timekeeping.c 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17 18 19 20 21
#include <linux/sysdev.h>
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* The shift value of the current clocksource. */
	int	shift;
30 31 32 33 34 35 36 37 38 39 40 41 42

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
43 44 45
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
46 47
	/* NTP adjusted clock multiplier */
	u32	mult;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
};

struct timekeeper timekeeper;

/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
	u64 tmp;

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
73 74
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
75 76 77 78 79 80 81 82 83
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
	timekeeper.raw_interval =
84
		((u64) interval * clock->mult) >> clock->shift;
85 86

	timekeeper.xtime_nsec = 0;
87
	timekeeper.shift = clock->shift;
88 89

	timekeeper.ntp_error = 0;
90
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
91 92 93 94 95 96 97

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
98
}
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

134 135
/*
 * This read-write spinlock protects us from races in SMP while
136
 * playing with xtime.
137
 */
A
Adrian Bunk 已提交
138
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
139 140 141 142 143 144 145 146 147


/*
 * The current time
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
T
Tomas Janousek 已提交
148 149 150 151 152 153 154
 *
 * wall_to_monotonic is moved after resume from suspend for the monotonic
 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
 * to get the real boot based time offset.
 *
 * - wall_to_monotonic is no longer the boot time, getboottime must be
 * used instead.
155 156 157
 */
struct timespec xtime __attribute__ ((aligned (16)));
struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
158
static struct timespec total_sleep_time;
159

160 161 162 163 164
/*
 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
 */
struct timespec raw_time;

165 166 167
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

168 169 170 171 172
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
	xtime.tv_sec += leapsecond;
	wall_to_monotonic.tv_sec -= leapsecond;
173
	update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
174
}
175 176

#ifdef CONFIG_GENERIC_TIME
177

178
/**
179
 * timekeeping_forward_now - update clock to the current time
180
 *
181 182 183
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
184
 */
185
static void timekeeping_forward_now(void)
186 187
{
	cycle_t cycle_now, cycle_delta;
188
	struct clocksource *clock;
189
	s64 nsec;
190

191
	clock = timekeeper.clock;
192
	cycle_now = clock->read(clock);
193
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
194
	clock->cycle_last = cycle_now;
195

196 197
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
198 199 200 201

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

202
	timespec_add_ns(&xtime, nsec);
203

204
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
205
	timespec_add_ns(&raw_time, nsec);
206 207 208
}

/**
209
 * getnstimeofday - Returns the time of day in a timespec
210 211
 * @ts:		pointer to the timespec to be set
 *
212
 * Returns the time of day in a timespec.
213
 */
214
void getnstimeofday(struct timespec *ts)
215 216 217 218
{
	unsigned long seq;
	s64 nsecs;

219 220
	WARN_ON(timekeeping_suspended);

221 222 223 224
	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
225
		nsecs = timekeeping_get_ns();
226

227 228 229
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

230 231 232 233 234 235 236
	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

237 238 239 240 241 242 243 244 245 246 247
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
248
		nsecs += timekeeping_get_ns();
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

	} while (read_seqretry(&xtime_lock, seq));
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
279
		nsecs = timekeeping_get_ns();
280 281 282 283 284 285 286 287

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

288 289 290 291
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
292
 * NOTE: Users should be converted to using getnstimeofday()
293 294 295 296 297
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

298
	getnstimeofday(&now);
299 300 301 302 303 304 305 306 307 308 309 310 311
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
int do_settimeofday(struct timespec *tv)
{
312
	struct timespec ts_delta;
313 314 315 316 317 318 319
	unsigned long flags;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

320
	timekeeping_forward_now();
321 322 323 324

	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
325

326
	xtime = *tv;
327

328
	timekeeper.ntp_error = 0;
329 330
	ntp_clear();

331
	update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
348
static int change_clocksource(void *data)
349
{
350
	struct clocksource *new, *old;
351

352
	new = (struct clocksource *) data;
353

354
	timekeeping_forward_now();
355 356 357 358 359 360 361 362
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
	return 0;
}
363

364 365 366 367 368 369 370 371 372 373
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
374
		return;
375
	stop_machine(change_clocksource, clock, NULL);
376 377
	tick_clock_notify();
}
378

379
#else /* GENERIC_TIME */
380

381
static inline void timekeeping_forward_now(void) { }
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get(void)
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);
422

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
#endif /* !GENERIC_TIME */

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
439

440 441 442 443 444 445 446 447 448 449 450 451 452
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);
453
		nsecs = timekeeping_get_ns_raw();
454
		*ts = raw_time;
455 456 457 458 459 460 461 462

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


463
/**
464
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
465
 */
466
int timekeeping_valid_for_hres(void)
467 468 469 470 471 472 473
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

474
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
475 476 477 478 479 480

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

481 482 483 484 485 486 487 488 489 490 491
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 *
 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
 * ensure that the clocksource does not change!
 */
u64 timekeeping_max_deferment(void)
{
	return timekeeper.clock->max_idle_ns;
}

492
/**
493
 * read_persistent_clock -  Return time from the persistent clock.
494 495
 *
 * Weak dummy function for arches that do not yet support it.
496 497
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
498 499 500
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
501
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
502
{
503 504
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
505 506
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

522 523 524 525 526
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
527
	struct clocksource *clock;
528
	unsigned long flags;
529
	struct timespec now, boot;
530 531

	read_persistent_clock(&now);
532
	read_boot_clock(&boot);
533 534 535

	write_seqlock_irqsave(&xtime_lock, flags);

R
Roman Zippel 已提交
536
	ntp_init();
537

538
	clock = clocksource_default_clock();
539 540
	if (clock->enable)
		clock->enable(clock);
541
	timekeeper_setup_internals(clock);
542

