core.c 186.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
122 123
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
124

125 126 127 128 129 130 131
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

132 133 134 135 136 137
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
138 139 140 141
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
142
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
143
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
145

146 147 148
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
149
static atomic_t nr_freq_events __read_mostly;
150

P
Peter Zijlstra 已提交
151 152 153 154
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

155
/*
156
 * perf event paranoia level:
157 158
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
159
 *   1 - disallow cpu events for unpriv
160
 *   2 - disallow kernel profiling for unpriv
161
 */
162
int sysctl_perf_event_paranoid __read_mostly = 1;
163

164 165
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
166 167

/*
168
 * max perf event sample rate
169
 */
170 171 172 173 174 175 176 177 178
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
179 180
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181 182 183 184 185 186

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
187
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
188
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
189
}
P
Peter Zijlstra 已提交
190

191 192
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
193 194 195 196
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
197
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
198 199 200 201 202

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
221 222 223

	return 0;
}
224

225 226 227 228 229 230 231
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
232
static DEFINE_PER_CPU(u64, running_sample_length);
233

234
static void perf_duration_warn(struct irq_work *w)
235
{
236
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
237
	u64 avg_local_sample_len;
238
	u64 local_samples_len;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

	local_samples_len = __get_cpu_var(running_sample_length);
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
			avg_local_sample_len, allowed_ns,
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
254
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
255 256
	u64 avg_local_sample_len;
	u64 local_samples_len;
257

P
Peter Zijlstra 已提交
258
	if (allowed_ns == 0)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
274
	if (avg_local_sample_len <= allowed_ns)
275 276 277 278 279 280 281 282 283 284
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
285 286

	irq_work_queue(&perf_duration_work);
287 288
}

289
static atomic64_t perf_event_id;
290

291 292 293 294
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
295 296 297 298 299
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
300

301
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
302

303
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
304
{
305
	return "pmu";
T
Thomas Gleixner 已提交
306 307
}

308 309 310 311 312
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
313 314 315 316 317 318
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
335 336
#ifdef CONFIG_CGROUP_PERF

337 338 339 340 341 342 343 344 345 346 347
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
348
	struct perf_cgroup_info	__percpu *info;
349 350
};

351 352 353 354 355
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
356 357 358
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
359 360
	return container_of(task_css(task, perf_subsys_id),
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
361 362 363 364 365 366 367 368
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
385 386
}

387
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
388
{
389
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
438 439
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
440
	/*
441 442
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
443
	 */
444
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
445 446
		return;

447 448 449 450 451 452
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
453 454 455
}

static inline void
456 457
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
458 459 460 461
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

462 463 464 465 466 467
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
468 469 470 471
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
472
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
505 506
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
516 517
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
518 519 520 521 522 523 524 525 526 527 528

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
529
				WARN_ON_ONCE(cpuctx->cgrp);
530 531 532 533
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
534 535 536 537
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
538 539
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
540 541 542 543 544 545 546 547
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

548 549
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
550
{
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
573 574
}

575 576
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
577
{
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
596 597 598 599 600 601 602 603
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
604 605
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
606

607
	if (!f.file)
S
Stephane Eranian 已提交
608 609
		return -EBADF;

610 611
	rcu_read_lock();

612
	css = css_from_dir(f.file->f_dentry, &perf_subsys);
613 614 615 616
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
617 618 619 620

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

621
	/* must be done before we fput() the file */
622 623 624 625 626
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
627

S
Stephane Eranian 已提交
628 629 630 631 632 633 634 635 636
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
637
out:
638
	rcu_read_unlock();
639
	fdput(f);
S
Stephane Eranian 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

713 714
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
715 716 717
{
}

718 719
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
720 721 722 723 724 725 726 727 728 729 730
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
731 732
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
826
	int timer;
827 828 829 830 831

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

832 833 834 835 836 837 838 839 840
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
863
void perf_pmu_disable(struct pmu *pmu)
864
{
P
Peter Zijlstra 已提交
865 866 867
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
868 869
}

P
Peter Zijlstra 已提交
870
void perf_pmu_enable(struct pmu *pmu)
871
{
P
Peter Zijlstra 已提交
872 873 874
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
875 876
}

877 878 879 880 881 882 883
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
884
static void perf_pmu_rotate_start(struct pmu *pmu)
885
{
P
Peter Zijlstra 已提交
886
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
887
	struct list_head *head = &__get_cpu_var(rotation_list);
888

889
	WARN_ON(!irqs_disabled());
890

891
	if (list_empty(&cpuctx->rotation_list))
892
		list_add(&cpuctx->rotation_list, head);
893 894
}

895
static void get_ctx(struct perf_event_context *ctx)
896
{
897
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
898 899
}

900
static void put_ctx(struct perf_event_context *ctx)
901
{
902 903 904
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
905 906
		if (ctx->task)
			put_task_struct(ctx->task);
907
		kfree_rcu(ctx, rcu_head);
908
	}
909 910
}

911
static void unclone_ctx(struct perf_event_context *ctx)
912 913 914 915 916
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
917
	ctx->generation++;
918 919
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

942
/*
943
 * If we inherit events we want to return the parent event id
944 945
 * to userspace.
 */
946
static u64 primary_event_id(struct perf_event *event)
947
{
948
	u64 id = event->id;
949

950 951
	if (event->parent)
		id = event->parent->id;
952 953 954 955

	return id;
}

956
/*
957
 * Get the perf_event_context for a task and lock it.
958 959 960
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
961
static struct perf_event_context *
P
Peter Zijlstra 已提交
962
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
963
{
964
	struct perf_event_context *ctx;
965

P
Peter Zijlstra 已提交
966
retry:
967 968 969 970 971 972 973 974 975 976 977
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
978
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
979 980 981 982
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
983
		 * perf_event_task_sched_out, though the
984 985 986 987 988 989
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
990
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
991
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
992
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
993 994
			rcu_read_unlock();
			preempt_enable();
995 996
			goto retry;
		}
997 998

		if (!atomic_inc_not_zero(&ctx->refcount)) {
999
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1000 1001
			ctx = NULL;
		}
1002 1003
	}
	rcu_read_unlock();
1004
	preempt_enable();
1005 1006 1007 1008 1009 1010 1011 1012
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1013 1014
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1015
{
1016
	struct perf_event_context *ctx;
1017 1018
	unsigned long flags;

P
Peter Zijlstra 已提交
1019
	ctx = perf_lock_task_context(task, ctxn, &flags);
1020 1021
	if (ctx) {
		++ctx->pin_count;
1022
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1023 1024 1025 1026
	}
	return ctx;
}

1027
static void perf_unpin_context(struct perf_event_context *ctx)
1028 1029 1030
{
	unsigned long flags;

1031
	raw_spin_lock_irqsave(&ctx->lock, flags);
1032
	--ctx->pin_count;
1033
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1034 1035
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1047 1048 1049
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1050 1051 1052 1053

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1054 1055 1056
	return ctx ? ctx->time : 0;
}

1057 1058
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1059
 * The caller of this function needs to hold the ctx->lock.
1060 1061 1062 1063 1064 1065 1066 1067 1068
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1080
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1081 1082
	else if (ctx->is_active)
		run_end = ctx->time;
1083 1084 1085 1086
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1087 1088 1089 1090

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1091
		run_end = perf_event_time(event);
1092 1093

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1094

1095 1096
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1109 1110 1111 1112 1113 1114 1115 1116 1117
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1118
/*
1119
 * Add a event from the lists for its context.
1120 1121
 * Must be called with ctx->mutex and ctx->lock held.
 */
1122
static void
1123
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1124
{
1125 1126
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1127 1128

	/*
1129 1130 1131
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1132
	 */
1133
	if (event->group_leader == event) {
1134 1135
		struct list_head *list;

1136 1137 1138
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1139 1140
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1141
	}
P
Peter Zijlstra 已提交
1142

1143
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1144 1145
		ctx->nr_cgroups++;

1146 1147 1148
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1149
	list_add_rcu(&event->event_entry, &ctx->event_list);
1150
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1151
		perf_pmu_rotate_start(ctx->pmu);
1152 1153
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1154
		ctx->nr_stat++;
1155 1156

	ctx->generation++;
1157 1158
}

J
Jiri Olsa 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1207 1208 1209 1210 1211 1212
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1213 1214 1215
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1216 1217 1218
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1219 1220 1221
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1222 1223 1224
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1225 1226 1227 1228 1229 1230 1231 1232 1233
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1234 1235 1236 1237 1238 1239
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1240 1241 1242
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1243 1244 1245 1246 1247 1248 1249 1250 1251
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1252
	event->id_header_size = size;
1253 1254
}

1255 1256
static void perf_group_attach(struct perf_event *event)
{
1257
	struct perf_event *group_leader = event->group_leader, *pos;
1258

P
Peter Zijlstra 已提交
1259 1260 1261 1262 1263 1264
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1276 1277 1278 1279 1280

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1281 1282
}

1283
/*
1284
 * Remove a event from the lists for its context.
1285
 * Must be called with ctx->mutex and ctx->lock held.
1286
 */
1287
static void
1288
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1289
{
1290
	struct perf_cpu_context *cpuctx;
1291 1292 1293 1294
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1295
		return;
1296 1297 1298

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1299
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1300
		ctx->nr_cgroups--;
1301 1302 1303 1304 1305 1306 1307 1308 1309
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1310

1311 1312 1313
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1314 1315
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1316
		ctx->nr_stat--;
1317

1318
	list_del_rcu(&event->event_entry);
1319

1320 1321
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1322

1323
	update_group_times(event);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1334 1335

	ctx->generation++;
1336 1337
}

1338
static void perf_group_detach(struct perf_event *event)
1339 1340
{
	struct perf_event *sibling, *tmp;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1357
		goto out;
1358 1359 1360 1361
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1362

1363
	/*
1364 1365
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1366
	 * to whatever list we are on.
1367
	 */
1368
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1369 1370
		if (list)
			list_move_tail(&sibling->group_entry, list);
1371
		sibling->group_leader = sibling;
1372 1373 1374

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1375
	}
1376 1377 1378 1379 1380 1381

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1382 1383
}

1384 1385 1386
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1387 1388
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1389 1390
}

1391 1392
static void
event_sched_out(struct perf_event *event,
1393
		  struct perf_cpu_context *cpuctx,
1394
		  struct perf_event_context *ctx)
1395
{
1396
	u64 tstamp = perf_event_time(event);
1397 1398 1399 1400 1401 1402 1403 1404 1405
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1406
		delta = tstamp - event->tstamp_stopped;
1407
		event->tstamp_running += delta;
1408
		event->tstamp_stopped = tstamp;
1409 1410
	}

1411
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1412
		return;
1413

1414 1415
	perf_pmu_disable(event->pmu);

1416 1417 1418 1419
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1420
	}
1421
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1422
	event->pmu->del(event, 0);
1423
	event->oncpu = -1;
1424

1425
	if (!is_software_event(event))
1426 1427
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1428 1429
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1430
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1431
		cpuctx->exclusive = 0;
1432 1433

	perf_pmu_enable(event->pmu);
1434 1435
}

1436
static void
1437
group_sched_out(struct perf_event *group_event,
1438
		struct perf_cpu_context *cpuctx,
1439
		struct perf_event_context *ctx)
1440
{
1441
	struct perf_event *event;
1442
	int state = group_event->state;
1443

1444
	event_sched_out(group_event, cpuctx, ctx);
1445 1446 1447 1448

	/*
	 * Schedule out siblings (if any):
	 */
1449 1450
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1451

1452
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1453 1454 1455
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1456
/*
1457
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1458
 *
1459
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1460 1461
 * remove it from the context list.
 */
1462
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1463
{
1464 1465
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1466
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1467

1468
	raw_spin_lock(&ctx->lock);
1469 1470
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1471 1472 1473 1474
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1475
	raw_spin_unlock(&ctx->lock);
1476 1477

	return 0;
T
Thomas Gleixner 已提交
1478 1479 1480 1481
}


/*
1482
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1483
 *
1484
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1485
 * call when the task is on a CPU.
1486
 *
1487 1488
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1489 1490
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1491
 * When called from perf_event_exit_task, it's OK because the
1492
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1493
 */
1494
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1495
{
1496
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1497 1498
	struct task_struct *task = ctx->task;

1499 1500
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1501 1502
	if (!task) {
		/*
1503
		 * Per cpu events are removed via an smp call and
1504
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1505
		 */
1506
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1507 1508 1509 1510
		return;
	}

retry:
1511 1512
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1513

1514
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1515
	/*
1516 1517
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1518
	 */
1519
	if (ctx->is_active) {
1520
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1521 1522 1523 1524
		goto retry;
	}

	/*
1525 1526
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1527
	 */
1528
	list_del_event(event, ctx);
1529
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1530 1531
}

1532
/*
1533
 * Cross CPU call to disable a performance event
1534
 */
1535
int __perf_event_disable(void *info)
1536
{
1537 1538
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1539
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1540 1541

	/*
1542 1543
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1544 1545 1546
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1547
	 */
1548
	if (ctx->task && cpuctx->task_ctx != ctx)
1549
		return -EINVAL;
1550

1551
	raw_spin_lock(&ctx->lock);
1552 1553

	/*
1554
	 * If the event is on, turn it off.
1555 1556
	 * If it is in error state, leave it in error state.
	 */
1557
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1558
		update_context_time(ctx);
S
Stephane Eranian 已提交
1559
		update_cgrp_time_from_event(event);
1560 1561 1562
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1563
		else
1564 1565
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1566 1567
	}

1568
	raw_spin_unlock(&ctx->lock);
1569 1570

	return 0;
1571 1572 1573
}

/*
1574
 * Disable a event.
1575
 *
1576 1577
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1578
 * remains valid.  This condition is satisifed when called through
1579 1580 1581 1582
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1583
 * is the current context on this CPU and preemption is disabled,
1584
 * hence we can't get into perf_event_task_sched_out for this context.
1585
 */
1586
void perf_event_disable(struct perf_event *event)
1587
{
1588
	struct perf_event_context *ctx = event->ctx;
1589 1590 1591 1592
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1593
		 * Disable the event on the cpu that it's on
1594
		 */
1595
		cpu_function_call(event->cpu, __perf_event_disable, event);
1596 1597 1598
		return;
	}

