timekeeping.c 66.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/sched/clock.h>
21
#include <linux/syscore_ops.h>
22 23 24 25
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
26
#include <linux/stop_machine.h>
27
#include <linux/pvclock_gtod.h>
28
#include <linux/compiler.h>
29

30
#include "tick-internal.h"
31
#include "ntp_internal.h"
32
#include "timekeeping_internal.h"
33

34 35
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
36
#define TK_CLOCK_WAS_SET	(1 << 2)
37

38 39 40 41 42 43 44 45
enum timekeeping_adv_mode {
	/* Update timekeeper when a tick has passed */
	TK_ADV_TICK,

	/* Update timekeeper on a direct frequency change */
	TK_ADV_FREQ
};

46 47 48 49 50 51 52
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
53 54 55
} tk_core ____cacheline_aligned = {
	.seq = SEQCNT_ZERO(tk_core.seq),
};
56

57
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
58
static struct timekeeper shadow_timekeeper;
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};
95

96 97 98
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

99 100
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
101 102
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
103 104
		tk->xtime_sec++;
	}
105 106 107 108
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
109 110
}

111
static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
112 113 114 115
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
116
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
117 118 119
	return ts;
}

120
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
121 122
{
	tk->xtime_sec = ts->tv_sec;
123
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
124 125
}

126
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
127 128
{
	tk->xtime_sec += ts->tv_sec;
129
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
130
	tk_normalize_xtime(tk);
131
}
132

133
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
134
{
135
	struct timespec64 tmp;
136 137 138 139 140

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
141
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
142
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
143
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
144
	tk->wall_to_monotonic = wtm;
145 146
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
147
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
148 149
}

150
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
151
{
152
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
153 154
}

155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
168
static inline u64 tk_clock_read(const struct tk_read_base *tkr)
169 170 171 172 173 174
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

175
#ifdef CONFIG_DEBUG_TIMEKEEPING
176 177
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

178
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
179 180
{

181
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
182
	const char *name = tk->tkr_mono.clock->name;
183 184

	if (offset > max_cycles) {
185
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
186
				offset, name, max_cycles);
187
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
188 189
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
190
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
191 192 193 194
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
195

196 197
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
198 199 200
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
201
			tk->last_warning = jiffies;
202
		}
203
		tk->underflow_seen = 0;
204 205
	}

206 207
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
208 209 210
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
211
			tk->last_warning = jiffies;
212
		}
213
		tk->overflow_seen = 0;
214
	}
215
}
216

217
static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
218
{
219
	struct timekeeper *tk = &tk_core.timekeeper;
220
	u64 now, last, mask, max, delta;
221
	unsigned int seq;
222

223 224 225 226 227 228 229 230 231
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
232
		now = tk_clock_read(tkr);
233 234 235 236
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
237

238
	delta = clocksource_delta(now, last, mask);
239

240 241 242 243
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
244
	if (unlikely((~delta & mask) < (mask >> 3))) {
245
		tk->underflow_seen = 1;
246
		delta = 0;
247
	}
248

249
	/* Cap delta value to the max_cycles values to avoid mult overflows */
250
	if (unlikely(delta > max)) {
251
		tk->overflow_seen = 1;
252
		delta = tkr->clock->max_cycles;
253
	}
254 255 256

	return delta;
}
257
#else
258
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
259 260
{
}
261
static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
262
{
263
	u64 cycle_now, delta;
264 265

	/* read clocksource */
266
	cycle_now = tk_clock_read(tkr);
267 268 269 270 271 272

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
273 274
#endif

275
/**
276
 * tk_setup_internals - Set up internals to use clocksource clock.
277
 *
278
 * @tk:		The target timekeeper to setup.
279 280 281 282 283 284 285
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
286
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
287
{
288
	u64 interval;
289
	u64 tmp, ntpinterval;
290
	struct clocksource *old_clock;
291

292
	++tk->cs_was_changed_seq;
293 294 295
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
296
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
297

P
Peter Zijlstra 已提交
298 299 300 301
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

302 303 304
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
305
	ntpinterval = tmp;
306 307
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
308 309 310
	if (tmp == 0)
		tmp = 1;

311
	interval = (u64) tmp;
312
	tk->cycle_interval = interval;
313 314

	/* Go back from cycles -> shifted ns */
315
	tk->xtime_interval = interval * clock->mult;
316
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
317
	tk->raw_interval = interval * clock->mult;
318

319 320 321
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
322
		if (shift_change < 0) {
323
			tk->tkr_mono.xtime_nsec >>= -shift_change;
324 325
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
326
			tk->tkr_mono.xtime_nsec <<= shift_change;
327 328
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
329
	}
P
Peter Zijlstra 已提交
330

331
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
332
	tk->tkr_raw.shift = clock->shift;
333

334 335
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
336
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
337 338 339 340 341 342

