timekeeping.c 48.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;

63 64 65
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

66 67 68
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
109
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121
/**
122
 * tk_setup_internals - Set up internals to use clocksource clock.
123
 *
124
 * @tk:		The target timekeeper to setup.
125 126 127 128 129 130 131
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
132
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 134
{
	cycle_t interval;
135
	u64 tmp, ntpinterval;
136
	struct clocksource *old_clock;
137

138 139 140 141 142
	old_clock = tk->tkr.clock;
	tk->tkr.clock = clock;
	tk->tkr.read = clock->read;
	tk->tkr.mask = clock->mask;
	tk->tkr.cycle_last = tk->tkr.read(clock);
143 144 145 146

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
147
	ntpinterval = tmp;
148 149
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
150 151 152 153
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
154
	tk->cycle_interval = interval;
155 156

	/* Go back from cycles -> shifted ns */
157 158 159
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
160
		((u64) interval * clock->mult) >> clock->shift;
161

162 163 164 165
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
166
			tk->tkr.xtime_nsec >>= -shift_change;
167
		else
168
			tk->tkr.xtime_nsec <<= shift_change;
169
	}
170
	tk->tkr.shift = clock->shift;
171

172 173
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175 176 177 178 179 180

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
181
	tk->tkr.mult = clock->mult;
182
	tk->ntp_err_mult = 0;
183
}
184

185
/* Timekeeper helper functions. */
186 187

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 189
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190
#else
191
static inline u32 arch_gettimeoffset(void) { return 0; }
192 193
#endif

194
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195
{
196
	cycle_t cycle_now, delta;
197
	s64 nsec;
198 199

	/* read clocksource: */
200
	cycle_now = tkr->read(tkr->clock);
201 202

	/* calculate the delta since the last update_wall_time: */
203
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204

205 206
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
207

208
	/* If arch requires, add in get_arch_timeoffset() */
209
	return nsec + arch_gettimeoffset();
210 211
}

212
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213
{
214
	struct clocksource *clock = tk->tkr.clock;
215
	cycle_t cycle_now, delta;
216
	s64 nsec;
217 218

	/* read clocksource: */
219
	cycle_now = tk->tkr.read(clock);
220 221

	/* calculate the delta since the last update_wall_time: */
222
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223

224
	/* convert delta to nanoseconds. */
225
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226

227
	/* If arch requires, add in get_arch_timeoffset() */
228
	return nsec + arch_gettimeoffset();
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 * @tk:		The timekeeper from which we take the update
 * @tkf:	The fast timekeeper to update
 * @tbase:	The time base for the fast timekeeper (mono/raw)
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
 * update(tkf->base[0], tk);
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
 * update(tkf->base[1], tk);
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
static void update_fast_timekeeper(struct timekeeper *tk)
{
	struct tk_read_base *base = tk_fast_mono.base;

	/* Force readers off to base[1] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[0] */
	memcpy(base, &tk->tkr, sizeof(*base));

	/* Force readers back to base[0] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
u64 notrace ktime_get_mono_fast_ns(void)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount(&tk_fast_mono.seq);
		tkr = tk_fast_mono.base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);

	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
	return now;
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

337 338 339 340
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
341
	struct timespec xt, wm;
342

343
	xt = timespec64_to_timespec(tk_xtime(tk));
344 345
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
346
			    tk->tkr.cycle_last);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
363 364 365
	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
	tk->tkr.xtime_nsec -= remainder;
	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
366
	tk->ntp_error += remainder << tk->ntp_error_shift;
367
	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
368 369 370 371 372
}
#else
#define old_vsyscall_fixup(tk)
#endif

373 374
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

375
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
376
{
377
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
378 379 380 381 382 383 384
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
385
	struct timekeeper *tk = &tk_core.timekeeper;
386 387 388
	unsigned long flags;
	int ret;

389
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
390
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
391
	update_pvclock_gtod(tk, true);
392
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
393 394 395 396 397 398 399 400 401 402 403 404 405 406

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

407
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
408
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
409
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
410 411 412 413 414

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

415 416 417 418 419
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
420 421
	u64 seconds;
	u32 nsec;
422 423 424 425 426 427 428 429

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
430 431 432
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
	tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
433 434 435

