core.c 223.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
typedef int (*remote_function_f)(void *);

54
struct remote_function_call {
55
	struct task_struct	*p;
56
	remote_function_f	func;
57 58
	void			*info;
	int			ret;
59 60 61 62 63 64 65 66
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
67 68 69 70 71 72 73 74 75 76 77
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
98
task_function_call(struct task_struct *p, remote_function_f func, void *info)
99 100
{
	struct remote_function_call data = {
101 102 103
		.p	= p,
		.func	= func,
		.info	= info,
104
		.ret	= -EAGAIN,
105
	};
106
	int ret;
107

108 109 110 111 112
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
113

114
	return ret;
115 116 117 118 119 120 121 122 123 124 125
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
126
static int cpu_function_call(int cpu, remote_function_f func, void *info)
127 128
{
	struct remote_function_call data = {
129 130 131 132
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
133 134 135 136 137 138 139
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

140 141 142 143 144 145 146 147
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
148
{
149 150 151 152 153 154 155 156 157 158 159 160 161
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

162 163 164 165
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
166
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167 168
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

188 189 190 191 192 193 194 195 196 197 198 199 200
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
201
	struct perf_event_context *ctx = event->ctx;
202 203
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204
	int ret = 0;
205 206 207

	WARN_ON_ONCE(!irqs_disabled());

208
	perf_ctx_lock(cpuctx, task_ctx);
209 210 211 212 213
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
214
		if (ctx->task != current) {
215
			ret = -ESRCH;
216 217
			goto unlock;
		}
218 219 220 221 222 223 224 225 226 227 228 229 230

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
231 232 233
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234
	}
235

236
	efs->func(event, cpuctx, ctx, efs->data);
237
unlock:
238 239
	perf_ctx_unlock(cpuctx, task_ctx);

240
	return ret;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
256 257
{
	struct perf_event_context *ctx = event->ctx;
258
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 260 261 262 263
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
264

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
273 274

	if (!task) {
275
		cpu_function_call(event->cpu, event_function, &efs);
276 277 278
		return;
	}

279 280 281
	if (task == TASK_TOMBSTONE)
		return;

282
again:
283
	if (!task_function_call(task, event_function, &efs))
284 285 286
		return;

	raw_spin_lock_irq(&ctx->lock);
287 288 289 290 291
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
292 293 294
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
295
	}
296 297 298 299 300
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
301 302 303
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
304 305
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
306 307
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
308

309 310 311 312 313 314 315
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

316 317 318
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
319
	EVENT_TIME = 0x4,
320 321 322
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
323 324 325 326
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
327 328 329 330 331 332 333

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
334
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
336

337 338 339
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
340
static atomic_t nr_freq_events __read_mostly;
341
static atomic_t nr_switch_events __read_mostly;
342

P
Peter Zijlstra 已提交
343 344 345 346
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

347
/*
348
 * perf event paranoia level:
349 350
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
351
 *   1 - disallow cpu events for unpriv
352
 *   2 - disallow kernel profiling for unpriv
353
 */
354
int sysctl_perf_event_paranoid __read_mostly = 1;
355

356 357
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358 359

/*
360
 * max perf event sample rate
361
 */
362 363 364 365 366 367 368 369 370
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
371 372
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373

374
static void update_perf_cpu_limits(void)
375 376 377 378
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
379
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
380
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
381
}
P
Peter Zijlstra 已提交
382

383 384
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
385 386 387 388
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
389
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
390 391 392 393 394

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
413 414 415

	return 0;
}
416

417 418 419 420 421 422 423
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
424
static DEFINE_PER_CPU(u64, running_sample_length);
425

426
static void perf_duration_warn(struct irq_work *w)
427
{
428
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
429
	u64 avg_local_sample_len;
430
	u64 local_samples_len;
431

432
	local_samples_len = __this_cpu_read(running_sample_length);
433 434 435 436 437
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
438
			avg_local_sample_len, allowed_ns >> 1,
439 440 441 442 443 444 445
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
446
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
447 448
	u64 avg_local_sample_len;
	u64 local_samples_len;
449

P
Peter Zijlstra 已提交
450
	if (allowed_ns == 0)
451 452 453
		return;

	/* decay the counter by 1 average sample */
454
	local_samples_len = __this_cpu_read(running_sample_length);
455 456
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
457
	__this_cpu_write(running_sample_length, local_samples_len);
458 459 460 461 462 463 464 465

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
466
	if (avg_local_sample_len <= allowed_ns)
467 468 469 470 471 472 473 474 475 476
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
477

478 479 480 481 482 483
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
484 485
}

486
static atomic64_t perf_event_id;
487

488 489 490 491
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
492 493 494 495 496
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
497

498
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
499

500
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
501
{
502
	return "pmu";
T
Thomas Gleixner 已提交
503 504
}

505 506 507 508 509
static inline u64 perf_clock(void)
{
	return local_clock();
}

510 511 512 513 514
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
515 516 517 518 519 520 521 522
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
539 540 541 542
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
543
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
582 583
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
584
	/*
585 586
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
587
	 */
588
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
589 590
		return;

591
	cgrp = perf_cgroup_from_task(current, event->ctx);
592 593 594 595 596
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
597 598 599
}

static inline void
600 601
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
602 603 604 605
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

606 607 608 609 610 611
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
612 613
		return;

614
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
615
	info = this_cpu_ptr(cgrp->info);
616
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
617 618 619 620 621 622 623 624 625 626 627
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
628
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
648 649
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
650 651 652 653 654 655 656 657 658

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
659 660
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
661 662 663 664 665 666 667 668 669 670 671

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
672
				WARN_ON_ONCE(cpuctx->cgrp);
673 674 675 676
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
677 678
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
679
				 */
680
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
681 682
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
683 684
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
685 686 687 688 689 690
		}
	}

	local_irq_restore(flags);
}

691 692
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
693
{
694 695 696
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

697
	rcu_read_lock();
698 699
	/*
	 * we come here when we know perf_cgroup_events > 0
700 701
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
702
	 */
703
	cgrp1 = perf_cgroup_from_task(task, NULL);
704
	cgrp2 = perf_cgroup_from_task(next, NULL);
705 706 707 708 709 710 711 712

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
713 714

	rcu_read_unlock();
S
Stephane Eranian 已提交
715 716
}

717 718
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
719
{
720 721 722
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

723
	rcu_read_lock();
724 725
	/*
	 * we come here when we know perf_cgroup_events > 0
726 727
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
728
	 */
729 730
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
731 732 733 734 735 736 737 738

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
739 740

	rcu_read_unlock();
S
Stephane Eranian 已提交
741 742 743 744 745 746 747 748
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
749 750
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
751

752
	if (!f.file)
S
Stephane Eranian 已提交
753 754
		return -EBADF;

A
Al Viro 已提交
755
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
756
					 &perf_event_cgrp_subsys);
757 758 759 760
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
774
out:
775
	fdput(f);
S
Stephane Eranian 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

849 850
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
851 852 853
{
}

854 855
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
856 857 858 859 860 861 862 863 864 865 866
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
867 868
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

899 900 901 902 903 904 905 906
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
907
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
908 909 910 911 912 913 914 915 916
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
917 918
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
919
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
920 921 922
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
923

P
Peter Zijlstra 已提交
924
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
925 926
}

927
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
928
{
929
	struct hrtimer *timer = &cpuctx->hrtimer;
930
	struct pmu *pmu = cpuctx->ctx.pmu;
931
	u64 interval;
932 933 934 935 936

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

937 938 939 940
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
941 942 943
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
944

945
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
946

P
Peter Zijlstra 已提交
947 948
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
949
	timer->function = perf_mux_hrtimer_handler;
950 951
}

952
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
953
{
954
	struct hrtimer *timer = &cpuctx->hrtimer;
955
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
956
	unsigned long flags;
957 958 959

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
960
		return 0;
961

P
Peter Zijlstra 已提交
962 963 964 965 966 967 968
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
969

970
	return 0;
971 972
}

P
Peter Zijlstra 已提交
973
void perf_pmu_disable(struct pmu *pmu)
974
{
P
Peter Zijlstra 已提交
975 976 977
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
978 979
}

P
Peter Zijlstra 已提交
980
void perf_pmu_enable(struct pmu *pmu)
981
{
P
Peter Zijlstra 已提交
982 983 984
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
985 986
}

987
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
988 989

/*
990 991 992 993
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
994
 */
995
static void perf_event_ctx_activate(struct perf_event_context *ctx)
996
{
997
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
998

999
	WARN_ON(!irqs_disabled());
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1013 1014
}

1015
static void get_ctx(struct perf_event_context *ctx)
1016
{
1017
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1018 1019
}

1020 1021 1022 1023 1024 1025 1026 1027 1028
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1029
static void put_ctx(struct perf_event_context *ctx)
1030
{
1031 1032 1033
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1034
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1035
			put_task_struct(ctx->task);
1036
		call_rcu(&ctx->rcu_head, free_ctx);
1037
	}
1038 1039
}

P
Peter Zijlstra 已提交
1040 1041 1042 1043 1044 1045 1046
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1047 1048 1049 1050
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1051 1052
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1096
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1097 1098 1099
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1100 1101
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1114
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1124 1125 1126 1127 1128 1129
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1130 1131 1132 1133 1134 1135 1136
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1137 1138 1139 1140 1141 1142 1143
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1144
{
1145 1146 1147 1148 1149
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1150
		ctx->parent_ctx = NULL;
1151
	ctx->generation++;
1152 1153

	return parent_ctx;
1154 1155
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1178
/*
1179
 * If we inherit events we want to return the parent event id
1180 1181
 * to userspace.
 */
1182
static u64 primary_event_id(struct perf_event *event)
1183
{
1184
	u64 id = event->id;
1185

1186 1187
	if (event->parent)
		id = event->parent->id;
1188 1189 1190 1191

	return id;
}

1192
/*
1193
 * Get the perf_event_context for a task and lock it.
1194
 *
1195 1196 1197
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1198
static struct perf_event_context *
P
Peter Zijlstra 已提交
1199
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1200
{
1201
	struct perf_event_context *ctx;
1202

P
Peter Zijlstra 已提交
1203
retry:
1204 1205 1206
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1207
	 * part of the read side critical section was irqs-enabled -- see
1208 1209 1210
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1211
	 * side critical section has interrupts disabled.
1212
	 */
1213
	local_irq_save(*flags);
1214
	rcu_read_lock();
P
Peter Zijlstra 已提交
1215
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1216 1217 1218 1219
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1220
		 * perf_event_task_sched_out, though the
1221 1222 1223 1224 1225 1226
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1227
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1228
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1229
			raw_spin_unlock(&ctx->lock);
1230
			rcu_read_unlock();
1231
			local_irq_restore(*flags);
1232 1233
			goto retry;
		}
1234

1235 1236
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1237
			raw_spin_unlock(&ctx->lock);
1238
			ctx = NULL;
P
Peter Zijlstra 已提交
1239 1240
		} else {
			WARN_ON_ONCE(ctx->task != task);
1241
		}
1242 1243
	}
	rcu_read_unlock();
1244 1245
	if (!ctx)
		local_irq_restore(*flags);
1246 1247 1248 1249 1250 1251 1252 1253
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1254 1255
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1256
{
1257
	struct perf_event_context *ctx;
1258 1259
	unsigned long flags;

P
Peter Zijlstra 已提交
1260
	ctx = perf_lock_task_context(task, ctxn, &flags);
1261 1262
	if (ctx) {
		++ctx->pin_count;
1263
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1264 1265 1266 1267
	}
	return ctx;
}

1268
static void perf_unpin_context(struct perf_event_context *ctx)
1269 1270 1271
{
	unsigned long flags;

1272
	raw_spin_lock_irqsave(&ctx->lock, flags);
1273
	--ctx->pin_count;
1274
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1275 1276
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1288 1289 1290
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1291 1292 1293 1294

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1295 1296 1297
	return ctx ? ctx->time : 0;
}

1298 1299 1300 1301 1302 1303 1304 1305
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1306 1307
	lockdep_assert_held(&ctx->lock);

1308 1309 1310
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1311

S
Stephane Eranian 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1323
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1324 1325
	else if (ctx->is_active)
		run_end = ctx->time;
1326 1327 1328 1329
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1330 1331 1332 1333

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1334
		run_end = perf_event_time(event);
1335 1336

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1337

1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1352 1353 1354 1355 1356 1357 1358 1359 1360
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1361
/*
1362
 * Add a event from the lists for its context.
1363 1364
 * Must be called with ctx->mutex and ctx->lock held.
 */
1365
static void
1366
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1367
{
P
Peter Zijlstra 已提交
1368 1369
	lockdep_assert_held(&ctx->lock);

1370 1371
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1372 1373

	/*
1374 1375 1376
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1377
	 */
1378
	if (event->group_leader == event) {
1379 1380
		struct list_head *list;

1381 1382 1383
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1384 1385
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1386
	}
P
Peter Zijlstra 已提交
1387

1388
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1389 1390
		ctx->nr_cgroups++;

1391 1392 1393
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1394
		ctx->nr_stat++;
1395 1396

	ctx->generation++;
1397 1398
}

J
Jiri Olsa 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1408
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1424
		nr += nr_siblings;
1425 1426 1427 1428 1429 1430 1431
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1432
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1433 1434 1435 1436 1437 1438 1439
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1440 1441 1442 1443 1444 1445
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1446 1447 1448
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1449 1450 1451
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1452 1453 1454
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1455 1456 1457
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1458 1459 1460
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1472 1473 1474 1475 1476 1477
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1478 1479 1480 1481 1482 1483
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1484 1485 1486
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1487 1488 1489 1490 1491 1492 1493 1494 1495
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1496
	event->id_header_size = size;
1497 1498
}

P
Peter Zijlstra 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1520 1521
static void perf_group_attach(struct perf_event *event)
{
1522
	struct perf_event *group_leader = event->group_leader, *pos;
1523

P
Peter Zijlstra 已提交
1524 1525 1526 1527 1528 1529
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1530 1531 1532 1533 1534
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1535 1536
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1537 1538 1539 1540 1541 1542
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1543 1544 1545 1546 1547

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1548 1549
}

1550
/*
1551
 * Remove a event from the lists for its context.
1552
 * Must be called with ctx->mutex and ctx->lock held.
1553
 */
1554
static void
1555
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1556
{
1557
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1558 1559 1560 1561

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1562 1563 1564 1565
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1566
		return;
1567 1568 1569

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1570
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1571
		ctx->nr_cgroups--;
1572 1573 1574 1575
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1576 1577
		cpuctx = __get_cpu_context(ctx);
		/*
1578 1579
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1580 1581 1582 1583
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1584

1585 1586
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1587
		ctx->nr_stat--;
1588

1589
	list_del_rcu(&event->event_entry);
1590

1591 1592
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1593

1594
	update_group_times(event);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1605 1606

	ctx->generation++;
1607 1608
}

1609
static void perf_group_detach(struct perf_event *event)
1610 1611
{
	struct perf_event *sibling, *tmp;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1628
		goto out;
1629 1630 1631 1632
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1633

1634
	/*
1635 1636
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1637
	 * to whatever list we are on.
1638
	 */
1639
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1640 1641
		if (list)
			list_move_tail(&sibling->group_entry, list);
1642
		sibling->group_leader = sibling;
1643 1644 1645

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1646 1647

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1648
	}
1649 1650 1651 1652 1653 1654

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1655 1656
}

1657 1658
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1659
	return event->state == PERF_EVENT_STATE_DEAD;
1660 1661
}