P
Peter Zijlstra 已提交
1599
retry:
1600 1601
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1602

1603
	raw_spin_lock_irq(&ctx->lock);
1604
	/*
1605
	 * If the event is still active, we need to retry the cross-call.
1606
	 */
1607
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1608
		raw_spin_unlock_irq(&ctx->lock);
1609 1610 1611 1612 1613
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1614 1615 1616 1617 1618 1619 1620
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1621 1622 1623
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1624
	}
1625
	raw_spin_unlock_irq(&ctx->lock);
1626
}
1627
EXPORT_SYMBOL_GPL(perf_event_disable);
1628

S
Stephane Eranian 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1664 1665 1666 1667
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1668
static int
1669
event_sched_in(struct perf_event *event,
1670
		 struct perf_cpu_context *cpuctx,
1671
		 struct perf_event_context *ctx)
1672
{
1673
	u64 tstamp = perf_event_time(event);
1674
	int ret = 0;
1675

1676
	if (event->state <= PERF_EVENT_STATE_OFF)
1677 1678
		return 0;

1679
	event->state = PERF_EVENT_STATE_ACTIVE;
1680
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1692 1693 1694 1695 1696
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1697 1698
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1699
	if (event->pmu->add(event, PERF_EF_START)) {
1700 1701
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1702 1703
		ret = -EAGAIN;
		goto out;
1704 1705
	}

1706
	event->tstamp_running += tstamp - event->tstamp_stopped;
1707

S
Stephane Eranian 已提交
1708
	perf_set_shadow_time(event, ctx, tstamp);
1709

1710
	if (!is_software_event(event))
1711
		cpuctx->active_oncpu++;
1712
	ctx->nr_active++;
1713 1714
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1715

1716
	if (event->attr.exclusive)
1717 1718
		cpuctx->exclusive = 1;

1719 1720 1721 1722
out:
	perf_pmu_enable(event->pmu);

	return ret;
1723 1724
}

1725
static int
1726
group_sched_in(struct perf_event *group_event,
1727
	       struct perf_cpu_context *cpuctx,
1728
	       struct perf_event_context *ctx)
1729
{
1730
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1731
	struct pmu *pmu = group_event->pmu;
1732 1733
	u64 now = ctx->time;
	bool simulate = false;
1734

1735
	if (group_event->state == PERF_EVENT_STATE_OFF)
1736 1737
		return 0;

P
Peter Zijlstra 已提交
1738
	pmu->start_txn(pmu);
1739

1740
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1741
		pmu->cancel_txn(pmu);
1742
		perf_cpu_hrtimer_restart(cpuctx);
1743
		return -EAGAIN;
1744
	}
1745 1746 1747 1748

	/*
	 * Schedule in siblings as one group (if any):
	 */
1749
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1750
		if (event_sched_in(event, cpuctx, ctx)) {
1751
			partial_group = event;
1752 1753 1754 1755
			goto group_error;
		}
	}

1756
	if (!pmu->commit_txn(pmu))
1757
		return 0;
1758

1759 1760 1761 1762
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1773
	 */
1774 1775
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1776 1777 1778 1779 1780 1781 1782 1783
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1784
	}
1785
	event_sched_out(group_event, cpuctx, ctx);
1786

P
Peter Zijlstra 已提交
1787
	pmu->cancel_txn(pmu);
1788

1789 1790
	perf_cpu_hrtimer_restart(cpuctx);

1791 1792 1793
	return -EAGAIN;
}

1794
/*
1795
 * Work out whether we can put this event group on the CPU now.
1796
 */
1797
static int group_can_go_on(struct perf_event *event,
1798 1799 1800 1801
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1802
	 * Groups consisting entirely of software events can always go on.
1803
	 */
1804
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1805 1806 1807
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1808
	 * events can go on.
1809 1810 1811 1812 1813
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1814
	 * events on the CPU, it can't go on.
1815
	 */
1816
	if (event->attr.exclusive && cpuctx->active_oncpu)
1817 1818 1819 1820 1821 1822 1823 1824
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1825 1826
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1827
{
1828 1829
	u64 tstamp = perf_event_time(event);

1830
	list_add_event(event, ctx);
1831
	perf_group_attach(event);
1832 1833 1834
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1835 1836
}

1837 1838 1839 1840 1841 1842
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1856
/*
1857
 * Cross CPU call to install and enable a performance event
1858 1859
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1860
 */
1861
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1862
{
1863 1864
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1865
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1866 1867 1868
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1869
	perf_ctx_lock(cpuctx, task_ctx);
1870
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1871 1872

	/*
1873
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1874
	 */
1875
	if (task_ctx)
1876
		task_ctx_sched_out(task_ctx);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1891 1892
		task = task_ctx->task;
	}
1893

1894
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1895

1896
	update_context_time(ctx);
S
Stephane Eranian 已提交
1897 1898 1899 1900 1901 1902
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1903

1904
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1905

1906
	/*
1907
	 * Schedule everything back in
1908
	 */
1909
	perf_event_sched_in(cpuctx, task_ctx, task);
1910 1911 1912

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1913 1914

	return 0;
T
Thomas Gleixner 已提交
1915 1916 1917
}

/*
1918
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1919
 *
1920 1921
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1922
 *
1923
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1924 1925 1926 1927
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1928 1929
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1930 1931 1932 1933
			int cpu)
{
	struct task_struct *task = ctx->task;

1934 1935
	lockdep_assert_held(&ctx->mutex);

1936
	event->ctx = ctx;
1937 1938
	if (event->cpu != -1)
		event->cpu = cpu;
1939

T
Thomas Gleixner 已提交
1940 1941
	if (!task) {
		/*
1942
		 * Per cpu events are installed via an smp call and
1943
		 * the install is always successful.
T
Thomas Gleixner 已提交
1944
		 */
1945
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1946 1947 1948 1949
		return;
	}

retry:
1950 1951
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1952

1953
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1954
	/*
1955 1956
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1957
	 */
1958
	if (ctx->is_active) {
1959
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1960 1961 1962 1963
		goto retry;
	}

	/*
1964 1965
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1966
	 */
1967
	add_event_to_ctx(event, ctx);
1968
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1969 1970
}

1971
/*
1972
 * Put a event into inactive state and update time fields.
1973 1974 1975 1976 1977 1978
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1979
static void __perf_event_mark_enabled(struct perf_event *event)
1980
{
1981
	struct perf_event *sub;
1982
	u64 tstamp = perf_event_time(event);
1983

1984
	event->state = PERF_EVENT_STATE_INACTIVE;
1985
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1986
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1987 1988
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1989
	}
1990 1991
}

1992
/*
1993
 * Cross CPU call to enable a performance event
1994
 */
1995
static int __perf_event_enable(void *info)
1996
{
1997 1998 1999
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2000
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2001
	int err;
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2013
		return -EINVAL;
2014

2015
	raw_spin_lock(&ctx->lock);
2016
	update_context_time(ctx);
2017

2018
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2019
		goto unlock;
S
Stephane Eranian 已提交
2020 2021 2022 2023

	/*
	 * set current task's cgroup time reference point
	 */
2024
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2025

2026
	__perf_event_mark_enabled(event);
2027

S
Stephane Eranian 已提交
2028 2029 2030
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2031
		goto unlock;
S
Stephane Eranian 已提交
2032
	}
2033

2034
	/*
2035
	 * If the event is in a group and isn't the group leader,
2036
	 * then don't put it on unless the group is on.
2037
	 */
2038
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2039
		goto unlock;
2040

2041
	if (!group_can_go_on(event, cpuctx, 1)) {
2042
		err = -EEXIST;
2043
	} else {
2044
		if (event == leader)
2045
			err = group_sched_in(event, cpuctx, ctx);
2046
		else
2047
			err = event_sched_in(event, cpuctx, ctx);
2048
	}
2049 2050 2051

	if (err) {
		/*
2052
		 * If this event can't go on and it's part of a
2053 2054
		 * group, then the whole group has to come off.
		 */
2055
		if (leader != event) {
2056
			group_sched_out(leader, cpuctx, ctx);
2057 2058
			perf_cpu_hrtimer_restart(cpuctx);
		}
2059
		if (leader->attr.pinned) {
2060
			update_group_times(leader);
2061
			leader->state = PERF_EVENT_STATE_ERROR;
2062
		}
2063 2064
	}

P
Peter Zijlstra 已提交
2065
unlock:
2066
	raw_spin_unlock(&ctx->lock);
2067 2068

	return 0;
2069 2070 2071
}

/*
2072
 * Enable a event.
2073
 *
2074 2075
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2076
 * remains valid.  This condition is satisfied when called through
2077 2078
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2079
 */
2080
void perf_event_enable(struct perf_event *event)
2081
{
2082
	struct perf_event_context *ctx = event->ctx;
2083 2084 2085 2086
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2087
		 * Enable the event on the cpu that it's on
2088
		 */
2089
		cpu_function_call(event->cpu, __perf_event_enable, event);
2090 2091 2092
		return;
	}

2093
	raw_spin_lock_irq(&ctx->lock);
2094
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2095 2096 2097
		goto out;

	/*
2098 2099
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2100 2101 2102 2103
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2104 2105
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2106

P
Peter Zijlstra 已提交
2107
retry:
2108
	if (!ctx->is_active) {
2109
		__perf_event_mark_enabled(event);
2110 2111 2112
		goto out;
	}

2113
	raw_spin_unlock_irq(&ctx->lock);
2114 2115 2116

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2117

2118
	raw_spin_lock_irq(&ctx->lock);
2119 2120

	/*
2121
	 * If the context is active and the event is still off,
2122 2123
	 * we need to retry the cross-call.
	 */
2124 2125 2126 2127 2128 2129
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2130
		goto retry;
2131
	}
2132

P
Peter Zijlstra 已提交
2133
out:
2134
	raw_spin_unlock_irq(&ctx->lock);
2135
}
2136
EXPORT_SYMBOL_GPL(perf_event_enable);
2137

2138
int perf_event_refresh(struct perf_event *event, int refresh)
2139
{
2140
	/*
2141
	 * not supported on inherited events
2142
	 */
2143
	if (event->attr.inherit || !is_sampling_event(event))
2144 2145
		return -EINVAL;

2146 2147
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2148 2149

	return 0;
2150
}
2151
EXPORT_SYMBOL_GPL(perf_event_refresh);
2152

2153 2154 2155
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2156
{
2157
	struct perf_event *event;
2158
	int is_active = ctx->is_active;
2159

2160
	ctx->is_active &= ~event_type;
2161
	if (likely(!ctx->nr_events))
2162 2163
		return;

2164
	update_context_time(ctx);
S
Stephane Eranian 已提交
2165
	update_cgrp_time_from_cpuctx(cpuctx);
2166
	if (!ctx->nr_active)
2167
		return;
2168

P
Peter Zijlstra 已提交
2169
	perf_pmu_disable(ctx->pmu);
2170
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2171 2172
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2173
	}
2174

2175
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2176
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2177
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2178
	}
P
Peter Zijlstra 已提交
2179
	perf_pmu_enable(ctx->pmu);
2180 2181
}

2182
/*
2183 2184 2185 2186 2187 2188
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2189
 */
2190 2191
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2192
{
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2215 2216
}

2217 2218
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2219 2220 2221
{
	u64 value;

2222
	if (!event->attr.inherit_stat)
2223 2224 2225
		return;

	/*
2226
	 * Update the event value, we cannot use perf_event_read()
2227 2228
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2229
	 * we know the event must be on the current CPU, therefore we
2230 2231
	 * don't need to use it.
	 */
2232 2233
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2234 2235
		event->pmu->read(event);
		/* fall-through */
2236

2237 2238
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2239 2240 2241 2242 2243 2244 2245
		break;

	default:
		break;
	}

	/*
2246
	 * In order to keep per-task stats reliable we need to flip the event
2247 2248
	 * values when we flip the contexts.
	 */
2249 2250 2251
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2252

2253 2254
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2255

2256
	/*
2257
	 * Since we swizzled the values, update the user visible data too.
2258
	 */
2259 2260
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2261 2262
}

2263 2264
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2265
{
2266
	struct perf_event *event, *next_event;
2267 2268 2269 2270

	if (!ctx->nr_stat)
		return;

2271 2272
	update_context_time(ctx);

2273 2274
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2275

2276 2277
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2278

2279 2280
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2281

2282
		__perf_event_sync_stat(event, next_event);
2283

2284 2285
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2286 2287 2288
	}
}

2289 2290
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2291
{
P
Peter Zijlstra 已提交
2292
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2293
	struct perf_event_context *next_ctx;
2294
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2295
	struct perf_cpu_context *cpuctx;
2296
	int do_switch = 1;
T
Thomas Gleixner 已提交
2297

P
Peter Zijlstra 已提交
2298 2299
	if (likely(!ctx))
		return;
2300

P
Peter Zijlstra 已提交
2301 2302
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2303 2304
		return;

2305
	rcu_read_lock();
P
Peter Zijlstra 已提交
2306
	next_ctx = next->perf_event_ctxp[ctxn];
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
	if (!parent && !next_parent)
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2318 2319 2320 2321 2322 2323 2324 2325 2326
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2327 2328
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2329
		if (context_equiv(ctx, next_ctx)) {
2330 2331
			/*
			 * XXX do we need a memory barrier of sorts
2332
			 * wrt to rcu_dereference() of perf_event_ctxp
2333
			 */
P
Peter Zijlstra 已提交
2334 2335
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2336 2337 2338
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2339