543 544
	xtime.tv_sec = now.tv_sec;
	xtime.tv_nsec = now.tv_nsec;
545 546
	raw_time.tv_sec = 0;
	raw_time.tv_nsec = 0;
547 548 549 550
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
		boot.tv_sec = xtime.tv_sec;
		boot.tv_nsec = xtime.tv_nsec;
	}
551
	set_normalized_timespec(&wall_to_monotonic,
552
				-boot.tv_sec, -boot.tv_nsec);
553 554
	total_sleep_time.tv_sec = 0;
	total_sleep_time.tv_nsec = 0;
555 556 557 558
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* time in seconds when suspend began */
559
static struct timespec timekeeping_suspend_time;
560 561 562 563 564 565 566 567 568 569 570 571

/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 * @dev:	unused
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
static int timekeeping_resume(struct sys_device *dev)
{
	unsigned long flags;
572 573 574
	struct timespec ts;

	read_persistent_clock(&ts);
575

576 577
	clocksource_resume();

578 579
	write_seqlock_irqsave(&xtime_lock, flags);

580 581 582 583 584
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
		xtime = timespec_add_safe(xtime, ts);
		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
		total_sleep_time = timespec_add_safe(total_sleep_time, ts);
585 586
	}
	/* re-base the last cycle value */
587 588
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
	hres_timers_resume();

	return 0;
}

static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
{
	unsigned long flags;

606
	read_persistent_clock(&timekeeping_suspend_time);
607

608
	write_seqlock_irqsave(&xtime_lock, flags);
609
	timekeeping_forward_now();
610 611 612 613 614 615 616 617 618 619
	timekeeping_suspended = 1;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
static struct sysdev_class timekeeping_sysclass = {
620
	.name		= "timekeeping",
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

static struct sys_device device_timer = {
	.id		= 0,
	.cls		= &timekeeping_sysclass,
};

static int __init timekeeping_init_device(void)
{
	int error = sysdev_class_register(&timekeeping_sysclass);
	if (!error)
		error = sysdev_register(&device_timer);
	return error;
}

device_initcall(timekeeping_init_device);

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
644
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
645 646 647 648 649 650 651 652 653 654 655 656
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
657
	 * here.  This is tuned so that an error of about 1 msec is adjusted
658 659
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
660
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
661 662 663 664 665 666 667 668
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
669
	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
670
	tick_error -= timekeeper.xtime_interval >> 1;
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
695
static void timekeeping_adjust(s64 offset)
696
{
697
	s64 error, interval = timekeeper.cycle_interval;
698 699
	int adj;

700
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
701 702 703 704 705
	if (error > interval) {
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
706
			adj = timekeeping_bigadjust(error, &interval, &offset);
707 708 709 710 711 712 713
	} else if (error < -interval) {
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
714
			adj = timekeeping_bigadjust(error, &interval, &offset);
715 716 717
	} else
		return;

718
	timekeeper.mult += adj;
719 720 721
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
722
				timekeeper.ntp_error_shift;
723 724
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
		timekeeper.xtime_nsec -= nsecps;
		xtime.tv_sec++;
		second_overflow();
	}

	/* Accumulate into raw time */
	raw_time.tv_nsec += timekeeper.raw_interval << shift;;
	while (raw_time.tv_nsec >= NSEC_PER_SEC) {
		raw_time.tv_nsec -= NSEC_PER_SEC;
		raw_time.tv_sec++;
	}

	/* Accumulate error between NTP and clock interval */
	timekeeper.ntp_error += tick_length << shift;
	timekeeper.ntp_error -= timekeeper.xtime_interval <<
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

768 769 770 771 772 773 774
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
void update_wall_time(void)
{
775
	struct clocksource *clock;
776
	cycle_t offset;
777
	int shift = 0, maxshift;
778 779 780 781 782

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;

783
	clock = timekeeper.clock;
784
#ifdef CONFIG_GENERIC_TIME
785
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
786
#else
787
	offset = timekeeper.cycle_interval;
788
#endif
789
	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
790

791 792 793 794 795 796 797
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
798
	 */
799 800 801 802 803
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
	shift = min(shift, maxshift);
804
	while (offset >= timekeeper.cycle_interval) {
805 806
		offset = logarithmic_accumulation(offset, shift);
		shift--;
807 808 809
	}

	/* correct the clock when NTP error is too big */
810
	timekeeping_adjust(offset);
811

812 813 814 815
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
816
	 * slightly speeding the clocksource up in timekeeping_adjust(),
817 818 819 820 821 822 823 824 825 826 827
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
828 829 830
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
831
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
832 833
	}

834 835 836
	/* store full nanoseconds into xtime after rounding it up and
	 * add the remainder to the error difference.
	 */
837 838 839 840
	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
841 842

	/* check to see if there is a new clocksource to use */
843
	update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
844
}
T
Tomas Janousek 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
859 860 861 862
	struct timespec boottime = {
		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
	};
863 864

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
865 866 867 868 869 870 871 872
}

/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
873
	*ts = timespec_add_safe(*ts, total_sleep_time);
T
Tomas Janousek 已提交
874
}
875

876 877
unsigned long get_seconds(void)
{
J
john stultz 已提交
878
	return xtime.tv_sec;
879 880 881
}
EXPORT_SYMBOL(get_seconds);

882 883
struct timespec __current_kernel_time(void)
{
J
john stultz 已提交
884
	return xtime;
885
}
886

887 888 889 890 891 892 893
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
J
john stultz 已提交
894
		now = xtime;
895 896 897 898 899
	} while (read_seqretry(&xtime_lock, seq));

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
900 901 902 903 904 905 906 907

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
J
john stultz 已提交
908
		now = xtime;
909 910 911 912 913 914 915
		mono = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}