	/* Update the monotonic raw base */
	tk->base_raw = timespec64_to_ktime(tk->raw_time);
436 437 438 439 440 441 442 443 444 445

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
	nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
446 447
}

448
/* must hold timekeeper_lock */
449
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
450
{
451
	if (action & TK_CLEAR_NTP) {
452
		tk->ntp_error = 0;
453 454
		ntp_clear();
	}
455

456 457
	tk_update_ktime_data(tk);

458 459 460
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

461
	if (action & TK_MIRROR)
462 463
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
464 465

	update_fast_timekeeper(tk);
466 467
}

468
/**
469
 * timekeeping_forward_now - update clock to the current time
470
 *
471 472 473
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
474
 */
475
static void timekeeping_forward_now(struct timekeeper *tk)
476
{
477
	struct clocksource *clock = tk->tkr.clock;
478
	cycle_t cycle_now, delta;
479
	s64 nsec;
480

481 482 483
	cycle_now = tk->tkr.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
	tk->tkr.cycle_last = cycle_now;
484

485
	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
486

487
	/* If arch requires, add in get_arch_timeoffset() */
488
	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
489

490
	tk_normalize_xtime(tk);
491

492
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
493
	timespec64_add_ns(&tk->raw_time, nsec);
494 495 496
}

/**
497
 * __getnstimeofday64 - Returns the time of day in a timespec64.
498 499
 * @ts:		pointer to the timespec to be set
 *
500 501
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
502
 */
503
int __getnstimeofday64(struct timespec64 *ts)
504
{
505
	struct timekeeper *tk = &tk_core.timekeeper;
506
	unsigned long seq;
507
	s64 nsecs = 0;
508 509

	do {
510
		seq = read_seqcount_begin(&tk_core.seq);
511

512
		ts->tv_sec = tk->xtime_sec;
513
		nsecs = timekeeping_get_ns(&tk->tkr);
514

515
	} while (read_seqcount_retry(&tk_core.seq, seq));
516

517
	ts->tv_nsec = 0;
518
	timespec64_add_ns(ts, nsecs);
519 520 521 522 523 524 525 526 527

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
528
EXPORT_SYMBOL(__getnstimeofday64);
529 530

/**
531
 * getnstimeofday64 - Returns the time of day in a timespec64.
532 533 534 535
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
536
void getnstimeofday64(struct timespec64 *ts)
537
{
538
	WARN_ON(__getnstimeofday64(ts));
539
}
540
EXPORT_SYMBOL(getnstimeofday64);
541

542 543
ktime_t ktime_get(void)
{
544
	struct timekeeper *tk = &tk_core.timekeeper;
545
	unsigned int seq;
546 547
	ktime_t base;
	s64 nsecs;
548 549 550 551

	WARN_ON(timekeeping_suspended);

	do {
552
		seq = read_seqcount_begin(&tk_core.seq);
553
		base = tk->tkr.base_mono;
554
		nsecs = timekeeping_get_ns(&tk->tkr);
555

556
	} while (read_seqcount_retry(&tk_core.seq, seq));
557

558
	return ktime_add_ns(base, nsecs);
559 560 561
}
EXPORT_SYMBOL_GPL(ktime_get);

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
579
		base = ktime_add(tk->tkr.base_mono, *offset);
580
		nsecs = timekeeping_get_ns(&tk->tkr);
581 582 583 584 585 586 587 588

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->base_raw;
		nsecs = timekeeping_get_ns_raw(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

630
/**
631
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
632 633 634 635 636 637
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
638
void ktime_get_ts64(struct timespec64 *ts)
639
{
640
	struct timekeeper *tk = &tk_core.timekeeper;
641
	struct timespec64 tomono;
642
	s64 nsec;
643 644 645 646 647
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
648
		seq = read_seqcount_begin(&tk_core.seq);
649
		ts->tv_sec = tk->xtime_sec;
650
		nsec = timekeeping_get_ns(&tk->tkr);
651
		tomono = tk->wall_to_monotonic;
652

653
	} while (read_seqcount_retry(&tk_core.seq, seq));
654

655 656 657
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
658
}
659
EXPORT_SYMBOL_GPL(ktime_get_ts64);
660