2340
			perf_event_sync_stat(ctx, next_ctx);
2341
		}
2342 2343
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2344
	}
2345
unlock:
2346
	rcu_read_unlock();
2347

2348
	if (do_switch) {
2349
		raw_spin_lock(&ctx->lock);
2350
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2351
		cpuctx->task_ctx = NULL;
2352
		raw_spin_unlock(&ctx->lock);
2353
	}
T
Thomas Gleixner 已提交
2354 2355
}

P
Peter Zijlstra 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2370 2371
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2372 2373 2374 2375 2376
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2377 2378 2379 2380 2381 2382 2383

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2384
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2385 2386
}

2387
static void task_ctx_sched_out(struct perf_event_context *ctx)
2388
{
P
Peter Zijlstra 已提交
2389
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2390

2391 2392
	if (!cpuctx->task_ctx)
		return;
2393 2394 2395 2396

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2397
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2398 2399 2400
	cpuctx->task_ctx = NULL;
}

2401 2402 2403 2404 2405 2406 2407
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2408 2409
}

2410
static void
2411
ctx_pinned_sched_in(struct perf_event_context *ctx,
2412
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2413
{
2414
	struct perf_event *event;
T
Thomas Gleixner 已提交
2415

2416 2417
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2418
			continue;
2419
		if (!event_filter_match(event))
2420 2421
			continue;

S
Stephane Eranian 已提交
2422 2423 2424 2425
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2426
		if (group_can_go_on(event, cpuctx, 1))
2427
			group_sched_in(event, cpuctx, ctx);
2428 2429 2430 2431 2432

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2433 2434 2435
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2436
		}
2437
	}
2438 2439 2440 2441
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2442
		      struct perf_cpu_context *cpuctx)
2443 2444 2445
{
	struct perf_event *event;
	int can_add_hw = 1;
2446

2447 2448 2449
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2450
			continue;
2451 2452
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2453
		 * of events:
2454
		 */
2455
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2456 2457
			continue;

S
Stephane Eranian 已提交
2458 2459 2460 2461
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2462
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2463
			if (group_sched_in(event, cpuctx, ctx))
2464
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2465
		}
T
Thomas Gleixner 已提交
2466
	}
2467 2468 2469 2470 2471
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2472 2473
	     enum event_type_t event_type,
	     struct task_struct *task)
2474
{
S
Stephane Eranian 已提交
2475
	u64 now;
2476
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2477

2478
	ctx->is_active |= event_type;
2479
	if (likely(!ctx->nr_events))
2480
		return;
2481

S
Stephane Eranian 已提交
2482 2483
	now = perf_clock();
	ctx->timestamp = now;
2484
	perf_cgroup_set_timestamp(task, ctx);
2485 2486 2487 2488
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2489
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2490
		ctx_pinned_sched_in(ctx, cpuctx);
2491 2492

	/* Then walk through the lower prio flexible groups */
2493
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2494
		ctx_flexible_sched_in(ctx, cpuctx);
2495 2496
}

2497
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2498 2499
			     enum event_type_t event_type,
			     struct task_struct *task)
2500 2501 2502
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2503
	ctx_sched_in(ctx, cpuctx, event_type, task);
2504 2505
}

S
Stephane Eranian 已提交
2506 2507
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2508
{
P
Peter Zijlstra 已提交
2509
	struct perf_cpu_context *cpuctx;
2510

P
Peter Zijlstra 已提交
2511
	cpuctx = __get_cpu_context(ctx);
2512 2513 2514
	if (cpuctx->task_ctx == ctx)
		return;

2515
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2516
	perf_pmu_disable(ctx->pmu);
2517 2518 2519 2520 2521 2522 2523
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2524 2525
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2526

2527 2528
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2529 2530 2531
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2532 2533 2534 2535
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2536
	perf_pmu_rotate_start(ctx->pmu);
2537 2538
}

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2610 2611
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2621
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2622
	}
S
Stephane Eranian 已提交
2623 2624 2625 2626 2627 2628
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2629
		perf_cgroup_sched_in(prev, task);
2630 2631 2632 2633

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2634 2635
}

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2663
#define REDUCE_FLS(a, b)		\
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2703 2704 2705
	if (!divisor)
		return dividend;

2706 2707 2708
	return div64_u64(dividend, divisor);
}

2709 2710 2711
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2712
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2713
{
2714
	struct hw_perf_event *hwc = &event->hw;
2715
	s64 period, sample_period;
2716 2717
	s64 delta;

2718
	period = perf_calculate_period(event, nsec, count);
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2729

2730
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2731 2732 2733
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2734
		local64_set(&hwc->period_left, 0);
2735 2736 2737

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2738
	}
2739 2740
}

2741 2742 2743 2744 2745 2746 2747
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2748
{
2749 2750
	struct perf_event *event;
	struct hw_perf_event *hwc;
2751
	u64 now, period = TICK_NSEC;
2752
	s64 delta;
2753

2754 2755 2756 2757 2758 2759
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2760 2761
		return;

2762
	raw_spin_lock(&ctx->lock);
2763
	perf_pmu_disable(ctx->pmu);
2764

2765
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2766
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2767 2768
			continue;

2769
		if (!event_filter_match(event))
2770 2771
			continue;

2772 2773
		perf_pmu_disable(event->pmu);

2774
		hwc = &event->hw;
2775

2776
		if (hwc->interrupts == MAX_INTERRUPTS) {
2777
			hwc->interrupts = 0;
2778
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2779
			event->pmu->start(event, 0);
2780 2781
		}

2782
		if (!event->attr.freq || !event->attr.sample_freq)
2783
			goto next;
2784

2785 2786 2787 2788 2789
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2790
		now = local64_read(&event->count);
2791 2792
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2793

2794 2795 2796
		/*
		 * restart the event
		 * reload only if value has changed
2797 2798 2799
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2800
		 */
2801
		if (delta > 0)
2802
			perf_adjust_period(event, period, delta, false);
2803 2804

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2805 2806
	next:
		perf_pmu_enable(event->pmu);
2807
	}
2808

2809
	perf_pmu_enable(ctx->pmu);
2810
	raw_spin_unlock(&ctx->lock);
2811 2812
}

2813
/*
2814
 * Round-robin a context's events:
2815
 */
2816
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2817
{
2818 2819 2820 2821 2822 2823
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2824 2825
}

2826
/*
2827 2828 2829
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2830
 */
2831
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2832
{
P
Peter Zijlstra 已提交
2833
	struct perf_event_context *ctx = NULL;
2834
	int rotate = 0, remove = 1;
2835

2836
	if (cpuctx->ctx.nr_events) {
2837
		remove = 0;
2838 2839 2840
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2841

P
Peter Zijlstra 已提交
2842
	ctx = cpuctx->task_ctx;
2843
	if (ctx && ctx->nr_events) {
2844
		remove = 0;
2845 2846 2847
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2848

2849
	if (!rotate)
2850 2851
		goto done;

2852
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2853
	perf_pmu_disable(cpuctx->ctx.pmu);
2854

2855 2856 2857
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2858

2859 2860 2861
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2862

2863
	perf_event_sched_in(cpuctx, ctx, current);
2864

2865 2866
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2867
done:
2868 2869
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2870 2871

	return rotate;
2872 2873
}

2874 2875 2876
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2877
	if (atomic_read(&nr_freq_events) ||
2878
	    __this_cpu_read(perf_throttled_count))
2879
		return false;
2880 2881
	else
		return true;
2882 2883 2884
}
#endif

2885 2886 2887 2888
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2889 2890
	struct perf_event_context *ctx;
	int throttled;
2891

2892 2893
	WARN_ON(!irqs_disabled());

2894 2895 2896
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2897
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2898 2899 2900 2901 2902 2903
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2904
	}
T
Thomas Gleixner 已提交
2905 2906
}

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2917
	__perf_event_mark_enabled(event);
2918 2919 2920 2921

	return 1;
}

2922
/*
2923
 * Enable all of a task's events that have been marked enable-on-exec.
2924 2925
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2926
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2927
{
2928
	struct perf_event *event;
2929 2930
	unsigned long flags;
	int enabled = 0;
2931
	int ret;
2932 2933

	local_irq_save(flags);
2934
	if (!ctx || !ctx->nr_events)
2935 2936
		goto out;

2937 2938 2939 2940 2941 2942 2943
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2944
	perf_cgroup_sched_out(current, NULL);
2945

2946
	raw_spin_lock(&ctx->lock);
2947
	task_ctx_sched_out(ctx);
2948

2949
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2950 2951 2952
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2953 2954 2955
	}

	/*
2956
	 * Unclone this context if we enabled any event.
2957
	 */
2958 2959
	if (enabled)
		unclone_ctx(ctx);
2960

2961
	raw_spin_unlock(&ctx->lock);
2962

2963 2964 2965
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2966
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2967
out:
2968 2969 2970
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2971
/*
2972
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2973
 */
2974
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2975
{
2976 2977
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2978
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2979

2980 2981 2982 2983
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2984 2985
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2986 2987 2988 2989
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2990
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2991
	if (ctx->is_active) {
2992
		update_context_time(ctx);
S
Stephane Eranian 已提交
2993 2994
		update_cgrp_time_from_event(event);
	}
2995
	update_event_times(event);
2996 2997
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2998
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2999 3000
}

P
Peter Zijlstra 已提交
3001 3002
static inline u64 perf_event_count(struct perf_event *event)
{
3003
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3004 3005
}

3006
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3007 3008
{
	/*
3009 3010
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3011
	 */
3012 3013 3014 3015
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3016 3017 3018
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3019
		raw_spin_lock_irqsave(&ctx->lock, flags);
3020 3021 3022 3023 3024
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3025
		if (ctx->is_active) {
3026
			update_context_time(ctx);
S
Stephane Eranian 已提交
3027 3028
			update_cgrp_time_from_event(event);
		}
3029
		update_event_times(event);
3030
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3031 3032
	}

P
Peter Zijlstra 已提交
3033
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3034 3035
}

3036
/*
3037
 * Initialize the perf_event context in a task_struct:
3038
 */
3039
static void __perf_event_init_context(struct perf_event_context *ctx)
3040
{
3041
	raw_spin_lock_init(&ctx->lock);
3042
	mutex_init(&ctx->mutex);
3043 3044
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3045 3046
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3062
	}
3063 3064 3065
	ctx->pmu = pmu;

	return ctx;
3066 3067
}

3068 3069 3070 3071 3072
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3073 3074

	rcu_read_lock();
3075
	if (!vpid)
T
Thomas Gleixner 已提交
3076 3077
		task = current;
	else
3078
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3079 3080 3081 3082 3083 3084 3085 3086
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3087 3088 3089 3090
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3091 3092 3093 3094 3095 3096 3097
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3098 3099 3100
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3101
static struct perf_event_context *
M
Matt Helsley 已提交
3102
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3103
{
3104
	struct perf_event_context *ctx;
3105
	struct perf_cpu_context *cpuctx;
3106
	unsigned long flags;
P
Peter Zijlstra 已提交
3107
	int ctxn, err;
T
Thomas Gleixner 已提交
3108

3109
	if (!task) {
3110
		/* Must be root to operate on a CPU event: */
3111
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3112 3113 3114
			return ERR_PTR(-EACCES);

		/*
3115
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3116 3117 3118
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3119
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3120 3121
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3122
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3123
		ctx = &cpuctx->ctx;
3124
		get_ctx(ctx);
3125
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3126 3127 3128 3129

		return ctx;
	}

P
Peter Zijlstra 已提交
3130 3131 3132 3133 3134
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3135
retry:
P
Peter Zijlstra 已提交
3136
	ctx = perf_lock_task_context(task, ctxn, &flags);
3137
	if (ctx) {
3138
		unclone_ctx(ctx);
3139
		++ctx->pin_count;
3140
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3141
	} else {
3142
		ctx = alloc_perf_context(pmu, task);
3143 3144 3145
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3146

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3157
		else {
3158
			get_ctx(ctx);
3159
			++ctx->pin_count;
3160
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3161
		}
3162 3163 3164
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3165
			put_ctx(ctx);
3166 3167 3168 3169

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3170 3171 3172
		}
	}

T
Thomas Gleixner 已提交
3173
	return ctx;
3174

P
Peter Zijlstra 已提交
3175
errout:
3176
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3177 3178
}

L
Li Zefan 已提交
3179 3180
static void perf_event_free_filter(struct perf_event *event);

3181
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3182
{
3183
	struct perf_event *event;
P
Peter Zijlstra 已提交
3184

3185 3186 3187
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3188
	perf_event_free_filter(event);
3189
	kfree(event);
P
Peter Zijlstra 已提交
3190 3191
}

3192
static void ring_buffer_put(struct ring_buffer *rb);
3193
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3194

3195
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3196
{
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3207

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3221 3222
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3223 3224 3225 3226 3227 3228 3229
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3230

3231 3232
static void __free_event(struct perf_event *event)
{
3233
	if (!event->parent) {
3234 3235
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3236
	}
3237

3238 3239 3240 3241 3242 3243 3244 3245
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3246
static void free_event(struct perf_event *event)
3247
{
3248
	irq_work_sync(&event->pending);
3249

3250
	unaccount_event(event);
3251

3252
	if (event->rb) {
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3269 3270
	}

S
Stephane Eranian 已提交
3271 3272 3273
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3274

3275
	__free_event(event);
3276 3277
}

3278
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3279
{
3280
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3281

3282
	WARN_ON_ONCE(ctx->parent_ctx);
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3296
	raw_spin_lock_irq(&ctx->lock);
3297
	perf_group_detach(event);
3298
	raw_spin_unlock_irq(&ctx->lock);
3299
	perf_remove_from_context(event);
3300
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3301

3302
	free_event(event);
T
Thomas Gleixner 已提交
3303 3304 3305

	return 0;
}
3306
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3307

3308 3309 3310
/*
 * Called when the last reference to the file is gone.
 */
3311
static void put_event(struct perf_event *event)
3312
{
P
Peter Zijlstra 已提交
3313
	struct task_struct *owner;
3314

