	}

	/* Accumulate error between NTP and clock interval */
	timekeeper.ntp_error += tick_length << shift;
	timekeeper.ntp_error -= timekeeper.xtime_interval <<
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
781

782 783 784 785 786 787 788
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
void update_wall_time(void)
{
789
	struct clocksource *clock;
790
	cycle_t offset;
L
Linus Torvalds 已提交
791
	u64 nsecs;
792
	int shift = 0, maxshift;
793 794 795 796 797

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;

798
	clock = timekeeper.clock;
799
#ifdef CONFIG_GENERIC_TIME
800
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
801
#else
802
	offset = timekeeper.cycle_interval;
803
#endif
804
	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
805

806 807 808 809 810 811 812
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
813
	 */
814 815 816 817 818
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
	shift = min(shift, maxshift);
819
	while (offset >= timekeeper.cycle_interval) {
820 821
		offset = logarithmic_accumulation(offset, shift);
		shift--;
822 823 824
	}

	/* correct the clock when NTP error is too big */
825
	timekeeping_adjust(offset);
826

827 828 829 830
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
831
	 * slightly speeding the clocksource up in timekeeping_adjust(),
832 833 834 835 836 837 838 839 840 841 842
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
843 844 845
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
846
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
847 848
	}

849 850 851
	/* store full nanoseconds into xtime after rounding it up and
	 * add the remainder to the error difference.
	 */
852 853 854 855
	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
856

L
Linus Torvalds 已提交
857 858 859
	nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift);
	update_xtime_cache(nsecs);

860
	/* check to see if there is a new clocksource to use */
861
	update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
862
}
T
Tomas Janousek 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
877 878 879 880
	struct timespec boottime = {
		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
	};
881 882

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
883
}
884
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
885 886 887 888 889 890 891

/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
892
	*ts = timespec_add_safe(*ts, total_sleep_time);
T
Tomas Janousek 已提交
893
}
894
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
895

896 897
unsigned long get_seconds(void)
{
L
Linus Torvalds 已提交
898
	return xtime_cache.tv_sec;
899 900 901
}
EXPORT_SYMBOL(get_seconds);

902 903
struct timespec __current_kernel_time(void)
{
L
Linus Torvalds 已提交
904
	return xtime_cache;
905
}
906

907 908 909 910 911 912 913
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
914 915

		now = xtime_cache;
916 917 918 919 920
	} while (read_seqretry(&xtime_lock, seq));

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
921 922 923 924 925 926 927 928

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
929 930

		now = xtime_cache;
931 932 933 934 935 936 937
		mono = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}