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

679 680 681 682 683 684 685 686 687 688 689 690 691
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
692
	struct timekeeper *tk = &tk_core.timekeeper;
693 694 695 696 697 698
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
699
		seq = read_seqcount_begin(&tk_core.seq);
700

701
		*ts_raw = timespec64_to_timespec(tk->raw_time);
702
		ts_real->tv_sec = tk->xtime_sec;
703
		ts_real->tv_nsec = 0;
704

705
		nsecs_raw = timekeeping_get_ns_raw(tk);
706
		nsecs_real = timekeeping_get_ns(&tk->tkr);
707

708
	} while (read_seqcount_retry(&tk_core.seq, seq));
709 710 711 712 713 714 715 716

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

717 718 719 720
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
721
 * NOTE: Users should be converted to using getnstimeofday()
722 723 724
 */
void do_gettimeofday(struct timeval *tv)
{
725
	struct timespec64 now;
726

727
	getnstimeofday64(&now);
728 729 730 731
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
732

733 734 735 736 737 738
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
739
int do_settimeofday(const struct timespec *tv)
740
{
741
	struct timekeeper *tk = &tk_core.timekeeper;
742
	struct timespec64 ts_delta, xt, tmp;
743
	unsigned long flags;
744

745
	if (!timespec_valid_strict(tv))
746 747
		return -EINVAL;

748
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
749
	write_seqcount_begin(&tk_core.seq);
750

751
	timekeeping_forward_now(tk);
752

753
	xt = tk_xtime(tk);
754 755 756
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

757
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
758

759 760
	tmp = timespec_to_timespec64(*tv);
	tk_set_xtime(tk, &tmp);
761

762
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
763

764
	write_seqcount_end(&tk_core.seq);
765
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
766 767 768 769 770 771 772 773

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

774 775 776 777 778 779 780 781
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
782
	struct timekeeper *tk = &tk_core.timekeeper;
783
	unsigned long flags;
784
	struct timespec64 ts64, tmp;
785
	int ret = 0;
786 787 788 789

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

790 791
	ts64 = timespec_to_timespec64(*ts);

792
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
793
	write_seqcount_begin(&tk_core.seq);
794

795
	timekeeping_forward_now(tk);
796

797
	/* Make sure the proposed value is valid */
798 799
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
800 801 802
		ret = -EINVAL;
		goto error;
	}
803

804 805
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
806

807
error: /* even if we error out, we forwarded the time, so call update */
808
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
809

810
	write_seqcount_end(&tk_core.seq);
811
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
812 813 814 815

	/* signal hrtimers about time change */
	clock_was_set();

816
	return ret;
817 818 819
}
EXPORT_SYMBOL(timekeeping_inject_offset);

820 821 822 823 824 825 826

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
827
	struct timekeeper *tk = &tk_core.timekeeper;
828 829 830 831
	unsigned int seq;
	s32 ret;

	do {
832
		seq = read_seqcount_begin(&tk_core.seq);
833
		ret = tk->tai_offset;
834
	} while (read_seqcount_retry(&tk_core.seq, seq));
835 836 837 838 839 840 841 842

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
843
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
844 845
{
	tk->tai_offset = tai_offset;
846
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
847 848 849 850 851 852 853 854
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
855
	struct timekeeper *tk = &tk_core.timekeeper;
856 857
	unsigned long flags;

858
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
859
	write_seqcount_begin(&tk_core.seq);
860
	__timekeeping_set_tai_offset(tk, tai_offset);
861
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
862
	write_seqcount_end(&tk_core.seq);
863
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
864
	clock_was_set();
865 866
}

867 868 869 870 871
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
872
static int change_clocksource(void *data)
873
{
874
	struct timekeeper *tk = &tk_core.timekeeper;
875
	struct clocksource *new, *old;
876
	unsigned long flags;
877

878
	new = (struct clocksource *) data;
879

880
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
881
	write_seqcount_begin(&tk_core.seq);
882

883
	timekeeping_forward_now(tk);
884 885 886 887 888 889
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
890
			old = tk->tkr.clock;
891 892 893 894 895 896 897
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
898
	}
899
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
900

901
	write_seqcount_end(&tk_core.seq);
902
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
903