3315 3316
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3317

P
Peter Zijlstra 已提交
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3351 3352 3353 3354 3355 3356 3357
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3358 3359
}

3360
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3361
{
3362
	struct perf_event *child;
3363 3364
	u64 total = 0;

3365 3366 3367
	*enabled = 0;
	*running = 0;

3368
	mutex_lock(&event->child_mutex);
3369
	total += perf_event_read(event);
3370 3371 3372 3373 3374 3375
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3376
		total += perf_event_read(child);
3377 3378 3379
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3380
	mutex_unlock(&event->child_mutex);
3381 3382 3383

	return total;
}
3384
EXPORT_SYMBOL_GPL(perf_event_read_value);
3385

3386
static int perf_event_read_group(struct perf_event *event,
3387 3388
				   u64 read_format, char __user *buf)
{
3389
	struct perf_event *leader = event->group_leader, *sub;
3390 3391
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3392
	u64 values[5];
3393
	u64 count, enabled, running;
3394

3395
	mutex_lock(&ctx->mutex);
3396
	count = perf_event_read_value(leader, &enabled, &running);
3397 3398

	values[n++] = 1 + leader->nr_siblings;
3399 3400 3401 3402
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3403 3404 3405
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3406 3407 3408 3409

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3410
		goto unlock;
3411

3412
	ret = size;
3413

3414
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3415
		n = 0;
3416

3417
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3418 3419 3420 3421 3422
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3423
		if (copy_to_user(buf + ret, values, size)) {
3424 3425 3426
			ret = -EFAULT;
			goto unlock;
		}
3427 3428

		ret += size;
3429
	}
3430 3431
unlock:
	mutex_unlock(&ctx->mutex);
3432

3433
	return ret;
3434 3435
}

3436
static int perf_event_read_one(struct perf_event *event,
3437 3438
				 u64 read_format, char __user *buf)
{
3439
	u64 enabled, running;
3440 3441 3442
	u64 values[4];
	int n = 0;

3443 3444 3445 3446 3447
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3448
	if (read_format & PERF_FORMAT_ID)
3449
		values[n++] = primary_event_id(event);
3450 3451 3452 3453 3454 3455 3456

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3457
/*
3458
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3459 3460
 */
static ssize_t
3461
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3462
{
3463
	u64 read_format = event->attr.read_format;
3464
	int ret;
T
Thomas Gleixner 已提交
3465

3466
	/*
3467
	 * Return end-of-file for a read on a event that is in
3468 3469 3470
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3471
	if (event->state == PERF_EVENT_STATE_ERROR)
3472 3473
		return 0;

3474
	if (count < event->read_size)
3475 3476
		return -ENOSPC;

3477
	WARN_ON_ONCE(event->ctx->parent_ctx);
3478
	if (read_format & PERF_FORMAT_GROUP)
3479
		ret = perf_event_read_group(event, read_format, buf);
3480
	else
3481
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3482

3483
	return ret;
T
Thomas Gleixner 已提交
3484 3485 3486 3487 3488
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3489
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3490

3491
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3492 3493 3494 3495
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3496
	struct perf_event *event = file->private_data;
3497
	struct ring_buffer *rb;
3498
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3499

3500
	/*
3501 3502
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3503 3504
	 */
	mutex_lock(&event->mmap_mutex);
3505 3506
	rb = event->rb;
	if (rb)
3507
		events = atomic_xchg(&rb->poll, 0);
3508 3509
	mutex_unlock(&event->mmap_mutex);

3510
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3511 3512 3513 3514

	return events;
}

3515
static void perf_event_reset(struct perf_event *event)
3516
{
3517
	(void)perf_event_read(event);
3518
	local64_set(&event->count, 0);
3519
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3520 3521
}

3522
/*
3523 3524 3525 3526
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3527
 */
3528 3529
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3530
{
3531
	struct perf_event *child;
P
Peter Zijlstra 已提交
3532

3533 3534 3535 3536
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3537
		func(child);
3538
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3539 3540
}

3541 3542
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3543
{
3544 3545
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3546

3547 3548
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3549
	event = event->group_leader;
3550

3551 3552
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3553
		perf_event_for_each_child(sibling, func);
3554
	mutex_unlock(&ctx->mutex);
3555 3556
}

3557
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3558
{
3559
	struct perf_event_context *ctx = event->ctx;
3560
	int ret = 0, active;
3561 3562
	u64 value;

3563
	if (!is_sampling_event(event))
3564 3565
		return -EINVAL;

3566
	if (copy_from_user(&value, arg, sizeof(value)))
3567 3568 3569 3570 3571
		return -EFAULT;

	if (!value)
		return -EINVAL;

3572
	raw_spin_lock_irq(&ctx->lock);
3573 3574
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3575 3576 3577 3578
			ret = -EINVAL;
			goto unlock;
		}

3579
		event->attr.sample_freq = value;
3580
	} else {
3581 3582
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3583
	}
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3598
unlock:
3599
	raw_spin_unlock_irq(&ctx->lock);
3600 3601 3602 3603

	return ret;
}

3604 3605
static const struct file_operations perf_fops;

3606
static inline int perf_fget_light(int fd, struct fd *p)
3607
{
3608 3609 3610
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3611

3612 3613 3614
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3615
	}
3616 3617
	*p = f;
	return 0;
3618 3619 3620 3621
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3622
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3623

3624 3625
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3626 3627
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3628
	u32 flags = arg;
3629 3630

	switch (cmd) {
3631 3632
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3633
		break;
3634 3635
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3636
		break;
3637 3638
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3639
		break;
P
Peter Zijlstra 已提交
3640

3641 3642
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3643

3644 3645
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3646

3647 3648 3649 3650 3651 3652 3653 3654 3655
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3656
	case PERF_EVENT_IOC_SET_OUTPUT:
3657 3658 3659
	{
		int ret;
		if (arg != -1) {
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3670 3671 3672
		}
		return ret;
	}
3673

L
Li Zefan 已提交
3674 3675 3676
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3677
	default:
P
Peter Zijlstra 已提交
3678
		return -ENOTTY;
3679
	}
P
Peter Zijlstra 已提交
3680 3681

	if (flags & PERF_IOC_FLAG_GROUP)
3682
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3683
	else
3684
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3685 3686

	return 0;
3687 3688
}

3689
int perf_event_task_enable(void)
3690
{
3691
	struct perf_event *event;
3692

3693 3694 3695 3696
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3697 3698 3699 3700

	return 0;
}

3701
int perf_event_task_disable(void)
3702
{
3703
	struct perf_event *event;
3704

3705 3706 3707 3708
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3709 3710 3711 3712

	return 0;
}

3713
static int perf_event_index(struct perf_event *event)
3714
{
P
Peter Zijlstra 已提交
3715 3716 3717
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3718
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3719 3720
		return 0;

3721
	return event->pmu->event_idx(event);
3722 3723
}

3724
static void calc_timer_values(struct perf_event *event,
3725
				u64 *now,
3726 3727
				u64 *enabled,
				u64 *running)
3728
{
3729
	u64 ctx_time;
3730

3731 3732
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3733 3734 3735 3736
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3757
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3758 3759 3760
{
}

3761 3762 3763 3764 3765
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3766
void perf_event_update_userpage(struct perf_event *event)
3767
{
3768
	struct perf_event_mmap_page *userpg;
3769
	struct ring_buffer *rb;
3770
	u64 enabled, running, now;
3771 3772

	rcu_read_lock();
3773 3774 3775 3776
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3777 3778 3779 3780 3781 3782 3783 3784 3785
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3786
	calc_timer_values(event, &now, &enabled, &running);
3787

3788
	userpg = rb->user_page;
3789 3790 3791 3792 3793
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3794
	++userpg->lock;
3795
	barrier();
3796
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3797
	userpg->offset = perf_event_count(event);
3798
	if (userpg->index)
3799
		userpg->offset -= local64_read(&event->hw.prev_count);
3800

3801
	userpg->time_enabled = enabled +
3802
			atomic64_read(&event->child_total_time_enabled);
3803

3804
	userpg->time_running = running +
3805
			atomic64_read(&event->child_total_time_running);
3806

3807
	arch_perf_update_userpage(userpg, now);
3808

3809
	barrier();
3810
	++userpg->lock;
3811
	preempt_enable();
3812
unlock:
3813
	rcu_read_unlock();
3814 3815
}

3816 3817 3818
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3819
	struct ring_buffer *rb;
3820 3821 3822 3823 3824 3825 3826 3827 3828
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3829 3830
	rb = rcu_dereference(event->rb);
	if (!rb)
3831 3832 3833 3834 3835
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3836
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3851 3852 3853 3854 3855 3856 3857 3858 3859
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3860 3861
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3862 3863 3864
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3865
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3884 3885 3886 3887
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3888 3889 3890
	rcu_read_unlock();
}

3891
static void rb_free_rcu(struct rcu_head *rcu_head)
3892
{
3893
	struct ring_buffer *rb;
3894

3895 3896
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3897 3898
}

3899
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3900
{
3901
	struct ring_buffer *rb;
3902

3903
	rcu_read_lock();
3904 3905 3906 3907
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3908 3909 3910
	}
	rcu_read_unlock();

3911
	return rb;
3912 3913
}

3914
static void ring_buffer_put(struct ring_buffer *rb)
3915
{
3916
	if (!atomic_dec_and_test(&rb->refcount))
3917
		return;
3918

3919
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3920

3921
	call_rcu(&rb->rcu_head, rb_free_rcu);
3922 3923 3924 3925
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3926
	struct perf_event *event = vma->vm_file->private_data;
3927

3928
	atomic_inc(&event->mmap_count);
3929
	atomic_inc(&event->rb->mmap_count);
3930 3931
}

3932 3933 3934 3935 3936 3937 3938 3939
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3940 3941
static void perf_mmap_close(struct vm_area_struct *vma)
{
3942
	struct perf_event *event = vma->vm_file->private_data;
3943

3944 3945 3946 3947
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3948

3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3964

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3981

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3997
		}
3998
		mutex_unlock(&event->mmap_mutex);
3999
		put_event(event);
4000

4001 4002 4003 4004 4005
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4006
	}
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
4023 4024
}

4025
static const struct vm_operations_struct perf_mmap_vmops = {
4026 4027 4028 4029
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4030 4031 4032 4033
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4034
	struct perf_event *event = file->private_data;
4035
	unsigned long user_locked, user_lock_limit;
4036
	struct user_struct *user = current_user();
4037
	unsigned long locked, lock_limit;
4038
	struct ring_buffer *rb;
4039 4040
	unsigned long vma_size;
	unsigned long nr_pages;
4041
	long user_extra, extra;
4042
	int ret = 0, flags = 0;
4043

4044 4045 4046
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4047
	 * same rb.
4048 4049 4050 4051
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4052
	if (!(vma->vm_flags & VM_SHARED))
4053
		return -EINVAL;
4054 4055 4056 4057

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4058
	/*
4059
	 * If we have rb pages ensure they're a power-of-two number, so we
4060 4061 4062
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4063 4064
		return -EINVAL;

4065
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4066 4067
		return -EINVAL;

4068 4069
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4070

4071
	WARN_ON_ONCE(event->ctx->parent_ctx);
4072
again:
4073
	mutex_lock(&event->mmap_mutex);
4074
	if (event->rb) {
4075
		if (event->rb->nr_pages != nr_pages) {
4076
			ret = -EINVAL;
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4090 4091 4092
		goto unlock;
	}

4093
	user_extra = nr_pages + 1;
4094
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4095 4096 4097 4098 4099 4100

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4101
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4102

4103 4104 4105
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4106

4107
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4108
	lock_limit >>= PAGE_SHIFT;
4109
	locked = vma->vm_mm->pinned_vm + extra;
4110

4111 4112
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4113 4114 4115
		ret = -EPERM;
		goto unlock;
	}
4116

4117
	WARN_ON(event->rb);
4118

4119
	if (vma->vm_flags & VM_WRITE)
4120
		flags |= RING_BUFFER_WRITABLE;
4121

4122 4123 4124 4125
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4126
	if (!rb) {
4127
		ret = -ENOMEM;
4128
		goto unlock;
4129
	}
P
Peter Zijlstra 已提交
4130

4131
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4132 4133
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4134

4135
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4136 4137
	vma->vm_mm->pinned_vm += extra;

4138
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4139
	rcu_assign_pointer(event->rb, rb);
4140

4141
	perf_event_init_userpage(event);
4142 4143
	perf_event_update_userpage(event);

4144
unlock:
4145 4146
	if (!ret)
		atomic_inc(&event->mmap_count);
4147
	mutex_unlock(&event->mmap_mutex);
4148

4149 4150 4151 4152
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4153
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4154
	vma->vm_ops = &perf_mmap_vmops;
4155 4156

	return ret;
4157 4158
}

P
Peter Zijlstra 已提交
4159 4160
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4161
	struct inode *inode = file_inode(filp);
4162
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4163 4164 4165
	int retval;

	mutex_lock(&inode->i_mutex);
4166
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4167 4168 4169 4170 4171 4172 4173 4174
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4175
static const struct file_operations perf_fops = {
4176
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4177 4178 4179
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4180 4181
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4182
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4183
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4184 4185
};

4186
/*
4187
 * Perf event wakeup
4188 4189 4190 4191 4192
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4193
void perf_event_wakeup(struct perf_event *event)
4194
{
4195
	ring_buffer_wakeup(event);
4196

4197 4198 4199
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4200
	}
4201 4202
}

4203
static void perf_pending_event(struct irq_work *entry)
4204
{
4205 4206
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4207

4208 4209 4210
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4211 4212
	}

4213 4214 4215
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4216 4217 4218
	}
}

4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4366 4367 4368
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4384
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4396 4397 4398
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4423 4424 4425

