core.c 220.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166
static atomic_t nr_switch_events __read_mostly;
167

P
Peter Zijlstra 已提交
168 169 170 171
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

172
/*
173
 * perf event paranoia level:
174 175
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
176
 *   1 - disallow cpu events for unpriv
177
 *   2 - disallow kernel profiling for unpriv
178
 */
179
int sysctl_perf_event_paranoid __read_mostly = 1;
180

181 182
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 184

/*
185
 * max perf event sample rate
186
 */
187 188 189 190 191 192 193 194 195
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
196 197
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198

199
static void update_perf_cpu_limits(void)
200 201 202 203
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
204
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
205
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206
}
P
Peter Zijlstra 已提交
207

208 209
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
210 211 212 213
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
214
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
215 216 217 218 219

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
238 239 240

	return 0;
}
241

242 243 244 245 246 247 248
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
249
static DEFINE_PER_CPU(u64, running_sample_length);
250

251
static void perf_duration_warn(struct irq_work *w)
252
{
253
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254
	u64 avg_local_sample_len;
255
	u64 local_samples_len;
256

257
	local_samples_len = __this_cpu_read(running_sample_length);
258 259 260 261 262
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
263
			avg_local_sample_len, allowed_ns >> 1,
264 265 266 267 268 269 270
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
271
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 273
	u64 avg_local_sample_len;
	u64 local_samples_len;
274

P
Peter Zijlstra 已提交
275
	if (allowed_ns == 0)
276 277 278
		return;

	/* decay the counter by 1 average sample */
279
	local_samples_len = __this_cpu_read(running_sample_length);
280 281
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
282
	__this_cpu_write(running_sample_length, local_samples_len);
283 284 285 286 287 288 289 290

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
291
	if (avg_local_sample_len <= allowed_ns)
292 293 294 295 296 297 298 299 300 301
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
302

303 304 305 306 307 308
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
309 310
}

311
static atomic64_t perf_event_id;
312

313 314 315 316
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
317 318 319 320 321
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
322

323
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
324

325
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
326
{
327
	return "pmu";
T
Thomas Gleixner 已提交
328 329
}

330 331 332 333 334
static inline u64 perf_clock(void)
{
	return local_clock();
}

335 336 337 338 339
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
340 341 342 343 344 345
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
362 363 364 365 366 367 368 369
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
386 387 388 389
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
390
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
429 430
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
431
	/*
432 433
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
434
	 */
435
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
436 437
		return;

438
	cgrp = perf_cgroup_from_task(current, event->ctx);
439 440 441 442 443
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
444 445 446
}

static inline void
447 448
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
449 450 451 452
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

453 454 455 456 457 458
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
459 460
		return;

461
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
462
	info = this_cpu_ptr(cgrp->info);
463
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
464 465 466 467 468 469 470 471 472 473 474
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
475
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 496
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
497 498 499 500 501 502 503 504 505

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
506 507
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515 516 517 518

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
519
				WARN_ON_ONCE(cpuctx->cgrp);
520 521 522 523
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
524 525
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
526
				 */
527
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
528 529
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
530 531
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
532 533 534 535 536 537
		}
	}

	local_irq_restore(flags);
}

538 539
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
540
{
541 542 543
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

544
	rcu_read_lock();
545 546
	/*
	 * we come here when we know perf_cgroup_events > 0
547 548
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
549
	 */
550
	cgrp1 = perf_cgroup_from_task(task, NULL);
551 552 553 554 555 556

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
557
		cgrp2 = perf_cgroup_from_task(next, NULL);
558 559 560 561 562 563 564 565

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
566 567

	rcu_read_unlock();
S
Stephane Eranian 已提交
568 569
}

570 571
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
572
{
573 574 575
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

576
	rcu_read_lock();
577 578
	/*
	 * we come here when we know perf_cgroup_events > 0
579 580
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
581
	 */
582
	cgrp1 = perf_cgroup_from_task(task, NULL);
583 584

	/* prev can never be NULL */
585
	cgrp2 = perf_cgroup_from_task(prev, NULL);
586 587 588 589 590 591 592 593

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
594 595

	rcu_read_unlock();
S
Stephane Eranian 已提交
596 597 598 599 600 601 602 603
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
604 605
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
606

607
	if (!f.file)
S
Stephane Eranian 已提交
608 609
		return -EBADF;

A
Al Viro 已提交
610
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
611
					 &perf_event_cgrp_subsys);
612 613 614 615
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
629
out:
630
	fdput(f);
S
Stephane Eranian 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

704 705
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
706 707 708
{
}

709 710
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
711 712 713 714 715 716 717 718 719 720 721
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
722 723
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

754 755 756 757 758 759 760 761
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
762
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
763 764 765 766 767 768 769 770 771
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
772 773
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
774
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
775 776 777
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
778

P
Peter Zijlstra 已提交
779
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
780 781
}

782
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
783
{
784
	struct hrtimer *timer = &cpuctx->hrtimer;
785
	struct pmu *pmu = cpuctx->ctx.pmu;
786
	u64 interval;
787 788 789 790 791

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

792 793 794 795
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
796 797 798
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
799

800
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
801

P
Peter Zijlstra 已提交
802 803
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
804
	timer->function = perf_mux_hrtimer_handler;
805 806
}

807
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
808
{
809
	struct hrtimer *timer = &cpuctx->hrtimer;
810
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
811
	unsigned long flags;
812 813 814

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
815
		return 0;
816

P
Peter Zijlstra 已提交
817 818 819 820 821 822 823
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
824

825
	return 0;
826 827
}

P
Peter Zijlstra 已提交
828
void perf_pmu_disable(struct pmu *pmu)
829
{
P
Peter Zijlstra 已提交
830 831 832
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
833 834
}

P
Peter Zijlstra 已提交
835
void perf_pmu_enable(struct pmu *pmu)
836
{
P
Peter Zijlstra 已提交
837 838 839
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
840 841
}

842
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
843 844

/*
845 846 847 848
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
849
 */
850
static void perf_event_ctx_activate(struct perf_event_context *ctx)
851
{
852
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
853

854
	WARN_ON(!irqs_disabled());
855

856 857 858 859 860 861 862 863 864 865 866 867
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
868 869
}

870
static void get_ctx(struct perf_event_context *ctx)
871
{
872
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
873 874
}

875 876 877 878 879 880 881 882 883
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

884
static void put_ctx(struct perf_event_context *ctx)
885
{
886 887 888
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
889 890
		if (ctx->task)
			put_task_struct(ctx->task);
891
		call_rcu(&ctx->rcu_head, free_ctx);
892
	}
893 894
}

P
Peter Zijlstra 已提交
895 896 897 898 899 900 901
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
956 957
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
958 959 960 961 962 963 964 965 966 967 968 969
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
970
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
971 972 973 974 975 976 977 978 979
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
980 981 982 983 984 985
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
986 987 988 989 990 991 992
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

993 994 995 996 997 998 999
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1000
{
1001 1002 1003 1004 1005
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1006
		ctx->parent_ctx = NULL;
1007
	ctx->generation++;
1008 1009

	return parent_ctx;
1010 1011
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1034
/*
1035
 * If we inherit events we want to return the parent event id
1036 1037
 * to userspace.
 */
1038
static u64 primary_event_id(struct perf_event *event)
1039
{
1040
	u64 id = event->id;
1041

1042 1043
	if (event->parent)
		id = event->parent->id;
1044 1045 1046 1047

	return id;
}

1048
/*
1049
 * Get the perf_event_context for a task and lock it.
1050 1051 1052
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1053
static struct perf_event_context *
P
Peter Zijlstra 已提交
1054
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1055
{
1056
	struct perf_event_context *ctx;
1057