1662 1663 1664 1665 1666 1667
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1668 1669 1670
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1671
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1672
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1673 1674
}

1675 1676
static void
event_sched_out(struct perf_event *event,
1677
		  struct perf_cpu_context *cpuctx,
1678
		  struct perf_event_context *ctx)
1679
{
1680
	u64 tstamp = perf_event_time(event);
1681
	u64 delta;
P
Peter Zijlstra 已提交
1682 1683 1684 1685

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1686 1687 1688 1689 1690 1691 1692 1693
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1694
		delta = tstamp - event->tstamp_stopped;
1695
		event->tstamp_running += delta;
1696
		event->tstamp_stopped = tstamp;
1697 1698
	}

1699
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1700
		return;
1701

1702 1703
	perf_pmu_disable(event->pmu);

1704 1705 1706
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1707 1708 1709 1710
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1711
	}
1712

1713
	if (!is_software_event(event))
1714
		cpuctx->active_oncpu--;
1715 1716
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1717 1718
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1719
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1720
		cpuctx->exclusive = 0;
1721 1722

	perf_pmu_enable(event->pmu);
1723 1724
}

1725
static void
1726
group_sched_out(struct perf_event *group_event,
1727
		struct perf_cpu_context *cpuctx,
1728
		struct perf_event_context *ctx)
1729
{
1730
	struct perf_event *event;
1731
	int state = group_event->state;
1732

1733
	event_sched_out(group_event, cpuctx, ctx);
1734 1735 1736 1737

	/*
	 * Schedule out siblings (if any):
	 */
1738 1739
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1740

1741
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1742 1743 1744
		cpuctx->exclusive = 0;
}

1745
#define DETACH_GROUP	0x01UL
1746

T
Thomas Gleixner 已提交
1747
/*
1748
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1749
 *
1750
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1751 1752
 * remove it from the context list.
 */
1753 1754 1755 1756 1757
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1758
{
1759
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1760

1761
	event_sched_out(event, cpuctx, ctx);
1762
	if (flags & DETACH_GROUP)
1763
		perf_group_detach(event);
1764
	list_del_event(event, ctx);
1765 1766

	if (!ctx->nr_events && ctx->is_active) {
1767
		ctx->is_active = 0;
1768 1769 1770 1771
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1772
	}
T
Thomas Gleixner 已提交
1773 1774 1775
}

/*
1776
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1777
 *
1778 1779
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1780 1781
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1782
 * When called from perf_event_exit_task, it's OK because the
1783
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1784
 */
1785
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1786
{
1787
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1788

1789
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1790 1791
}

1792
/*
1793
 * Cross CPU call to disable a performance event
1794
 */
1795 1796 1797 1798
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1799
{
1800 1801
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1802

1803 1804 1805 1806 1807 1808 1809 1810
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1811 1812
}

1813
/*
1814
 * Disable a event.
1815
 *
1816 1817
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1818
 * remains valid.  This condition is satisifed when called through
1819 1820
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1821 1822
 * goes to exit will block in perf_event_exit_event().
 *
1823
 * When called from perf_pending_event it's OK because event->ctx
1824
 * is the current context on this CPU and preemption is disabled,
1825
 * hence we can't get into perf_event_task_sched_out for this context.
1826
 */
P
Peter Zijlstra 已提交
1827
static void _perf_event_disable(struct perf_event *event)
1828
{
1829
	struct perf_event_context *ctx = event->ctx;
1830

1831
	raw_spin_lock_irq(&ctx->lock);
1832
	if (event->state <= PERF_EVENT_STATE_OFF) {
1833
		raw_spin_unlock_irq(&ctx->lock);
1834
		return;
1835
	}
1836
	raw_spin_unlock_irq(&ctx->lock);
1837

1838 1839 1840 1841 1842 1843
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1844
}
P
Peter Zijlstra 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1858
EXPORT_SYMBOL_GPL(perf_event_disable);
1859

S
Stephane Eranian 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1895 1896 1897
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1898
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1899

1900
static int
1901
event_sched_in(struct perf_event *event,
1902
		 struct perf_cpu_context *cpuctx,
1903
		 struct perf_event_context *ctx)
1904
{
1905
	u64 tstamp = perf_event_time(event);
1906
	int ret = 0;
1907

1908 1909
	lockdep_assert_held(&ctx->lock);

1910
	if (event->state <= PERF_EVENT_STATE_OFF)
1911 1912
		return 0;

1913
	event->state = PERF_EVENT_STATE_ACTIVE;
1914
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1926 1927 1928 1929 1930
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1931 1932
	perf_pmu_disable(event->pmu);

1933 1934
	perf_set_shadow_time(event, ctx, tstamp);

1935 1936
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1937
	if (event->pmu->add(event, PERF_EF_START)) {
1938 1939
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1940 1941
		ret = -EAGAIN;
		goto out;
1942 1943
	}

1944 1945
	event->tstamp_running += tstamp - event->tstamp_stopped;

1946
	if (!is_software_event(event))
1947
		cpuctx->active_oncpu++;
1948 1949
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1950 1951
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1952

1953
	if (event->attr.exclusive)
1954 1955
		cpuctx->exclusive = 1;

1956 1957 1958 1959
out:
	perf_pmu_enable(event->pmu);

	return ret;
1960 1961
}

1962
static int
1963
group_sched_in(struct perf_event *group_event,
1964
	       struct perf_cpu_context *cpuctx,
1965
	       struct perf_event_context *ctx)
1966
{
1967
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1968
	struct pmu *pmu = ctx->pmu;
1969 1970
	u64 now = ctx->time;
	bool simulate = false;
1971

1972
	if (group_event->state == PERF_EVENT_STATE_OFF)
1973 1974
		return 0;

1975
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1976

1977
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1978
		pmu->cancel_txn(pmu);
1979
		perf_mux_hrtimer_restart(cpuctx);
1980
		return -EAGAIN;
1981
	}
1982 1983 1984 1985

	/*
	 * Schedule in siblings as one group (if any):
	 */
1986
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1987
		if (event_sched_in(event, cpuctx, ctx)) {
1988
			partial_group = event;
1989 1990 1991 1992
			goto group_error;
		}
	}

1993
	if (!pmu->commit_txn(pmu))
1994
		return 0;
1995

1996 1997 1998 1999
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2010
	 */
2011 2012
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2013 2014 2015 2016 2017 2018 2019 2020
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2021
	}
2022
	event_sched_out(group_event, cpuctx, ctx);
2023

P
Peter Zijlstra 已提交
2024
	pmu->cancel_txn(pmu);
2025

2026
	perf_mux_hrtimer_restart(cpuctx);
2027

2028 2029 2030
	return -EAGAIN;
}

2031
/*
2032
 * Work out whether we can put this event group on the CPU now.
2033
 */
2034
static int group_can_go_on(struct perf_event *event,
2035 2036 2037 2038
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2039
	 * Groups consisting entirely of software events can always go on.
2040
	 */
2041
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2042 2043 2044
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2045
	 * events can go on.
2046 2047 2048 2049 2050
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2051
	 * events on the CPU, it can't go on.
2052
	 */
2053
	if (event->attr.exclusive && cpuctx->active_oncpu)
2054 2055 2056 2057 2058 2059 2060 2061
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2062 2063
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2064
{
2065 2066
	u64 tstamp = perf_event_time(event);

2067
	list_add_event(event, ctx);
2068
	perf_group_attach(event);
2069 2070 2071
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2072 2073
}

2074 2075 2076
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2077 2078 2079 2080 2081
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2082

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2107 2108
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2109
{
2110 2111 2112 2113 2114 2115
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2116 2117
}

T
Thomas Gleixner 已提交
2118
/*
2119
 * Cross CPU call to install and enable a performance event
2120
 *
2121 2122
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2123
 */
2124
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2125
{
2126 2127
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2128
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2129
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2130 2131
	bool activate = true;
	int ret = 0;
T
Thomas Gleixner 已提交
2132

2133
	raw_spin_lock(&cpuctx->ctx.lock);
2134
	if (ctx->task) {
2135 2136
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2137 2138 2139 2140

		/* If we're on the wrong CPU, try again */
		if (task_cpu(ctx->task) != smp_processor_id()) {
			ret = -ESRCH;
2141
			goto unlock;
2142
		}
2143

2144
		/*
2145 2146 2147
		 * If we're on the right CPU, see if the task we target is
		 * current, if not we don't have to activate the ctx, a future
		 * context switch will do that for us.
2148
		 */
2149 2150 2151 2152 2153
		if (ctx->task != current)
			activate = false;
		else
			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);

2154 2155
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2156
	}
2157

2158 2159 2160 2161 2162 2163 2164 2165
	if (activate) {
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
		ctx_resched(cpuctx, task_ctx);
	} else {
		add_event_to_ctx(event, ctx);
	}

2166
unlock:
2167
	perf_ctx_unlock(cpuctx, task_ctx);
2168

2169
	return ret;
T
Thomas Gleixner 已提交
2170 2171 2172
}

/*
2173 2174 2175
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2176 2177
 */
static void
2178 2179
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2180 2181
			int cpu)
{
2182
	struct task_struct *task = READ_ONCE(ctx->task);
2183

2184 2185
	lockdep_assert_held(&ctx->mutex);

2186
	event->ctx = ctx;
2187 2188
	if (event->cpu != -1)
		event->cpu = cpu;
2189

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2201 2202 2203 2204
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 */
2205
again:
2206
	/*
2207 2208
	 * Cannot use task_function_call() because we need to run on the task's
	 * CPU regardless of whether its current or not.
2209
	 */
2210 2211 2212 2213 2214
	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2215
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2216 2217 2218 2219 2220
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2221 2222 2223
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2224 2225
	raw_spin_unlock_irq(&ctx->lock);
	/*
2226 2227
	 * Since !ctx->is_active doesn't mean anything, we must IPI
	 * unconditionally.
2228
	 */
2229
	goto again;
T
Thomas Gleixner 已提交
2230 2231
}

2232
/*
2233
 * Put a event into inactive state and update time fields.
2234 2235 2236 2237 2238 2239
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2240
static void __perf_event_mark_enabled(struct perf_event *event)
2241
{
2242
	struct perf_event *sub;
2243
	u64 tstamp = perf_event_time(event);
2244

2245
	event->state = PERF_EVENT_STATE_INACTIVE;
2246
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2247
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2248 2249
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2250
	}
2251 2252
}

2253
/*
2254
 * Cross CPU call to enable a performance event
2255
 */
2256 2257 2258 2259
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2260
{
2261
	struct perf_event *leader = event->group_leader;
2262
	struct perf_event_context *task_ctx;
2263

P
Peter Zijlstra 已提交
2264 2265
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2266
		return;
2267

2268 2269 2270
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2271
	__perf_event_mark_enabled(event);
2272

2273 2274 2275
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2276
	if (!event_filter_match(event)) {
2277
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2278
			perf_cgroup_defer_enabled(event);
2279
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2280
		return;
S
Stephane Eranian 已提交
2281
	}
2282

2283
	/*
2284
	 * If the event is in a group and isn't the group leader,
2285
	 * then don't put it on unless the group is on.
2286
	 */
2287 2288
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2289
		return;
2290
	}
2291

2292 2293 2294
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2295

2296
	ctx_resched(cpuctx, task_ctx);
2297 2298
}

2299
/*
2300
 * Enable a event.
2301
 *
2302 2303
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2304
 * remains valid.  This condition is satisfied when called through
2305 2306
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2307
 */
P
Peter Zijlstra 已提交
2308
static void _perf_event_enable(struct perf_event *event)
2309
{
2310
	struct perf_event_context *ctx = event->ctx;
2311

2312
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2313 2314
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2315
		raw_spin_unlock_irq(&ctx->lock);
2316 2317 2318 2319
		return;
	}

	/*
2320
	 * If the event is in error state, clear that first.
2321 2322 2323 2324
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2325
	 */
2326 2327
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2328
	raw_spin_unlock_irq(&ctx->lock);
2329

2330
	event_function_call(event, __perf_event_enable, NULL);
2331
}
P
Peter Zijlstra 已提交
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2344
EXPORT_SYMBOL_GPL(perf_event_enable);
2345

P
Peter Zijlstra 已提交
2346
static int _perf_event_refresh(struct perf_event *event, int refresh)
2347
{
2348
	/*
2349
	 * not supported on inherited events
2350
	 */
2351
	if (event->attr.inherit || !is_sampling_event(event))
2352 2353
		return -EINVAL;

2354
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2355
	_perf_event_enable(event);
2356 2357

	return 0;
2358
}
P
Peter Zijlstra 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2374
EXPORT_SYMBOL_GPL(perf_event_refresh);
2375

2376 2377 2378
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2379
{
2380
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2381
	struct perf_event *event;
2382

P
Peter Zijlstra 已提交
2383
	lockdep_assert_held(&ctx->lock);
2384

2385 2386 2387 2388 2389 2390 2391
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2392
		return;
2393 2394
	}

2395
	ctx->is_active &= ~event_type;
2396 2397 2398
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2399 2400 2401 2402 2403
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2404

2405 2406 2407 2408 2409 2410 2411 2412 2413
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2414
		return;
2415

P
Peter Zijlstra 已提交
2416
	perf_pmu_disable(ctx->pmu);
2417
	if (is_active & EVENT_PINNED) {
2418 2419
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2420
	}
2421

2422
	if (is_active & EVENT_FLEXIBLE) {
2423
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2424
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2425
	}
P
Peter Zijlstra 已提交
2426
	perf_pmu_enable(ctx->pmu);
2427 2428
}

2429
/*
2430 2431 2432 2433 2434 2435
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2436
 */
2437 2438
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2439
{
2440 2441 2442
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2465 2466
}

2467 2468
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2469 2470 2471
{
	u64 value;

2472
	if (!event->attr.inherit_stat)
2473 2474 2475
		return;

	/*
2476
	 * Update the event value, we cannot use perf_event_read()
2477 2478
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2479
	 * we know the event must be on the current CPU, therefore we
2480 2481
	 * don't need to use it.
	 */
2482 2483
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2484 2485
		event->pmu->read(event);
		/* fall-through */
2486

2487 2488
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2489 2490 2491 2492 2493 2494 2495
		break;

	default:
		break;
	}

	/*
2496
	 * In order to keep per-task stats reliable we need to flip the event
2497 2498
	 * values when we flip the contexts.
	 */
2499 2500 2501
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2502

2503 2504
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2505

2506
	/*
2507
	 * Since we swizzled the values, update the user visible data too.
2508
	 */
2509 2510
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2511 2512
}

2513 2514
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2515
{
2516
	struct perf_event *event, *next_event;
2517 2518 2519 2520

	if (!ctx->nr_stat)
		return;

2521 2522
	update_context_time(ctx);

2523 2524
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2525

2526 2527
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2528

2529 2530
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2531

2532
		__perf_event_sync_stat(event, next_event);
2533

2534 2535
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2536 2537 2538
	}
}

2539 2540
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2541
{
P
Peter Zijlstra 已提交
2542
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2543
	struct perf_event_context *next_ctx;
2544
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2545
	struct perf_cpu_context *cpuctx;
2546
	int do_switch = 1;
T
Thomas Gleixner 已提交
2547

P
Peter Zijlstra 已提交
2548 2549
	if (likely(!ctx))
		return;
2550

P
Peter Zijlstra 已提交
2551 2552
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2553 2554
		return;