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
343
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
344
	tk->tkr_raw.mult = clock->mult;
345
	tk->ntp_err_mult = 0;
346
	tk->skip_second_overflow = 0;
347
}
348

349
/* Timekeeper helper functions. */
350 351

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
352 353
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
354
#else
355
static inline u32 arch_gettimeoffset(void) { return 0; }
356 357
#endif

358
static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
359
{
360
	u64 nsec;
361 362 363 364 365 366 367 368

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

369
static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
370
{
371
	u64 delta;
372

373
	delta = timekeeping_get_delta(tkr);
374 375
	return timekeeping_delta_to_ns(tkr, delta);
}
376

377
static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
378
{
379
	u64 delta;
380

381 382 383
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
384 385
}

386 387
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
388
 * @tkr: Timekeeping readout base from which we take the update
389 390 391 392
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
393
 * Employ the latch technique; see @raw_write_seqcount_latch.
394 395 396 397 398 399
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
400 401
static void update_fast_timekeeper(const struct tk_read_base *tkr,
				   struct tk_fast *tkf)
402
{
403
	struct tk_read_base *base = tkf->base;
404 405

	/* Force readers off to base[1] */
406
	raw_write_seqcount_latch(&tkf->seq);
407 408

	/* Update base[0] */
409
	memcpy(base, tkr, sizeof(*base));
410 411

	/* Force readers back to base[0] */
412
	raw_write_seqcount_latch(&tkf->seq);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
450
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
451 452 453 454 455 456
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
457
		seq = raw_read_seqcount_latch(&tkf->seq);
458
		tkr = tkf->base + (seq & 0x01);
459 460
		now = ktime_to_ns(tkr->base);

461 462
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
463
					tk_clock_read(tkr),
464 465
					tkr->cycle_last,
					tkr->mask));
466
	} while (read_seqcount_retry(&tkf->seq, seq));
467 468 469

	return now;
}
470 471 472 473 474

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
475 476
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
477 478 479 480 481 482
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);


513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
/*
 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 */
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_real);

		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tk_clock_read(tkr),
					tkr->cycle_last,
					tkr->mask));
	} while (read_seqcount_retry(&tkf->seq, seq));

	return now;
}

/**
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 */
u64 ktime_get_real_fast_ns(void)
{
	return __ktime_get_real_fast_ns(&tk_fast_mono);
}
544
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
545

546 547 548 549 550 551 552 553 554 555
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
556
static void halt_fast_timekeeper(const struct timekeeper *tk)
557 558
{
	static struct tk_read_base tkr_dummy;
559
	const struct tk_read_base *tkr = &tk->tkr_mono;
560 561

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
562 563
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
564
	tkr_dummy.base_real = tkr->base + tk->offs_real;
565
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
566 567 568

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
569
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
570
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
571 572
}

573 574
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

575
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
576
{
577
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
578 579 580 581 582 583 584
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
585
	struct timekeeper *tk = &tk_core.timekeeper;
586 587 588
	unsigned long flags;
	int ret;

589
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
590
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
591
	update_pvclock_gtod(tk, true);
592
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
593 594 595 596 597 598 599 600 601 602 603 604 605 606

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

607
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
608
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
609
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
610 611 612 613 614

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

615 616 617 618 619 620
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
621
	if (tk->next_leap_ktime != KTIME_MAX)
622 623 624 625
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

626 627 628 629 630
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
631 632
	u64 seconds;
	u32 nsec;
633 634 635 636 637 638 639 640

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
641 642
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
643
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
644

645 646 647 648 649
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
650
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
651 652 653
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
654 655

	/* Update the monotonic raw base */
656
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
657 658
}

659
/* must hold timekeeper_lock */
660
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
661
{
662
	if (action & TK_CLEAR_NTP) {
663
		tk->ntp_error = 0;
664 665
		ntp_clear();
	}
666

667
	tk_update_leap_state(tk);
668 669
	tk_update_ktime_data(tk);

670 671 672
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

673
	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
674
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
675
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
676 677 678

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
679 680 681 682 683 684 685 686
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
687 688
}

689
/**
690
 * timekeeping_forward_now - update clock to the current time
691
 *
692 693 694
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
695
 */
696
static void timekeeping_forward_now(struct timekeeper *tk)
697
{
698
	u64 cycle_now, delta;
699

700
	cycle_now = tk_clock_read(&tk->tkr_mono);
701 702
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
703
	tk->tkr_raw.cycle_last  = cycle_now;
704

705
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
706

707
	/* If arch requires, add in get_arch_timeoffset() */
708
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
709

710

711 712 713 714 715 716
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
717 718 719
}

/**
720
 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
721 722
 * @ts:		pointer to the timespec to be set
 *
723
 * Returns the time of day in a timespec64 (WARN if suspended).
724
 */
725
void ktime_get_real_ts64(struct timespec64 *ts)
726
{
727
	struct timekeeper *tk = &tk_core.timekeeper;
728
	unsigned long seq;
729
	u64 nsecs;
730