P
Peter Zijlstra 已提交
1058
retry:
1059 1060 1061
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1062
	 * part of the read side critical section was irqs-enabled -- see
1063 1064 1065
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1066
	 * side critical section has interrupts disabled.
1067
	 */
1068
	local_irq_save(*flags);
1069
	rcu_read_lock();
P
Peter Zijlstra 已提交
1070
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1071 1072 1073 1074
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1075
		 * perf_event_task_sched_out, though the
1076 1077 1078 1079 1080 1081
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1082
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1083
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1084
			raw_spin_unlock(&ctx->lock);
1085
			rcu_read_unlock();
1086
			local_irq_restore(*flags);
1087 1088
			goto retry;
		}
1089 1090

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1091
			raw_spin_unlock(&ctx->lock);
1092 1093
			ctx = NULL;
		}
1094 1095
	}
	rcu_read_unlock();
1096 1097
	if (!ctx)
		local_irq_restore(*flags);
1098 1099 1100 1101 1102 1103 1104 1105
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1106 1107
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1108
{
1109
	struct perf_event_context *ctx;
1110 1111
	unsigned long flags;

P
Peter Zijlstra 已提交
1112
	ctx = perf_lock_task_context(task, ctxn, &flags);
1113 1114
	if (ctx) {
		++ctx->pin_count;
1115
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1116 1117 1118 1119
	}
	return ctx;
}

1120
static void perf_unpin_context(struct perf_event_context *ctx)
1121 1122 1123
{
	unsigned long flags;

1124
	raw_spin_lock_irqsave(&ctx->lock, flags);
1125
	--ctx->pin_count;
1126
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1140 1141 1142
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1143 1144 1145 1146

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1147 1148 1149
	return ctx ? ctx->time : 0;
}

1150 1151
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1152
 * The caller of this function needs to hold the ctx->lock.
1153 1154 1155 1156 1157 1158 1159 1160 1161
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1173
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1174 1175
	else if (ctx->is_active)
		run_end = ctx->time;
1176 1177 1178 1179
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1180 1181 1182 1183

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1184
		run_end = perf_event_time(event);
1185 1186

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1187

1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1202 1203 1204 1205 1206 1207 1208 1209 1210
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1211
/*
1212
 * Add a event from the lists for its context.
1213 1214
 * Must be called with ctx->mutex and ctx->lock held.
 */
1215
static void
1216
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1217
{
1218 1219
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1220 1221

	/*
1222 1223 1224
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1225
	 */
1226
	if (event->group_leader == event) {
1227 1228
		struct list_head *list;

1229 1230 1231
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1232 1233
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1234
	}
P
Peter Zijlstra 已提交
1235

1236
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1237 1238
		ctx->nr_cgroups++;

1239 1240 1241
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1242
		ctx->nr_stat++;
1243 1244

	ctx->generation++;
1245 1246
}

J
Jiri Olsa 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1256
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1272
		nr += nr_siblings;
1273 1274 1275 1276 1277 1278 1279
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1280
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1281 1282 1283 1284 1285 1286 1287
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1288 1289 1290 1291 1292 1293
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1294 1295 1296
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1297 1298 1299
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1300 1301 1302
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1303 1304 1305
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1306 1307 1308
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1320 1321 1322 1323 1324 1325
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1326 1327 1328 1329 1330 1331
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1332 1333 1334
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1344
	event->id_header_size = size;
1345 1346
}

P
Peter Zijlstra 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1368 1369
static void perf_group_attach(struct perf_event *event)
{
1370
	struct perf_event *group_leader = event->group_leader, *pos;
1371

P
Peter Zijlstra 已提交
1372 1373 1374 1375 1376 1377
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1378 1379 1380 1381 1382
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1383 1384
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1385 1386 1387 1388 1389 1390
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1391 1392 1393 1394 1395

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1396 1397
}

1398
/*
1399
 * Remove a event from the lists for its context.
1400
 * Must be called with ctx->mutex and ctx->lock held.
1401
 */
1402
static void
1403
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1404
{
1405
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1406 1407 1408 1409

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1410 1411 1412 1413
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1414
		return;
1415 1416 1417

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1418
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1419
		ctx->nr_cgroups--;
1420 1421 1422 1423 1424 1425 1426 1427 1428
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1429

1430 1431
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1432
		ctx->nr_stat--;
1433

1434
	list_del_rcu(&event->event_entry);
1435

1436 1437
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1438

1439
	update_group_times(event);
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1450 1451

	ctx->generation++;
1452 1453
}

1454
static void perf_group_detach(struct perf_event *event)
1455 1456
{
	struct perf_event *sibling, *tmp;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1473
		goto out;
1474 1475 1476 1477
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1478

1479
	/*
1480 1481
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1482
	 * to whatever list we are on.
1483
	 */
1484
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1485 1486
		if (list)
			list_move_tail(&sibling->group_entry, list);
1487
		sibling->group_leader = sibling;
1488 1489 1490

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1491 1492

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1493
	}
1494 1495 1496 1497 1498 1499

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1541 1542 1543 1544 1545 1546
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1547 1548 1549
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1550
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1551
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1552 1553
}

1554 1555
static void
event_sched_out(struct perf_event *event,
1556
		  struct perf_cpu_context *cpuctx,
1557
		  struct perf_event_context *ctx)
1558
{
1559
	u64 tstamp = perf_event_time(event);
1560
	u64 delta;
P
Peter Zijlstra 已提交
1561 1562 1563 1564

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1565 1566 1567 1568 1569 1570 1571 1572
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1573
		delta = tstamp - event->tstamp_stopped;
1574
		event->tstamp_running += delta;
1575
		event->tstamp_stopped = tstamp;
1576 1577
	}

1578
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1579
		return;
1580

1581 1582
	perf_pmu_disable(event->pmu);

1583 1584 1585 1586
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1587
	}
1588
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1589
	event->pmu->del(event, 0);
1590
	event->oncpu = -1;
1591

1592
	if (!is_software_event(event))
1593
		cpuctx->active_oncpu--;
1594 1595
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1596 1597
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1598
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1599
		cpuctx->exclusive = 0;
1600

1601 1602 1603
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1604
	perf_pmu_enable(event->pmu);
1605 1606
}

1607
static void
1608
group_sched_out(struct perf_event *group_event,
1609
		struct perf_cpu_context *cpuctx,
1610
		struct perf_event_context *ctx)
1611
{
1612
	struct perf_event *event;
1613
	int state = group_event->state;
1614

1615
	event_sched_out(group_event, cpuctx, ctx);
1616 1617 1618 1619

	/*
	 * Schedule out siblings (if any):
	 */
1620 1621
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1622

1623
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1624 1625 1626
		cpuctx->exclusive = 0;
}

1627 1628 1629 1630 1631
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1632
/*
1633
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1634
 *
1635
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1636 1637
 * remove it from the context list.
 */
1638
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1639
{
1640 1641
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1642
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1643
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1644

1645
	raw_spin_lock(&ctx->lock);
1646
	event_sched_out(event, cpuctx, ctx);
1647 1648
	if (re->detach_group)
		perf_group_detach(event);
1649
	list_del_event(event, ctx);
1650 1651 1652 1653
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1654
	raw_spin_unlock(&ctx->lock);
1655 1656

	return 0;
T
Thomas Gleixner 已提交
1657 1658 1659 1660
}


/*
1661
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1662
 *
1663
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1664
 * call when the task is on a CPU.
1665
 *
1666 1667
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1668 1669
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1670
 * When called from perf_event_exit_task, it's OK because the
1671
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1672
 */
1673
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1674
{
1675
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1676
	struct task_struct *task = ctx->task;
1677 1678 1679 1680
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1681

1682 1683
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1684 1685
	if (!task) {
		/*
1686 1687 1688 1689
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1690
		 */
1691
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1692 1693 1694 1695
		return;
	}

retry:
1696
	if (!task_function_call(task, __perf_remove_from_context, &re))
1697
		return;
T
Thomas Gleixner 已提交
1698