2555
	rcu_read_lock();
P
Peter Zijlstra 已提交
2556
	next_ctx = next->perf_event_ctxp[ctxn];
2557 2558 2559 2560 2561 2562 2563
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2564
	if (!parent && !next_parent)
2565 2566 2567
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2568 2569 2570 2571 2572 2573 2574 2575 2576
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2577 2578
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2579
		if (context_equiv(ctx, next_ctx)) {
2580 2581
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2582 2583 2584

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2595
			do_switch = 0;
2596

2597
			perf_event_sync_stat(ctx, next_ctx);
2598
		}
2599 2600
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2601
	}
2602
unlock:
2603
	rcu_read_unlock();
2604

2605
	if (do_switch) {
2606
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2607
		task_ctx_sched_out(cpuctx, ctx);
2608
		raw_spin_unlock(&ctx->lock);
2609
	}
T
Thomas Gleixner 已提交
2610 2611
}

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2662 2663 2664
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2679 2680
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2681 2682 2683
{
	int ctxn;

2684 2685 2686
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2687 2688 2689
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2690 2691
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2692 2693 2694 2695 2696 2697

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2698
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2699
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2700 2701
}

2702 2703 2704 2705 2706 2707 2708
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2709 2710
}

2711
static void
2712
ctx_pinned_sched_in(struct perf_event_context *ctx,
2713
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2714
{
2715
	struct perf_event *event;
T
Thomas Gleixner 已提交
2716

2717 2718
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2719
			continue;
2720
		if (!event_filter_match(event))
2721 2722
			continue;

S
Stephane Eranian 已提交
2723 2724 2725 2726
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2727
		if (group_can_go_on(event, cpuctx, 1))
2728
			group_sched_in(event, cpuctx, ctx);
2729 2730 2731 2732 2733

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2734 2735 2736
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2737
		}
2738
	}
2739 2740 2741 2742
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2743
		      struct perf_cpu_context *cpuctx)
2744 2745 2746
{
	struct perf_event *event;
	int can_add_hw = 1;
2747

2748 2749 2750
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2751
			continue;
2752 2753
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2754
		 * of events:
2755
		 */
2756
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2757 2758
			continue;

S
Stephane Eranian 已提交
2759 2760 2761 2762
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2763
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2764
			if (group_sched_in(event, cpuctx, ctx))
2765
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2766
		}
T
Thomas Gleixner 已提交
2767
	}
2768 2769 2770 2771 2772
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2773 2774
	     enum event_type_t event_type,
	     struct task_struct *task)
2775
{
2776
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2777 2778 2779
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2780

2781
	if (likely(!ctx->nr_events))
2782
		return;
2783

2784
	ctx->is_active |= (event_type | EVENT_TIME);
2785 2786 2787 2788 2789 2790 2791
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

2792 2793 2794 2795 2796 2797 2798 2799 2800
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

2801 2802 2803 2804
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2805
	if (is_active & EVENT_PINNED)
2806
		ctx_pinned_sched_in(ctx, cpuctx);
2807 2808

	/* Then walk through the lower prio flexible groups */
2809
	if (is_active & EVENT_FLEXIBLE)
2810
		ctx_flexible_sched_in(ctx, cpuctx);
2811 2812
}

2813
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2814 2815
			     enum event_type_t event_type,
			     struct task_struct *task)
2816 2817 2818
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2819
	ctx_sched_in(ctx, cpuctx, event_type, task);
2820 2821
}

S
Stephane Eranian 已提交
2822 2823
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2824
{
P
Peter Zijlstra 已提交
2825
	struct perf_cpu_context *cpuctx;
2826

P
Peter Zijlstra 已提交
2827
	cpuctx = __get_cpu_context(ctx);
2828 2829 2830
	if (cpuctx->task_ctx == ctx)
		return;

2831
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2832
	perf_pmu_disable(ctx->pmu);
2833 2834 2835 2836 2837 2838
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2839
	perf_event_sched_in(cpuctx, ctx, task);
2840 2841
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2842 2843
}

P
Peter Zijlstra 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2855 2856
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2857 2858 2859 2860
{
	struct perf_event_context *ctx;
	int ctxn;

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2871 2872 2873 2874 2875
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2876
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2877
	}
2878

2879 2880 2881
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2882 2883
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2884 2885
}

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2913
#define REDUCE_FLS(a, b)		\
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2953 2954 2955
	if (!divisor)
		return dividend;

2956 2957 2958
	return div64_u64(dividend, divisor);
}

2959 2960 2961
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2962
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2963
{
2964
	struct hw_perf_event *hwc = &event->hw;
2965
	s64 period, sample_period;
2966 2967
	s64 delta;

2968
	period = perf_calculate_period(event, nsec, count);
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2979

2980
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2981 2982 2983
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2984
		local64_set(&hwc->period_left, 0);
2985 2986 2987

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2988
	}
2989 2990
}

2991 2992 2993 2994 2995 2996 2997
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2998
{
2999 3000
	struct perf_event *event;
	struct hw_perf_event *hwc;
3001
	u64 now, period = TICK_NSEC;
3002
	s64 delta;
3003

3004 3005 3006 3007 3008 3009
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3010 3011
		return;

3012
	raw_spin_lock(&ctx->lock);
3013
	perf_pmu_disable(ctx->pmu);
3014

3015
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3016
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3017 3018
			continue;

3019
		if (!event_filter_match(event))
3020 3021
			continue;

3022 3023
		perf_pmu_disable(event->pmu);

3024
		hwc = &event->hw;
3025

3026
		if (hwc->interrupts == MAX_INTERRUPTS) {
3027
			hwc->interrupts = 0;
3028
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3029
			event->pmu->start(event, 0);
3030 3031
		}

3032
		if (!event->attr.freq || !event->attr.sample_freq)
3033
			goto next;
3034

3035 3036 3037 3038 3039
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3040
		now = local64_read(&event->count);
3041 3042
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3043

3044 3045 3046
		/*
		 * restart the event
		 * reload only if value has changed
3047 3048 3049
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3050
		 */
3051
		if (delta > 0)
3052
			perf_adjust_period(event, period, delta, false);
3053 3054

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3055 3056
	next:
		perf_pmu_enable(event->pmu);
3057
	}
3058

3059
	perf_pmu_enable(ctx->pmu);
3060
	raw_spin_unlock(&ctx->lock);
3061 3062
}

3063
/*
3064
 * Round-robin a context's events:
3065
 */
3066
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3067
{
3068 3069 3070 3071 3072 3073
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3074 3075
}

3076
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3077
{
P
Peter Zijlstra 已提交
3078
	struct perf_event_context *ctx = NULL;
3079
	int rotate = 0;
3080

3081 3082 3083 3084
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3085

P
Peter Zijlstra 已提交
3086
	ctx = cpuctx->task_ctx;
3087 3088 3089 3090
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3091

3092
	if (!rotate)
3093 3094
		goto done;

3095
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3096
	perf_pmu_disable(cpuctx->ctx.pmu);
3097

3098 3099 3100
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3101

3102 3103 3104
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3105

3106
	perf_event_sched_in(cpuctx, ctx, current);
3107

3108 3109
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3110
done:
3111 3112

	return rotate;
3113 3114 3115 3116
}

void perf_event_task_tick(void)
{
3117 3118
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3119
	int throttled;
3120

3121 3122
	WARN_ON(!irqs_disabled());

3123 3124
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3125
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3126

3127
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3128
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3129 3130
}

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3141
	__perf_event_mark_enabled(event);
3142 3143 3144 3145

	return 1;
}

3146
/*
3147
 * Enable all of a task's events that have been marked enable-on-exec.
3148 3149
 * This expects task == current.
 */
3150
static void perf_event_enable_on_exec(int ctxn)
3151
{
3152
	struct perf_event_context *ctx, *clone_ctx = NULL;
3153
	struct perf_cpu_context *cpuctx;
3154
	struct perf_event *event;
3155 3156 3157 3158
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3159
	ctx = current->perf_event_ctxp[ctxn];
3160
	if (!ctx || !ctx->nr_events)
3161 3162
		goto out;

3163 3164
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3165
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3166 3167
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3168 3169

	/*
3170
	 * Unclone and reschedule this context if we enabled any event.
3171
	 */
3172
	if (enabled) {
3173
		clone_ctx = unclone_ctx(ctx);
3174 3175 3176
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3177

P
Peter Zijlstra 已提交
3178
out:
3179
	local_irq_restore(flags);
3180 3181 3182

	if (clone_ctx)
		put_ctx(clone_ctx);
3183 3184
}

3185 3186 3187 3188 3189
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3190 3191
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3192 3193 3194
	rcu_read_unlock();
}

3195 3196 3197
struct perf_read_data {
	struct perf_event *event;
	bool group;
3198
	int ret;
3199 3200
};

T
Thomas Gleixner 已提交
3201
/*
3202
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3203
 */
3204
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3205
{
3206 3207
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3208
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3210
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3211

3212 3213 3214 3215
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3216 3217
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3218 3219 3220 3221
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3222
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3223
	if (ctx->is_active) {
3224
		update_context_time(ctx);
S
Stephane Eranian 已提交
3225 3226
		update_cgrp_time_from_event(event);
	}
3227

3228
	update_event_times(event);
3229 3230
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3231

3232 3233 3234
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3235
		goto unlock;
3236 3237 3238 3239 3240
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3241 3242 3243

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3244 3245 3246 3247 3248
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3249
			sub->pmu->read(sub);
3250
		}
3251
	}
3252 3253

	data->ret = pmu->commit_txn(pmu);
3254 3255

unlock:
3256
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3257 3258
}

P
Peter Zijlstra 已提交
3259 3260
static inline u64 perf_event_count(struct perf_event *event)
{
3261 3262 3263 3264
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3265 3266
}

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3320
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3321
{
3322 3323
	int ret = 0;

T
Thomas Gleixner 已提交
3324
	/*
3325 3326
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3327
	 */
3328
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3329 3330 3331
		struct perf_read_data data = {
			.event = event,
			.group = group,
3332
			.ret = 0,
3333
		};
3334
		smp_call_function_single(event->oncpu,
3335
					 __perf_event_read, &data, 1);
3336
		ret = data.ret;
3337
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3338 3339 3340
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3341
		raw_spin_lock_irqsave(&ctx->lock, flags);
3342 3343 3344 3345 3346
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3347
		if (ctx->is_active) {
3348
			update_context_time(ctx);
S
Stephane Eranian 已提交
3349 3350
			update_cgrp_time_from_event(event);
		}
3351 3352 3353 3354
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3355
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3356
	}
3357 3358

	return ret;
T
Thomas Gleixner 已提交
3359 3360
}

3361
/*
3362
 * Initialize the perf_event context in a task_struct:
3363
 */
3364
static void __perf_event_init_context(struct perf_event_context *ctx)
3365
{
3366
	raw_spin_lock_init(&ctx->lock);
3367
	mutex_init(&ctx->mutex);
3368
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3369 3370
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3371 3372
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3388
	}
3389 3390 3391
	ctx->pmu = pmu;

	return ctx;
3392 3393
}

3394 3395 3396 3397 3398
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3399 3400

	rcu_read_lock();
3401
	if (!vpid)
T
Thomas Gleixner 已提交
3402 3403
		task = current;
	else
3404
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3405 3406 3407 3408 3409 3410 3411 3412
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3413
	err = -EACCES;
3414
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3415 3416
		goto errout;

3417 3418 3419 3420 3421 3422 3423
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3424 3425 3426
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3427
static struct perf_event_context *
3428 3429
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3430
{
3431
	struct perf_event_context *ctx, *clone_ctx = NULL;
3432
	struct perf_cpu_context *cpuctx;
3433
	void *task_ctx_data = NULL;
3434
	unsigned long flags;
P
Peter Zijlstra 已提交
3435
	int ctxn, err;
3436
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3437

3438
	if (!task) {
3439
		/* Must be root to operate on a CPU event: */
3440
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3441 3442 3443
			return ERR_PTR(-EACCES);

		/*
3444
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3445 3446 3447
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3448
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3449 3450
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3451
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3452
		ctx = &cpuctx->ctx;
3453
		get_ctx(ctx);
3454
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3455 3456 3457 3458

		return ctx;
	}

P
Peter Zijlstra 已提交
3459 3460 3461 3462 3463
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3464 3465 3466 3467 3468 3469 3470 3471
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3472
retry:
P
Peter Zijlstra 已提交
3473
	ctx = perf_lock_task_context(task, ctxn, &flags);
3474
	if (ctx) {
3475
		clone_ctx = unclone_ctx(ctx);
3476
		++ctx->pin_count;
3477 3478 3479 3480 3481

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3482
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3483 3484 3485

		if (clone_ctx)
			put_ctx(clone_ctx);
3486
	} else {
3487
		ctx = alloc_perf_context(pmu, task);
3488 3489 3490
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3491

3492 3493 3494 3495 3496
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3507
		else {
3508
			get_ctx(ctx);
3509
			++ctx->pin_count;
3510
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3511
		}
3512 3513 3514
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3515
			put_ctx(ctx);
3516 3517 3518 3519

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3520 3521 3522
		}
	}

3523
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3524
	return ctx;
3525

P
Peter Zijlstra 已提交
3526
errout:
3527
	kfree(task_ctx_data);
3528
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3529 3530
}

L
Li Zefan 已提交
3531
static void perf_event_free_filter(struct perf_event *event);
3532
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3533

3534
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3535
{
3536
	struct perf_event *event;
P
Peter Zijlstra 已提交
3537

3538 3539 3540
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3541
	perf_event_free_filter(event);
3542
	kfree(event);
P
Peter Zijlstra 已提交
3543 3544
}

3545 3546
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3547

3548
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3549
{
3550 3551 3552 3553 3554 3555
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3556

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3579 3580
static void unaccount_event(struct perf_event *event)
{
3581 3582
	bool dec = false;

3583 3584 3585 3586
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3587
		dec = true;
3588 3589 3590 3591 3592 3593
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3594
	if (event->attr.freq)
3595
		unaccount_freq_event();
3596
	if (event->attr.context_switch) {
3597
		dec = true;
3598 3599
		atomic_dec(&nr_switch_events);
	}
3600
	if (is_cgroup_event(event))
3601
		dec = true;
3602
	if (has_branch_stack(event))
3603 3604
		dec = true;

3605 3606 3607 3608
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3609 3610 3611

	unaccount_event_cpu(event, event->cpu);
}
3612

3613 3614 3615 3616 3617 3618 3619 3620
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3631
 * _free_event()), the latter -- before the first perf_install_in_context().
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

P
Peter Zijlstra 已提交
3706
static void _free_event(struct perf_event *event)
3707
{
3708
	irq_work_sync(&event->pending);
3709

3710
	unaccount_event(event);
3711

3712
	if (event->rb) {
3713 3714 3715 3716 3717 3718 3719
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3720
		ring_buffer_attach(event, NULL);
3721
		mutex_unlock(&event->mmap_mutex);
3722 3723
	}

S
Stephane Eranian 已提交
3724 3725 3726
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3746 3747
}

P
Peter Zijlstra 已提交
3748 3749 3750 3751 3752
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3753
{
P
Peter Zijlstra 已提交
3754 3755 3756 3757 3758 3759
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3760

P
Peter Zijlstra 已提交
3761
	_free_event(event);
T
Thomas Gleixner 已提交
3762 3763
}

3764
/*
3765
 * Remove user event from the owner task.
3766
 */
3767
static void perf_remove_from_owner(struct perf_event *event)
3768
{
P
Peter Zijlstra 已提交
3769
	struct task_struct *owner;
3770