731 732
	WARN_ON(timekeeping_suspended);

733
	do {
734
		seq = read_seqcount_begin(&tk_core.seq);
735

736
		ts->tv_sec = tk->xtime_sec;
737
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
738

739
	} while (read_seqcount_retry(&tk_core.seq, seq));
740

741
	ts->tv_nsec = 0;
742
	timespec64_add_ns(ts, nsecs);
743
}
744
EXPORT_SYMBOL(ktime_get_real_ts64);
745

746 747
ktime_t ktime_get(void)
{
748
	struct timekeeper *tk = &tk_core.timekeeper;
749
	unsigned int seq;
750
	ktime_t base;
751
	u64 nsecs;
752 753 754 755

	WARN_ON(timekeeping_suspended);

	do {
756
		seq = read_seqcount_begin(&tk_core.seq);
757 758
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
759

760
	} while (read_seqcount_retry(&tk_core.seq, seq));
761

762
	return ktime_add_ns(base, nsecs);
763 764 765
}
EXPORT_SYMBOL_GPL(ktime_get);

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

783 784
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
785
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
786 787 788 789 790 791 792 793
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
794
	u64 nsecs;
795 796 797 798 799

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
800 801
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
802 803 804 805 806 807 808 809

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

810 811 812 813 814
ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
815
	u64 nsecs;
816 817 818 819 820 821

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = ktime_add(tk->tkr_mono.base, *offset);
822
		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
823 824 825

	} while (read_seqcount_retry(&tk_core.seq, seq));

826
	return ktime_add_ns(base, nsecs);
827 828 829
}
EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

850 851 852 853 854 855 856 857
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
858
	u64 nsecs;
859 860 861

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
862 863
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
864 865 866 867 868 869 870

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

871
/**
872
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
873 874 875 876
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
877
 * in normalized timespec64 format in the variable pointed to by @ts.
878
 */
879
void ktime_get_ts64(struct timespec64 *ts)
880
{
881
	struct timekeeper *tk = &tk_core.timekeeper;
882
	struct timespec64 tomono;
883
	unsigned int seq;
884
	u64 nsec;
885 886 887 888

	WARN_ON(timekeeping_suspended);

	do {
889
		seq = read_seqcount_begin(&tk_core.seq);
890
		ts->tv_sec = tk->xtime_sec;
891
		nsec = timekeeping_get_ns(&tk->tkr_mono);
892
		tomono = tk->wall_to_monotonic;
893

894
	} while (read_seqcount_retry(&tk_core.seq, seq));
895

896 897 898
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
899
}
900
EXPORT_SYMBOL_GPL(ktime_get_ts64);
901

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

950 951 952 953 954 955 956 957 958 959 960 961
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

962 963 964 965 966 967 968 969 970 971
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
972 973
	u64 nsec_raw;
	u64 nsec_real;
974
	u64 now;
975

976 977
	WARN_ON_ONCE(timekeeping_suspended);

978 979
	do {
		seq = read_seqcount_begin(&tk_core.seq);
980
		now = tk_clock_read(&tk->tkr_mono);
981 982
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
983 984 985 986 987 988 989 990 991 992 993 994
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
995

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1032 1033
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1046
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1096
static bool cycle_between(u64 before, u64 test, u64 after)
1097 1098 1099 1100 1101 1102 1103 1104
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1105 1106
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1107
 * @get_time_fn:	Callback to get simultaneous device time and
1108
 *	system counter from the device driver
1109 1110 1111
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1112 1113 1114 1115 1116 1117 1118 1119 1120
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1121
				  struct system_time_snapshot *history_begin,
1122 1123 1124 1125
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1126
	u64 cycles, now, interval_start;
1127
	unsigned int clock_was_set_seq = 0;
1128
	ktime_t base_real, base_raw;
1129
	u64 nsec_real, nsec_raw;
1130
	u8 cs_was_changed_seq;
1131
	unsigned long seq;
1132
	bool do_interp;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1152 1153 1154 1155 1156 1157
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1158
		now = tk_clock_read(&tk->tkr_mono);
1159 1160 1161 1162 1163 1164 1165 1166 1167
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1181 1182 1183 1184 1185 1186

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1187
		u64 partial_history_cycles, total_history_cycles;
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1213 1214 1215 1216
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1217
/**
1218 1219
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1220 1221 1222
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1223
int do_settimeofday64(const struct timespec64 *ts)
1224
{
1225
	struct timekeeper *tk = &tk_core.timekeeper;
1226
	struct timespec64 ts_delta, xt;
1227
	unsigned long flags;
1228
	int ret = 0;
1229

1230
	if (!timespec64_valid_settod(ts))
1231 1232
		return -EINVAL;

1233
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1234
	write_seqcount_begin(&tk_core.seq);
1235

1236
	timekeeping_forward_now(tk);
1237

1238
	xt = tk_xtime(tk);
1239 1240
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1241