1699
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1700
	/*
1701 1702
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1703
	 */
1704
	if (ctx->is_active) {
1705
		raw_spin_unlock_irq(&ctx->lock);
1706 1707 1708 1709 1710
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1711 1712 1713 1714
		goto retry;
	}

	/*
1715 1716
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1717
	 */
1718 1719
	if (detach_group)
		perf_group_detach(event);
1720
	list_del_event(event, ctx);
1721
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1722 1723
}

1724
/*
1725
 * Cross CPU call to disable a performance event
1726
 */
1727
int __perf_event_disable(void *info)
1728
{
1729 1730
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1731
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1732 1733

	/*
1734 1735
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1736 1737 1738
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1739
	 */
1740
	if (ctx->task && cpuctx->task_ctx != ctx)
1741
		return -EINVAL;
1742

1743
	raw_spin_lock(&ctx->lock);
1744 1745

	/*
1746
	 * If the event is on, turn it off.
1747 1748
	 * If it is in error state, leave it in error state.
	 */
1749
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1750
		update_context_time(ctx);
S
Stephane Eranian 已提交
1751
		update_cgrp_time_from_event(event);
1752 1753 1754
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1755
		else
1756 1757
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1758 1759
	}

1760
	raw_spin_unlock(&ctx->lock);
1761 1762

	return 0;
1763 1764 1765
}

/*
1766
 * Disable a event.
1767
 *
1768 1769
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1770
 * remains valid.  This condition is satisifed when called through
1771 1772 1773 1774
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1775
 * is the current context on this CPU and preemption is disabled,
1776
 * hence we can't get into perf_event_task_sched_out for this context.
1777
 */
P
Peter Zijlstra 已提交
1778
static void _perf_event_disable(struct perf_event *event)
1779
{
1780
	struct perf_event_context *ctx = event->ctx;
1781 1782 1783 1784
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1785
		 * Disable the event on the cpu that it's on
1786
		 */
1787
		cpu_function_call(event->cpu, __perf_event_disable, event);
1788 1789 1790
		return;
	}

P
Peter Zijlstra 已提交
1791
retry:
1792 1793
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1794

1795
	raw_spin_lock_irq(&ctx->lock);
1796
	/*
1797
	 * If the event is still active, we need to retry the cross-call.
1798
	 */
1799
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1800
		raw_spin_unlock_irq(&ctx->lock);
1801 1802 1803 1804 1805
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1806 1807 1808 1809 1810 1811 1812
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1813 1814 1815
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1816
	}
1817
	raw_spin_unlock_irq(&ctx->lock);
1818
}
P
Peter Zijlstra 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1832
EXPORT_SYMBOL_GPL(perf_event_disable);
1833

S
Stephane Eranian 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1869 1870 1871
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1872
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1873

1874
static int
1875
event_sched_in(struct perf_event *event,
1876
		 struct perf_cpu_context *cpuctx,
1877
		 struct perf_event_context *ctx)
1878
{
1879
	u64 tstamp = perf_event_time(event);
1880
	int ret = 0;
1881

1882 1883
	lockdep_assert_held(&ctx->lock);

1884
	if (event->state <= PERF_EVENT_STATE_OFF)
1885 1886
		return 0;

1887
	event->state = PERF_EVENT_STATE_ACTIVE;
1888
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1900 1901 1902 1903 1904
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1905 1906
	perf_pmu_disable(event->pmu);

1907 1908
	perf_set_shadow_time(event, ctx, tstamp);

1909 1910
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1911
	if (event->pmu->add(event, PERF_EF_START)) {
1912 1913
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1914 1915
		ret = -EAGAIN;
		goto out;
1916 1917
	}

1918 1919
	event->tstamp_running += tstamp - event->tstamp_stopped;

1920
	if (!is_software_event(event))
1921
		cpuctx->active_oncpu++;
1922 1923
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1924 1925
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1926

1927
	if (event->attr.exclusive)
1928 1929
		cpuctx->exclusive = 1;

1930 1931 1932
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1933 1934 1935 1936
out:
	perf_pmu_enable(event->pmu);

	return ret;
1937 1938
}

1939
static int
1940
group_sched_in(struct perf_event *group_event,
1941
	       struct perf_cpu_context *cpuctx,
1942
	       struct perf_event_context *ctx)
1943
{
1944
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1945
	struct pmu *pmu = ctx->pmu;
1946 1947
	u64 now = ctx->time;
	bool simulate = false;
1948

1949
	if (group_event->state == PERF_EVENT_STATE_OFF)
1950 1951
		return 0;

1952
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1953

1954
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1955
		pmu->cancel_txn(pmu);
1956
		perf_mux_hrtimer_restart(cpuctx);
1957
		return -EAGAIN;
1958
	}
1959 1960 1961 1962

	/*
	 * Schedule in siblings as one group (if any):
	 */
1963
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1964
		if (event_sched_in(event, cpuctx, ctx)) {
1965
			partial_group = event;
1966 1967 1968 1969
			goto group_error;
		}
	}

1970
	if (!pmu->commit_txn(pmu))
1971
		return 0;
1972

1973 1974 1975 1976
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1987
	 */
1988 1989
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1990 1991 1992 1993 1994 1995 1996 1997
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1998
	}
1999
	event_sched_out(group_event, cpuctx, ctx);
2000

P
Peter Zijlstra 已提交
2001
	pmu->cancel_txn(pmu);
2002

2003
	perf_mux_hrtimer_restart(cpuctx);
2004

2005 2006 2007
	return -EAGAIN;
}

2008
/*
2009
 * Work out whether we can put this event group on the CPU now.
2010
 */
2011
static int group_can_go_on(struct perf_event *event,
2012 2013 2014 2015
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2016
	 * Groups consisting entirely of software events can always go on.
2017
	 */
2018
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2019 2020 2021
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2022
	 * events can go on.
2023 2024 2025 2026 2027
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2028
	 * events on the CPU, it can't go on.
2029
	 */
2030
	if (event->attr.exclusive && cpuctx->active_oncpu)
2031 2032 2033 2034 2035 2036 2037 2038
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2039 2040
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2041
{
2042 2043
	u64 tstamp = perf_event_time(event);

2044
	list_add_event(event, ctx);
2045
	perf_group_attach(event);
2046 2047 2048
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2049 2050
}

2051 2052 2053 2054 2055 2056
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2070
/*
2071
 * Cross CPU call to install and enable a performance event
2072 2073
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2074
 */
2075
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2076
{
2077 2078
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2079
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080 2081 2082
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2083
	perf_ctx_lock(cpuctx, task_ctx);
2084
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2085 2086

	/*
2087
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2088
	 */
2089
	if (task_ctx)
2090
		task_ctx_sched_out(task_ctx);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2105 2106
		task = task_ctx->task;
	}
2107

2108
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2109

2110
	update_context_time(ctx);
S
Stephane Eranian 已提交
2111 2112 2113 2114 2115 2116
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2117

2118
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2119

2120
	/*
2121
	 * Schedule everything back in
2122
	 */
2123
	perf_event_sched_in(cpuctx, task_ctx, task);
2124 2125 2126

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2127 2128

	return 0;
T
Thomas Gleixner 已提交
2129 2130 2131
}

/*
2132
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2133
 *
2134 2135
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2136
 *
2137
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2138 2139 2140 2141
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2142 2143
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2144 2145 2146 2147
			int cpu)
{
	struct task_struct *task = ctx->task;

2148 2149
	lockdep_assert_held(&ctx->mutex);

2150
	event->ctx = ctx;
2151 2152
	if (event->cpu != -1)
		event->cpu = cpu;
2153