P
Peter Zijlstra 已提交
3771 3772
	rcu_read_lock();
	/*
3773 3774 3775
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
3776 3777
	 * owner->perf_event_mutex.
	 */
3778
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3800 3801 3802 3803 3804 3805
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
3806
		if (event->owner) {
P
Peter Zijlstra 已提交
3807
			list_del_init(&event->owner_entry);
3808 3809
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
3810 3811 3812
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3813 3814 3815 3816 3817 3818 3819
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
3830
	struct perf_event_context *ctx = event->ctx;
3831 3832
	struct perf_event *child, *tmp;

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

3843 3844
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3845

3846
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
3847
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3848
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
3849

P
Peter Zijlstra 已提交
3850
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
3851
	/*
P
Peter Zijlstra 已提交
3852 3853
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
3854
	 *
P
Peter Zijlstra 已提交
3855 3856 3857
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
3858
	 *
3859 3860
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
3861
	 */
P
Peter Zijlstra 已提交
3862 3863 3864 3865
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3866

3867 3868 3869
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
3870

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

3920 3921
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
3922 3923 3924 3925
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3926 3927 3928
/*
 * Called when the last reference to the file is gone.
 */
3929 3930
static int perf_release(struct inode *inode, struct file *file)
{
3931
	perf_event_release_kernel(file->private_data);
3932
	return 0;
3933 3934
}

3935
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3936
{
3937
	struct perf_event *child;
3938 3939
	u64 total = 0;

3940 3941 3942
	*enabled = 0;
	*running = 0;

3943
	mutex_lock(&event->child_mutex);
3944

3945
	(void)perf_event_read(event, false);
3946 3947
	total += perf_event_count(event);

3948 3949 3950 3951 3952 3953
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3954
		(void)perf_event_read(child, false);
3955
		total += perf_event_count(child);
3956 3957 3958
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3959
	mutex_unlock(&event->child_mutex);
3960 3961 3962

	return total;
}
3963
EXPORT_SYMBOL_GPL(perf_event_read_value);
3964

3965
static int __perf_read_group_add(struct perf_event *leader,
3966
					u64 read_format, u64 *values)
3967
{
3968 3969
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3970
	int ret;
P
Peter Zijlstra 已提交
3971

3972 3973 3974
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3975

3976 3977 3978 3979 3980 3981 3982 3983 3984
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3985

3986 3987 3988 3989 3990 3991 3992 3993 3994
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3995 3996
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3997

3998 3999 4000 4001 4002
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4003 4004

	return 0;
4005
}
4006

4007 4008 4009 4010 4011
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4012
	int ret;
4013
	u64 *values;
4014

4015
	lockdep_assert_held(&ctx->mutex);
4016

4017 4018 4019
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4020

4021 4022 4023 4024 4025 4026 4027
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4028

4029 4030 4031 4032 4033 4034 4035 4036 4037
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4038

4039
	mutex_unlock(&leader->child_mutex);
4040

4041
	ret = event->read_size;
4042 4043
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4044
	goto out;
4045

4046 4047 4048
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4049
	kfree(values);
4050
	return ret;
4051 4052
}

4053
static int perf_read_one(struct perf_event *event,
4054 4055
				 u64 read_format, char __user *buf)
{
4056
	u64 enabled, running;
4057 4058 4059
	u64 values[4];
	int n = 0;

4060 4061 4062 4063 4064
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4065
	if (read_format & PERF_FORMAT_ID)
4066
		values[n++] = primary_event_id(event);
4067 4068 4069 4070 4071 4072 4073

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4074 4075 4076 4077
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4078
	if (event->state > PERF_EVENT_STATE_EXIT)
4079 4080 4081 4082 4083 4084 4085 4086
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4087
/*
4088
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4089 4090
 */
static ssize_t
4091
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4092
{
4093
	u64 read_format = event->attr.read_format;
4094
	int ret;
T
Thomas Gleixner 已提交
4095

4096
	/*
4097
	 * Return end-of-file for a read on a event that is in
4098 4099 4100
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4101
	if (event->state == PERF_EVENT_STATE_ERROR)
4102 4103
		return 0;

4104
	if (count < event->read_size)
4105 4106
		return -ENOSPC;

4107
	WARN_ON_ONCE(event->ctx->parent_ctx);
4108
	if (read_format & PERF_FORMAT_GROUP)
4109
		ret = perf_read_group(event, read_format, buf);
4110
	else
4111
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4112

4113
	return ret;
T
Thomas Gleixner 已提交
4114 4115 4116 4117 4118
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4119
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4120 4121
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4122

P
Peter Zijlstra 已提交
4123
	ctx = perf_event_ctx_lock(event);
4124
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4125 4126 4127
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4128 4129 4130 4131
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4132
	struct perf_event *event = file->private_data;
4133
	struct ring_buffer *rb;
4134
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4135

4136
	poll_wait(file, &event->waitq, wait);
4137

4138
	if (is_event_hup(event))
4139
		return events;
P
Peter Zijlstra 已提交
4140

4141
	/*
4142 4143
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4144 4145
	 */
	mutex_lock(&event->mmap_mutex);
4146 4147
	rb = event->rb;
	if (rb)
4148
		events = atomic_xchg(&rb->poll, 0);
4149
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4150 4151 4152
	return events;
}

P
Peter Zijlstra 已提交
4153
static void _perf_event_reset(struct perf_event *event)
4154
{
4155
	(void)perf_event_read(event, false);
4156
	local64_set(&event->count, 0);
4157
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4158 4159
}

4160
/*
4161 4162
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4163
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4164
 * task existence requirements of perf_event_enable/disable.
4165
 */
4166 4167
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4168
{
4169
	struct perf_event *child;
P
Peter Zijlstra 已提交
4170

4171
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4172

4173 4174 4175
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4176
		func(child);
4177
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4178 4179
}

4180 4181
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4182
{
4183 4184
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4185

P
Peter Zijlstra 已提交
4186 4187
	lockdep_assert_held(&ctx->mutex);

4188
	event = event->group_leader;
4189

4190 4191
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4192
		perf_event_for_each_child(sibling, func);
4193 4194
}

4195 4196 4197 4198
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4199
{
4200
	u64 value = *((u64 *)info);
4201
	bool active;
4202

4203 4204
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4205
	} else {
4206 4207
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4208
	}
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4240
	event_function_call(event, __perf_event_period, &value);
4241

4242
	return 0;
4243 4244
}

4245 4246
static const struct file_operations perf_fops;

4247
static inline int perf_fget_light(int fd, struct fd *p)
4248
{
4249 4250 4251
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4252

4253 4254 4255
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4256
	}
4257 4258
	*p = f;
	return 0;
4259 4260 4261 4262
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4263
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4264
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4265

P
Peter Zijlstra 已提交
4266
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4267
{
4268
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4269
	u32 flags = arg;
4270 4271

	switch (cmd) {
4272
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4273
		func = _perf_event_enable;
4274
		break;
4275
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4276
		func = _perf_event_disable;
4277
		break;
4278
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4279
		func = _perf_event_reset;
4280
		break;
P
Peter Zijlstra 已提交
4281

4282
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4283
		return _perf_event_refresh(event, arg);
4284

4285 4286
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4287

4288 4289 4290 4291 4292 4293 4294 4295 4296
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4297
	case PERF_EVENT_IOC_SET_OUTPUT:
4298 4299 4300
	{
		int ret;
		if (arg != -1) {
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4311 4312 4313
		}
		return ret;
	}
4314

L
Li Zefan 已提交
4315 4316 4317
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4318 4319 4320
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4321
	default:
P
Peter Zijlstra 已提交
4322
		return -ENOTTY;
4323
	}
P
Peter Zijlstra 已提交
4324 4325

	if (flags & PERF_IOC_FLAG_GROUP)
4326
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4327
	else
4328
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4329 4330

	return 0;
4331 4332
}

P
Peter Zijlstra 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4366
int perf_event_task_enable(void)
4367
{
P
Peter Zijlstra 已提交
4368
	struct perf_event_context *ctx;
4369
	struct perf_event *event;
4370

4371
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4372 4373 4374 4375 4376
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4377
	mutex_unlock(&current->perf_event_mutex);
4378 4379 4380 4381

	return 0;
}

4382
int perf_event_task_disable(void)
4383
{
P
Peter Zijlstra 已提交
4384
	struct perf_event_context *ctx;
4385
	struct perf_event *event;
4386

4387
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4388 4389 4390 4391 4392
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4393
	mutex_unlock(&current->perf_event_mutex);
4394 4395 4396 4397

	return 0;
}

4398
static int perf_event_index(struct perf_event *event)
4399
{
P
Peter Zijlstra 已提交
4400 4401 4402
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4403
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4404 4405
		return 0;

4406
	return event->pmu->event_idx(event);
4407 4408
}

4409
static void calc_timer_values(struct perf_event *event,
4410
				u64 *now,
4411 4412
				u64 *enabled,
				u64 *running)
4413
{
4414
	u64 ctx_time;
4415

4416 4417
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4418 4419 4420 4421
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4437 4438
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4439 4440 4441 4442 4443

unlock:
	rcu_read_unlock();
}

4444 4445
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4446 4447 4448
{
}

4449 4450 4451 4452 4453
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4454
void perf_event_update_userpage(struct perf_event *event)
4455
{
4456
	struct perf_event_mmap_page *userpg;
4457
	struct ring_buffer *rb;
4458
	u64 enabled, running, now;
4459 4460

	rcu_read_lock();
4461 4462 4463 4464
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4465 4466 4467 4468 4469 4470 4471 4472 4473
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4474
	calc_timer_values(event, &now, &enabled, &running);
4475

4476
	userpg = rb->user_page;
4477 4478 4479 4480 4481
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4482
	++userpg->lock;
4483
	barrier();
4484
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4485
	userpg->offset = perf_event_count(event);
4486
	if (userpg->index)
4487
		userpg->offset -= local64_read(&event->hw.prev_count);
4488

4489
	userpg->time_enabled = enabled +
4490
			atomic64_read(&event->child_total_time_enabled);
4491

4492
	userpg->time_running = running +
4493
			atomic64_read(&event->child_total_time_running);
4494

4495
	arch_perf_update_userpage(event, userpg, now);
4496

4497
	barrier();
4498
	++userpg->lock;
4499
	preempt_enable();
4500
unlock:
4501
	rcu_read_unlock();
4502 4503
}

4504 4505 4506
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4507
	struct ring_buffer *rb;
4508 4509 4510 4511 4512 4513 4514 4515 4516
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4517 4518
	rb = rcu_dereference(event->rb);
	if (!rb)
4519 4520 4521 4522 4523
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4524
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4539 4540 4541
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4542
	struct ring_buffer *old_rb = NULL;
4543 4544
	unsigned long flags;

4545 4546 4547 4548 4549 4550
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4551

4552 4553 4554 4555
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4556

4557 4558
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4559
	}
4560

4561
	if (rb) {
4562 4563 4564 4565 4566
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4583 4584 4585 4586 4587 4588 4589 4590
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4591 4592 4593 4594
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4595 4596 4597
	rcu_read_unlock();
}

4598
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4599
{
4600
	struct ring_buffer *rb;
4601

4602
	rcu_read_lock();
4603 4604 4605 4606
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4607 4608 4609
	}
	rcu_read_unlock();

4610
	return rb;
4611 4612
}

4613
void ring_buffer_put(struct ring_buffer *rb)
4614
{
4615
	if (!atomic_dec_and_test(&rb->refcount))
4616
		return;
4617

4618
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4619

4620
	call_rcu(&rb->rcu_head, rb_free_rcu);
4621 4622 4623 4624
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4625
	struct perf_event *event = vma->vm_file->private_data;
4626

4627
	atomic_inc(&event->mmap_count);
4628
	atomic_inc(&event->rb->mmap_count);
4629

4630 4631 4632
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4633 4634
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4635 4636
}

4637 4638 4639 4640 4641 4642 4643 4644
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4645 4646
static void perf_mmap_close(struct vm_area_struct *vma)
{
4647
	struct perf_event *event = vma->vm_file->private_data;
4648

4649
	struct ring_buffer *rb = ring_buffer_get(event);
4650 4651 4652
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4653

4654 4655 4656
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4671 4672 4673
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4674
		goto out_put;
4675

4676
	ring_buffer_attach(event, NULL);
4677 4678 4679
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4680 4681
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4682

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4699

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4711 4712 4713
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4714
		mutex_unlock(&event->mmap_mutex);
4715
		put_event(event);
4716

4717 4718 4719 4720 4721
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4722
	}
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4738
out_put:
4739
	ring_buffer_put(rb); /* could be last */
4740 4741
}

4742
static const struct vm_operations_struct perf_mmap_vmops = {
4743
	.open		= perf_mmap_open,
4744
	.close		= perf_mmap_close, /* non mergable */
4745 4746
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4747 4748 4749 4750
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4751
	struct perf_event *event = file->private_data;
4752
	unsigned long user_locked, user_lock_limit;
4753
	struct user_struct *user = current_user();
4754
	unsigned long locked, lock_limit;
4755
	struct ring_buffer *rb = NULL;
4756 4757
	unsigned long vma_size;
	unsigned long nr_pages;
4758
	long user_extra = 0, extra = 0;
4759
	int ret = 0, flags = 0;
4760

4761 4762 4763
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4764
	 * same rb.
4765 4766 4767 4768
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4769
	if (!(vma->vm_flags & VM_SHARED))
4770
		return -EINVAL;
4771 4772

	vma_size = vma->vm_end - vma->vm_start;
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4833

4834
	/*
4835
	 * If we have rb pages ensure they're a power-of-two number, so we
4836 4837
	 * can do bitmasks instead of modulo.
	 */
4838
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4839 4840
		return -EINVAL;

4841
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4842 4843
		return -EINVAL;

4844
	WARN_ON_ONCE(event->ctx->parent_ctx);
4845
again:
4846
	mutex_lock(&event->mmap_mutex);
4847
	if (event->rb) {
4848
		if (event->rb->nr_pages != nr_pages) {
4849
			ret = -EINVAL;
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4863 4864 4865
		goto unlock;
	}

4866
	user_extra = nr_pages + 1;
4867 4868

accounting:
4869
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4870 4871 4872 4873 4874 4875

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4876
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4877

4878 4879
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4880

4881
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4882
	lock_limit >>= PAGE_SHIFT;
4883
	locked = vma->vm_mm->pinned_vm + extra;
4884

4885 4886
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4887 4888 4889
		ret = -EPERM;
		goto unlock;
	}
4890

4891
	WARN_ON(!rb && event->rb);
4892

4893
	if (vma->vm_flags & VM_WRITE)
4894
		flags |= RING_BUFFER_WRITABLE;
4895

4896
	if (!rb) {
4897 4898 4899
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4900

4901 4902 4903 4904
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4905

4906 4907 4908
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4909

4910
		ring_buffer_attach(event, rb);
4911

4912 4913 4914
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4915 4916
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4917 4918 4919
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4920

4921
unlock:
4922 4923 4924 4925
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4926
		atomic_inc(&event->mmap_count);
4927 4928 4929 4930
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4931
	mutex_unlock(&event->mmap_mutex);
4932

4933 4934 4935 4936
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4937
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4938
	vma->vm_ops = &perf_mmap_vmops;
4939

4940 4941 4942
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4943
	return ret;
4944 4945
}

P
Peter Zijlstra 已提交
4946 4947
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4948
	struct inode *inode = file_inode(filp);
4949
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4950 4951
	int retval;