1242 1243 1244 1245 1246
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1247
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1248

1249
	tk_set_xtime(tk, ts);
1250
out:
1251
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1252

1253
	write_seqcount_end(&tk_core.seq);
1254
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1255 1256 1257 1258

	/* signal hrtimers about time change */
	clock_was_set();

1259
	return ret;
1260
}
1261
EXPORT_SYMBOL(do_settimeofday64);
1262

1263 1264 1265 1266 1267 1268
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
1269
static int timekeeping_inject_offset(const struct timespec64 *ts)
1270
{
1271
	struct timekeeper *tk = &tk_core.timekeeper;
1272
	unsigned long flags;
1273
	struct timespec64 tmp;
1274
	int ret = 0;
1275

1276
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1277 1278
		return -EINVAL;

1279
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1280
	write_seqcount_begin(&tk_core.seq);
1281

1282
	timekeeping_forward_now(tk);
1283

1284
	/* Make sure the proposed value is valid */
1285 1286
	tmp = timespec64_add(tk_xtime(tk), *ts);
	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1287
	    !timespec64_valid_settod(&tmp)) {
1288 1289 1290
		ret = -EINVAL;
		goto error;
	}
1291

1292 1293
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1294

1295
error: /* even if we error out, we forwarded the time, so call update */
1296
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1297

1298
	write_seqcount_end(&tk_core.seq);
1299
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1300 1301 1302 1303

	/* signal hrtimers about time change */
	clock_was_set();

1304
	return ret;
1305
}
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
1332
		struct timespec64 adjust;
1333 1334 1335 1336 1337 1338 1339

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}
1340

1341
/**
1342
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1343 1344
 *
 */
1345
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1346 1347
{
	tk->tai_offset = tai_offset;
1348
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1349 1350
}

1351 1352 1353 1354 1355
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1356
static int change_clocksource(void *data)
1357
{
1358
	struct timekeeper *tk = &tk_core.timekeeper;
1359
	struct clocksource *new, *old;
1360
	unsigned long flags;
1361

1362
	new = (struct clocksource *) data;
1363

1364
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1365
	write_seqcount_begin(&tk_core.seq);
1366

1367
	timekeeping_forward_now(tk);
1368 1369 1370 1371 1372 1373
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1374
			old = tk->tkr_mono.clock;
1375 1376 1377 1378 1379 1380 1381
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1382
	}
1383
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1384

1385
	write_seqcount_end(&tk_core.seq);
1386
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1387

1388 1389
	return 0;
}
1390

1391 1392 1393 1394 1395 1396 1397
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1398
int timekeeping_notify(struct clocksource *clock)
1399
{
1400
	struct timekeeper *tk = &tk_core.timekeeper;
1401

1402
	if (tk->tkr_mono.clock == clock)
1403
		return 0;
1404
	stop_machine(change_clocksource, clock, NULL);
1405
	tick_clock_notify();
1406
	return tk->tkr_mono.clock == clock ? 0 : -1;
1407
}
1408

1409
/**
1410
 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1411
 * @ts:		pointer to the timespec64 to be set
1412 1413 1414
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1415
void ktime_get_raw_ts64(struct timespec64 *ts)
1416
{
1417
	struct timekeeper *tk = &tk_core.timekeeper;
1418
	unsigned long seq;
1419
	u64 nsecs;
1420 1421

	do {
1422
		seq = read_seqcount_begin(&tk_core.seq);
1423
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1424
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1425

1426
	} while (read_seqcount_retry(&tk_core.seq, seq));
1427

1428 1429
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1430
}
1431
EXPORT_SYMBOL(ktime_get_raw_ts64);
1432

1433

1434
/**
1435
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1436
 */
1437
int timekeeping_valid_for_hres(void)
1438
{
1439
	struct timekeeper *tk = &tk_core.timekeeper;
1440 1441 1442 1443
	unsigned long seq;
	int ret;

	do {
1444
		seq = read_seqcount_begin(&tk_core.seq);
1445

1446
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1447

1448
	} while (read_seqcount_retry(&tk_core.seq, seq));
1449 1450 1451 1452

	return ret;
}

1453 1454 1455 1456 1457
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1458
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1459 1460
	unsigned long seq;
	u64 ret;
1461

J
John Stultz 已提交
1462
	do {
1463
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1464

1465
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1466

1467
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1468 1469

	return ret;
1470 1471
}

1472
/**
1473
 * read_persistent_clock -  Return time from the persistent clock.
1474 1475
 *
 * Weak dummy function for arches that do not yet support it.
1476 1477
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1478 1479 1480
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1481
void __weak read_persistent_clock(struct timespec *ts)
1482
{
1483 1484
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1485 1486
}