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4426 4427
}

4428 4429 4430
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4431 4432 4433 4434 4435
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4436
static void perf_output_read_one(struct perf_output_handle *handle,
4437 4438
				 struct perf_event *event,
				 u64 enabled, u64 running)
4439
{
4440
	u64 read_format = event->attr.read_format;
4441 4442 4443
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4444
	values[n++] = perf_event_count(event);
4445
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4446
		values[n++] = enabled +
4447
			atomic64_read(&event->child_total_time_enabled);
4448 4449
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4450
		values[n++] = running +
4451
			atomic64_read(&event->child_total_time_running);
4452 4453
	}
	if (read_format & PERF_FORMAT_ID)
4454
		values[n++] = primary_event_id(event);
4455

4456
	__output_copy(handle, values, n * sizeof(u64));
4457 4458 4459
}

/*
4460
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4461 4462
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4463 4464
			    struct perf_event *event,
			    u64 enabled, u64 running)
4465
{
4466 4467
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4468 4469 4470 4471 4472 4473
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4474
		values[n++] = enabled;
4475 4476

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4477
		values[n++] = running;
4478

4479
	if (leader != event)
4480 4481
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4482
	values[n++] = perf_event_count(leader);
4483
	if (read_format & PERF_FORMAT_ID)
4484
		values[n++] = primary_event_id(leader);
4485

4486
	__output_copy(handle, values, n * sizeof(u64));
4487

4488
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4489 4490
		n = 0;

4491 4492
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4493 4494
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4495
		values[n++] = perf_event_count(sub);
4496
		if (read_format & PERF_FORMAT_ID)
4497
			values[n++] = primary_event_id(sub);
4498

4499
		__output_copy(handle, values, n * sizeof(u64));
4500 4501 4502
	}
}

4503 4504 4505
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4506
static void perf_output_read(struct perf_output_handle *handle,
4507
			     struct perf_event *event)
4508
{
4509
	u64 enabled = 0, running = 0, now;
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4521
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4522
		calc_timer_values(event, &now, &enabled, &running);
4523

4524
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4525
		perf_output_read_group(handle, event, enabled, running);
4526
	else
4527
		perf_output_read_one(handle, event, enabled, running);
4528 4529
}

4530 4531 4532
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4533
			struct perf_event *event)
4534 4535 4536 4537 4538
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4539 4540 4541
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4567
		perf_output_read(handle, event);
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4578
			__output_copy(handle, data->callchain, size);
4579 4580 4581 4582 4583 4584 4585 4586 4587
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4588 4589
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4601

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4636

4637
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4638 4639 4640
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4641
	}
A
Andi Kleen 已提交
4642 4643 4644

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4645 4646 4647

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4648

A
Andi Kleen 已提交
4649 4650 4651
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4665 4666 4667 4668
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4669
			 struct perf_event *event,
4670
			 struct pt_regs *regs)
4671
{
4672
	u64 sample_type = event->attr.sample_type;
4673

4674
	header->type = PERF_RECORD_SAMPLE;
4675
	header->size = sizeof(*header) + event->header_size;
4676 4677 4678

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4679

4680
	__perf_event_header__init_id(header, data, event);
4681

4682
	if (sample_type & PERF_SAMPLE_IP)
4683 4684
		data->ip = perf_instruction_pointer(regs);

4685
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4686
		int size = 1;
4687

4688
		data->callchain = perf_callchain(event, regs);
4689 4690 4691 4692 4693

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4694 4695
	}

4696
	if (sample_type & PERF_SAMPLE_RAW) {
4697 4698 4699 4700 4701 4702 4703 4704
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4705
		header->size += size;
4706
	}
4707 4708 4709 4710 4711 4712 4713 4714 4715

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4759
}
4760

4761
static void perf_event_output(struct perf_event *event,
4762 4763 4764 4765 4766
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4767

4768 4769 4770
	/* protect the callchain buffers */
	rcu_read_lock();

4771
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4772

4773
	if (perf_output_begin(&handle, event, header.size))
4774
		goto exit;
4775

4776
	perf_output_sample(&handle, &header, data, event);
4777

4778
	perf_output_end(&handle);
4779 4780 4781

exit:
	rcu_read_unlock();
4782 4783
}

4784
/*
4785
 * read event_id
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4796
perf_event_read_event(struct perf_event *event,
4797 4798 4799
			struct task_struct *task)
{
	struct perf_output_handle handle;
4800
	struct perf_sample_data sample;
4801
	struct perf_read_event read_event = {
4802
		.header = {
4803
			.type = PERF_RECORD_READ,
4804
			.misc = 0,
4805
			.size = sizeof(read_event) + event->read_size,
4806
		},
4807 4808
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4809
	};
4810
	int ret;
4811

4812
	perf_event_header__init_id(&read_event.header, &sample, event);
4813
	ret = perf_output_begin(&handle, event, read_event.header.size);
4814 4815 4816
	if (ret)
		return;

4817
	perf_output_put(&handle, read_event);
4818
	perf_output_read(&handle, event);
4819
	perf_event__output_id_sample(event, &handle, &sample);
4820

4821 4822 4823
	perf_output_end(&handle);
}

4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4838
		output(event, data);
4839 4840 4841 4842
	}
}

static void
4843
perf_event_aux(perf_event_aux_output_cb output, void *data,
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4856
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4857 4858 4859 4860 4861 4862 4863
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4864
			perf_event_aux_ctx(ctx, output, data);
4865 4866 4867 4868 4869 4870
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4871
		perf_event_aux_ctx(task_ctx, output, data);
4872 4873 4874 4875 4876
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4877
/*
P
Peter Zijlstra 已提交
4878 4879
 * task tracking -- fork/exit
 *
4880
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4881 4882
 */

P
Peter Zijlstra 已提交
4883
struct perf_task_event {
4884
	struct task_struct		*task;
4885
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4886 4887 4888 4889 4890 4891

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4892 4893
		u32				tid;
		u32				ptid;
4894
		u64				time;
4895
	} event_id;
P
Peter Zijlstra 已提交
4896 4897
};

4898 4899
static int perf_event_task_match(struct perf_event *event)
{
4900 4901 4902
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4903 4904
}

4905
static void perf_event_task_output(struct perf_event *event,
4906
				   void *data)
P
Peter Zijlstra 已提交
4907
{
4908
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4909
	struct perf_output_handle handle;
4910
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4911
	struct task_struct *task = task_event->task;
4912
	int ret, size = task_event->event_id.header.size;
4913

4914 4915 4916
	if (!perf_event_task_match(event))
		return;

4917
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4918

4919
	ret = perf_output_begin(&handle, event,
4920
				task_event->event_id.header.size);
4921
	if (ret)
4922
		goto out;
P
Peter Zijlstra 已提交
4923

4924 4925
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4926

4927 4928
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4929

4930
	perf_output_put(&handle, task_event->event_id);
4931

4932 4933
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4934
	perf_output_end(&handle);
4935 4936
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4937 4938
}

4939 4940
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4941
			      int new)
P
Peter Zijlstra 已提交
4942
{
P
Peter Zijlstra 已提交
4943
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4944

4945 4946 4947
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4948 4949
		return;

P
Peter Zijlstra 已提交
4950
	task_event = (struct perf_task_event){
4951 4952
		.task	  = task,
		.task_ctx = task_ctx,
4953
		.event_id    = {
P
Peter Zijlstra 已提交
4954
			.header = {
4955
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4956
				.misc = 0,
4957
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4958
			},
4959 4960
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4961 4962
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4963
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4964 4965 4966
		},
	};

4967
	perf_event_aux(perf_event_task_output,
4968 4969
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4970 4971
}

4972
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4973
{
4974
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4975 4976
}

4977 4978 4979 4980 4981
/*
 * comm tracking
 */

struct perf_comm_event {
4982 4983
	struct task_struct	*task;
	char			*comm;
4984 4985 4986 4987 4988 4989 4990
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4991
	} event_id;
4992 4993
};

4994 4995 4996 4997 4998
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4999
static void perf_event_comm_output(struct perf_event *event,
5000
				   void *data)
5001
{
5002
	struct perf_comm_event *comm_event = data;
5003
	struct perf_output_handle handle;
5004
	struct perf_sample_data sample;
5005
	int size = comm_event->event_id.header.size;
5006 5007
	int ret;

5008 5009 5010
	if (!perf_event_comm_match(event))
		return;

5011 5012
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5013
				comm_event->event_id.header.size);
5014 5015

	if (ret)
5016
		goto out;
5017

5018 5019
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5020

5021
	perf_output_put(&handle, comm_event->event_id);
5022
	__output_copy(&handle, comm_event->comm,
5023
				   comm_event->comm_size);
5024 5025 5026

	perf_event__output_id_sample(event, &handle, &sample);

5027
	perf_output_end(&handle);
5028 5029
out:
	comm_event->event_id.header.size = size;
5030 5031
}

5032
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5033
{
5034
	char comm[TASK_COMM_LEN];
5035 5036
	unsigned int size;

5037
	memset(comm, 0, sizeof(comm));
5038
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5039
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5040 5041 5042 5043

	comm_event->comm = comm;
	comm_event->comm_size = size;

5044
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5045

5046
	perf_event_aux(perf_event_comm_output,
5047 5048
		       comm_event,
		       NULL);
5049 5050
}

5051
void perf_event_comm(struct task_struct *task)
5052
{
5053
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
5054 5055
	struct perf_event_context *ctx;
	int ctxn;
5056

5057
	rcu_read_lock();
P
Peter Zijlstra 已提交
5058 5059 5060 5061
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5062

P
Peter Zijlstra 已提交
5063 5064
		perf_event_enable_on_exec(ctx);
	}
5065
	rcu_read_unlock();
5066

5067
	if (!atomic_read(&nr_comm_events))
5068
		return;
5069

5070
	comm_event = (struct perf_comm_event){
5071
		.task	= task,
5072 5073
		/* .comm      */
		/* .comm_size */
5074
		.event_id  = {
5075
			.header = {
5076
				.type = PERF_RECORD_COMM,
5077 5078 5079 5080 5081
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
5082 5083 5084
		},
	};

5085
	perf_event_comm_event(&comm_event);
5086 5087
}

5088 5089 5090 5091 5092
/*
 * mmap tracking
 */

struct perf_mmap_event {
5093 5094 5095 5096
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5097 5098 5099
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5100 5101 5102 5103 5104 5105 5106 5107 5108

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5109
	} event_id;
5110 5111
};

5112 5113 5114 5115 5116 5117 5118 5119
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5120
	       (executable && (event->attr.mmap || event->attr.mmap2));
5121 5122
}

5123
static void perf_event_mmap_output(struct perf_event *event,
5124
				   void *data)
5125
{
5126
	struct perf_mmap_event *mmap_event = data;
5127
	struct perf_output_handle handle;
5128
	struct perf_sample_data sample;
5129
	int size = mmap_event->event_id.header.size;
5130
	int ret;
5131

5132 5133 5134
	if (!perf_event_mmap_match(event, data))
		return;

5135 5136 5137 5138 5139
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5140
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5141 5142
	}

5143 5144
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5145
				mmap_event->event_id.header.size);
5146
	if (ret)
5147
		goto out;
5148

5149 5150
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5151

5152
	perf_output_put(&handle, mmap_event->event_id);
5153 5154 5155 5156 5157 5158 5159 5160

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
	}

5161
	__output_copy(&handle, mmap_event->file_name,
5162
				   mmap_event->file_size);
5163 5164 5165

	perf_event__output_id_sample(event, &handle, &sample);

5166
	perf_output_end(&handle);
5167 5168
out:
	mmap_event->event_id.header.size = size;
5169 5170
}

5171
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5172
{
5173 5174
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5175 5176
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5177 5178 5179
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5180
	char *name;
5181

5182
	if (file) {
5183 5184
		struct inode *inode;
		dev_t dev;
5185

5186
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5187
		if (!buf) {
5188 5189
			name = "//enomem";
			goto cpy_name;
5190
		}
5191
		/*
5192
		 * d_path() works from the end of the rb backwards, so we
5193 5194 5195
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5196
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5197
		if (IS_ERR(name)) {
5198 5199
			name = "//toolong";
			goto cpy_name;
5200
		}
5201 5202 5203 5204 5205 5206
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5207
		goto got_name;
5208
	} else {
5209
		name = (char *)arch_vma_name(vma);
5210 5211
		if (name)
			goto cpy_name;
5212

5213
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5214
				vma->vm_end >= vma->vm_mm->brk) {
5215 5216
			name = "[heap]";
			goto cpy_name;
5217 5218
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5219
				vma->vm_end >= vma->vm_mm->start_stack) {
5220 5221
			name = "[stack]";
			goto cpy_name;
5222 5223
		}

5224 5225
		name = "//anon";
		goto cpy_name;
5226 5227
	}

5228 5229 5230
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5231
got_name:
5232 5233 5234 5235 5236 5237 5238 5239
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5240 5241 5242

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5243 5244 5245 5246
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5247

5248 5249 5250
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5251
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5252

5253
	perf_event_aux(perf_event_mmap_output,
5254 5255
		       mmap_event,
		       NULL);
5256

5257 5258 5259
	kfree(buf);
}

5260
void perf_event_mmap(struct vm_area_struct *vma)
5261
{
5262 5263
	struct perf_mmap_event mmap_event;

5264
	if (!atomic_read(&nr_mmap_events))
5265 5266 5267
		return;

	mmap_event = (struct perf_mmap_event){
5268
		.vma	= vma,
5269 5270
		/* .file_name */
		/* .file_size */
5271
		.event_id  = {
5272
			.header = {
5273
				.type = PERF_RECORD_MMAP,
5274
				.misc = PERF_RECORD_MISC_USER,
5275 5276 5277 5278
				/* .size */
			},
			/* .pid */
			/* .tid */
5279 5280
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5281
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5282
		},
5283 5284 5285 5286
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5287 5288
	};