T
Thomas Gleixner 已提交
2154 2155
	if (!task) {
		/*
2156
		 * Per cpu events are installed via an smp call and
2157
		 * the install is always successful.
T
Thomas Gleixner 已提交
2158
		 */
2159
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2160 2161 2162 2163
		return;
	}

retry:
2164 2165
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2166

2167
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2168
	/*
2169 2170
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2171
	 */
2172
	if (ctx->is_active) {
2173
		raw_spin_unlock_irq(&ctx->lock);
2174 2175 2176 2177 2178
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2179 2180 2181 2182
		goto retry;
	}

	/*
2183 2184
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2185
	 */
2186
	add_event_to_ctx(event, ctx);
2187
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2188 2189
}

2190
/*
2191
 * Put a event into inactive state and update time fields.
2192 2193 2194 2195 2196 2197
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2198
static void __perf_event_mark_enabled(struct perf_event *event)
2199
{
2200
	struct perf_event *sub;
2201
	u64 tstamp = perf_event_time(event);
2202

2203
	event->state = PERF_EVENT_STATE_INACTIVE;
2204
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2205
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2206 2207
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2208
	}
2209 2210
}

2211
/*
2212
 * Cross CPU call to enable a performance event
2213
 */
2214
static int __perf_event_enable(void *info)
2215
{
2216 2217 2218
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2219
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2220
	int err;
2221

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2232
		return -EINVAL;
2233

2234
	raw_spin_lock(&ctx->lock);
2235
	update_context_time(ctx);
2236

2237
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2238
		goto unlock;
S
Stephane Eranian 已提交
2239 2240 2241 2242

	/*
	 * set current task's cgroup time reference point
	 */
2243
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2244

2245
	__perf_event_mark_enabled(event);
2246

S
Stephane Eranian 已提交
2247 2248 2249
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2250
		goto unlock;
S
Stephane Eranian 已提交
2251
	}
2252

2253
	/*
2254
	 * If the event is in a group and isn't the group leader,
2255
	 * then don't put it on unless the group is on.
2256
	 */
2257
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2258
		goto unlock;
2259

2260
	if (!group_can_go_on(event, cpuctx, 1)) {
2261
		err = -EEXIST;
2262
	} else {
2263
		if (event == leader)
2264
			err = group_sched_in(event, cpuctx, ctx);
2265
		else
2266
			err = event_sched_in(event, cpuctx, ctx);
2267
	}
2268 2269 2270

	if (err) {
		/*
2271
		 * If this event can't go on and it's part of a
2272 2273
		 * group, then the whole group has to come off.
		 */
2274
		if (leader != event) {
2275
			group_sched_out(leader, cpuctx, ctx);
2276
			perf_mux_hrtimer_restart(cpuctx);
2277
		}
2278
		if (leader->attr.pinned) {
2279
			update_group_times(leader);
2280
			leader->state = PERF_EVENT_STATE_ERROR;
2281
		}
2282 2283
	}

P
Peter Zijlstra 已提交
2284
unlock:
2285
	raw_spin_unlock(&ctx->lock);
2286 2287

	return 0;
2288 2289 2290
}

/*
2291
 * Enable a event.
2292
 *
2293 2294
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2295
 * remains valid.  This condition is satisfied when called through
2296 2297
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2298
 */
P
Peter Zijlstra 已提交
2299
static void _perf_event_enable(struct perf_event *event)
2300
{
2301
	struct perf_event_context *ctx = event->ctx;
2302 2303 2304 2305
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2306
		 * Enable the event on the cpu that it's on
2307
		 */
2308
		cpu_function_call(event->cpu, __perf_event_enable, event);
2309 2310 2311
		return;
	}

2312
	raw_spin_lock_irq(&ctx->lock);
2313
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2314 2315 2316
		goto out;

	/*
2317 2318
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2319 2320 2321 2322
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2323 2324
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2325

P
Peter Zijlstra 已提交
2326
retry:
2327
	if (!ctx->is_active) {
2328
		__perf_event_mark_enabled(event);
2329 2330 2331
		goto out;
	}

2332
	raw_spin_unlock_irq(&ctx->lock);
2333 2334 2335

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2336

2337
	raw_spin_lock_irq(&ctx->lock);
2338 2339

	/*
2340
	 * If the context is active and the event is still off,
2341 2342
	 * we need to retry the cross-call.
	 */
2343 2344 2345 2346 2347 2348
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2349
		goto retry;
2350
	}
2351

P
Peter Zijlstra 已提交
2352
out:
2353
	raw_spin_unlock_irq(&ctx->lock);
2354
}
P
Peter Zijlstra 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2367
EXPORT_SYMBOL_GPL(perf_event_enable);
2368

P
Peter Zijlstra 已提交
2369
static int _perf_event_refresh(struct perf_event *event, int refresh)
2370
{
2371
	/*
2372
	 * not supported on inherited events
2373
	 */
2374
	if (event->attr.inherit || !is_sampling_event(event))
2375 2376
		return -EINVAL;

2377
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2378
	_perf_event_enable(event);
2379 2380

	return 0;
2381
}
P
Peter Zijlstra 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2397
EXPORT_SYMBOL_GPL(perf_event_refresh);
2398

2399 2400 2401
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2402
{
2403
	struct perf_event *event;
2404
	int is_active = ctx->is_active;
2405

2406
	ctx->is_active &= ~event_type;
2407
	if (likely(!ctx->nr_events))
2408 2409
		return;

2410
	update_context_time(ctx);
S
Stephane Eranian 已提交
2411
	update_cgrp_time_from_cpuctx(cpuctx);
2412
	if (!ctx->nr_active)
2413
		return;
2414

P
Peter Zijlstra 已提交
2415
	perf_pmu_disable(ctx->pmu);
2416
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2417 2418
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2419
	}
2420

2421
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2422
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2423
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2424
	}
P
Peter Zijlstra 已提交
2425
	perf_pmu_enable(ctx->pmu);
2426 2427
}

2428
/*
2429 2430 2431 2432 2433 2434
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2435
 */
2436 2437
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2438
{
2439 2440 2441
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2464 2465
}

2466 2467
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2468 2469 2470
{
	u64 value;

2471
	if (!event->attr.inherit_stat)
2472 2473 2474
		return;

	/*
2475
	 * Update the event value, we cannot use perf_event_read()
2476 2477
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2478
	 * we know the event must be on the current CPU, therefore we
2479 2480
	 * don't need to use it.
	 */
2481 2482
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2483 2484
		event->pmu->read(event);
		/* fall-through */
2485

2486 2487
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2488 2489 2490 2491 2492 2493 2494
		break;

	default:
		break;
	}

	/*
2495
	 * In order to keep per-task stats reliable we need to flip the event
2496 2497
	 * values when we flip the contexts.
	 */
2498 2499 2500
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2501

2502 2503
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2504

2505
	/*
2506
	 * Since we swizzled the values, update the user visible data too.
2507
	 */
2508 2509
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2510 2511
}

2512 2513
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2514
{
2515
	struct perf_event *event, *next_event;
2516 2517 2518 2519

	if (!ctx->nr_stat)
		return;

2520 2521
	update_context_time(ctx);

2522 2523
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2524

2525 2526
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2527

2528 2529
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2530

2531
		__perf_event_sync_stat(event, next_event);
2532

2533 2534
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2535 2536 2537
	}
}

2538 2539
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2540
{
P
Peter Zijlstra 已提交
2541
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2542
	struct perf_event_context *next_ctx;
2543
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2544
	struct perf_cpu_context *cpuctx;
2545
	int do_switch = 1;
T
Thomas Gleixner 已提交
2546

P
Peter Zijlstra 已提交
2547 2548
	if (likely(!ctx))
		return;
2549

P
Peter Zijlstra 已提交
2550 2551
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2552 2553
		return;