1487 1488 1489 1490 1491 1492 1493 1494
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1495
/**
1496 1497
 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
 *                                        from the boot.
1498 1499
 *
 * Weak dummy function for arches that do not yet support it.
1500 1501
 * wall_time	- current time as returned by persistent clock
 * boot_offset	- offset that is defined as wall_time - boot_time
1502 1503 1504 1505
 * The default function calculates offset based on the current value of
 * local_clock(). This way architectures that support sched_clock() but don't
 * support dedicated boot time clock will provide the best estimate of the
 * boot time.
1506
 */
1507 1508 1509
void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
				     struct timespec64 *boot_offset)
1510
{
1511
	read_persistent_clock64(wall_time);
1512
	*boot_offset = ns_to_timespec64(local_clock());
1513 1514
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
/*
 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
 *
 * The flag starts of false and is only set when a suspend reaches
 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
 * timekeeper clocksource is not stopping across suspend and has been
 * used to update sleep time. If the timekeeper clocksource has stopped
 * then the flag stays true and is used by the RTC resume code to decide
 * whether sleeptime must be injected and if so the flag gets false then.
 *
 * If a suspend fails before reaching timekeeping_resume() then the flag
 * stays false and prevents erroneous sleeptime injection.
 */
static bool suspend_timing_needed;
1529 1530 1531 1532

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1533 1534 1535 1536 1537
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1538
	struct timespec64 wall_time, boot_offset, wall_to_mono;
1539
	struct timekeeper *tk = &tk_core.timekeeper;
1540
	struct clocksource *clock;
1541
	unsigned long flags;
1542

1543
	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1544
	if (timespec64_valid_settod(&wall_time) &&
1545 1546
	    timespec64_to_ns(&wall_time) > 0) {
		persistent_clock_exists = true;
1547
	} else if (timespec64_to_ns(&wall_time) != 0) {
1548 1549
		pr_warn("Persistent clock returned invalid value");
		wall_time = (struct timespec64){0};
1550
	}
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560
	if (timespec64_compare(&wall_time, &boot_offset) < 0)
		boot_offset = (struct timespec64){0};

	/*
	 * We want set wall_to_mono, so the following is true:
	 * wall time + wall_to_mono = boot time
	 */
	wall_to_mono = timespec64_sub(boot_offset, wall_time);

1561
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1562
	write_seqcount_begin(&tk_core.seq);
1563 1564
	ntp_init();

1565
	clock = clocksource_default_clock();
1566 1567
	if (clock->enable)
		clock->enable(clock);
1568
	tk_setup_internals(tk, clock);
1569

1570
	tk_set_xtime(tk, &wall_time);
1571
	tk->raw_sec = 0;
1572

1573
	tk_set_wall_to_mono(tk, wall_to_mono);
1574

1575
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1576

1577
	write_seqcount_end(&tk_core.seq);
1578
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1579 1580
}

1581
/* time in seconds when suspend began for persistent clock */
1582
static struct timespec64 timekeeping_suspend_time;
1583

1584 1585 1586 1587 1588 1589 1590
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1591
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1592
					   const struct timespec64 *delta)
1593
{
1594
	if (!timespec64_valid_strict(delta)) {
1595 1596 1597
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1598 1599
		return;
	}
1600
	tk_xtime_add(tk, delta);
1601
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1602
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1603
	tk_debug_account_sleep_time(delta);
1604 1605
}

1606
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
1625
	return !suspend_timing_needed;
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1642
/**
1643 1644
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1645
 *
1646
 * This hook is for architectures that cannot support read_persistent_clock64
1647
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1648
 * and also don't have an effective nonstop clocksource.
1649 1650 1651 1652
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1653
void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1654
{
1655
	struct timekeeper *tk = &tk_core.timekeeper;
1656
	unsigned long flags;
1657

1658
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1659
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1660

1661 1662
	suspend_timing_needed = false;

1663
	timekeeping_forward_now(tk);
1664

1665
	__timekeeping_inject_sleeptime(tk, delta);
1666

1667
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1668

1669
	write_seqcount_end(&tk_core.seq);
1670
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1671 1672 1673 1674

	/* signal hrtimers about time change */
	clock_was_set();
}
1675
#endif
1676

1677 1678 1679
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1680
void timekeeping_resume(void)
1681
{
1682
	struct timekeeper *tk = &tk_core.timekeeper;
1683
	struct clocksource *clock = tk->tkr_mono.clock;
1684
	unsigned long flags;
1685
	struct timespec64 ts_new, ts_delta;
1686
	u64 cycle_now, nsec;
1687
	bool inject_sleeptime = false;
1688

1689
	read_persistent_clock64(&ts_new);
1690

1691
	clockevents_resume();
1692 1693
	clocksource_resume();

1694
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1695
	write_seqcount_begin(&tk_core.seq);
1696

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1709
	cycle_now = tk_clock_read(&tk->tkr_mono);
1710 1711
	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
	if (nsec > 0) {
1712
		ts_delta = ns_to_timespec64(nsec);
1713
		inject_sleeptime = true;
1714 1715
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1716
		inject_sleeptime = true;
1717
	}
1718