A
Al Viro 已提交
4952
	inode_lock(inode);
4953
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
4954
	inode_unlock(inode);
P
Peter Zijlstra 已提交
4955 4956 4957 4958 4959 4960 4961

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4962
static const struct file_operations perf_fops = {
4963
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4964 4965 4966
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4967
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4968
	.compat_ioctl		= perf_compat_ioctl,
4969
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4970
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4971 4972
};

4973
/*
4974
 * Perf event wakeup
4975 4976 4977 4978 4979
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4980 4981 4982 4983 4984 4985 4986 4987
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4988
void perf_event_wakeup(struct perf_event *event)
4989
{
4990
	ring_buffer_wakeup(event);
4991

4992
	if (event->pending_kill) {
4993
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4994
		event->pending_kill = 0;
4995
	}
4996 4997
}

4998
static void perf_pending_event(struct irq_work *entry)
4999
{
5000 5001
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5002 5003 5004 5005 5006 5007 5008
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5009

5010 5011
	if (event->pending_disable) {
		event->pending_disable = 0;
5012
		perf_event_disable_local(event);
5013 5014
	}

5015 5016 5017
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5018
	}
5019 5020 5021

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5022 5023
}

5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5060
static void perf_sample_regs_user(struct perf_regs *regs_user,
5061 5062
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5063
{
5064 5065
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5066
		regs_user->regs = regs;
5067 5068
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5069 5070 5071
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5072 5073 5074
	}
}

5075 5076 5077 5078 5079 5080 5081 5082
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5178 5179 5180
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5194
		data->time = perf_event_clock(event);
5195

5196
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5208 5209 5210
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5235 5236 5237

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5238 5239
}

5240 5241 5242
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5243 5244 5245 5246 5247
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5248
static void perf_output_read_one(struct perf_output_handle *handle,
5249 5250
				 struct perf_event *event,
				 u64 enabled, u64 running)
5251
{
5252
	u64 read_format = event->attr.read_format;
5253 5254 5255
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5256
	values[n++] = perf_event_count(event);
5257
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5258
		values[n++] = enabled +
5259
			atomic64_read(&event->child_total_time_enabled);
5260 5261
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5262
		values[n++] = running +
5263
			atomic64_read(&event->child_total_time_running);
5264 5265
	}
	if (read_format & PERF_FORMAT_ID)
5266
		values[n++] = primary_event_id(event);
5267

5268
	__output_copy(handle, values, n * sizeof(u64));
5269 5270 5271
}

/*
5272
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5273 5274
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5275 5276
			    struct perf_event *event,
			    u64 enabled, u64 running)
5277
{
5278 5279
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5280 5281 5282 5283 5284 5285
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5286
		values[n++] = enabled;
5287 5288

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5289
		values[n++] = running;
5290

5291
	if (leader != event)
5292 5293
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5294
	values[n++] = perf_event_count(leader);
5295
	if (read_format & PERF_FORMAT_ID)
5296
		values[n++] = primary_event_id(leader);
5297

5298
	__output_copy(handle, values, n * sizeof(u64));
5299

5300
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5301 5302
		n = 0;

5303 5304
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5305 5306
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5307
		values[n++] = perf_event_count(sub);
5308
		if (read_format & PERF_FORMAT_ID)
5309
			values[n++] = primary_event_id(sub);
5310

5311
		__output_copy(handle, values, n * sizeof(u64));
5312 5313 5314
	}
}

5315 5316 5317
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5318
static void perf_output_read(struct perf_output_handle *handle,
5319
			     struct perf_event *event)
5320
{
5321
	u64 enabled = 0, running = 0, now;
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5333
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5334
		calc_timer_values(event, &now, &enabled, &running);
5335

5336
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5337
		perf_output_read_group(handle, event, enabled, running);
5338
	else
5339
		perf_output_read_one(handle, event, enabled, running);
5340 5341
}

5342 5343 5344
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5345
			struct perf_event *event)
5346 5347 5348 5349 5350
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5351 5352 5353
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5379
		perf_output_read(handle, event);
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5390
			__output_copy(handle, data->callchain, size);
5391 5392 5393 5394 5395 5396 5397 5398
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5399 5400 5401 5402 5403 5404 5405 5406 5407
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5419

5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5454

5455
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5456 5457 5458
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5459
	}
A
Andi Kleen 已提交
5460 5461 5462

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5463 5464 5465

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5466

A
Andi Kleen 已提交
5467 5468 5469
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5500 5501 5502 5503
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5504
			 struct perf_event *event,
5505
			 struct pt_regs *regs)
5506
{
5507
	u64 sample_type = event->attr.sample_type;
5508

5509
	header->type = PERF_RECORD_SAMPLE;
5510
	header->size = sizeof(*header) + event->header_size;
5511 5512 5513

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5514

5515
	__perf_event_header__init_id(header, data, event);
5516

5517
	if (sample_type & PERF_SAMPLE_IP)
5518 5519
		data->ip = perf_instruction_pointer(regs);

5520
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5521
		int size = 1;
5522

5523
		data->callchain = perf_callchain(event, regs);
5524 5525 5526 5527 5528

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5529 5530
	}

5531
	if (sample_type & PERF_SAMPLE_RAW) {
5532 5533 5534 5535 5536 5537 5538
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5539
		header->size += round_up(size, sizeof(u64));
5540
	}
5541 5542 5543 5544 5545 5546 5547 5548 5549

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5550

5551
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5552 5553
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5554

5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5578
						     data->regs_user.regs);
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5606
}
5607

5608 5609 5610
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5611 5612 5613
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5614

5615 5616 5617
	/* protect the callchain buffers */
	rcu_read_lock();

5618
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5619

5620
	if (perf_output_begin(&handle, event, header.size))
5621
		goto exit;
5622

5623
	perf_output_sample(&handle, &header, data, event);
5624

5625
	perf_output_end(&handle);
5626 5627 5628

exit:
	rcu_read_unlock();
5629 5630
}

5631
/*
5632
 * read event_id
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5643
perf_event_read_event(struct perf_event *event,
5644 5645 5646
			struct task_struct *task)
{
	struct perf_output_handle handle;
5647
	struct perf_sample_data sample;
5648
	struct perf_read_event read_event = {
5649
		.header = {
5650
			.type = PERF_RECORD_READ,
5651
			.misc = 0,
5652
			.size = sizeof(read_event) + event->read_size,
5653
		},
5654 5655
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5656
	};
5657
	int ret;
5658

5659
	perf_event_header__init_id(&read_event.header, &sample, event);
5660
	ret = perf_output_begin(&handle, event, read_event.header.size);
5661 5662 5663
	if (ret)
		return;

5664
	perf_output_put(&handle, read_event);
5665
	perf_output_read(&handle, event);
5666
	perf_event__output_id_sample(event, &handle, &sample);
5667

5668 5669 5670
	perf_output_end(&handle);
}

5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5685
		output(event, data);
5686 5687 5688
	}
}

J
Jiri Olsa 已提交
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5700
static void
5701
perf_event_aux(perf_event_aux_output_cb output, void *data,
5702 5703 5704 5705 5706 5707 5708
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5720 5721 5722 5723 5724
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5725
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5726 5727 5728 5729 5730
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5731
			perf_event_aux_ctx(ctx, output, data);
5732 5733 5734 5735 5736 5737
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5738
/*
P
Peter Zijlstra 已提交
5739 5740
 * task tracking -- fork/exit
 *
5741
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5742 5743
 */

P
Peter Zijlstra 已提交
5744
struct perf_task_event {
5745
	struct task_struct		*task;
5746
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5747 5748 5749 5750 5751 5752

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5753 5754
		u32				tid;
		u32				ptid;
5755
		u64				time;
5756
	} event_id;
P
Peter Zijlstra 已提交
5757 5758
};

5759 5760
static int perf_event_task_match(struct perf_event *event)
{
5761 5762 5763
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5764 5765
}

5766
static void perf_event_task_output(struct perf_event *event,
5767
				   void *data)
P
Peter Zijlstra 已提交
5768
{
5769
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5770
	struct perf_output_handle handle;
5771
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5772
	struct task_struct *task = task_event->task;
5773
	int ret, size = task_event->event_id.header.size;
5774

5775 5776 5777
	if (!perf_event_task_match(event))
		return;

5778
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5779

5780
	ret = perf_output_begin(&handle, event,
5781
				task_event->event_id.header.size);
5782
	if (ret)
5783
		goto out;
P
Peter Zijlstra 已提交
5784

5785 5786
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5787

5788 5789
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5790

5791 5792
	task_event->event_id.time = perf_event_clock(event);

5793
	perf_output_put(&handle, task_event->event_id);
5794

5795 5796
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5797
	perf_output_end(&handle);
5798 5799
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5800 5801
}

5802 5803
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5804
			      int new)
P
Peter Zijlstra 已提交
5805
{
P
Peter Zijlstra 已提交
5806
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5807

5808 5809 5810
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5811 5812
		return;

P
Peter Zijlstra 已提交
5813
	task_event = (struct perf_task_event){
5814 5815
		.task	  = task,
		.task_ctx = task_ctx,
5816
		.event_id    = {
P
Peter Zijlstra 已提交
5817
			.header = {
5818
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5819
				.misc = 0,
5820
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5821
			},
5822 5823
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5824 5825
			/* .tid  */
			/* .ptid */
5826
			/* .time */
P
Peter Zijlstra 已提交
5827 5828 5829
		},
	};

5830
	perf_event_aux(perf_event_task_output,
5831 5832
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5833 5834
}

5835
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5836
{
5837
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5838 5839
}

5840 5841 5842 5843 5844
/*
 * comm tracking
 */

struct perf_comm_event {
5845 5846
	struct task_struct	*task;
	char			*comm;
5847 5848 5849 5850 5851 5852 5853
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5854
	} event_id;
5855 5856
};

5857 5858 5859 5860 5861
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5862
static void perf_event_comm_output(struct perf_event *event,
5863
				   void *data)
5864
{
5865
	struct perf_comm_event *comm_event = data;
5866
	struct perf_output_handle handle;
5867
	struct perf_sample_data sample;
5868
	int size = comm_event->event_id.header.size;
5869 5870
	int ret;

5871 5872 5873
	if (!perf_event_comm_match(event))
		return;

5874 5875
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5876
				comm_event->event_id.header.size);
5877 5878

	if (ret)
5879
		goto out;
5880

5881 5882
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5883

5884
	perf_output_put(&handle, comm_event->event_id);
5885
	__output_copy(&handle, comm_event->comm,
5886
				   comm_event->comm_size);
5887 5888 5889

	perf_event__output_id_sample(event, &handle, &sample);

5890
	perf_output_end(&handle);
5891 5892
out:
	comm_event->event_id.header.size = size;
5893 5894
}

5895
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5896
{
5897
	char comm[TASK_COMM_LEN];
5898 5899
	unsigned int size;

5900
	memset(comm, 0, sizeof(comm));
5901
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5902
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5903 5904 5905 5906

	comm_event->comm = comm;
	comm_event->comm_size = size;

5907
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5908

5909
	perf_event_aux(perf_event_comm_output,
5910 5911
		       comm_event,
		       NULL);
5912 5913
}

5914
void perf_event_comm(struct task_struct *task, bool exec)
5915
{
5916 5917
	struct perf_comm_event comm_event;

5918
	if (!atomic_read(&nr_comm_events))
5919
		return;
5920

5921
	comm_event = (struct perf_comm_event){
5922
		.task	= task,
5923 5924
		/* .comm      */
		/* .comm_size */
5925
		.event_id  = {
5926
			.header = {
5927
				.type = PERF_RECORD_COMM,
5928
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5929 5930 5931 5932
				/* .size */
			},
			/* .pid */
			/* .tid */
5933 5934 5935
		},
	};

5936
	perf_event_comm_event(&comm_event);
5937 5938
}

5939 5940 5941 5942 5943
/*
 * mmap tracking
 */

struct perf_mmap_event {
5944 5945 5946 5947
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5948 5949 5950
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5951
	u32			prot, flags;
5952 5953 5954 5955 5956 5957 5958 5959 5960

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5961
	} event_id;
5962 5963
};

5964 5965 5966 5967 5968 5969 5970 5971
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5972
	       (executable && (event->attr.mmap || event->attr.mmap2));
5973 5974
}

5975
static void perf_event_mmap_output(struct perf_event *event,
5976
				   void *data)
5977
{
5978
	struct perf_mmap_event *mmap_event = data;
5979
	struct perf_output_handle handle;
5980
	struct perf_sample_data sample;
5981
	int size = mmap_event->event_id.header.size;
5982
	int ret;
5983

5984 5985 5986
	if (!perf_event_mmap_match(event, data))
		return;

5987 5988 5989 5990 5991
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5992
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5993 5994
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5995 5996
	}

5997 5998
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5999
				mmap_event->event_id.header.size);
6000
	if (ret)
6001
		goto out;
6002

6003 6004
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6005

6006
	perf_output_put(&handle, mmap_event->event_id);
6007 6008 6009 6010 6011 6012

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6013 6014
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6015 6016
	}

6017
	__output_copy(&handle, mmap_event->file_name,
6018
				   mmap_event->file_size);
6019 6020 6021

	perf_event__output_id_sample(event, &handle, &sample);

6022
	perf_output_end(&handle);
6023 6024
out:
	mmap_event->event_id.header.size = size;
6025 6026
}

6027
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6028
{
6029 6030
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6031 6032
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6033
	u32 prot = 0, flags = 0;
6034 6035 6036
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6037
	char *name;
6038

6039
	if (file) {
6040 6041
		struct inode *inode;
		dev_t dev;
6042

6043
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6044
		if (!buf) {
6045 6046
			name = "//enomem";
			goto cpy_name;
6047
		}
6048
		/*
6049
		 * d_path() works from the end of the rb backwards, so we
6050 6051 6052
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6053
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6054
		if (IS_ERR(name)) {
6055 6056
			name = "//toolong";
			goto cpy_name;
6057
		}
6058 6059 6060 6061 6062 6063
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6086
		goto got_name;
6087
	} else {
6088 6089 6090 6091 6092 6093
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6094
		name = (char *)arch_vma_name(vma);
6095 6096
		if (name)
			goto cpy_name;
6097

6098
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6099
				vma->vm_end >= vma->vm_mm->brk) {
6100 6101
			name = "[heap]";
			goto cpy_name;
6102 6103
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6104
				vma->vm_end >= vma->vm_mm->start_stack) {
6105 6106
			name = "[stack]";
			goto cpy_name;
6107 6108
		}

6109 6110
		name = "//anon";
		goto cpy_name;
6111 6112
	}

6113 6114 6115
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6116
got_name:
6117 6118 6119 6120 6121 6122 6123 6124
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6125 6126 6127

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6128 6129 6130 6131
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6132 6133
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6134

6135 6136 6137
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6138
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6139

6140
	perf_event_aux(perf_event_mmap_output,
6141 6142
		       mmap_event,
		       NULL);
6143

6144 6145 6146
	kfree(buf);
}

6147
void perf_event_mmap(struct vm_area_struct *vma)
6148
{
6149 6150
	struct perf_mmap_event mmap_event;

6151
	if (!atomic_read(&nr_mmap_events))
6152 6153 6154
		return;

	mmap_event = (struct perf_mmap_event){
6155
		.vma	= vma,
6156 6157
		/* .file_name */
		/* .file_size */
6158
		.event_id  = {
6159
			.header = {
6160
				.type = PERF_RECORD_MMAP,
6161
				.misc = PERF_RECORD_MISC_USER,
6162 6163 6164 6165
				/* .size */
			},
			/* .pid */
			/* .tid */
6166 6167
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6168
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6169
		},
6170 6171 6172 6173
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6174 6175
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6176 6177
	};