2554
	rcu_read_lock();
P
Peter Zijlstra 已提交
2555
	next_ctx = next->perf_event_ctxp[ctxn];
2556 2557 2558 2559 2560 2561 2562
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2563
	if (!parent && !next_parent)
2564 2565 2566
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2567 2568 2569 2570 2571 2572 2573 2574 2575
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2576 2577
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2578
		if (context_equiv(ctx, next_ctx)) {
2579 2580
			/*
			 * XXX do we need a memory barrier of sorts
2581
			 * wrt to rcu_dereference() of perf_event_ctxp
2582
			 */
P
Peter Zijlstra 已提交
2583 2584
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2585 2586
			ctx->task = next;
			next_ctx->task = task;
2587 2588 2589

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2590
			do_switch = 0;
2591

2592
			perf_event_sync_stat(ctx, next_ctx);
2593
		}
2594 2595
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2596
	}
2597
unlock:
2598
	rcu_read_unlock();
2599

2600
	if (do_switch) {
2601
		raw_spin_lock(&ctx->lock);
2602
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2603
		cpuctx->task_ctx = NULL;
2604
		raw_spin_unlock(&ctx->lock);
2605
	}
T
Thomas Gleixner 已提交
2606 2607
}

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2658 2659 2660
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2675 2676
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2677 2678 2679
{
	int ctxn;

2680 2681 2682
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2683 2684 2685
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2686 2687
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2688 2689 2690 2691 2692 2693

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2694
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2695
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2696 2697
}

2698
static void task_ctx_sched_out(struct perf_event_context *ctx)
2699
{
P
Peter Zijlstra 已提交
2700
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2701

2702 2703
	if (!cpuctx->task_ctx)
		return;
2704 2705 2706 2707

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2708
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2709 2710 2711
	cpuctx->task_ctx = NULL;
}

2712 2713 2714 2715 2716 2717 2718
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2719 2720
}

2721
static void
2722
ctx_pinned_sched_in(struct perf_event_context *ctx,
2723
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2724
{
2725
	struct perf_event *event;
T
Thomas Gleixner 已提交
2726

2727 2728
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2729
			continue;
2730
		if (!event_filter_match(event))
2731 2732
			continue;

S
Stephane Eranian 已提交
2733 2734 2735 2736
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2737
		if (group_can_go_on(event, cpuctx, 1))
2738
			group_sched_in(event, cpuctx, ctx);
2739 2740 2741 2742 2743

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2744 2745 2746
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2747
		}
2748
	}
2749 2750 2751 2752
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2753
		      struct perf_cpu_context *cpuctx)
2754 2755 2756
{
	struct perf_event *event;
	int can_add_hw = 1;
2757

2758 2759 2760
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2761
			continue;
2762 2763
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2764
		 * of events:
2765
		 */
2766
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2767 2768
			continue;

S
Stephane Eranian 已提交
2769 2770 2771 2772
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2773
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2774
			if (group_sched_in(event, cpuctx, ctx))
2775
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2776
		}
T
Thomas Gleixner 已提交
2777
	}
2778 2779 2780 2781 2782
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2783 2784
	     enum event_type_t event_type,
	     struct task_struct *task)
2785
{
S
Stephane Eranian 已提交
2786
	u64 now;
2787
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2788

2789
	ctx->is_active |= event_type;
2790
	if (likely(!ctx->nr_events))
2791
		return;
2792

S
Stephane Eranian 已提交
2793 2794
	now = perf_clock();
	ctx->timestamp = now;
2795
	perf_cgroup_set_timestamp(task, ctx);
2796 2797 2798 2799
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2800
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2801
		ctx_pinned_sched_in(ctx, cpuctx);
2802 2803

	/* Then walk through the lower prio flexible groups */
2804
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2805
		ctx_flexible_sched_in(ctx, cpuctx);
2806 2807
}

2808
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2809 2810
			     enum event_type_t event_type,
			     struct task_struct *task)
2811 2812 2813
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2814
	ctx_sched_in(ctx, cpuctx, event_type, task);
2815 2816
}

S
Stephane Eranian 已提交
2817 2818
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2819
{
P
Peter Zijlstra 已提交
2820
	struct perf_cpu_context *cpuctx;
2821

P
Peter Zijlstra 已提交
2822
	cpuctx = __get_cpu_context(ctx);
2823 2824 2825
	if (cpuctx->task_ctx == ctx)
		return;

2826
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2827
	perf_pmu_disable(ctx->pmu);
2828 2829 2830 2831 2832 2833 2834
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2835 2836
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2837

2838 2839
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2840 2841
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2842 2843
}

P
Peter Zijlstra 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2855 2856
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2866
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2867
	}
S
Stephane Eranian 已提交
2868 2869 2870 2871 2872
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2873
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2874
		perf_cgroup_sched_in(prev, task);
2875

2876 2877 2878
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2879 2880
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2881 2882
}

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2910
#define REDUCE_FLS(a, b)		\
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2950 2951 2952
	if (!divisor)
		return dividend;

2953 2954 2955
	return div64_u64(dividend, divisor);
}

2956 2957 2958
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2959
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2960
{
2961
	struct hw_perf_event *hwc = &event->hw;
2962
	s64 period, sample_period;
2963 2964
	s64 delta;

2965
	period = perf_calculate_period(event, nsec, count);
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2976

2977
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2978 2979 2980
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2981
		local64_set(&hwc->period_left, 0);
2982 2983 2984

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2985
	}
2986 2987
}

2988 2989 2990 2991 2992 2993 2994
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2995
{
2996 2997
	struct perf_event *event;
	struct hw_perf_event *hwc;
2998
	u64 now, period = TICK_NSEC;
2999
	s64 delta;
3000

3001 3002 3003 3004 3005 3006
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3007 3008
		return;

3009
	raw_spin_lock(&ctx->lock);
3010
	perf_pmu_disable(ctx->pmu);
3011

3012
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3013
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3014 3015
			continue;

3016
		if (!event_filter_match(event))
3017 3018
			continue;

3019 3020
		perf_pmu_disable(event->pmu);

3021
		hwc = &event->hw;
3022

3023
		if (hwc->interrupts == MAX_INTERRUPTS) {
3024
			hwc->interrupts = 0;
3025
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3026
			event->pmu->start(event, 0);
3027 3028
		}

3029
		if (!event->attr.freq || !event->attr.sample_freq)
3030
			goto next;
3031

3032 3033 3034 3035 3036
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3037
		now = local64_read(&event->count);
3038 3039
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3040

3041 3042 3043
		/*
		 * restart the event
		 * reload only if value has changed
3044 3045 3046
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3047
		 */
3048
		if (delta > 0)
3049
			perf_adjust_period(event, period, delta, false);
3050 3051

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3052 3053
	next:
		perf_pmu_enable(event->pmu);
3054
	}
3055

3056
	perf_pmu_enable(ctx->pmu);
3057
	raw_spin_unlock(&ctx->lock);
3058 3059
}

3060
/*
3061
 * Round-robin a context's events:
3062
 */
3063
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3064
{
3065 3066 3067 3068 3069 3070
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3071 3072
}

3073
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3074
{
P
Peter Zijlstra 已提交
3075
	struct perf_event_context *ctx = NULL;
3076
	int rotate = 0;
3077

3078 3079 3080 3081
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3082

P
Peter Zijlstra 已提交
3083
	ctx = cpuctx->task_ctx;
3084 3085 3086 3087
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3088

3089
	if (!rotate)
3090 3091
		goto done;

3092
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3093
	perf_pmu_disable(cpuctx->ctx.pmu);
3094

3095 3096 3097
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3098

3099 3100 3101
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3102

3103
	perf_event_sched_in(cpuctx, ctx, current);
3104

3105 3106
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3107
done:
3108 3109

	return rotate;
3110 3111
}

3112 3113 3114
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3115
	if (atomic_read(&nr_freq_events) ||
3116
	    __this_cpu_read(perf_throttled_count))
3117
		return false;
3118 3119
	else
		return true;
3120 3121 3122
}
#endif