5289
	perf_event_mmap_event(&mmap_event);
5290 5291
}

5292 5293 5294 5295
/*
 * IRQ throttle logging
 */

5296
static void perf_log_throttle(struct perf_event *event, int enable)
5297 5298
{
	struct perf_output_handle handle;
5299
	struct perf_sample_data sample;
5300 5301 5302 5303 5304
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5305
		u64				id;
5306
		u64				stream_id;
5307 5308
	} throttle_event = {
		.header = {
5309
			.type = PERF_RECORD_THROTTLE,
5310 5311 5312
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5313
		.time		= perf_clock(),
5314 5315
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5316 5317
	};

5318
	if (enable)
5319
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5320

5321 5322 5323
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5324
				throttle_event.header.size);
5325 5326 5327 5328
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5329
	perf_event__output_id_sample(event, &handle, &sample);
5330 5331 5332
	perf_output_end(&handle);
}

5333
/*
5334
 * Generic event overflow handling, sampling.
5335 5336
 */

5337
static int __perf_event_overflow(struct perf_event *event,
5338 5339
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5340
{
5341 5342
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5343
	u64 seq;
5344 5345
	int ret = 0;

5346 5347 5348 5349 5350 5351 5352
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5353 5354 5355 5356 5357 5358 5359 5360 5361
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5362 5363
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5364
			tick_nohz_full_kick();
5365 5366
			ret = 1;
		}
5367
	}
5368

5369
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5370
		u64 now = perf_clock();
5371
		s64 delta = now - hwc->freq_time_stamp;
5372

5373
		hwc->freq_time_stamp = now;
5374

5375
		if (delta > 0 && delta < 2*TICK_NSEC)
5376
			perf_adjust_period(event, delta, hwc->last_period, true);
5377 5378
	}

5379 5380
	/*
	 * XXX event_limit might not quite work as expected on inherited
5381
	 * events
5382 5383
	 */

5384 5385
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5386
		ret = 1;
5387
		event->pending_kill = POLL_HUP;
5388 5389
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5390 5391
	}

5392
	if (event->overflow_handler)
5393
		event->overflow_handler(event, data, regs);
5394
	else
5395
		perf_event_output(event, data, regs);
5396

P
Peter Zijlstra 已提交
5397
	if (event->fasync && event->pending_kill) {
5398 5399
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5400 5401
	}

5402
	return ret;
5403 5404
}

5405
int perf_event_overflow(struct perf_event *event,
5406 5407
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5408
{
5409
	return __perf_event_overflow(event, 1, data, regs);
5410 5411
}

5412
/*
5413
 * Generic software event infrastructure
5414 5415
 */

5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5427
/*
5428 5429
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5430 5431 5432 5433
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5434
u64 perf_swevent_set_period(struct perf_event *event)
5435
{
5436
	struct hw_perf_event *hwc = &event->hw;
5437 5438 5439 5440 5441
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5442 5443

again:
5444
	old = val = local64_read(&hwc->period_left);
5445 5446
	if (val < 0)
		return 0;
5447

5448 5449 5450
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5451
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5452
		goto again;
5453

5454
	return nr;
5455 5456
}

5457
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5458
				    struct perf_sample_data *data,
5459
				    struct pt_regs *regs)
5460
{
5461
	struct hw_perf_event *hwc = &event->hw;
5462
	int throttle = 0;
5463

5464 5465
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5466

5467 5468
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5469

5470
	for (; overflow; overflow--) {
5471
		if (__perf_event_overflow(event, throttle,
5472
					    data, regs)) {
5473 5474 5475 5476 5477 5478
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5479
		throttle = 1;
5480
	}
5481 5482
}

P
Peter Zijlstra 已提交
5483
static void perf_swevent_event(struct perf_event *event, u64 nr,
5484
			       struct perf_sample_data *data,
5485
			       struct pt_regs *regs)
5486
{
5487
	struct hw_perf_event *hwc = &event->hw;
5488

5489
	local64_add(nr, &event->count);
5490

5491 5492 5493
	if (!regs)
		return;

5494
	if (!is_sampling_event(event))
5495
		return;
5496

5497 5498 5499 5500 5501 5502
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5503
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5504
		return perf_swevent_overflow(event, 1, data, regs);
5505

5506
	if (local64_add_negative(nr, &hwc->period_left))
5507
		return;
5508

5509
	perf_swevent_overflow(event, 0, data, regs);
5510 5511
}

5512 5513 5514
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5515
	if (event->hw.state & PERF_HES_STOPPED)
5516
		return 1;
P
Peter Zijlstra 已提交
5517

5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5529
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5530
				enum perf_type_id type,
L
Li Zefan 已提交
5531 5532 5533
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5534
{
5535
	if (event->attr.type != type)
5536
		return 0;
5537

5538
	if (event->attr.config != event_id)
5539 5540
		return 0;

5541 5542
	if (perf_exclude_event(event, regs))
		return 0;
5543 5544 5545 5546

	return 1;
}

5547 5548 5549 5550 5551 5552 5553
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5554 5555
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5556
{
5557 5558 5559 5560
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5561

5562 5563
/* For the read side: events when they trigger */
static inline struct hlist_head *
5564
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5565 5566
{
	struct swevent_hlist *hlist;
5567

5568
	hlist = rcu_dereference(swhash->swevent_hlist);
5569 5570 5571
	if (!hlist)
		return NULL;

5572 5573 5574 5575 5576
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5577
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5588
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5589 5590 5591 5592 5593
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5594 5595 5596
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5597
				    u64 nr,
5598 5599
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5600
{
5601
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5602
	struct perf_event *event;
5603
	struct hlist_head *head;
5604

5605
	rcu_read_lock();
5606
	head = find_swevent_head_rcu(swhash, type, event_id);
5607 5608 5609
	if (!head)
		goto end;

5610
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5611
		if (perf_swevent_match(event, type, event_id, data, regs))
5612
			perf_swevent_event(event, nr, data, regs);
5613
	}
5614 5615
end:
	rcu_read_unlock();
5616 5617
}

5618
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5619
{
5620
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5621

5622
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5623
}
I
Ingo Molnar 已提交
5624
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5625

5626
inline void perf_swevent_put_recursion_context(int rctx)
5627
{
5628
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5629

5630
	put_recursion_context(swhash->recursion, rctx);
5631
}
5632

5633
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5634
{
5635
	struct perf_sample_data data;
5636 5637
	int rctx;

5638
	preempt_disable_notrace();
5639 5640 5641
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5642

5643
	perf_sample_data_init(&data, addr, 0);
5644

5645
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5646 5647

	perf_swevent_put_recursion_context(rctx);
5648
	preempt_enable_notrace();
5649 5650
}

5651
static void perf_swevent_read(struct perf_event *event)
5652 5653 5654
{
}

P
Peter Zijlstra 已提交
5655
static int perf_swevent_add(struct perf_event *event, int flags)
5656
{
5657
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5658
	struct hw_perf_event *hwc = &event->hw;
5659 5660
	struct hlist_head *head;

5661
	if (is_sampling_event(event)) {
5662
		hwc->last_period = hwc->sample_period;
5663
		perf_swevent_set_period(event);
5664
	}
5665

P
Peter Zijlstra 已提交
5666 5667
	hwc->state = !(flags & PERF_EF_START);

5668
	head = find_swevent_head(swhash, event);
5669 5670 5671 5672 5673
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5674 5675 5676
	return 0;
}

P
Peter Zijlstra 已提交
5677
static void perf_swevent_del(struct perf_event *event, int flags)
5678
{
5679
	hlist_del_rcu(&event->hlist_entry);
5680 5681
}

P
Peter Zijlstra 已提交
5682
static void perf_swevent_start(struct perf_event *event, int flags)
5683
{
P
Peter Zijlstra 已提交
5684
	event->hw.state = 0;
5685
}
I
Ingo Molnar 已提交
5686

P
Peter Zijlstra 已提交
5687
static void perf_swevent_stop(struct perf_event *event, int flags)
5688
{
P
Peter Zijlstra 已提交
5689
	event->hw.state = PERF_HES_STOPPED;
5690 5691
}

5692 5693
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5694
swevent_hlist_deref(struct swevent_htable *swhash)
5695
{
5696 5697
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5698 5699
}

5700
static void swevent_hlist_release(struct swevent_htable *swhash)
5701
{
5702
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5703

5704
	if (!hlist)
5705 5706
		return;

5707
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5708
	kfree_rcu(hlist, rcu_head);
5709 5710 5711 5712
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5713
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5714

5715
	mutex_lock(&swhash->hlist_mutex);
5716

5717 5718
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5719

5720
	mutex_unlock(&swhash->hlist_mutex);
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5733
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5734 5735
	int err = 0;

5736
	mutex_lock(&swhash->hlist_mutex);
5737

5738
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5739 5740 5741 5742 5743 5744 5745
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5746
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5747
	}
5748
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5749
exit:
5750
	mutex_unlock(&swhash->hlist_mutex);
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5771
fail:
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5782
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5783

5784 5785 5786
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5787

5788 5789
	WARN_ON(event->parent);

5790
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5791 5792 5793 5794 5795
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5796
	u64 event_id = event->attr.config;
5797 5798 5799 5800

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5801 5802 5803 5804 5805 5806
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5807 5808 5809 5810 5811 5812 5813 5814 5815
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5816
	if (event_id >= PERF_COUNT_SW_MAX)
5817 5818 5819 5820 5821 5822 5823 5824 5825
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5826
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5827 5828 5829 5830 5831 5832
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5833 5834 5835 5836 5837
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5838
static struct pmu perf_swevent = {
5839
	.task_ctx_nr	= perf_sw_context,
5840

5841
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5842 5843 5844 5845
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5846
	.read		= perf_swevent_read,
5847 5848

	.event_idx	= perf_swevent_event_idx,
5849 5850
};

5851 5852
#ifdef CONFIG_EVENT_TRACING

5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5867 5868
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5869 5870 5871 5872
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5873 5874 5875 5876 5877 5878 5879 5880 5881
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5882 5883
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5884 5885
{
	struct perf_sample_data data;
5886 5887
	struct perf_event *event;

5888 5889 5890 5891 5892
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5893
	perf_sample_data_init(&data, addr, 0);
5894 5895
	data.raw = &raw;

5896
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5897
		if (perf_tp_event_match(event, &data, regs))
5898
			perf_swevent_event(event, count, &data, regs);
5899
	}
5900

5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5926
	perf_swevent_put_recursion_context(rctx);
5927 5928 5929
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5930
static void tp_perf_event_destroy(struct perf_event *event)
5931
{
5932
	perf_trace_destroy(event);
5933 5934
}

5935
static int perf_tp_event_init(struct perf_event *event)
5936
{
5937 5938
	int err;

5939 5940 5941
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5942 5943 5944 5945 5946 5947
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5948 5949
	err = perf_trace_init(event);
	if (err)
5950
		return err;
5951

5952
	event->destroy = tp_perf_event_destroy;
5953

5954 5955 5956 5957
	return 0;
}

static struct pmu perf_tracepoint = {
5958 5959
	.task_ctx_nr	= perf_sw_context,

5960
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5961 5962 5963 5964
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5965
	.read		= perf_swevent_read,
5966 5967

	.event_idx	= perf_swevent_event_idx,
5968 5969 5970 5971
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5972
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5973
}
L
Li Zefan 已提交
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5998
#else
L
Li Zefan 已提交
5999

6000
static inline void perf_tp_register(void)
6001 6002
{
}
L
Li Zefan 已提交
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6013
#endif /* CONFIG_EVENT_TRACING */
6014

6015
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6016
void perf_bp_event(struct perf_event *bp, void *data)
6017
{
6018 6019 6020
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6021
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6022

P
Peter Zijlstra 已提交
6023
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6024
		perf_swevent_event(bp, 1, &sample, regs);
6025 6026 6027
}
#endif

6028 6029 6030
/*
 * hrtimer based swevent callback
 */
6031

6032
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6033
{
6034 6035 6036 6037 6038
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6039

6040
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6041 6042 6043 6044

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6045
	event->pmu->read(event);
6046

6047
	perf_sample_data_init(&data, 0, event->hw.last_period);
6048 6049 6050
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6051
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6052
			if (__perf_event_overflow(event, 1, &data, regs))
6053 6054
				ret = HRTIMER_NORESTART;
	}
6055

6056 6057
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6058

6059
	return ret;
6060 6061
}

6062
static void perf_swevent_start_hrtimer(struct perf_event *event)
6063
{
6064
	struct hw_perf_event *hwc = &event->hw;
6065 6066 6067 6068
	s64 period;

	if (!is_sampling_event(event))
		return;
6069

6070 6071 6072 6073
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6074

6075 6076 6077 6078 6079
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6080
				ns_to_ktime(period), 0,
6081
				HRTIMER_MODE_REL_PINNED, 0);
6082
}
6083 6084

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6085
{
6086 6087
	struct hw_perf_event *hwc = &event->hw;

6088
	if (is_sampling_event(event)) {
6089
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6090
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6091 6092 6093

		hrtimer_cancel(&hwc->hrtimer);
	}
6094 6095
}

P
Peter Zijlstra 已提交
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6116
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6117 6118 6119 6120
		event->attr.freq = 0;
	}
}

6121 6122 6123 6124 6125
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6126
{
6127 6128 6129
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6130
	now = local_clock();
6131 6132
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6133 6134
}

P
Peter Zijlstra 已提交
6135
static void cpu_clock_event_start(struct perf_event *event, int flags)
6136
{
P
Peter Zijlstra 已提交
6137
	local64_set(&event->hw.prev_count, local_clock());
6138 6139 6140
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6141
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6142
{
6143 6144 6145
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6146

P
Peter Zijlstra 已提交
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6160 6161 6162 6163
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6164

6165 6166 6167 6168 6169 6170 6171 6172
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6173 6174 6175 6176 6177 6178
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6179 6180
	perf_swevent_init_hrtimer(event);

6181
	return 0;
6182 6183
}

6184
static struct pmu perf_cpu_clock = {
6185 6186
	.task_ctx_nr	= perf_sw_context,