1719 1720
	if (inject_sleeptime) {
		suspend_timing_needed = false;
1721
		__timekeeping_inject_sleeptime(tk, &ts_delta);
1722
	}
1723 1724

	/* Re-base the last cycle value */
1725
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1726 1727
	tk->tkr_raw.cycle_last  = cycle_now;

1728
	tk->ntp_error = 0;
1729
	timekeeping_suspended = 0;
1730
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1731
	write_seqcount_end(&tk_core.seq);
1732
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1733 1734 1735

	touch_softlockup_watchdog();

1736
	tick_resume();
1737
	hrtimers_resume();
1738 1739
}

1740
int timekeeping_suspend(void)
1741
{
1742
	struct timekeeper *tk = &tk_core.timekeeper;
1743
	unsigned long flags;
1744 1745
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1746 1747
	struct clocksource *curr_clock;
	u64 cycle_now;
1748

1749
	read_persistent_clock64(&timekeeping_suspend_time);
1750

1751 1752 1753 1754 1755 1756
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1757
		persistent_clock_exists = true;
1758

1759 1760
	suspend_timing_needed = true;

1761
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1762
	write_seqcount_begin(&tk_core.seq);
1763
	timekeeping_forward_now(tk);
1764
	timekeeping_suspended = 1;
1765

1766 1767 1768 1769 1770 1771 1772 1773 1774
	/*
	 * Since we've called forward_now, cycle_last stores the value
	 * just read from the current clocksource. Save this to potentially
	 * use in suspend timing.
	 */
	curr_clock = tk->tkr_mono.clock;
	cycle_now = tk->tkr_mono.cycle_last;
	clocksource_start_suspend_timing(curr_clock, cycle_now);

1775
	if (persistent_clock_exists) {
1776
		/*
1777 1778 1779 1780
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1781
		 */
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1795
	}
1796 1797

	timekeeping_update(tk, TK_MIRROR);
1798
	halt_fast_timekeeper(tk);
1799
	write_seqcount_end(&tk_core.seq);
1800
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1801

1802
	tick_suspend();
M
Magnus Damm 已提交
1803
	clocksource_suspend();
1804
	clockevents_suspend();
1805 1806 1807 1808 1809

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1810
static struct syscore_ops timekeeping_syscore_ops = {
1811 1812 1813 1814
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1815
static int __init timekeeping_init_ops(void)
1816
{
1817 1818
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1819
}
1820
device_initcall(timekeeping_init_ops);
1821 1822

/*
1823
 * Apply a multiplier adjustment to the timekeeper
1824
 */
1825 1826
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
1827
							 s32 mult_adj)
1828
{
1829
	s64 interval = tk->cycle_interval;
1830

1831 1832 1833
	if (mult_adj == 0) {
		return;
	} else if (mult_adj == -1) {
1834
		interval = -interval;
1835 1836 1837 1838
		offset = -offset;
	} else if (mult_adj != 1) {
		interval *= mult_adj;
		offset *= mult_adj;
1839
	}
1840

1841 1842 1843
	/*
	 * So the following can be confusing.
	 *
1844
	 * To keep things simple, lets assume mult_adj == 1 for now.
1845
	 *
1846
	 * When mult_adj != 1, remember that the interval and offset values
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 */
1888
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1889 1890 1891 1892 1893
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1894
	tk->tkr_mono.mult += mult_adj;
1895
	tk->xtime_interval += interval;
1896
	tk->tkr_mono.xtime_nsec -= offset;
1897 1898 1899
}

/*
1900 1901
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
1902
 */
1903
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1904
{
1905
	u32 mult;
1906

1907
	/*
1908 1909
	 * Determine the multiplier from the current NTP tick length.
	 * Avoid expensive division when the tick length doesn't change.
1910
	 */
1911 1912 1913 1914 1915 1916
	if (likely(tk->ntp_tick == ntp_tick_length())) {
		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
	} else {
		tk->ntp_tick = ntp_tick_length();
		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
				 tk->xtime_remainder, tk->cycle_interval);
1917
	}
1918

1919 1920 1921 1922 1923 1924 1925 1926
	/*
	 * If the clock is behind the NTP time, increase the multiplier by 1
	 * to catch up with it. If it's ahead and there was a remainder in the
	 * tick division, the clock will slow down. Otherwise it will stay
	 * ahead until the tick length changes to a non-divisible value.
	 */
	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
	mult += tk->ntp_err_mult;
1927

1928
	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1929

1930 1931 1932
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1933 1934
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1935 1936
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1937
	}
1938 1939 1940 1941 1942 1943 1944

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
1945 1946 1947
	 * Now, since we have already accumulated the second and the NTP
	 * subsystem has been notified via second_overflow(), we need to skip
	 * the next update.
1948
	 */
1949
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1950 1951 1952 1953
		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
							tk->tkr_mono.shift;
		tk->xtime_sec--;
		tk->skip_second_overflow = 1;
1954
	}
1955 1956
}