3123 3124
void perf_event_task_tick(void)
{
3125 3126
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3127
	int throttled;
3128

3129 3130
	WARN_ON(!irqs_disabled());

3131 3132 3133
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3134
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3135
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3136 3137
}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3148
	__perf_event_mark_enabled(event);
3149 3150 3151 3152

	return 1;
}

3153
/*
3154
 * Enable all of a task's events that have been marked enable-on-exec.
3155 3156
 * This expects task == current.
 */
3157
static void perf_event_enable_on_exec(int ctxn)
3158
{
3159
	struct perf_event_context *ctx, *clone_ctx = NULL;
3160
	struct perf_event *event;
3161 3162
	unsigned long flags;
	int enabled = 0;
3163
	int ret;
3164 3165

	local_irq_save(flags);
3166
	ctx = current->perf_event_ctxp[ctxn];
3167
	if (!ctx || !ctx->nr_events)
3168 3169
		goto out;

3170 3171 3172 3173 3174 3175 3176
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3177
	perf_cgroup_sched_out(current, NULL);
3178

3179
	raw_spin_lock(&ctx->lock);
3180
	task_ctx_sched_out(ctx);
3181

3182
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3183 3184 3185
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3186 3187 3188
	}

	/*
3189
	 * Unclone this context if we enabled any event.
3190
	 */
3191
	if (enabled)
3192
		clone_ctx = unclone_ctx(ctx);
3193

3194
	raw_spin_unlock(&ctx->lock);
3195

3196 3197 3198
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3199
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3200
out:
3201
	local_irq_restore(flags);
3202 3203 3204

	if (clone_ctx)
		put_ctx(clone_ctx);
3205 3206
}

3207 3208 3209 3210 3211
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3212 3213
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3214 3215 3216
	rcu_read_unlock();
}

3217 3218 3219
struct perf_read_data {
	struct perf_event *event;
	bool group;
3220
	int ret;
3221 3222
};

T
Thomas Gleixner 已提交
3223
/*
3224
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3225
 */
3226
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3227
{
3228 3229
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3230
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3231
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3232
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3233

3234 3235 3236 3237
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3238 3239
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3240 3241 3242 3243
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3244
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3245
	if (ctx->is_active) {
3246
		update_context_time(ctx);
S
Stephane Eranian 已提交
3247 3248
		update_cgrp_time_from_event(event);
	}
3249

3250
	update_event_times(event);
3251 3252
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3253

3254 3255 3256
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3257
		goto unlock;
3258 3259 3260 3261 3262
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3263 3264 3265

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3266 3267 3268 3269 3270
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3271
			sub->pmu->read(sub);
3272
		}
3273
	}
3274 3275

	data->ret = pmu->commit_txn(pmu);
3276 3277

unlock:
3278
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3279 3280
}

P
Peter Zijlstra 已提交
3281 3282
static inline u64 perf_event_count(struct perf_event *event)
{
3283 3284 3285 3286
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3287 3288
}

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3342
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3343
{
3344 3345
	int ret = 0;

T
Thomas Gleixner 已提交
3346
	/*
3347 3348
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3349
	 */
3350
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3351 3352 3353
		struct perf_read_data data = {
			.event = event,
			.group = group,
3354
			.ret = 0,
3355
		};
3356
		smp_call_function_single(event->oncpu,
3357
					 __perf_event_read, &data, 1);
3358
		ret = data.ret;
3359
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3360 3361 3362
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3363
		raw_spin_lock_irqsave(&ctx->lock, flags);
3364 3365 3366 3367 3368
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3369
		if (ctx->is_active) {
3370
			update_context_time(ctx);
S
Stephane Eranian 已提交
3371 3372
			update_cgrp_time_from_event(event);
		}
3373 3374 3375 3376
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3377
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3378
	}
3379 3380

	return ret;
T
Thomas Gleixner 已提交
3381 3382
}

3383
/*
3384
 * Initialize the perf_event context in a task_struct:
3385
 */
3386
static void __perf_event_init_context(struct perf_event_context *ctx)
3387
{
3388
	raw_spin_lock_init(&ctx->lock);
3389
	mutex_init(&ctx->mutex);
3390
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3391 3392
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3393 3394
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3395
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3411
	}
3412 3413 3414
	ctx->pmu = pmu;

	return ctx;
3415 3416
}

3417 3418 3419 3420 3421
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3422 3423

	rcu_read_lock();
3424
	if (!vpid)
T
Thomas Gleixner 已提交
3425 3426
		task = current;
	else
3427
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3428 3429 3430 3431 3432 3433 3434 3435
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3436 3437 3438 3439
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3440 3441 3442 3443 3444 3445 3446
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3447 3448 3449
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3450
static struct perf_event_context *
3451 3452
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3453
{
3454
	struct perf_event_context *ctx, *clone_ctx = NULL;
3455
	struct perf_cpu_context *cpuctx;
3456
	void *task_ctx_data = NULL;
3457
	unsigned long flags;
P
Peter Zijlstra 已提交
3458
	int ctxn, err;
3459
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3460

3461
	if (!task) {
3462
		/* Must be root to operate on a CPU event: */
3463
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3464 3465 3466
			return ERR_PTR(-EACCES);

		/*
3467
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3468 3469 3470
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3471
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3472 3473
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3474
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3475
		ctx = &cpuctx->ctx;
3476
		get_ctx(ctx);
3477
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3478 3479 3480 3481

		return ctx;
	}

P
Peter Zijlstra 已提交
3482 3483 3484 3485 3486
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3487 3488 3489 3490 3491 3492 3493 3494
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3495
retry:
P
Peter Zijlstra 已提交
3496
	ctx = perf_lock_task_context(task, ctxn, &flags);
3497
	if (ctx) {
3498
		clone_ctx = unclone_ctx(ctx);
3499
		++ctx->pin_count;
3500 3501 3502 3503 3504

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3505
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3506 3507 3508

		if (clone_ctx)
			put_ctx(clone_ctx);
3509
	} else {
3510
		ctx = alloc_perf_context(pmu, task);
3511 3512 3513
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3514

3515 3516 3517 3518 3519
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3530
		else {
3531
			get_ctx(ctx);
3532
			++ctx->pin_count;
3533
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3534
		}
3535 3536 3537
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3538
			put_ctx(ctx);
3539 3540 3541 3542

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3543 3544 3545
		}
	}

3546
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3547
	return ctx;
3548

P
Peter Zijlstra 已提交
3549
errout:
3550
	kfree(task_ctx_data);
3551
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3552 3553
}

L
Li Zefan 已提交
3554
static void perf_event_free_filter(struct perf_event *event);
3555
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3556

3557
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3558
{
3559
	struct perf_event *event;
P
Peter Zijlstra 已提交
3560

3561 3562 3563
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3564
	perf_event_free_filter(event);
3565
	kfree(event);
P
Peter Zijlstra 已提交
3566 3567
}

3568 3569
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3570

3571
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3572
{
3573 3574 3575 3576 3577 3578
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3579

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3593 3594
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3595 3596 3597 3598
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3599 3600 3601 3602 3603 3604 3605
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3606

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3692 3693
static void __free_event(struct perf_event *event)
{
3694
	if (!event->parent) {
3695 3696
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3697
	}
3698

3699 3700
	perf_event_free_bpf_prog(event);

3701 3702 3703 3704 3705 3706
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3707 3708
	if (event->pmu) {
		exclusive_event_destroy(event);
3709
		module_put(event->pmu->module);
3710
	}
3711

3712 3713
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3714 3715

static void _free_event(struct perf_event *event)
3716
{
3717
	irq_work_sync(&event->pending);
3718