904 905
	return 0;
}
906

907 908 909 910 911 912 913
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
914
int timekeeping_notify(struct clocksource *clock)
915
{
916
	struct timekeeper *tk = &tk_core.timekeeper;
917

918
	if (tk->tkr.clock == clock)
919
		return 0;
920
	stop_machine(change_clocksource, clock, NULL);
921
	tick_clock_notify();
922
	return tk->tkr.clock == clock ? 0 : -1;
923
}
924

925 926 927 928 929 930 931 932
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
933
	struct timekeeper *tk = &tk_core.timekeeper;
934
	struct timespec64 ts64;
935 936 937 938
	unsigned long seq;
	s64 nsecs;

	do {
939
		seq = read_seqcount_begin(&tk_core.seq);
940
		nsecs = timekeeping_get_ns_raw(tk);
941
		ts64 = tk->raw_time;
942

943
	} while (read_seqcount_retry(&tk_core.seq, seq));
944

945 946
	timespec64_add_ns(&ts64, nsecs);
	*ts = timespec64_to_timespec(ts64);
947 948 949
}
EXPORT_SYMBOL(getrawmonotonic);

950
/**
951
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
952
 */
953
int timekeeping_valid_for_hres(void)
954
{
955
	struct timekeeper *tk = &tk_core.timekeeper;
956 957 958 959
	unsigned long seq;
	int ret;

	do {
960
		seq = read_seqcount_begin(&tk_core.seq);
961

962
		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
963

964
	} while (read_seqcount_retry(&tk_core.seq, seq));
965 966 967 968

	return ret;
}

969 970 971 972 973
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
974
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
975 976
	unsigned long seq;
	u64 ret;
977

J
John Stultz 已提交
978
	do {
979
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
980

981
		ret = tk->tkr.clock->max_idle_ns;
J
John Stultz 已提交
982

983
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
984 985

	return ret;
986 987
}

988
/**
989
 * read_persistent_clock -  Return time from the persistent clock.
990 991
 *
 * Weak dummy function for arches that do not yet support it.
992 993
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
994 995 996
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
997
void __weak read_persistent_clock(struct timespec *ts)
998
{
999 1000
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009 1010 1011
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1012
void __weak read_boot_clock(struct timespec *ts)
1013 1014 1015 1016 1017
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1018 1019 1020 1021 1022
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1023
	struct timekeeper *tk = &tk_core.timekeeper;
1024
	struct clocksource *clock;
1025
	unsigned long flags;
1026 1027
	struct timespec64 now, boot, tmp;
	struct timespec ts;
1028

1029 1030 1031
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1032 1033 1034 1035
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1036 1037
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1038

1039 1040 1041
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1042 1043 1044 1045 1046
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1047

1048
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1049
	write_seqcount_begin(&tk_core.seq);
1050 1051
	ntp_init();

1052
	clock = clocksource_default_clock();
1053 1054
	if (clock->enable)
		clock->enable(clock);
1055
	tk_setup_internals(tk, clock);
1056

1057 1058 1059
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1060
	tk->base_raw.tv64 = 0;
1061
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1062
		boot = tk_xtime(tk);
1063

1064
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1065
	tk_set_wall_to_mono(tk, tmp);
1066

1067
	timekeeping_update(tk, TK_MIRROR);
1068

1069
	write_seqcount_end(&tk_core.seq);
1070
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1071 1072 1073
}

/* time in seconds when suspend began */
1074
static struct timespec64 timekeeping_suspend_time;
1075

1076 1077 1078 1079 1080 1081 1082
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1083
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1084
					   struct timespec64 *delta)
1085
{
1086
	if (!timespec64_valid_strict(delta)) {
1087 1088 1089
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1090 1091
		return;
	}
1092
	tk_xtime_add(tk, delta);
1093
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1094
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1095
	tk_debug_account_sleep_time(delta);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
1110
	struct timekeeper *tk = &tk_core.timekeeper;
1111
	struct timespec64 tmp;
1112
	unsigned long flags;
1113

1114 1115 1116 1117 1118
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1119 1120
		return;

1121
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1122
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1123

1124
	timekeeping_forward_now(tk);
1125

1126 1127
	tmp = timespec_to_timespec64(*delta);
	__timekeeping_inject_sleeptime(tk, &tmp);
1128