1957 1958 1959
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1960
 * Helper function that accumulates the nsecs greater than a second
1961 1962 1963 1964
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1965
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1966
{
1967
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1968
	unsigned int clock_set = 0;
1969

1970
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1971 1972
		int leap;

1973
		tk->tkr_mono.xtime_nsec -= nsecps;
1974 1975
		tk->xtime_sec++;

1976 1977 1978 1979 1980 1981 1982 1983 1984
		/*
		 * Skip NTP update if this second was accumulated before,
		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
		 */
		if (unlikely(tk->skip_second_overflow)) {
			tk->skip_second_overflow = 0;
			continue;
		}

1985 1986
		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1987
		if (unlikely(leap)) {
1988
			struct timespec64 ts;
1989 1990

			tk->xtime_sec += leap;
1991

1992 1993 1994
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1995
				timespec64_sub(tk->wall_to_monotonic, ts));
1996

1997 1998
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1999
			clock_set = TK_CLOCK_WAS_SET;
2000
		}
2001
	}
2002
	return clock_set;
2003 2004
}

2005 2006 2007 2008 2009 2010 2011 2012 2013
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
2014 2015
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
2016
{
2017
	u64 interval = tk->cycle_interval << shift;
2018
	u64 snsec_per_sec;
2019

Z
Zhen Lei 已提交
2020
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2021
	if (offset < interval)
2022 2023 2024
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2025
	offset -= interval;
2026
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2027
	tk->tkr_raw.cycle_last  += interval;
2028

2029
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2030
	*clock_set |= accumulate_nsecs_to_secs(tk);
2031

2032
	/* Accumulate raw time */
2033 2034 2035 2036
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2037
		tk->raw_sec++;
2038 2039 2040
	}

	/* Accumulate error between NTP and clock interval */
2041
	tk->ntp_error += tk->ntp_tick << shift;
2042 2043
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2044 2045 2046 2047

	return offset;
}

2048 2049 2050
/*
 * timekeeping_advance - Updates the timekeeper to the current time and
 * current NTP tick length
2051
 */
2052
static void timekeeping_advance(enum timekeeping_adv_mode mode)
2053
{
2054
	struct timekeeper *real_tk = &tk_core.timekeeper;
2055
	struct timekeeper *tk = &shadow_timekeeper;
2056
	u64 offset;
2057
	int shift = 0, maxshift;
2058
	unsigned int clock_set = 0;
J
John Stultz 已提交
2059 2060
	unsigned long flags;

2061
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2062 2063 2064

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2065
		goto out;
2066

J
John Stultz 已提交
2067
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2068
	offset = real_tk->cycle_interval;
2069 2070 2071

	if (mode != TK_ADV_TICK)
		goto out;
J
John Stultz 已提交
2072
#else
2073
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2074
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2075

2076
	/* Check if there's really nothing to do */
2077
	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2078
		goto out;
2079
#endif
2080

2081
	/* Do some additional sanity checking */
2082
	timekeeping_check_update(tk, offset);
2083

2084 2085 2086 2087
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2088
	 * that is smaller than the offset.  We then accumulate that
2089 2090
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2091
	 */
2092
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2093
	shift = max(0, shift);
2094
	/* Bound shift to one less than what overflows tick_length */
2095
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2096
	shift = min(shift, maxshift);
2097
	while (offset >= tk->cycle_interval) {
2098 2099
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2100
		if (offset < tk->cycle_interval<<shift)
2101
			shift--;
2102 2103
	}

2104
	/* Adjust the multiplier to correct NTP error */
2105
	timekeeping_adjust(tk, offset);
2106

J
John Stultz 已提交
2107 2108
	/*
	 * Finally, make sure that after the rounding
2109
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2110
	 */
2111
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2112

2113
	write_seqcount_begin(&tk_core.seq);
2114 2115 2116 2117 2118 2119 2120
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2121
	 * memcpy under the tk_core.seq against one before we start
2122 2123
	 * updating.
	 */
2124
	timekeeping_update(tk, clock_set);
2125
	memcpy(real_tk, tk, sizeof(*tk));
2126
	/* The memcpy must come last. Do not put anything here! */
2127
	write_seqcount_end(&tk_core.seq);
2128
out:
2129
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2130
	if (clock_set)
2131 2132
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2133
}
T
Tomas Janousek 已提交
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
void update_wall_time(void)
{
	timekeeping_advance(TK_ADV_TICK);
}

T
Tomas Janousek 已提交
2144
/**
2145 2146
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2147
 *
2148
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2149 2150 2151 2152 2153 2154
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2155
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2156
{
2157
	struct timekeeper *tk = &tk_core.timekeeper;
2158
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2159

2160
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2161
}
2162
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2163

2164
void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2165
{
2166
	struct timekeeper *tk = &tk_core.timekeeper;
2167 2168 2169
	unsigned long seq;

	do {
2170
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2171

2172
		*ts = tk_xtime(tk);
2173
	} while (read_seqcount_retry(&tk_core.seq, seq));
2174
}
2175
EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2176