3719
	unaccount_event(event);
3720

3721
	if (event->rb) {
3722 3723 3724 3725 3726 3727 3728
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3729
		ring_buffer_attach(event, NULL);
3730
		mutex_unlock(&event->mmap_mutex);
3731 3732
	}

S
Stephane Eranian 已提交
3733 3734 3735
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3736
	__free_event(event);
3737 3738
}

P
Peter Zijlstra 已提交
3739 3740 3741 3742 3743
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3744
{
P
Peter Zijlstra 已提交
3745 3746 3747 3748 3749 3750
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3751

P
Peter Zijlstra 已提交
3752
	_free_event(event);
T
Thomas Gleixner 已提交
3753 3754
}

3755
/*
3756
 * Remove user event from the owner task.
3757
 */
3758
static void perf_remove_from_owner(struct perf_event *event)
3759
{
P
Peter Zijlstra 已提交
3760
	struct task_struct *owner;
3761

P
Peter Zijlstra 已提交
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3803 3804 3805 3806
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3807
	struct perf_event_context *ctx;
3808 3809 3810 3811 3812 3813

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3814

P
Peter Zijlstra 已提交
3815 3816 3817 3818 3819 3820 3821
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3822
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3823 3824 3825 3826
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3827 3828
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3829
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3830
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3831 3832

	_free_event(event);
3833 3834
}

P
Peter Zijlstra 已提交
3835 3836 3837 3838 3839 3840 3841
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3842 3843 3844
/*
 * Called when the last reference to the file is gone.
 */
3845 3846 3847 3848
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3849 3850
}

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3887
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3888
{
3889
	struct perf_event *child;
3890 3891
	u64 total = 0;

3892 3893 3894
	*enabled = 0;
	*running = 0;

3895
	mutex_lock(&event->child_mutex);
3896

3897
	(void)perf_event_read(event, false);
3898 3899
	total += perf_event_count(event);

3900 3901 3902 3903 3904 3905
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3906
		(void)perf_event_read(child, false);
3907
		total += perf_event_count(child);
3908 3909 3910
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3911
	mutex_unlock(&event->child_mutex);
3912 3913 3914

	return total;
}
3915
EXPORT_SYMBOL_GPL(perf_event_read_value);
3916

3917
static int __perf_read_group_add(struct perf_event *leader,
3918
					u64 read_format, u64 *values)
3919
{
3920 3921
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3922
	int ret;
P
Peter Zijlstra 已提交
3923

3924 3925 3926
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3927

3928 3929 3930 3931 3932 3933 3934 3935 3936
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3937

3938 3939 3940 3941 3942 3943 3944 3945 3946
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3947 3948
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3949

3950 3951 3952 3953 3954
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3955 3956

	return 0;
3957
}
3958

3959 3960 3961 3962 3963
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3964
	int ret;
3965
	u64 *values;
3966

3967
	lockdep_assert_held(&ctx->mutex);
3968

3969 3970 3971
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3972

3973 3974 3975 3976 3977 3978 3979
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3980

3981 3982 3983 3984 3985 3986 3987 3988 3989
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3990

3991
	mutex_unlock(&leader->child_mutex);
3992

3993
	ret = event->read_size;
3994 3995
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3996
	goto out;
3997

3998 3999 4000
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4001
	kfree(values);
4002
	return ret;
4003 4004
}

4005
static int perf_read_one(struct perf_event *event,
4006 4007
				 u64 read_format, char __user *buf)
{
4008
	u64 enabled, running;
4009 4010 4011
	u64 values[4];
	int n = 0;

4012 4013 4014 4015 4016
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4017
	if (read_format & PERF_FORMAT_ID)
4018
		values[n++] = primary_event_id(event);
4019 4020 4021 4022 4023 4024 4025

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4039
/*
4040
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4041 4042
 */
static ssize_t
4043
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4044
{
4045
	u64 read_format = event->attr.read_format;
4046
	int ret;
T
Thomas Gleixner 已提交
4047

4048
	/*
4049
	 * Return end-of-file for a read on a event that is in
4050 4051 4052
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4053
	if (event->state == PERF_EVENT_STATE_ERROR)
4054 4055
		return 0;

4056
	if (count < event->read_size)
4057 4058
		return -ENOSPC;

4059
	WARN_ON_ONCE(event->ctx->parent_ctx);
4060
	if (read_format & PERF_FORMAT_GROUP)
4061
		ret = perf_read_group(event, read_format, buf);
4062
	else
4063
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4064

4065
	return ret;
T
Thomas Gleixner 已提交
4066 4067 4068 4069 4070
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4071
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4072 4073
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4074

P
Peter Zijlstra 已提交
4075
	ctx = perf_event_ctx_lock(event);
4076
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4077 4078 4079
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4080 4081 4082 4083
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4084
	struct perf_event *event = file->private_data;
4085
	struct ring_buffer *rb;
4086
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4087

4088
	poll_wait(file, &event->waitq, wait);
4089

4090
	if (is_event_hup(event))
4091
		return events;
P
Peter Zijlstra 已提交
4092

4093
	/*
4094 4095
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4096 4097
	 */
	mutex_lock(&event->mmap_mutex);
4098 4099
	rb = event->rb;
	if (rb)
4100
		events = atomic_xchg(&rb->poll, 0);
4101
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4102 4103 4104
	return events;
}

P
Peter Zijlstra 已提交
4105
static void _perf_event_reset(struct perf_event *event)
4106
{
4107
	(void)perf_event_read(event, false);
4108
	local64_set(&event->count, 0);
4109
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4110 4111
}

4112
/*
4113 4114 4115 4116
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4117
 */
4118 4119
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4120
{
4121
	struct perf_event *child;
P
Peter Zijlstra 已提交
4122

4123
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4124

4125 4126 4127
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4128
		func(child);
4129
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4130 4131
}

4132 4133
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4134
{
4135 4136
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4137

P
Peter Zijlstra 已提交
4138 4139
	lockdep_assert_held(&ctx->mutex);

4140
	event = event->group_leader;
4141

4142 4143
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4144
		perf_event_for_each_child(sibling, func);
4145 4146
}

4147 4148
struct period_event {
	struct perf_event *event;
4149
	u64 value;
4150
};
4151

4152 4153 4154 4155 4156 4157 4158
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4159

4160
	raw_spin_lock(&ctx->lock);
4161 4162
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4163
	} else {
4164 4165
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4166
	}
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4180
	raw_spin_unlock(&ctx->lock);
4181

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task;
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	task = ctx->task;
	pe.value = value;

	if (!task) {
		cpu_function_call(event->cpu, __perf_event_period, &pe);
		return 0;
	}

retry:
	if (!task_function_call(task, __perf_event_period, &pe))
		return 0;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		task = ctx->task;
		goto retry;
	}

4223 4224 4225 4226 4227 4228 4229 4230
	if (event->attr.freq) {
		event->attr.sample_freq = value;
	} else {
		event->attr.sample_period = value;
		event->hw.sample_period = value;
	}

	local64_set(&event->hw.period_left, 0);
4231
	raw_spin_unlock_irq(&ctx->lock);
4232

4233
	return 0;
4234 4235
}

4236 4237
static const struct file_operations perf_fops;

4238
static inline int perf_fget_light(int fd, struct fd *p)
4239
{
4240 4241 4242
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4243

4244 4245 4246
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4247
	}
4248 4249
	*p = f;
	return 0;
4250 4251 4252 4253
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4254
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4255
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4256

P
Peter Zijlstra 已提交
4257
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4258
{
4259
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4260
	u32 flags = arg;
4261 4262

	switch (cmd) {
4263
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4264
		func = _perf_event_enable;
4265
		break;
4266
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4267
		func = _perf_event_disable;
4268
		break;
4269
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4270
		func = _perf_event_reset;
4271
		break;
P
Peter Zijlstra 已提交
4272