6178
	perf_event_mmap_event(&mmap_event);
6179 6180
}

A
Alexander Shishkin 已提交
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6333 6334 6335 6336
/*
 * IRQ throttle logging
 */

6337
static void perf_log_throttle(struct perf_event *event, int enable)
6338 6339
{
	struct perf_output_handle handle;
6340
	struct perf_sample_data sample;
6341 6342 6343 6344 6345
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6346
		u64				id;
6347
		u64				stream_id;
6348 6349
	} throttle_event = {
		.header = {
6350
			.type = PERF_RECORD_THROTTLE,
6351 6352 6353
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6354
		.time		= perf_event_clock(event),
6355 6356
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6357 6358
	};

6359
	if (enable)
6360
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6361

6362 6363 6364
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6365
				throttle_event.header.size);
6366 6367 6368 6369
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6370
	perf_event__output_id_sample(event, &handle, &sample);
6371 6372 6373
	perf_output_end(&handle);
}

6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6410
/*
6411
 * Generic event overflow handling, sampling.
6412 6413
 */

6414
static int __perf_event_overflow(struct perf_event *event,
6415 6416
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6417
{
6418 6419
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6420
	u64 seq;
6421 6422
	int ret = 0;

6423 6424 6425 6426 6427 6428 6429
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6430 6431 6432 6433 6434 6435 6436 6437 6438
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
6439
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
6440 6441
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6442 6443
			ret = 1;
		}
6444
	}
6445

6446
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6447
		u64 now = perf_clock();
6448
		s64 delta = now - hwc->freq_time_stamp;
6449

6450
		hwc->freq_time_stamp = now;
6451

6452
		if (delta > 0 && delta < 2*TICK_NSEC)
6453
			perf_adjust_period(event, delta, hwc->last_period, true);
6454 6455
	}

6456 6457
	/*
	 * XXX event_limit might not quite work as expected on inherited
6458
	 * events
6459 6460
	 */

6461 6462
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6463
		ret = 1;
6464
		event->pending_kill = POLL_HUP;
6465 6466
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6467 6468
	}

6469
	if (event->overflow_handler)
6470
		event->overflow_handler(event, data, regs);
6471
	else
6472
		perf_event_output(event, data, regs);
6473

6474
	if (*perf_event_fasync(event) && event->pending_kill) {
6475 6476
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6477 6478
	}

6479
	return ret;
6480 6481
}

6482
int perf_event_overflow(struct perf_event *event,
6483 6484
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6485
{
6486
	return __perf_event_overflow(event, 1, data, regs);
6487 6488
}

6489
/*
6490
 * Generic software event infrastructure
6491 6492
 */

6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6504
/*
6505 6506
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6507 6508 6509 6510
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6511
u64 perf_swevent_set_period(struct perf_event *event)
6512
{
6513
	struct hw_perf_event *hwc = &event->hw;
6514 6515 6516 6517 6518
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6519 6520

again:
6521
	old = val = local64_read(&hwc->period_left);
6522 6523
	if (val < 0)
		return 0;
6524

6525 6526 6527
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6528
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6529
		goto again;
6530

6531
	return nr;
6532 6533
}

6534
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6535
				    struct perf_sample_data *data,
6536
				    struct pt_regs *regs)
6537
{
6538
	struct hw_perf_event *hwc = &event->hw;
6539
	int throttle = 0;
6540

6541 6542
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6543

6544 6545
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6546

6547
	for (; overflow; overflow--) {
6548
		if (__perf_event_overflow(event, throttle,
6549
					    data, regs)) {
6550 6551 6552 6553 6554 6555
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6556
		throttle = 1;
6557
	}
6558 6559
}

P
Peter Zijlstra 已提交
6560
static void perf_swevent_event(struct perf_event *event, u64 nr,
6561
			       struct perf_sample_data *data,
6562
			       struct pt_regs *regs)
6563
{
6564
	struct hw_perf_event *hwc = &event->hw;
6565

6566
	local64_add(nr, &event->count);
6567

6568 6569 6570
	if (!regs)
		return;

6571
	if (!is_sampling_event(event))
6572
		return;
6573

6574 6575 6576 6577 6578 6579
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6580
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6581
		return perf_swevent_overflow(event, 1, data, regs);
6582

6583
	if (local64_add_negative(nr, &hwc->period_left))
6584
		return;
6585

6586
	perf_swevent_overflow(event, 0, data, regs);
6587 6588
}

6589 6590 6591
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6592
	if (event->hw.state & PERF_HES_STOPPED)
6593
		return 1;
P
Peter Zijlstra 已提交
6594

6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6606
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6607
				enum perf_type_id type,
L
Li Zefan 已提交
6608 6609 6610
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6611
{
6612
	if (event->attr.type != type)
6613
		return 0;
6614

6615
	if (event->attr.config != event_id)
6616 6617
		return 0;

6618 6619
	if (perf_exclude_event(event, regs))
		return 0;
6620 6621 6622 6623

	return 1;
}

6624 6625 6626 6627 6628 6629 6630
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6631 6632
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6633
{
6634 6635 6636 6637
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6638

6639 6640
/* For the read side: events when they trigger */
static inline struct hlist_head *
6641
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6642 6643
{
	struct swevent_hlist *hlist;
6644

6645
	hlist = rcu_dereference(swhash->swevent_hlist);
6646 6647 6648
	if (!hlist)
		return NULL;

6649 6650 6651 6652 6653
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6654
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6665
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6666 6667 6668 6669 6670
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6671 6672 6673
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6674
				    u64 nr,
6675 6676
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6677
{
6678
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6679
	struct perf_event *event;
6680
	struct hlist_head *head;
6681

6682
	rcu_read_lock();
6683
	head = find_swevent_head_rcu(swhash, type, event_id);
6684 6685 6686
	if (!head)
		goto end;

6687
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6688
		if (perf_swevent_match(event, type, event_id, data, regs))
6689
			perf_swevent_event(event, nr, data, regs);
6690
	}
6691 6692
end:
	rcu_read_unlock();
6693 6694
}

6695 6696
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6697
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6698
{
6699
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6700

6701
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6702
}
I
Ingo Molnar 已提交
6703
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6704

6705
inline void perf_swevent_put_recursion_context(int rctx)
6706
{
6707
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6708

6709
	put_recursion_context(swhash->recursion, rctx);
6710
}
6711

6712
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6713
{
6714
	struct perf_sample_data data;
6715

6716
	if (WARN_ON_ONCE(!regs))
6717
		return;
6718

6719
	perf_sample_data_init(&data, addr, 0);
6720
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6733 6734

	perf_swevent_put_recursion_context(rctx);
6735
fail:
6736
	preempt_enable_notrace();
6737 6738
}

6739
static void perf_swevent_read(struct perf_event *event)
6740 6741 6742
{
}

P
Peter Zijlstra 已提交
6743
static int perf_swevent_add(struct perf_event *event, int flags)
6744
{
6745
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6746
	struct hw_perf_event *hwc = &event->hw;
6747 6748
	struct hlist_head *head;

6749
	if (is_sampling_event(event)) {
6750
		hwc->last_period = hwc->sample_period;
6751
		perf_swevent_set_period(event);
6752
	}
6753

P
Peter Zijlstra 已提交
6754 6755
	hwc->state = !(flags & PERF_EF_START);

6756
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6757
	if (WARN_ON_ONCE(!head))
6758 6759 6760
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6761
	perf_event_update_userpage(event);
6762

6763 6764 6765
	return 0;
}

P
Peter Zijlstra 已提交
6766
static void perf_swevent_del(struct perf_event *event, int flags)
6767
{
6768
	hlist_del_rcu(&event->hlist_entry);
6769 6770
}

P
Peter Zijlstra 已提交
6771
static void perf_swevent_start(struct perf_event *event, int flags)
6772
{
P
Peter Zijlstra 已提交
6773
	event->hw.state = 0;
6774
}
I
Ingo Molnar 已提交
6775

P
Peter Zijlstra 已提交
6776
static void perf_swevent_stop(struct perf_event *event, int flags)
6777
{
P
Peter Zijlstra 已提交
6778
	event->hw.state = PERF_HES_STOPPED;
6779 6780
}

6781 6782
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6783
swevent_hlist_deref(struct swevent_htable *swhash)
6784
{
6785 6786
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6787 6788
}

6789
static void swevent_hlist_release(struct swevent_htable *swhash)
6790
{
6791
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6792

6793
	if (!hlist)
6794 6795
		return;

6796
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6797
	kfree_rcu(hlist, rcu_head);
6798 6799
}

6800
static void swevent_hlist_put_cpu(int cpu)
6801
{
6802
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6803

6804
	mutex_lock(&swhash->hlist_mutex);
6805

6806 6807
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6808

6809
	mutex_unlock(&swhash->hlist_mutex);
6810 6811
}

6812
static void swevent_hlist_put(void)
6813 6814 6815 6816
{
	int cpu;

	for_each_possible_cpu(cpu)
6817
		swevent_hlist_put_cpu(cpu);
6818 6819
}

6820
static int swevent_hlist_get_cpu(int cpu)
6821
{
6822
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6823 6824
	int err = 0;

6825 6826
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6827 6828 6829 6830 6831 6832 6833
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6834
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6835
	}
6836
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6837
exit:
6838
	mutex_unlock(&swhash->hlist_mutex);
6839 6840 6841 6842

	return err;
}

6843
static int swevent_hlist_get(void)
6844
{
6845
	int err, cpu, failed_cpu;
6846 6847 6848

	get_online_cpus();
	for_each_possible_cpu(cpu) {
6849
		err = swevent_hlist_get_cpu(cpu);
6850 6851 6852 6853 6854 6855 6856 6857
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6858
fail:
6859 6860 6861
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
6862
		swevent_hlist_put_cpu(cpu);
6863 6864 6865 6866 6867 6868
	}

	put_online_cpus();
	return err;
}

6869
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6870

6871 6872 6873
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6874

6875 6876
	WARN_ON(event->parent);

6877
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6878
	swevent_hlist_put();
6879 6880 6881 6882
}

static int perf_swevent_init(struct perf_event *event)
{
6883
	u64 event_id = event->attr.config;
6884 6885 6886 6887

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6888 6889 6890 6891 6892 6893
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6894 6895 6896 6897 6898 6899 6900 6901 6902
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6903
	if (event_id >= PERF_COUNT_SW_MAX)
6904 6905 6906 6907 6908
		return -ENOENT;

	if (!event->parent) {
		int err;

6909
		err = swevent_hlist_get();
6910 6911 6912
		if (err)
			return err;

6913
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6914 6915 6916 6917 6918 6919 6920
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6921
	.task_ctx_nr	= perf_sw_context,
6922

6923 6924
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6925
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6926 6927 6928 6929
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6930 6931 6932
	.read		= perf_swevent_read,
};

6933 6934
#ifdef CONFIG_EVENT_TRACING

6935 6936 6937 6938 6939
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6940 6941 6942 6943
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6944 6945 6946 6947 6948 6949 6950 6951 6952
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6953 6954
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6955 6956 6957 6958
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6959 6960 6961 6962 6963 6964 6965 6966 6967
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6968 6969
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6970 6971
{
	struct perf_sample_data data;
6972 6973
	struct perf_event *event;

6974 6975 6976 6977 6978
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6979
	perf_sample_data_init(&data, addr, 0);
6980 6981
	data.raw = &raw;

6982
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6983
		if (perf_tp_event_match(event, &data, regs))
6984
			perf_swevent_event(event, count, &data, regs);
6985
	}
6986

6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7012
	perf_swevent_put_recursion_context(rctx);
7013 7014 7015
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7016
static void tp_perf_event_destroy(struct perf_event *event)
7017
{
7018
	perf_trace_destroy(event);
7019 7020
}

7021
static int perf_tp_event_init(struct perf_event *event)
7022
{
7023 7024
	int err;

7025 7026 7027
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7028 7029 7030 7031 7032 7033
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7034 7035
	err = perf_trace_init(event);
	if (err)
7036
		return err;
7037

7038
	event->destroy = tp_perf_event_destroy;
7039

7040 7041 7042 7043
	return 0;
}

static struct pmu perf_tracepoint = {
7044 7045
	.task_ctx_nr	= perf_sw_context,

7046
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7047 7048 7049 7050
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7051 7052 7053 7054 7055
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7056
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7057
}
L
Li Zefan 已提交
7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7082 7083 7084 7085 7086 7087 7088 7089 7090 7091
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7092 7093
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7094 7095 7096 7097 7098 7099
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7100
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7125
#else
L
Li Zefan 已提交
7126

7127
static inline void perf_tp_register(void)
7128 7129
{
}
L
Li Zefan 已提交
7130 7131 7132 7133 7134 7135 7136 7137 7138 7139

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7140 7141 7142 7143 7144 7145 7146 7147
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7148
#endif /* CONFIG_EVENT_TRACING */
7149

7150
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7151
void perf_bp_event(struct perf_event *bp, void *data)
7152
{
7153 7154 7155
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7156
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7157

P
Peter Zijlstra 已提交
7158
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7159
		perf_swevent_event(bp, 1, &sample, regs);
7160 7161 7162
}
#endif

7163 7164 7165
/*
 * hrtimer based swevent callback
 */
7166

7167
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7168
{
7169 7170 7171 7172 7173
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7174

7175
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7176 7177 7178 7179

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7180
	event->pmu->read(event);
7181

7182
	perf_sample_data_init(&data, 0, event->hw.last_period);
7183 7184 7185
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7186
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7187
			if (__perf_event_overflow(event, 1, &data, regs))
7188 7189
				ret = HRTIMER_NORESTART;
	}
7190

7191 7192
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7193

7194
	return ret;
7195 7196
}

7197
static void perf_swevent_start_hrtimer(struct perf_event *event)
7198
{
7199
	struct hw_perf_event *hwc = &event->hw;
7200 7201 7202 7203
	s64 period;

	if (!is_sampling_event(event))
		return;
7204

7205 7206 7207 7208
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7209

7210 7211 7212 7213
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7214 7215
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7216
}
7217 7218

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7219
{
7220 7221
	struct hw_perf_event *hwc = &event->hw;

7222
	if (is_sampling_event(event)) {
7223
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7224
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7225 7226 7227

		hrtimer_cancel(&hwc->hrtimer);
	}
7228 7229
}

P
Peter Zijlstra 已提交
7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7250
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7251 7252 7253 7254
		event->attr.freq = 0;
	}
}

7255 7256 7257 7258 7259
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7260
{
7261 7262 7263
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7264
	now = local_clock();
7265 7266
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7267 7268
}

P
Peter Zijlstra 已提交
7269
static void cpu_clock_event_start(struct perf_event *event, int flags)
7270
{
P
Peter Zijlstra 已提交
7271
	local64_set(&event->hw.prev_count, local_clock());
7272 7273 7274
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7275
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7276
{
7277 7278 7279
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7280

P
Peter Zijlstra 已提交
7281 7282 7283 7284
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7285
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7286 7287 7288 7289 7290 7291 7292 7293 7294

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7295 7296 7297 7298
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7299

7300 7301 7302 7303 7304 7305 7306 7307
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7308 7309 7310 7311 7312 7313
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7314 7315
	perf_swevent_init_hrtimer(event);

7316
	return 0;
7317 7318
}

7319
static struct pmu perf_cpu_clock = {
7320 7321
	.task_ctx_nr	= perf_sw_context,