1129
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1130

1131
	write_seqcount_end(&tk_core.seq);
1132
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1133 1134 1135 1136 1137

	/* signal hrtimers about time change */
	clock_was_set();
}

1138 1139 1140 1141 1142 1143 1144
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1145
static void timekeeping_resume(void)
1146
{
1147
	struct timekeeper *tk = &tk_core.timekeeper;
1148
	struct clocksource *clock = tk->tkr.clock;
1149
	unsigned long flags;
1150 1151
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1152 1153
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1154

1155 1156
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1157

1158
	clockevents_resume();
1159 1160
	clocksource_resume();

1161
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1162
	write_seqcount_begin(&tk_core.seq);
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1176
	cycle_now = tk->tkr.read(clock);
1177
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1178
		cycle_now > tk->tkr.cycle_last) {
1179 1180 1181 1182 1183
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1184 1185
		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
						tk->tkr.mask);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1200
		ts_delta = ns_to_timespec64(nsec);
1201
		suspendtime_found = true;
1202 1203
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1204
		suspendtime_found = true;
1205
	}
1206 1207 1208 1209 1210

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1211
	tk->tkr.cycle_last = cycle_now;
1212
	tk->ntp_error = 0;
1213
	timekeeping_suspended = 0;
1214
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1215
	write_seqcount_end(&tk_core.seq);
1216
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1217 1218 1219 1220 1221 1222

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1223
	hrtimers_resume();
1224 1225
}

1226
static int timekeeping_suspend(void)
1227
{
1228
	struct timekeeper *tk = &tk_core.timekeeper;
1229
	unsigned long flags;
1230 1231 1232
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1233

1234 1235
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1236

1237 1238 1239 1240 1241 1242 1243 1244
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1245
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1246
	write_seqcount_begin(&tk_core.seq);
1247
	timekeeping_forward_now(tk);
1248
	timekeeping_suspended = 1;
1249 1250 1251 1252 1253 1254 1255

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1256 1257
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1258 1259 1260 1261 1262 1263 1264 1265 1266
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1267
			timespec64_add(timekeeping_suspend_time, delta_delta);
1268
	}
1269 1270

	timekeeping_update(tk, TK_MIRROR);
1271
	write_seqcount_end(&tk_core.seq);
1272
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1273 1274

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1275
	clocksource_suspend();
1276
	clockevents_suspend();
1277 1278 1279 1280 1281

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1282
static struct syscore_ops timekeeping_syscore_ops = {
1283 1284 1285 1286
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1287
static int __init timekeeping_init_ops(void)
1288
{
1289 1290
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1291
}
1292
device_initcall(timekeeping_init_ops);
1293 1294

/*
1295
 * Apply a multiplier adjustment to the timekeeper
1296
 */
1297 1298 1299 1300
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1301
{
1302 1303
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1304

1305 1306 1307 1308
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1309
	}
1310 1311 1312
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1313

1314 1315 1316
	/*
	 * So the following can be confusing.
	 *
1317
	 * To keep things simple, lets assume mult_adj == 1 for now.
1318
	 *
1319
	 * When mult_adj != 1, remember that the interval and offset values
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1363
	tk->tkr.mult += mult_adj;
1364
	tk->xtime_interval += interval;
1365
	tk->tkr.xtime_nsec -= offset;
1366
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1386 1387
	tk->ntp_tick = ntp_tick_length();

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

	if (unlikely(tk->tkr.clock->maxadj &&
		(tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
			tk->tkr.clock->name, (long)tk->tkr.mult,
			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
	}
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1449 1450 1451
	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr.xtime_nsec;
		tk->tkr.xtime_nsec = 0;
1452
		tk->ntp_error += neg << tk->ntp_error_shift;
1453
	}
1454 1455
}

1456 1457 1458 1459 1460 1461 1462 1463
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1464
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1465
{
1466
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1467
	unsigned int clock_set = 0;
1468

1469
	while (tk->tkr.xtime_nsec >= nsecps) {
1470 1471
		int leap;

1472
		tk->tkr.xtime_nsec -= nsecps;
1473 1474 1475 1476
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1477
		if (unlikely(leap)) {
1478
			struct timespec64 ts;
1479 1480

			tk->xtime_sec += leap;
1481

1482 1483 1484
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1485
				timespec64_sub(tk->wall_to_monotonic, ts));
1486