2177
void ktime_get_coarse_ts64(struct timespec64 *ts)
2178
{
2179
	struct timekeeper *tk = &tk_core.timekeeper;
2180
	struct timespec64 now, mono;
2181 2182 2183
	unsigned long seq;

	do {
2184
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2185

2186 2187
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2188
	} while (read_seqcount_retry(&tk_core.seq, seq));
2189

2190
	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2191 2192
				now.tv_nsec + mono.tv_nsec);
}
2193
EXPORT_SYMBOL(ktime_get_coarse_ts64);
2194 2195

/*
2196
 * Must hold jiffies_lock
2197 2198 2199 2200 2201 2202
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2203

2204
/**
2205
 * ktime_get_update_offsets_now - hrtimer helper
2206
 * @cwsseq:	pointer to check and store the clock was set sequence number
2207
 * @offs_real:	pointer to storage for monotonic -> realtime offset
2208
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2209
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2210
 *
2211 2212 2213 2214
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2215
 * Called from hrtimer_interrupt() or retrigger_next_event()
2216
 */
2217
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2218
				     ktime_t *offs_boot, ktime_t *offs_tai)
2219
{
2220
	struct timekeeper *tk = &tk_core.timekeeper;
2221
	unsigned int seq;
2222 2223
	ktime_t base;
	u64 nsecs;
2224 2225

	do {
2226
		seq = read_seqcount_begin(&tk_core.seq);
2227

2228 2229
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2230 2231
		base = ktime_add_ns(base, nsecs);

2232 2233 2234
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
2235
			*offs_boot = tk->offs_boot;
2236 2237
			*offs_tai = tk->offs_tai;
		}
2238 2239

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2240
		if (unlikely(base >= tk->next_leap_ktime))
2241 2242
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2243
	} while (read_seqcount_retry(&tk_core.seq, seq));
2244

2245
	return base;
2246 2247
}

2248
/**
2249
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2250
 */
2251
static int timekeeping_validate_timex(const struct timex *txc)
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
		/*
		 * Validate if a timespec/timeval used to inject a time
		 * offset is valid.  Offsets can be postive or negative, so
		 * we don't check tv_sec. The value of the timeval/timespec
		 * is the sum of its fields,but *NOTE*:
		 * The field tv_usec/tv_nsec must always be non-negative and
		 * we can't have more nanoseconds/microseconds than a second.
		 */
		if (txc->time.tv_usec < 0)
			return -EINVAL;
2289

2290 2291
		if (txc->modes & ADJ_NANO) {
			if (txc->time.tv_usec >= NSEC_PER_SEC)
2292 2293
				return -EINVAL;
		} else {
2294
			if (txc->time.tv_usec >= USEC_PER_SEC)
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}


2314 2315 2316 2317 2318
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2319
	struct timekeeper *tk = &tk_core.timekeeper;
2320
	unsigned long flags;
2321
	struct timespec64 ts;
2322
	s32 orig_tai, tai;
2323 2324 2325
	int ret;

	/* Validate the data before disabling interrupts */
2326
	ret = timekeeping_validate_timex(txc);
2327 2328 2329
	if (ret)
		return ret;

2330
	if (txc->modes & ADJ_SETOFFSET) {
2331
		struct timespec64 delta;
2332 2333 2334 2335 2336 2337 2338 2339 2340
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2341
	ktime_get_real_ts64(&ts);
2342

2343
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2344
	write_seqcount_begin(&tk_core.seq);
2345

2346
	orig_tai = tai = tk->tai_offset;
2347
	ret = __do_adjtimex(txc, &ts, &tai);
2348

2349 2350
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2351
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2352
	}
2353 2354
	tk_update_leap_state(tk);

2355
	write_seqcount_end(&tk_core.seq);
2356 2357
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2358 2359 2360 2361
	/* Update the multiplier immediately if frequency was set directly */
	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
		timekeeping_advance(TK_ADV_FREQ);

2362 2363 2364
	if (tai != orig_tai)
		clock_was_set();

2365 2366
	ntp_notify_cmos_timer();

2367 2368
	return ret;
}
2369 2370 2371 2372 2373

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2374
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2375
{
2376 2377 2378
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2379
	write_seqcount_begin(&tk_core.seq);
2380

2381
	__hardpps(phase_ts, raw_ts);
2382

2383
	write_seqcount_end(&tk_core.seq);
2384
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2385 2386
}
EXPORT_SYMBOL(hardpps);
2387
#endif /* CONFIG_NTP_PPS */
2388

T
Torben Hohn 已提交
2389 2390 2391 2392 2393 2394 2395 2396
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2397
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2398
	do_timer(ticks);
2399
	write_sequnlock(&jiffies_lock);
2400
	update_wall_time();
T
Torben Hohn 已提交
2401
}