7322 7323
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7324
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7325 7326 7327 7328
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7329 7330 7331 7332 7333 7334 7335 7336
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7337
{
7338 7339
	u64 prev;
	s64 delta;
7340

7341 7342 7343 7344
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7345

P
Peter Zijlstra 已提交
7346
static void task_clock_event_start(struct perf_event *event, int flags)
7347
{
P
Peter Zijlstra 已提交
7348
	local64_set(&event->hw.prev_count, event->ctx->time);
7349 7350 7351
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7352
static void task_clock_event_stop(struct perf_event *event, int flags)
7353 7354 7355
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7356 7357 7358 7359 7360 7361
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7362
	perf_event_update_userpage(event);
7363

P
Peter Zijlstra 已提交
7364 7365 7366 7367 7368 7369
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7370 7371 7372 7373
}

static void task_clock_event_read(struct perf_event *event)
{
7374 7375 7376
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7377 7378 7379 7380 7381

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7382
{
7383 7384 7385 7386 7387 7388
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7389 7390 7391 7392 7393 7394
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7395 7396
	perf_swevent_init_hrtimer(event);

7397
	return 0;
L
Li Zefan 已提交
7398 7399
}

7400
static struct pmu perf_task_clock = {
7401 7402
	.task_ctx_nr	= perf_sw_context,

7403 7404
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7405
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7406 7407 7408 7409
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7410 7411
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7412

P
Peter Zijlstra 已提交
7413
static void perf_pmu_nop_void(struct pmu *pmu)
7414 7415
{
}
L
Li Zefan 已提交
7416

7417 7418 7419 7420
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7421
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7422
{
P
Peter Zijlstra 已提交
7423
	return 0;
L
Li Zefan 已提交
7424 7425
}

7426
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7427 7428

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7429
{
7430 7431 7432 7433 7434
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7435
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7436 7437
}

P
Peter Zijlstra 已提交
7438 7439
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7440 7441 7442 7443 7444 7445 7446
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7447 7448 7449
	perf_pmu_enable(pmu);
	return 0;
}
7450

P
Peter Zijlstra 已提交
7451
static void perf_pmu_cancel_txn(struct pmu *pmu)
7452
{
7453 7454 7455 7456 7457 7458 7459
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7460
	perf_pmu_enable(pmu);
7461 7462
}

7463 7464
static int perf_event_idx_default(struct perf_event *event)
{
7465
	return 0;
7466 7467
}

P
Peter Zijlstra 已提交
7468 7469 7470 7471
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7472
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7473
{
P
Peter Zijlstra 已提交
7474
	struct pmu *pmu;
7475

P
Peter Zijlstra 已提交
7476 7477
	if (ctxn < 0)
		return NULL;
7478

P
Peter Zijlstra 已提交
7479 7480 7481 7482
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7483

P
Peter Zijlstra 已提交
7484
	return NULL;
7485 7486
}

7487
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7488
{
7489 7490 7491 7492 7493 7494 7495
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7496 7497
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7498 7499 7500 7501 7502 7503
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7504

P
Peter Zijlstra 已提交
7505
	mutex_lock(&pmus_lock);
7506
	/*
P
Peter Zijlstra 已提交
7507
	 * Like a real lame refcount.
7508
	 */
7509 7510 7511
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7512
			goto out;
7513
		}
P
Peter Zijlstra 已提交
7514
	}
7515

7516
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7517 7518
out:
	mutex_unlock(&pmus_lock);
7519
}
P
Peter Zijlstra 已提交
7520
static struct idr pmu_idr;
7521

P
Peter Zijlstra 已提交
7522 7523 7524 7525 7526 7527 7528
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7529
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7530

7531 7532 7533 7534 7535 7536 7537 7538 7539 7540
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7541 7542
static DEFINE_MUTEX(mux_interval_mutex);

7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7562
	mutex_lock(&mux_interval_mutex);
7563 7564 7565
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7566 7567
	get_online_cpus();
	for_each_online_cpu(cpu) {
7568 7569 7570 7571
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7572 7573
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7574
	}
7575 7576
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7577 7578 7579

	return count;
}
7580
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7581

7582 7583 7584 7585
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7586
};
7587
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7588 7589 7590 7591

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7592
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7608
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7629
static struct lock_class_key cpuctx_mutex;
7630
static struct lock_class_key cpuctx_lock;
7631

7632
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7633
{
P
Peter Zijlstra 已提交
7634
	int cpu, ret;
7635

7636
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7637 7638 7639 7640
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7641

P
Peter Zijlstra 已提交
7642 7643 7644 7645 7646 7647
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7648 7649 7650
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7651 7652 7653 7654 7655
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7656 7657 7658 7659 7660 7661
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7662
skip_type:
P
Peter Zijlstra 已提交
7663 7664 7665
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7666

W
Wei Yongjun 已提交
7667
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7668 7669
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7670
		goto free_dev;
7671

P
Peter Zijlstra 已提交
7672 7673 7674 7675
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7676
		__perf_event_init_context(&cpuctx->ctx);
7677
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7678
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7679
		cpuctx->ctx.pmu = pmu;
7680

7681
		__perf_mux_hrtimer_init(cpuctx, cpu);
7682

7683
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7684
	}
7685

P
Peter Zijlstra 已提交
7686
got_cpu_context:
P
Peter Zijlstra 已提交
7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7698
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7699 7700
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7701
		}
7702
	}
7703

P
Peter Zijlstra 已提交
7704 7705 7706 7707 7708
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7709 7710 7711
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7712
	list_add_rcu(&pmu->entry, &pmus);
7713
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7714 7715
	ret = 0;
unlock:
7716 7717
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7718
	return ret;
P
Peter Zijlstra 已提交
7719

P
Peter Zijlstra 已提交
7720 7721 7722 7723
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7724 7725 7726 7727
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7728 7729 7730
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7731
}
7732
EXPORT_SYMBOL_GPL(perf_pmu_register);
7733

7734
void perf_pmu_unregister(struct pmu *pmu)
7735
{
7736 7737 7738
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7739

7740
	/*
P
Peter Zijlstra 已提交
7741 7742
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7743
	 */
7744
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7745
	synchronize_rcu();
7746

P
Peter Zijlstra 已提交
7747
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7748 7749
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7750 7751
	device_del(pmu->dev);
	put_device(pmu->dev);
7752
	free_pmu_context(pmu);
7753
}
7754
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7755

7756 7757
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7758
	struct perf_event_context *ctx = NULL;
7759 7760 7761 7762
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7763 7764

	if (event->group_leader != event) {
7765 7766 7767 7768 7769 7770
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7771 7772 7773
		BUG_ON(!ctx);
	}

7774 7775
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7776 7777 7778 7779

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7780 7781 7782 7783 7784 7785
	if (ret)
		module_put(pmu->module);

	return ret;
}

7786
static struct pmu *perf_init_event(struct perf_event *event)
7787 7788 7789
{
	struct pmu *pmu = NULL;
	int idx;
7790
	int ret;
7791 7792

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7793 7794 7795 7796

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7797
	if (pmu) {
7798
		ret = perf_try_init_event(pmu, event);
7799 7800
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7801
		goto unlock;
7802
	}
P
Peter Zijlstra 已提交
7803

7804
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7805
		ret = perf_try_init_event(pmu, event);
7806
		if (!ret)
P
Peter Zijlstra 已提交
7807
			goto unlock;
7808

7809 7810
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7811
			goto unlock;
7812
		}
7813
	}
P
Peter Zijlstra 已提交
7814 7815
	pmu = ERR_PTR(-ENOENT);
unlock:
7816
	srcu_read_unlock(&pmus_srcu, idx);
7817

7818
	return pmu;
7819 7820
}

7821 7822 7823 7824 7825 7826 7827 7828 7829
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


7851 7852
static void account_event(struct perf_event *event)
{
7853 7854
	bool inc = false;

7855 7856 7857
	if (event->parent)
		return;

7858
	if (event->attach_state & PERF_ATTACH_TASK)
7859
		inc = true;
7860 7861 7862 7863 7864 7865
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7866 7867
	if (event->attr.freq)
		account_freq_event();
7868 7869
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7870
		inc = true;
7871
	}
7872
	if (has_branch_stack(event))
7873
		inc = true;
7874
	if (is_cgroup_event(event))
7875 7876
		inc = true;

7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
7899 7900

	account_event_cpu(event, event->cpu);
7901 7902
}

T
Thomas Gleixner 已提交
7903
/*
7904
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7905
 */
7906
static struct perf_event *
7907
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7908 7909 7910
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7911
		 perf_overflow_handler_t overflow_handler,
7912
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7913
{
P
Peter Zijlstra 已提交
7914
	struct pmu *pmu;
7915 7916
	struct perf_event *event;
	struct hw_perf_event *hwc;
7917
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7918

7919 7920 7921 7922 7923
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7924
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7925
	if (!event)
7926
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7927

7928
	/*
7929
	 * Single events are their own group leaders, with an
7930 7931 7932
	 * empty sibling list:
	 */
	if (!group_leader)
7933
		group_leader = event;
7934

7935 7936
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7937

7938 7939 7940
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7941
	INIT_LIST_HEAD(&event->rb_entry);
7942
	INIT_LIST_HEAD(&event->active_entry);
7943 7944
	INIT_HLIST_NODE(&event->hlist_entry);

7945

7946
	init_waitqueue_head(&event->waitq);
7947
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7948

7949
	mutex_init(&event->mmap_mutex);
7950

7951
	atomic_long_set(&event->refcount, 1);
7952 7953 7954 7955 7956
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7957

7958
	event->parent		= parent_event;
7959

7960
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7961
	event->id		= atomic64_inc_return(&perf_event_id);
7962

7963
	event->state		= PERF_EVENT_STATE_INACTIVE;
7964

7965 7966 7967
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7968 7969 7970
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7971
		 */
7972
		event->hw.target = task;
7973 7974
	}

7975 7976 7977 7978
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7979
	if (!overflow_handler && parent_event) {
7980
		overflow_handler = parent_event->overflow_handler;
7981 7982
		context = parent_event->overflow_handler_context;
	}
7983

7984
	event->overflow_handler	= overflow_handler;
7985
	event->overflow_handler_context = context;
7986

J
Jiri Olsa 已提交
7987
	perf_event__state_init(event);
7988

7989
	pmu = NULL;
7990

7991
	hwc = &event->hw;
7992
	hwc->sample_period = attr->sample_period;
7993
	if (attr->freq && attr->sample_freq)
7994
		hwc->sample_period = 1;
7995
	hwc->last_period = hwc->sample_period;
7996

7997
	local64_set(&hwc->period_left, hwc->sample_period);
7998

7999
	/*
8000
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8001
	 */
8002
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8003
		goto err_ns;
8004 8005 8006

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
8007

8008 8009 8010 8011 8012 8013
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

8014
	pmu = perf_init_event(event);
8015
	if (!pmu)
8016 8017
		goto err_ns;
	else if (IS_ERR(pmu)) {
8018
		err = PTR_ERR(pmu);
8019
		goto err_ns;
I
Ingo Molnar 已提交
8020
	}
8021

8022 8023 8024 8025
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

8026
	if (!event->parent) {
8027 8028
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
8029
			if (err)
8030
				goto err_per_task;
8031
		}
8032
	}
8033

8034 8035 8036
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

8037
	return event;
8038

8039 8040 8041
err_per_task:
	exclusive_event_destroy(event);

8042 8043 8044
err_pmu:
	if (event->destroy)
		event->destroy(event);
8045
	module_put(pmu->module);
8046
err_ns:
8047 8048
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
8049 8050 8051 8052 8053
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
8054 8055
}

8056 8057
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
8058 8059
{
	u32 size;
8060
	int ret;
8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8085 8086 8087
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8088 8089
	 */
	if (size > sizeof(*attr)) {
8090 8091 8092
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8093

8094 8095
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8096

8097
		for (; addr < end; addr++) {
8098 8099 8100 8101 8102 8103
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8104
		size = sizeof(*attr);
8105 8106 8107 8108 8109 8110
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8111
	if (attr->__reserved_1)
8112 8113 8114 8115 8116 8117 8118 8119
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8148 8149
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8150 8151
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8152
	}
8153

8154
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8155
		ret = perf_reg_validate(attr->sample_regs_user);
8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8174

8175 8176
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8177 8178 8179 8180 8181 8182 8183 8184 8185
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8186 8187
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8188
{
8189
	struct ring_buffer *rb = NULL;
8190 8191
	int ret = -EINVAL;

8192
	if (!output_event)
8193 8194
		goto set;

8195 8196
	/* don't allow circular references */
	if (event == output_event)
8197 8198
		goto out;

8199 8200 8201 8202 8203 8204 8205
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8206
	 * If its not a per-cpu rb, it must be the same task.
8207 8208 8209 8210
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8211 8212 8213 8214 8215 8216
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8217 8218 8219 8220 8221 8222 8223
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8224
set:
8225
	mutex_lock(&event->mmap_mutex);
8226 8227 8228
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8229

8230
	if (output_event) {
8231 8232 8233
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8234
			goto unlock;
8235 8236
	}

8237
	ring_buffer_attach(event, rb);
8238

8239
	ret = 0;
8240 8241 8242
unlock:
	mutex_unlock(&event->mmap_mutex);

8243 8244 8245 8246
out:
	return ret;
}

P
Peter Zijlstra 已提交
8247 8248 8249 8250 8251 8252 8253 8254 8255
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8293
/**
8294
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8295
 *
8296
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8297
 * @pid:		target pid
I
Ingo Molnar 已提交
8298
 * @cpu:		target cpu
8299
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8300
 */
8301 8302
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8303
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8304
{
8305 8306
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8307
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8308
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8309
	struct file *event_file = NULL;
8310
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8311
	struct task_struct *task = NULL;
8312
	struct pmu *pmu;
8313
	int event_fd;
8314
	int move_group = 0;
8315
	int err;
8316
	int f_flags = O_RDWR;
8317
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8318

8319
	/* for future expandability... */
S
Stephane Eranian 已提交
8320
	if (flags & ~PERF_FLAG_ALL)
8321 8322
		return -EINVAL;

8323 8324 8325
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8326

8327 8328 8329 8330 8331
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8332
	if (attr.freq) {
8333
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8334
			return -EINVAL;
8335 8336 8337
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8338 8339
	}

S
Stephane Eranian 已提交
8340 8341 8342 8343 8344 8345 8346 8347 8348
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8349 8350 8351 8352
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8353 8354 8355
	if (event_fd < 0)
		return event_fd;

8356
	if (group_fd != -1) {
8357 8358
		err = perf_fget_light(group_fd, &group);
		if (err)
8359
			goto err_fd;
8360
		group_leader = group.file->private_data;
8361 8362 8363 8364 8365 8366
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8367
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8368 8369 8370 8371 8372 8373 8374
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8375 8376 8377 8378 8379 8380
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8381 8382
	get_online_cpus();

8383 8384 8385
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8386
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8387
				 NULL, NULL, cgroup_fd);
8388 8389
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8390
		goto err_cpus;
8391 8392
	}

8393 8394 8395 8396 8397 8398 8399
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8400 8401 8402 8403 8404
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8405

8406 8407 8408 8409 8410 8411
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8434 8435 8436 8437

	/*
	 * Get the target context (task or percpu):
	 */
8438
	ctx = find_get_context(pmu, task, event);
8439 8440
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8441
		goto err_alloc;
8442 8443
	}