1487 1488
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1489
			clock_set = TK_CLOCK_WAS_SET;
1490
		}
1491
	}
1492
	return clock_set;
1493 1494
}

1495 1496 1497 1498 1499 1500 1501 1502 1503
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1504
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1505 1506
						u32 shift,
						unsigned int *clock_set)
1507
{
T
Thomas Gleixner 已提交
1508
	cycle_t interval = tk->cycle_interval << shift;
1509
	u64 raw_nsecs;
1510

1511
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1512
	if (offset < interval)
1513 1514 1515
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1516
	offset -= interval;
1517
	tk->tkr.cycle_last += interval;
1518

1519
	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1520
	*clock_set |= accumulate_nsecs_to_secs(tk);
1521

1522
	/* Accumulate raw time */
1523
	raw_nsecs = (u64)tk->raw_interval << shift;
1524
	raw_nsecs += tk->raw_time.tv_nsec;
1525 1526 1527
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1528
		tk->raw_time.tv_sec += raw_secs;
1529
	}
1530
	tk->raw_time.tv_nsec = raw_nsecs;
1531 1532

	/* Accumulate error between NTP and clock interval */
1533
	tk->ntp_error += tk->ntp_tick << shift;
1534 1535
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1536 1537 1538 1539

	return offset;
}

1540 1541 1542 1543
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1544
void update_wall_time(void)
1545
{
1546
	struct timekeeper *real_tk = &tk_core.timekeeper;
1547
	struct timekeeper *tk = &shadow_timekeeper;
1548
	cycle_t offset;
1549
	int shift = 0, maxshift;
1550
	unsigned int clock_set = 0;
J
John Stultz 已提交
1551 1552
	unsigned long flags;

1553
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1554 1555 1556

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1557
		goto out;
1558

J
John Stultz 已提交
1559
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1560
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1561
#else
1562 1563
	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
				   tk->tkr.cycle_last, tk->tkr.mask);
1564 1565
#endif

1566
	/* Check if there's really nothing to do */
1567
	if (offset < real_tk->cycle_interval)
1568 1569
		goto out;

1570 1571 1572 1573
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1574
	 * that is smaller than the offset.  We then accumulate that
1575 1576
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1577
	 */
1578
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1579
	shift = max(0, shift);
1580
	/* Bound shift to one less than what overflows tick_length */
1581
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1582
	shift = min(shift, maxshift);
1583
	while (offset >= tk->cycle_interval) {
1584 1585
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1586
		if (offset < tk->cycle_interval<<shift)
1587
			shift--;
1588 1589 1590
	}

	/* correct the clock when NTP error is too big */
1591
	timekeeping_adjust(tk, offset);
1592

J
John Stultz 已提交
1593
	/*
1594 1595 1596 1597
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1598

J
John Stultz 已提交
1599 1600
	/*
	 * Finally, make sure that after the rounding
1601
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1602
	 */
1603
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1604

1605
	write_seqcount_begin(&tk_core.seq);
1606 1607 1608 1609 1610 1611 1612
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1613
	 * memcpy under the tk_core.seq against one before we start
1614 1615 1616
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1617
	timekeeping_update(real_tk, clock_set);
1618
	write_seqcount_end(&tk_core.seq);
1619
out:
1620
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1621
	if (clock_set)
1622 1623
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1624
}
T
Tomas Janousek 已提交
1625 1626 1627 1628 1629

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1630
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1631 1632 1633 1634 1635 1636 1637 1638
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1639
	struct timekeeper *tk = &tk_core.timekeeper;
1640 1641 1642
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

	*ts = ktime_to_timespec(t);
T
Tomas Janousek 已提交
1643
}
1644
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1645

1646 1647
unsigned long get_seconds(void)
{
1648
	struct timekeeper *tk = &tk_core.timekeeper;
1649 1650

	return tk->xtime_sec;
1651 1652 1653
}
EXPORT_SYMBOL(get_seconds);

1654 1655
struct timespec __current_kernel_time(void)
{
1656
	struct timekeeper *tk = &tk_core.timekeeper;
1657