6187
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6188 6189 6190 6191
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6192
	.read		= cpu_clock_event_read,
6193 6194

	.event_idx	= perf_swevent_event_idx,
6195 6196 6197 6198 6199 6200 6201
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6202
{
6203 6204
	u64 prev;
	s64 delta;
6205

6206 6207 6208 6209
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6210

P
Peter Zijlstra 已提交
6211
static void task_clock_event_start(struct perf_event *event, int flags)
6212
{
P
Peter Zijlstra 已提交
6213
	local64_set(&event->hw.prev_count, event->ctx->time);
6214 6215 6216
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6217
static void task_clock_event_stop(struct perf_event *event, int flags)
6218 6219 6220
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6221 6222 6223 6224 6225 6226
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6227

P
Peter Zijlstra 已提交
6228 6229 6230 6231 6232 6233
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6234 6235 6236 6237
}

static void task_clock_event_read(struct perf_event *event)
{
6238 6239 6240
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6241 6242 6243 6244 6245

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6246
{
6247 6248 6249 6250 6251 6252
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6253 6254 6255 6256 6257 6258
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6259 6260
	perf_swevent_init_hrtimer(event);

6261
	return 0;
L
Li Zefan 已提交
6262 6263
}

6264
static struct pmu perf_task_clock = {
6265 6266
	.task_ctx_nr	= perf_sw_context,

6267
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6268 6269 6270 6271
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6272
	.read		= task_clock_event_read,
6273 6274

	.event_idx	= perf_swevent_event_idx,
6275
};
L
Li Zefan 已提交
6276

P
Peter Zijlstra 已提交
6277
static void perf_pmu_nop_void(struct pmu *pmu)
6278 6279
{
}
L
Li Zefan 已提交
6280

P
Peter Zijlstra 已提交
6281
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6282
{
P
Peter Zijlstra 已提交
6283
	return 0;
L
Li Zefan 已提交
6284 6285
}

P
Peter Zijlstra 已提交
6286
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6287
{
P
Peter Zijlstra 已提交
6288
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6289 6290
}

P
Peter Zijlstra 已提交
6291 6292 6293 6294 6295
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6296

P
Peter Zijlstra 已提交
6297
static void perf_pmu_cancel_txn(struct pmu *pmu)
6298
{
P
Peter Zijlstra 已提交
6299
	perf_pmu_enable(pmu);
6300 6301
}

6302 6303 6304 6305 6306
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6307 6308 6309 6310 6311
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6312
{
P
Peter Zijlstra 已提交
6313
	struct pmu *pmu;
6314

P
Peter Zijlstra 已提交
6315 6316
	if (ctxn < 0)
		return NULL;
6317

P
Peter Zijlstra 已提交
6318 6319 6320 6321
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6322

P
Peter Zijlstra 已提交
6323
	return NULL;
6324 6325
}

6326
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6327
{
6328 6329 6330 6331 6332 6333 6334
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6335 6336
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6337 6338 6339 6340 6341 6342
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6343

P
Peter Zijlstra 已提交
6344
	mutex_lock(&pmus_lock);
6345
	/*
P
Peter Zijlstra 已提交
6346
	 * Like a real lame refcount.
6347
	 */
6348 6349 6350
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6351
			goto out;
6352
		}
P
Peter Zijlstra 已提交
6353
	}
6354

6355
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6356 6357
out:
	mutex_unlock(&pmus_lock);
6358
}
P
Peter Zijlstra 已提交
6359
static struct idr pmu_idr;
6360

P
Peter Zijlstra 已提交
6361 6362 6363 6364 6365 6366 6367
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6368
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6369

6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6413
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6414

6415 6416 6417 6418
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6419
};
6420
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6421 6422 6423 6424

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6425
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6441
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6462
static struct lock_class_key cpuctx_mutex;
6463
static struct lock_class_key cpuctx_lock;
6464

6465
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6466
{
P
Peter Zijlstra 已提交
6467
	int cpu, ret;
6468

6469
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6470 6471 6472 6473
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6474

P
Peter Zijlstra 已提交
6475 6476 6477 6478 6479 6480
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6481 6482 6483
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6484 6485 6486 6487 6488
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6489 6490 6491 6492 6493 6494
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6495
skip_type:
P
Peter Zijlstra 已提交
6496 6497 6498
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6499

W
Wei Yongjun 已提交
6500
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6501 6502
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6503
		goto free_dev;
6504

P
Peter Zijlstra 已提交
6505 6506 6507 6508
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6509
		__perf_event_init_context(&cpuctx->ctx);
6510
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6511
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6512
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6513
		cpuctx->ctx.pmu = pmu;
6514 6515 6516

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6517
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6518
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6519
	}
6520

P
Peter Zijlstra 已提交
6521
got_cpu_context:
P
Peter Zijlstra 已提交
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6536
		}
6537
	}
6538

P
Peter Zijlstra 已提交
6539 6540 6541 6542 6543
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6544 6545 6546
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6547
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6548 6549
	ret = 0;
unlock:
6550 6551
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6552
	return ret;
P
Peter Zijlstra 已提交
6553

P
Peter Zijlstra 已提交
6554 6555 6556 6557
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6558 6559 6560 6561
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6562 6563 6564
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6565 6566
}

6567
void perf_pmu_unregister(struct pmu *pmu)
6568
{
6569 6570 6571
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6572

6573
	/*
P
Peter Zijlstra 已提交
6574 6575
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6576
	 */
6577
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6578
	synchronize_rcu();
6579

P
Peter Zijlstra 已提交
6580
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6581 6582
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6583 6584
	device_del(pmu->dev);
	put_device(pmu->dev);
6585
	free_pmu_context(pmu);
6586
}
6587

6588 6589 6590 6591
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6592
	int ret;
6593 6594

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6595 6596 6597 6598

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6599
	if (pmu) {
6600
		event->pmu = pmu;
6601 6602 6603
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6604
		goto unlock;
6605
	}
P
Peter Zijlstra 已提交
6606

6607
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6608
		event->pmu = pmu;
6609
		ret = pmu->event_init(event);
6610
		if (!ret)
P
Peter Zijlstra 已提交
6611
			goto unlock;
6612

6613 6614
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6615
			goto unlock;
6616
		}
6617
	}
P
Peter Zijlstra 已提交
6618 6619
	pmu = ERR_PTR(-ENOENT);
unlock:
6620
	srcu_read_unlock(&pmus_srcu, idx);
6621

6622
	return pmu;
6623 6624
}

6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6638 6639
static void account_event(struct perf_event *event)
{
6640 6641 6642
	if (event->parent)
		return;

6643 6644 6645 6646 6647 6648 6649 6650
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6651 6652 6653 6654
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6655
	if (has_branch_stack(event))
6656
		static_key_slow_inc(&perf_sched_events.key);
6657
	if (is_cgroup_event(event))
6658
		static_key_slow_inc(&perf_sched_events.key);
6659 6660

	account_event_cpu(event, event->cpu);
6661 6662
}

T
Thomas Gleixner 已提交
6663
/*
6664
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6665
 */
6666
static struct perf_event *
6667
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6668 6669 6670
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6671 6672
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6673
{
P
Peter Zijlstra 已提交
6674
	struct pmu *pmu;
6675 6676
	struct perf_event *event;
	struct hw_perf_event *hwc;
6677
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6678

6679 6680 6681 6682 6683
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6684
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6685
	if (!event)
6686
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6687

6688
	/*
6689
	 * Single events are their own group leaders, with an
6690 6691 6692
	 * empty sibling list:
	 */
	if (!group_leader)
6693
		group_leader = event;
6694

6695 6696
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6697

6698 6699 6700
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6701
	INIT_LIST_HEAD(&event->rb_entry);
6702
	INIT_LIST_HEAD(&event->active_entry);
6703 6704
	INIT_HLIST_NODE(&event->hlist_entry);

6705

6706
	init_waitqueue_head(&event->waitq);
6707
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6708

6709
	mutex_init(&event->mmap_mutex);
6710

6711
	atomic_long_set(&event->refcount, 1);
6712 6713 6714 6715 6716
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6717

6718
	event->parent		= parent_event;
6719

6720
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6721
	event->id		= atomic64_inc_return(&perf_event_id);
6722

6723
	event->state		= PERF_EVENT_STATE_INACTIVE;
6724

6725 6726
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6727 6728 6729

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6730 6731 6732 6733
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6734
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6735 6736 6737 6738
			event->hw.bp_target = task;
#endif
	}

6739
	if (!overflow_handler && parent_event) {
6740
		overflow_handler = parent_event->overflow_handler;
6741 6742
		context = parent_event->overflow_handler_context;
	}
6743

6744
	event->overflow_handler	= overflow_handler;
6745
	event->overflow_handler_context = context;
6746

J
Jiri Olsa 已提交
6747
	perf_event__state_init(event);
6748

6749
	pmu = NULL;
6750

6751
	hwc = &event->hw;
6752
	hwc->sample_period = attr->sample_period;
6753
	if (attr->freq && attr->sample_freq)
6754
		hwc->sample_period = 1;
6755
	hwc->last_period = hwc->sample_period;
6756

6757
	local64_set(&hwc->period_left, hwc->sample_period);
6758

6759
	/*
6760
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6761
	 */
6762
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6763
		goto err_ns;
6764

6765
	pmu = perf_init_event(event);
6766
	if (!pmu)
6767 6768
		goto err_ns;
	else if (IS_ERR(pmu)) {
6769
		err = PTR_ERR(pmu);
6770
		goto err_ns;
I
Ingo Molnar 已提交
6771
	}
6772

6773
	if (!event->parent) {
6774 6775
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6776 6777
			if (err)
				goto err_pmu;
6778
		}
6779
	}
6780

6781
	return event;
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6792 6793
}

6794 6795
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6796 6797
{
	u32 size;
6798
	int ret;
6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6823 6824 6825
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6826 6827
	 */
	if (size > sizeof(*attr)) {
6828 6829 6830
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6831

6832 6833
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6834

6835
		for (; addr < end; addr++) {
6836 6837 6838 6839 6840 6841
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6842
		size = sizeof(*attr);
6843 6844 6845 6846 6847 6848
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6849 6850 6851 6852
	/* disabled for now */
	if (attr->mmap2)
		return -EINVAL;

6853
	if (attr->__reserved_1)
6854 6855 6856 6857 6858 6859 6860 6861
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6890 6891
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6892 6893
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6894
	}
6895

6896
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6897
		ret = perf_reg_validate(attr->sample_regs_user);
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6916

6917 6918 6919 6920 6921 6922 6923 6924 6925
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6926 6927
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6928
{
6929
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6930 6931
	int ret = -EINVAL;

6932
	if (!output_event)
6933 6934
		goto set;

6935 6936
	/* don't allow circular references */
	if (event == output_event)
6937 6938
		goto out;

6939 6940 6941 6942 6943 6944 6945
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6946
	 * If its not a per-cpu rb, it must be the same task.
6947 6948 6949 6950
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6951
set:
6952
	mutex_lock(&event->mmap_mutex);
6953 6954 6955
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6956

6957 6958
	old_rb = event->rb;

6959
	if (output_event) {
6960 6961 6962
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6963
			goto unlock;
6964 6965
	}

6966 6967
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6984
	ret = 0;
6985 6986 6987
unlock:
	mutex_unlock(&event->mmap_mutex);

6988 6989 6990 6991
out:
	return ret;
}

T
Thomas Gleixner 已提交
6992
/**
6993
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6994
 *
6995
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6996
 * @pid:		target pid
I
Ingo Molnar 已提交
6997
 * @cpu:		target cpu
6998
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6999
 */
7000 7001
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7002
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7003
{
7004 7005
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7006 7007 7008
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7009
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7010
	struct task_struct *task = NULL;
7011
	struct pmu *pmu;
7012
	int event_fd;
7013
	int move_group = 0;
7014
	int err;
7015
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7016

7017
	/* for future expandability... */
S
Stephane Eranian 已提交
7018
	if (flags & ~PERF_FLAG_ALL)
7019 7020
		return -EINVAL;

7021 7022 7023
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7024

7025 7026 7027 7028 7029
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7030
	if (attr.freq) {
7031
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7032 7033 7034
			return -EINVAL;
	}

S
Stephane Eranian 已提交
7035 7036 7037 7038 7039 7040 7041 7042 7043
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7044 7045 7046 7047
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7048 7049 7050
	if (event_fd < 0)
		return event_fd;

7051
	if (group_fd != -1) {
7052 7053
		err = perf_fget_light(group_fd, &group);
		if (err)
7054
			goto err_fd;
7055
		group_leader = group.file->private_data;
7056 7057 7058 7059 7060 7061
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7062
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7063 7064 7065 7066 7067 7068 7069
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7070 7071
	get_online_cpus();

7072 7073
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7074 7075
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7076
		goto err_task;
7077 7078
	}

S
Stephane Eranian 已提交
7079 7080
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7081 7082 7083 7084
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
7085 7086
	}

7087 7088
	account_event(event);

7089 7090 7091 7092 7093
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7117 7118 7119 7120

	/*
	 * Get the target context (task or percpu):
	 */
7121
	ctx = find_get_context(pmu, task, event->cpu);
7122 7123
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7124
		goto err_alloc;
7125 7126
	}

7127 7128 7129 7130 7131
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7132
	/*
7133
	 * Look up the group leader (we will attach this event to it):
7134
	 */
7135
	if (group_leader) {
7136
		err = -EINVAL;
7137 7138

		/*
I
Ingo Molnar 已提交
7139 7140 7141 7142
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7143
			goto err_context;
I
Ingo Molnar 已提交
7144 7145 7146
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7147
		 */
7148 7149 7150 7151 7152 7153 7154 7155
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7156 7157 7158
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7159
		if (attr.exclusive || attr.pinned)
7160
			goto err_context;
7161 7162 7163 7164 7165
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7166
			goto err_context;
7167
	}
T
Thomas Gleixner 已提交
7168