8444 8445 8446 8447 8448
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8449 8450 8451 8452 8453
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8454
	/*
8455
	 * Look up the group leader (we will attach this event to it):
8456
	 */
8457
	if (group_leader) {
8458
		err = -EINVAL;
8459 8460

		/*
I
Ingo Molnar 已提交
8461 8462 8463 8464
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8465
			goto err_context;
8466 8467 8468 8469 8470

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8471 8472 8473
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8474
		 */
8475
		if (move_group) {
8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8489 8490 8491 8492 8493 8494
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8495 8496 8497
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8498
		if (attr.exclusive || attr.pinned)
8499
			goto err_context;
8500 8501 8502 8503 8504
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8505
			goto err_context;
8506
	}
T
Thomas Gleixner 已提交
8507

8508 8509
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8510 8511
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8512
		goto err_context;
8513
	}
8514

8515
	if (move_group) {
P
Peter Zijlstra 已提交
8516
		gctx = group_leader->ctx;
8517
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8518 8519 8520 8521
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
8522 8523 8524 8525
	} else {
		mutex_lock(&ctx->mutex);
	}

8526 8527 8528 8529 8530
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
8531 8532 8533 8534 8535
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8536 8537 8538 8539 8540 8541 8542
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8543

8544 8545 8546
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8547

8548 8549 8550
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8551 8552 8553 8554
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8555
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
8556

8557 8558
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8559
			perf_remove_from_context(sibling, 0);
8560 8561 8562
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8563 8564 8565 8566
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8567
		synchronize_rcu();
P
Peter Zijlstra 已提交
8568

8569 8570 8571 8572 8573 8574 8575 8576 8577 8578
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8579 8580
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8581
			perf_event__state_init(sibling);
8582
			perf_install_in_context(ctx, sibling, sibling->cpu);
8583 8584
			get_ctx(ctx);
		}
8585 8586 8587 8588 8589 8590 8591 8592 8593

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8594

8595 8596 8597 8598 8599 8600
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8601 8602
	}

8603 8604 8605 8606 8607 8608 8609 8610 8611
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8612 8613
	event->owner = current;

8614
	perf_install_in_context(ctx, event, event->cpu);
8615
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8616

8617
	if (move_group)
P
Peter Zijlstra 已提交
8618
		mutex_unlock(&gctx->mutex);
8619
	mutex_unlock(&ctx->mutex);
8620

8621 8622
	put_online_cpus();

8623 8624 8625
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8626

8627 8628 8629 8630 8631 8632
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8633
	fdput(group);
8634 8635
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8636

8637 8638 8639 8640 8641 8642
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8643
err_context:
8644
	perf_unpin_context(ctx);
8645
	put_ctx(ctx);
8646
err_alloc:
P
Peter Zijlstra 已提交
8647 8648 8649 8650 8651 8652
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
8653
err_cpus:
8654
	put_online_cpus();
8655
err_task:
P
Peter Zijlstra 已提交
8656 8657
	if (task)
		put_task_struct(task);
8658
err_group_fd:
8659
	fdput(group);
8660 8661
err_fd:
	put_unused_fd(event_fd);
8662
	return err;
T
Thomas Gleixner 已提交
8663 8664
}

8665 8666 8667 8668 8669
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8670
 * @task: task to profile (NULL for percpu)
8671 8672 8673
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8674
				 struct task_struct *task,
8675 8676
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8677 8678
{
	struct perf_event_context *ctx;
8679
	struct perf_event *event;
8680
	int err;
8681

8682 8683 8684
	/*
	 * Get the target context (task or percpu):
	 */
8685

8686
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8687
				 overflow_handler, context, -1);
8688 8689 8690 8691
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8692

8693
	/* Mark owner so we could distinguish it from user events. */
8694
	event->owner = TASK_TOMBSTONE;
8695

8696
	ctx = find_get_context(event->pmu, task, event);
8697 8698
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8699
		goto err_free;
8700
	}
8701 8702 8703

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8704 8705 8706 8707 8708
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

8709 8710
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
8711
		goto err_unlock;
8712 8713
	}

8714
	perf_install_in_context(ctx, event, cpu);
8715
	perf_unpin_context(ctx);
8716 8717 8718 8719
	mutex_unlock(&ctx->mutex);

	return event;

8720 8721 8722 8723
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
8724 8725 8726
err_free:
	free_event(event);
err:
8727
	return ERR_PTR(err);
8728
}
8729
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8730

8731 8732 8733 8734 8735 8736 8737 8738 8739 8740
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8741 8742 8743 8744 8745
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8746 8747
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8748
		perf_remove_from_context(event, 0);
8749
		unaccount_event_cpu(event, src_cpu);
8750
		put_ctx(src_ctx);
8751
		list_add(&event->migrate_entry, &events);
8752 8753
	}

8754 8755 8756
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8757 8758
	synchronize_rcu();

8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8783 8784
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8785 8786
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8787
		account_event_cpu(event, dst_cpu);
8788 8789 8790 8791
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8792
	mutex_unlock(&src_ctx->mutex);
8793 8794 8795
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8796
static void sync_child_event(struct perf_event *child_event,
8797
			       struct task_struct *child)
8798
{
8799
	struct perf_event *parent_event = child_event->parent;
8800
	u64 child_val;
8801

8802 8803
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8804

P
Peter Zijlstra 已提交
8805
	child_val = perf_event_count(child_event);
8806 8807 8808 8809

	/*
	 * Add back the child's count to the parent's count:
	 */
8810
	atomic64_add(child_val, &parent_event->child_count);
8811 8812 8813 8814
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8815 8816
}

8817
static void
8818 8819 8820
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
8821
{
8822 8823
	struct perf_event *parent_event = child_event->parent;

8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8836 8837 8838
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

8839
	if (parent_event)
8840 8841
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
8842
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8843
	raw_spin_unlock_irq(&child_ctx->lock);
8844

8845
	/*
8846
	 * Parent events are governed by their filedesc, retain them.
8847
	 */
8848
	if (!parent_event) {
8849
		perf_event_wakeup(child_event);
8850
		return;
8851
	}
8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
8872 8873
}

P
Peter Zijlstra 已提交
8874
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8875
{
8876
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8877 8878 8879
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
8880

8881
	child_ctx = perf_pin_task_context(child, ctxn);
8882
	if (!child_ctx)
8883 8884
		return;

8885
	/*
8886 8887 8888 8889 8890 8891 8892 8893
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
8894
	 */
8895
	mutex_lock(&child_ctx->mutex);
8896 8897

	/*
8898 8899 8900
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
8901
	 */
8902
	raw_spin_lock_irq(&child_ctx->lock);
8903
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8904

8905
	/*
8906 8907
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
8908
	 */
8909 8910 8911 8912
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
8913

8914
	clone_ctx = unclone_ctx(child_ctx);
8915
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8916

8917 8918
	if (clone_ctx)
		put_ctx(clone_ctx);
8919

P
Peter Zijlstra 已提交
8920
	/*
8921 8922 8923
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8924
	 */
8925
	perf_event_task(child, child_ctx, 0);
8926

8927
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8928
		perf_event_exit_event(child_event, child_ctx, child);
8929

8930 8931 8932
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8933 8934
}

P
Peter Zijlstra 已提交
8935 8936 8937 8938 8939
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8940
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8941 8942
	int ctxn;

P
Peter Zijlstra 已提交
8943 8944 8945 8946 8947 8948 8949 8950 8951 8952
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
8953
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
8954 8955 8956
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8957 8958
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8959 8960 8961 8962 8963 8964 8965 8966

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8967 8968
}

8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8981
	put_event(parent);
8982

P
Peter Zijlstra 已提交
8983
	raw_spin_lock_irq(&ctx->lock);
8984
	perf_group_detach(event);
8985
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8986
	raw_spin_unlock_irq(&ctx->lock);
8987 8988 8989
	free_event(event);
}

8990
/*
P
Peter Zijlstra 已提交
8991
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8992
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8993 8994 8995
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8996
 */
8997
void perf_event_free_task(struct task_struct *task)
8998
{
P
Peter Zijlstra 已提交
8999
	struct perf_event_context *ctx;
9000
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
9001
	int ctxn;
9002

P
Peter Zijlstra 已提交
9003 9004 9005 9006
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
9007

P
Peter Zijlstra 已提交
9008
		mutex_lock(&ctx->mutex);
9009
again:
P
Peter Zijlstra 已提交
9010 9011 9012
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
9013

P
Peter Zijlstra 已提交
9014 9015 9016
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
9017

P
Peter Zijlstra 已提交
9018 9019 9020
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
9021

P
Peter Zijlstra 已提交
9022
		mutex_unlock(&ctx->mutex);
9023

P
Peter Zijlstra 已提交
9024 9025
		put_ctx(ctx);
	}
9026 9027
}

9028 9029 9030 9031 9032 9033 9034 9035
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

9036
struct file *perf_event_get(unsigned int fd)
9037
{
9038
	struct file *file;
9039

9040 9041 9042
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
9043

9044 9045 9046 9047
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
9048

9049
	return file;
9050 9051 9052 9053 9054 9055 9056 9057 9058 9059
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
9071
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
9072
	struct perf_event *child_event;
9073
	unsigned long flags;
P
Peter Zijlstra 已提交
9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
9086
					   child,
P
Peter Zijlstra 已提交
9087
					   group_leader, parent_event,
9088
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
9089 9090
	if (IS_ERR(child_event))
		return child_event;
9091

9092 9093 9094 9095 9096 9097 9098
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
9099 9100
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9101
		mutex_unlock(&parent_event->child_mutex);
9102 9103 9104 9105
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
9106 9107 9108 9109 9110 9111 9112
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9113
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9130 9131
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9132

9133 9134 9135 9136
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9137
	perf_event__id_header_size(child_event);
9138

P
Peter Zijlstra 已提交
9139 9140 9141
	/*
	 * Link it up in the child's context:
	 */
9142
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9143
	add_event_to_ctx(child_event, child_ctx);
9144
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9176 9177 9178 9179 9180
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9181
		   struct task_struct *child, int ctxn,
9182 9183 9184
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9185
	struct perf_event_context *child_ctx;
9186 9187 9188 9189

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9190 9191
	}

9192
	child_ctx = child->perf_event_ctxp[ctxn];
9193 9194 9195 9196 9197 9198 9199
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9200

9201
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9202 9203
		if (!child_ctx)
			return -ENOMEM;
9204

P
Peter Zijlstra 已提交
9205
		child->perf_event_ctxp[ctxn] = child_ctx;
9206 9207 9208 9209 9210 9211 9212 9213 9214
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9215 9216
}

9217
/*
9218
 * Initialize the perf_event context in task_struct
9219
 */
9220
static int perf_event_init_context(struct task_struct *child, int ctxn)
9221
{
9222
	struct perf_event_context *child_ctx, *parent_ctx;
9223 9224
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9225
	struct task_struct *parent = current;
9226
	int inherited_all = 1;
9227
	unsigned long flags;
9228
	int ret = 0;
9229

P
Peter Zijlstra 已提交
9230
	if (likely(!parent->perf_event_ctxp[ctxn]))
9231 9232
		return 0;

9233
	/*
9234 9235
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9236
	 */
P
Peter Zijlstra 已提交
9237
	parent_ctx = perf_pin_task_context(parent, ctxn);
9238 9239
	if (!parent_ctx)
		return 0;
9240

9241 9242 9243 9244 9245 9246 9247
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9248 9249 9250 9251
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9252
	mutex_lock(&parent_ctx->mutex);
9253 9254 9255 9256 9257

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9258
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9259 9260
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9261 9262 9263
		if (ret)
			break;
	}
9264

9265 9266 9267 9268 9269 9270 9271 9272 9273
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9274
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9275 9276
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9277
		if (ret)
9278
			break;
9279 9280
	}

9281 9282 9283
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9284
	child_ctx = child->perf_event_ctxp[ctxn];
9285

9286
	if (child_ctx && inherited_all) {
9287 9288 9289
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9290 9291 9292
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9293
		 */
P
Peter Zijlstra 已提交
9294
		cloned_ctx = parent_ctx->parent_ctx;
9295 9296
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9297
			child_ctx->parent_gen = parent_ctx->parent_gen;
9298 9299 9300 9301 9302
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9303 9304
	}

P
Peter Zijlstra 已提交
9305
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9306
	mutex_unlock(&parent_ctx->mutex);
9307

9308
	perf_unpin_context(parent_ctx);
9309
	put_ctx(parent_ctx);
9310

9311
	return ret;
9312 9313
}

P
Peter Zijlstra 已提交
9314 9315 9316 9317 9318 9319 9320
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9321 9322 9323 9324
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9325 9326
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9327 9328
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9329
			return ret;
P
Peter Zijlstra 已提交
9330
		}
P
Peter Zijlstra 已提交
9331 9332 9333 9334 9335
	}

	return 0;
}

9336 9337
static void __init perf_event_init_all_cpus(void)
{
9338
	struct swevent_htable *swhash;
9339 9340 9341
	int cpu;

	for_each_possible_cpu(cpu) {
9342 9343
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9344
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9345 9346 9347
	}
}

9348
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9349
{
P
Peter Zijlstra 已提交
9350
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9351

9352
	mutex_lock(&swhash->hlist_mutex);
9353
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9354 9355
		struct swevent_hlist *hlist;

9356 9357 9358
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9359
	}
9360
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9361 9362
}

9363
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9364
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9365
{
P
Peter Zijlstra 已提交
9366
	struct perf_event_context *ctx = __info;
9367 9368
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9369

9370 9371
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
9372
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9373
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9374
}
P
Peter Zijlstra 已提交
9375 9376 9377 9378 9379 9380 9381 9382 9383

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9384
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9385 9386 9387 9388 9389 9390 9391 9392

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9393
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9394
{
P
Peter Zijlstra 已提交
9395
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9396 9397
}
#else
9398
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9399 9400
#endif

P
Peter Zijlstra 已提交
9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9421
static int
T
Thomas Gleixner 已提交
9422 9423 9424 9425
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9426
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9427 9428

	case CPU_UP_PREPARE:
9429
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9430 9431 9432
		break;

	case CPU_DOWN_PREPARE:
9433
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9434 9435 9436 9437 9438 9439 9440 9441
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9442
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9443
{
9444 9445
	int ret;

P
Peter Zijlstra 已提交
9446 9447
	idr_init(&pmu_idr);

9448
	perf_event_init_all_cpus();
9449
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9450 9451 9452
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9453 9454
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9455
	register_reboot_notifier(&perf_reboot_notifier);
9456 9457 9458

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9459

9460 9461 9462 9463 9464 9465
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9466
}
P
Peter Zijlstra 已提交
9467

9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
9479
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9480

P
Peter Zijlstra 已提交
9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9508 9509

#ifdef CONFIG_CGROUP_PERF
9510 9511
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9512 9513 9514
{
	struct perf_cgroup *jc;

9515
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9528
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9529
{
9530 9531
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9532 9533 9534 9535 9536 9537 9538
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9539
	rcu_read_lock();
S
Stephane Eranian 已提交
9540
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9541
	rcu_read_unlock();
S
Stephane Eranian 已提交
9542 9543 9544
	return 0;
}

9545
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9546
{
9547
	struct task_struct *task;
9548
	struct cgroup_subsys_state *css;
9549

9550
	cgroup_taskset_for_each(task, css, tset)
9551
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9552 9553
}

9554
struct cgroup_subsys perf_event_cgrp_subsys = {
9555 9556
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9557
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9558 9559
};
#endif /* CONFIG_CGROUP_PERF */