1658
	return timespec64_to_timespec(tk_xtime(tk));
1659
}
1660

1661 1662
struct timespec current_kernel_time(void)
{
1663
	struct timekeeper *tk = &tk_core.timekeeper;
1664
	struct timespec64 now;
1665 1666 1667
	unsigned long seq;

	do {
1668
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1669

1670
		now = tk_xtime(tk);
1671
	} while (read_seqcount_retry(&tk_core.seq, seq));
1672

1673
	return timespec64_to_timespec(now);
1674 1675
}
EXPORT_SYMBOL(current_kernel_time);
1676 1677 1678

struct timespec get_monotonic_coarse(void)
{
1679
	struct timekeeper *tk = &tk_core.timekeeper;
1680
	struct timespec64 now, mono;
1681 1682 1683
	unsigned long seq;

	do {
1684
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1685

1686 1687
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1688
	} while (read_seqcount_retry(&tk_core.seq, seq));
1689

1690
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1691
				now.tv_nsec + mono.tv_nsec);
1692 1693

	return timespec64_to_timespec(now);
1694
}
1695 1696

/*
1697
 * Must hold jiffies_lock
1698 1699 1700 1701 1702 1703
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1704 1705

/**
1706 1707 1708 1709 1710 1711
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1712
 */
1713 1714
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1715
{
1716
	struct timekeeper *tk = &tk_core.timekeeper;
1717
	unsigned int seq;
1718 1719
	ktime_t base;
	u64 nsecs;
1720 1721

	do {
1722
		seq = read_seqcount_begin(&tk_core.seq);
1723

1724 1725
		base = tk->tkr.base_mono;
		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1726

1727 1728 1729
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1730
	} while (read_seqcount_retry(&tk_core.seq, seq));
1731

1732
	return ktime_add_ns(base, nsecs);
1733
}
T
Torben Hohn 已提交
1734

1735 1736
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1737
 * ktime_get_update_offsets_now - hrtimer helper
1738 1739
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1740
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1741 1742
 *
 * Returns current monotonic time and updates the offsets
1743
 * Called from hrtimer_interrupt() or retrigger_next_event()
1744
 */
1745
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1746
							ktime_t *offs_tai)
1747
{
1748
	struct timekeeper *tk = &tk_core.timekeeper;
1749
	unsigned int seq;
1750 1751
	ktime_t base;
	u64 nsecs;
1752 1753

	do {
1754
		seq = read_seqcount_begin(&tk_core.seq);
1755

1756
		base = tk->tkr.base_mono;
1757
		nsecs = timekeeping_get_ns(&tk->tkr);
1758

1759 1760
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1761
		*offs_tai = tk->offs_tai;
1762
	} while (read_seqcount_retry(&tk_core.seq, seq));
1763

1764
	return ktime_add_ns(base, nsecs);
1765 1766 1767
}
#endif

1768 1769 1770 1771 1772
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1773
	struct timekeeper *tk = &tk_core.timekeeper;
1774
	unsigned long flags;
1775
	struct timespec64 ts;
1776
	s32 orig_tai, tai;
1777 1778 1779 1780 1781 1782 1783
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1795
	getnstimeofday64(&ts);
1796

1797
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1798
	write_seqcount_begin(&tk_core.seq);
1799

1800
	orig_tai = tai = tk->tai_offset;
1801
	ret = __do_adjtimex(txc, &ts, &tai);
1802

1803 1804
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1805
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1806
	}
1807
	write_seqcount_end(&tk_core.seq);
1808 1809
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1810 1811 1812
	if (tai != orig_tai)
		clock_was_set();

1813 1814
	ntp_notify_cmos_timer();

1815 1816
	return ret;
}
1817 1818 1819 1820 1821 1822 1823

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1824 1825 1826
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1827
	write_seqcount_begin(&tk_core.seq);
1828

1829
	__hardpps(phase_ts, raw_ts);
1830

1831
	write_seqcount_end(&tk_core.seq);
1832
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1833 1834 1835 1836
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1837 1838 1839 1840 1841 1842 1843 1844
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1845
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1846
	do_timer(ticks);
1847
	write_sequnlock(&jiffies_lock);
1848
	update_wall_time();
T
Torben Hohn 已提交
1849
}