7169 7170
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7171 7172
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7173
		goto err_context;
7174
	}
7175

7176 7177 7178 7179
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7180
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7181 7182 7183 7184 7185 7186 7187

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7188 7189
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7190
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7191
			perf_event__state_init(sibling);
7192 7193 7194 7195
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7196
	}
7197

7198
	WARN_ON_ONCE(ctx->parent_ctx);
7199
	mutex_lock(&ctx->mutex);
7200 7201

	if (move_group) {
7202
		synchronize_rcu();
7203
		perf_install_in_context(ctx, group_leader, event->cpu);
7204 7205 7206
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7207
			perf_install_in_context(ctx, sibling, event->cpu);
7208 7209 7210 7211
			get_ctx(ctx);
		}
	}

7212
	perf_install_in_context(ctx, event, event->cpu);
7213
	perf_unpin_context(ctx);
7214
	mutex_unlock(&ctx->mutex);
7215

7216 7217
	put_online_cpus();

7218
	event->owner = current;
P
Peter Zijlstra 已提交
7219

7220 7221 7222
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7223

7224 7225 7226 7227
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7228
	perf_event__id_header_size(event);
7229

7230 7231 7232 7233 7234 7235
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7236
	fdput(group);
7237 7238
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7239

7240
err_context:
7241
	perf_unpin_context(ctx);
7242
	put_ctx(ctx);
7243
err_alloc:
7244
	free_event(event);
P
Peter Zijlstra 已提交
7245
err_task:
7246
	put_online_cpus();
P
Peter Zijlstra 已提交
7247 7248
	if (task)
		put_task_struct(task);
7249
err_group_fd:
7250
	fdput(group);
7251 7252
err_fd:
	put_unused_fd(event_fd);
7253
	return err;
T
Thomas Gleixner 已提交
7254 7255
}

7256 7257 7258 7259 7260
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7261
 * @task: task to profile (NULL for percpu)
7262 7263 7264
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7265
				 struct task_struct *task,
7266 7267
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7268 7269
{
	struct perf_event_context *ctx;
7270
	struct perf_event *event;
7271
	int err;
7272

7273 7274 7275
	/*
	 * Get the target context (task or percpu):
	 */
7276

7277 7278
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7279 7280 7281 7282
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7283

7284 7285
	account_event(event);

M
Matt Helsley 已提交
7286
	ctx = find_get_context(event->pmu, task, cpu);
7287 7288
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7289
		goto err_free;
7290
	}
7291 7292 7293 7294

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7295
	perf_unpin_context(ctx);
7296 7297 7298 7299
	mutex_unlock(&ctx->mutex);

	return event;

7300 7301 7302
err_free:
	free_event(event);
err:
7303
	return ERR_PTR(err);
7304
}
7305
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7306

7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
7321
		unaccount_event_cpu(event, src_cpu);
7322
		put_ctx(src_ctx);
7323
		list_add(&event->migrate_entry, &events);
7324 7325 7326 7327 7328 7329
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7330 7331
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7332 7333
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7334
		account_event_cpu(event, dst_cpu);
7335 7336 7337 7338 7339 7340 7341
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7342
static void sync_child_event(struct perf_event *child_event,
7343
			       struct task_struct *child)
7344
{
7345
	struct perf_event *parent_event = child_event->parent;
7346
	u64 child_val;
7347

7348 7349
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7350

P
Peter Zijlstra 已提交
7351
	child_val = perf_event_count(child_event);
7352 7353 7354 7355

	/*
	 * Add back the child's count to the parent's count:
	 */
7356
	atomic64_add(child_val, &parent_event->child_count);
7357 7358 7359 7360
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7361 7362

	/*
7363
	 * Remove this event from the parent's list
7364
	 */
7365 7366 7367 7368
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7369 7370

	/*
7371
	 * Release the parent event, if this was the last
7372 7373
	 * reference to it.
	 */
7374
	put_event(parent_event);
7375 7376
}

7377
static void
7378 7379
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7380
			 struct task_struct *child)
7381
{
7382 7383 7384 7385 7386
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7387

7388
	perf_remove_from_context(child_event);
7389

7390
	/*
7391
	 * It can happen that the parent exits first, and has events
7392
	 * that are still around due to the child reference. These
7393
	 * events need to be zapped.
7394
	 */
7395
	if (child_event->parent) {
7396 7397
		sync_child_event(child_event, child);
		free_event(child_event);
7398
	}
7399 7400
}

P
Peter Zijlstra 已提交
7401
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7402
{
7403 7404
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7405
	unsigned long flags;
7406

P
Peter Zijlstra 已提交
7407
	if (likely(!child->perf_event_ctxp[ctxn])) {
7408
		perf_event_task(child, NULL, 0);
7409
		return;
P
Peter Zijlstra 已提交
7410
	}
7411

7412
	local_irq_save(flags);
7413 7414 7415 7416 7417 7418
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7419
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7420 7421 7422

	/*
	 * Take the context lock here so that if find_get_context is
7423
	 * reading child->perf_event_ctxp, we wait until it has
7424 7425
	 * incremented the context's refcount before we do put_ctx below.
	 */
7426
	raw_spin_lock(&child_ctx->lock);
7427
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7428
	child->perf_event_ctxp[ctxn] = NULL;
7429 7430 7431
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7432
	 * the events from it.
7433 7434
	 */
	unclone_ctx(child_ctx);
7435
	update_context_time(child_ctx);
7436
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7437 7438

	/*
7439 7440 7441
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7442
	 */
7443
	perf_event_task(child, child_ctx, 0);
7444

7445 7446 7447
	/*
	 * We can recurse on the same lock type through:
	 *
7448 7449
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7450 7451
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7452 7453 7454
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7455
	mutex_lock(&child_ctx->mutex);
7456

7457
again:
7458 7459 7460 7461 7462
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7463
				 group_entry)
7464
		__perf_event_exit_task(child_event, child_ctx, child);
7465 7466

	/*
7467
	 * If the last event was a group event, it will have appended all
7468 7469 7470
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7471 7472
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7473
		goto again;
7474 7475 7476 7477

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7478 7479
}

P
Peter Zijlstra 已提交
7480 7481 7482 7483 7484
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7485
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7486 7487
	int ctxn;

P
Peter Zijlstra 已提交
7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7503 7504 7505 7506
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7519
	put_event(parent);
7520

7521
	perf_group_detach(event);
7522 7523 7524 7525
	list_del_event(event, ctx);
	free_event(event);
}

7526 7527
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7528
 * perf_event_init_task below, used by fork() in case of fail.
7529
 */
7530
void perf_event_free_task(struct task_struct *task)
7531
{
P
Peter Zijlstra 已提交
7532
	struct perf_event_context *ctx;
7533
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7534
	int ctxn;
7535

P
Peter Zijlstra 已提交
7536 7537 7538 7539
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7540

P
Peter Zijlstra 已提交
7541
		mutex_lock(&ctx->mutex);
7542
again:
P
Peter Zijlstra 已提交
7543 7544 7545
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7546

P
Peter Zijlstra 已提交
7547 7548 7549
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7550

P
Peter Zijlstra 已提交
7551 7552 7553
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7554

P
Peter Zijlstra 已提交
7555
		mutex_unlock(&ctx->mutex);
7556

P
Peter Zijlstra 已提交
7557 7558
		put_ctx(ctx);
	}
7559 7560
}

7561 7562 7563 7564 7565 7566 7567 7568
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7581
	unsigned long flags;
P
Peter Zijlstra 已提交
7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7594
					   child,
P
Peter Zijlstra 已提交
7595
					   group_leader, parent_event,
7596
				           NULL, NULL);
P
Peter Zijlstra 已提交
7597 7598
	if (IS_ERR(child_event))
		return child_event;
7599 7600 7601 7602 7603 7604

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7629 7630
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7631

7632 7633 7634 7635
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7636
	perf_event__id_header_size(child_event);
7637

P
Peter Zijlstra 已提交
7638 7639 7640
	/*
	 * Link it up in the child's context:
	 */
7641
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7642
	add_event_to_ctx(child_event, child_ctx);
7643
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7677 7678 7679 7680 7681
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7682
		   struct task_struct *child, int ctxn,
7683 7684 7685
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7686
	struct perf_event_context *child_ctx;
7687 7688 7689 7690

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7691 7692
	}

7693
	child_ctx = child->perf_event_ctxp[ctxn];
7694 7695 7696 7697 7698 7699 7700
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7701

7702
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7703 7704
		if (!child_ctx)
			return -ENOMEM;
7705

P
Peter Zijlstra 已提交
7706
		child->perf_event_ctxp[ctxn] = child_ctx;
7707 7708 7709 7710 7711 7712 7713 7714 7715
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7716 7717
}

7718
/*
7719
 * Initialize the perf_event context in task_struct
7720
 */
P
Peter Zijlstra 已提交
7721
int perf_event_init_context(struct task_struct *child, int ctxn)
7722
{
7723
	struct perf_event_context *child_ctx, *parent_ctx;
7724 7725
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7726
	struct task_struct *parent = current;
7727
	int inherited_all = 1;
7728
	unsigned long flags;
7729
	int ret = 0;
7730

P
Peter Zijlstra 已提交
7731
	if (likely(!parent->perf_event_ctxp[ctxn]))
7732 7733
		return 0;

7734
	/*
7735 7736
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7737
	 */
P
Peter Zijlstra 已提交
7738
	parent_ctx = perf_pin_task_context(parent, ctxn);
7739

7740 7741 7742 7743 7744 7745 7746
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7747 7748 7749 7750
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7751
	mutex_lock(&parent_ctx->mutex);
7752 7753 7754 7755 7756

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7757
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7758 7759
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7760 7761 7762
		if (ret)
			break;
	}
7763

7764 7765 7766 7767 7768 7769 7770 7771 7772
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7773
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7774 7775
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7776
		if (ret)
7777
			break;
7778 7779
	}

7780 7781 7782
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7783
	child_ctx = child->perf_event_ctxp[ctxn];
7784

7785
	if (child_ctx && inherited_all) {
7786 7787 7788
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7789 7790 7791
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7792
		 */
P
Peter Zijlstra 已提交
7793
		cloned_ctx = parent_ctx->parent_ctx;
7794 7795
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7796
			child_ctx->parent_gen = parent_ctx->parent_gen;
7797 7798 7799 7800 7801
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7802 7803
	}

P
Peter Zijlstra 已提交
7804
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7805
	mutex_unlock(&parent_ctx->mutex);
7806

7807
	perf_unpin_context(parent_ctx);
7808
	put_ctx(parent_ctx);
7809

7810
	return ret;
7811 7812
}

P
Peter Zijlstra 已提交
7813 7814 7815 7816 7817 7818 7819
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7820 7821 7822 7823
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7824 7825 7826 7827 7828 7829 7830 7831 7832
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7833 7834
static void __init perf_event_init_all_cpus(void)
{
7835
	struct swevent_htable *swhash;
7836 7837 7838
	int cpu;

	for_each_possible_cpu(cpu) {
7839 7840
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7841
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7842 7843 7844
	}
}

7845
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7846
{
P
Peter Zijlstra 已提交
7847
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7848

7849
	mutex_lock(&swhash->hlist_mutex);
7850
	if (swhash->hlist_refcount > 0) {
7851 7852
		struct swevent_hlist *hlist;

7853 7854 7855
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7856
	}
7857
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7858 7859
}

P
Peter Zijlstra 已提交
7860
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7861
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7862
{
7863 7864 7865 7866 7867 7868 7869
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7870
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7871
{
P
Peter Zijlstra 已提交
7872
	struct perf_event_context *ctx = __info;
7873
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7874

P
Peter Zijlstra 已提交
7875
	perf_pmu_rotate_stop(ctx->pmu);
7876

7877
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7878
		__perf_remove_from_context(event);
7879
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7880
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7881
}
P
Peter Zijlstra 已提交
7882 7883 7884 7885 7886 7887 7888 7889 7890

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7891
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7892 7893 7894 7895 7896 7897 7898 7899

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7900
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7901
{
7902
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7903

7904 7905 7906
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7907

P
Peter Zijlstra 已提交
7908
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7909 7910
}
#else
7911
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7912 7913
#endif

P
Peter Zijlstra 已提交
7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7934
static int
T
Thomas Gleixner 已提交
7935 7936 7937 7938
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7939
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7940 7941

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7942
	case CPU_DOWN_FAILED:
7943
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7944 7945
		break;

P
Peter Zijlstra 已提交
7946
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7947
	case CPU_DOWN_PREPARE:
7948
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7949 7950 7951 7952 7953 7954 7955 7956
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7957
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7958
{
7959 7960
	int ret;

P
Peter Zijlstra 已提交
7961 7962
	idr_init(&pmu_idr);

7963
	perf_event_init_all_cpus();
7964
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7965 7966 7967
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7968 7969
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7970
	register_reboot_notifier(&perf_reboot_notifier);
7971 7972 7973

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7974 7975 7976

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7977 7978 7979 7980 7981 7982 7983

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7984
}
P
Peter Zijlstra 已提交
7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8013 8014

#ifdef CONFIG_CGROUP_PERF
8015 8016
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8017 8018 8019
{
	struct perf_cgroup *jc;

8020
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8033
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8034
{
8035 8036
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8048 8049
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8050
{
8051 8052
	struct task_struct *task;

8053
	cgroup_taskset_for_each(task, css, tset)
8054
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8055 8056
}

8057 8058
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8059
			     struct task_struct *task)
S
Stephane Eranian 已提交
8060 8061 8062 8063 8064 8065 8066 8067 8068
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8069
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8070 8071 8072
}

struct cgroup_subsys perf_subsys = {
8073 8074
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
8075 8076
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8077
	.exit		= perf_cgroup_exit,
8078
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8079 8080
};
#endif /* CONFIG_CGROUP_PERF */