4273
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4274
		return _perf_event_refresh(event, arg);
4275

4276 4277
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4278

4279 4280 4281 4282 4283 4284 4285 4286 4287
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4288
	case PERF_EVENT_IOC_SET_OUTPUT:
4289 4290 4291
	{
		int ret;
		if (arg != -1) {
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4302 4303 4304
		}
		return ret;
	}
4305

L
Li Zefan 已提交
4306 4307 4308
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4309 4310 4311
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4312
	default:
P
Peter Zijlstra 已提交
4313
		return -ENOTTY;
4314
	}
P
Peter Zijlstra 已提交
4315 4316

	if (flags & PERF_IOC_FLAG_GROUP)
4317
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4318
	else
4319
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4320 4321

	return 0;
4322 4323
}

P
Peter Zijlstra 已提交
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4357
int perf_event_task_enable(void)
4358
{
P
Peter Zijlstra 已提交
4359
	struct perf_event_context *ctx;
4360
	struct perf_event *event;
4361

4362
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4363 4364 4365 4366 4367
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4368
	mutex_unlock(&current->perf_event_mutex);
4369 4370 4371 4372

	return 0;
}

4373
int perf_event_task_disable(void)
4374
{
P
Peter Zijlstra 已提交
4375
	struct perf_event_context *ctx;
4376
	struct perf_event *event;
4377

4378
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4379 4380 4381 4382 4383
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4384
	mutex_unlock(&current->perf_event_mutex);
4385 4386 4387 4388

	return 0;
}

4389
static int perf_event_index(struct perf_event *event)
4390
{
P
Peter Zijlstra 已提交
4391 4392 4393
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4394
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4395 4396
		return 0;

4397
	return event->pmu->event_idx(event);
4398 4399
}

4400
static void calc_timer_values(struct perf_event *event,
4401
				u64 *now,
4402 4403
				u64 *enabled,
				u64 *running)
4404
{
4405
	u64 ctx_time;
4406

4407 4408
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4409 4410 4411 4412
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4428 4429
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4430 4431 4432 4433 4434

unlock:
	rcu_read_unlock();
}

4435 4436
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4437 4438 4439
{
}

4440 4441 4442 4443 4444
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4445
void perf_event_update_userpage(struct perf_event *event)
4446
{
4447
	struct perf_event_mmap_page *userpg;
4448
	struct ring_buffer *rb;
4449
	u64 enabled, running, now;
4450 4451

	rcu_read_lock();
4452 4453 4454 4455
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4456 4457 4458 4459 4460 4461 4462 4463 4464
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4465
	calc_timer_values(event, &now, &enabled, &running);
4466

4467
	userpg = rb->user_page;
4468 4469 4470 4471 4472
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4473
	++userpg->lock;
4474
	barrier();
4475
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4476
	userpg->offset = perf_event_count(event);
4477
	if (userpg->index)
4478
		userpg->offset -= local64_read(&event->hw.prev_count);
4479

4480
	userpg->time_enabled = enabled +
4481
			atomic64_read(&event->child_total_time_enabled);
4482

4483
	userpg->time_running = running +
4484
			atomic64_read(&event->child_total_time_running);
4485

4486
	arch_perf_update_userpage(event, userpg, now);
4487

4488
	barrier();
4489
	++userpg->lock;
4490
	preempt_enable();
4491
unlock:
4492
	rcu_read_unlock();
4493 4494
}

4495 4496 4497
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4498
	struct ring_buffer *rb;
4499 4500 4501 4502 4503 4504 4505 4506 4507
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4508 4509
	rb = rcu_dereference(event->rb);
	if (!rb)
4510 4511 4512 4513 4514
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4515
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4530 4531 4532
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4533
	struct ring_buffer *old_rb = NULL;
4534 4535
	unsigned long flags;

4536 4537 4538 4539 4540 4541
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4542

4543 4544 4545 4546
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4547

4548 4549
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4550
	}
4551

4552
	if (rb) {
4553 4554 4555 4556 4557
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4574 4575 4576 4577 4578 4579 4580 4581
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4582 4583 4584 4585
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4586 4587 4588
	rcu_read_unlock();
}

4589
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4590
{
4591
	struct ring_buffer *rb;
4592

4593
	rcu_read_lock();
4594 4595 4596 4597
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4598 4599 4600
	}
	rcu_read_unlock();

4601
	return rb;
4602 4603
}

4604
void ring_buffer_put(struct ring_buffer *rb)
4605
{
4606
	if (!atomic_dec_and_test(&rb->refcount))
4607
		return;
4608

4609
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4610

4611
	call_rcu(&rb->rcu_head, rb_free_rcu);
4612 4613 4614 4615
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4616
	struct perf_event *event = vma->vm_file->private_data;
4617

4618
	atomic_inc(&event->mmap_count);
4619
	atomic_inc(&event->rb->mmap_count);
4620

4621 4622 4623
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4624 4625
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4626 4627
}

4628 4629 4630 4631 4632 4633 4634 4635
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4636 4637
static void perf_mmap_close(struct vm_area_struct *vma)
{
4638
	struct perf_event *event = vma->vm_file->private_data;
4639

4640
	struct ring_buffer *rb = ring_buffer_get(event);
4641 4642 4643
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4644

4645 4646 4647
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4662 4663 4664
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4665
		goto out_put;
4666

4667
	ring_buffer_attach(event, NULL);
4668 4669 4670
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4671 4672
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4673

4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4690

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4702 4703 4704
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4705
		mutex_unlock(&event->mmap_mutex);
4706
		put_event(event);
4707

4708 4709 4710 4711 4712
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4713
	}
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4729
out_put:
4730
	ring_buffer_put(rb); /* could be last */
4731 4732
}

4733
static const struct vm_operations_struct perf_mmap_vmops = {
4734
	.open		= perf_mmap_open,
4735
	.close		= perf_mmap_close, /* non mergable */
4736 4737
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4738 4739 4740 4741
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4742
	struct perf_event *event = file->private_data;
4743
	unsigned long user_locked, user_lock_limit;
4744
	struct user_struct *user = current_user();
4745
	unsigned long locked, lock_limit;
4746
	struct ring_buffer *rb = NULL;
4747 4748
	unsigned long vma_size;
	unsigned long nr_pages;
4749
	long user_extra = 0, extra = 0;
4750
	int ret = 0, flags = 0;
4751

4752 4753 4754
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4755
	 * same rb.
4756 4757 4758 4759
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4760
	if (!(vma->vm_flags & VM_SHARED))
4761
		return -EINVAL;
4762 4763

	vma_size = vma->vm_end - vma->vm_start;
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4824

4825
	/*
4826
	 * If we have rb pages ensure they're a power-of-two number, so we
4827 4828
	 * can do bitmasks instead of modulo.
	 */
4829
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4830 4831
		return -EINVAL;

4832
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4833 4834
		return -EINVAL;

4835
	WARN_ON_ONCE(event->ctx->parent_ctx);
4836
again:
4837
	mutex_lock(&event->mmap_mutex);
4838
	if (event->rb) {
4839
		if (event->rb->nr_pages != nr_pages) {
4840
			ret = -EINVAL;
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4854 4855 4856
		goto unlock;
	}

4857
	user_extra = nr_pages + 1;
4858 4859

accounting:
4860
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4861 4862 4863 4864 4865 4866

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4867
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4868

4869 4870
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4871

4872
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4873
	lock_limit >>= PAGE_SHIFT;
4874
	locked = vma->vm_mm->pinned_vm + extra;
4875

4876 4877
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4878 4879 4880
		ret = -EPERM;
		goto unlock;
	}
4881

4882
	WARN_ON(!rb && event->rb);
4883

4884
	if (vma->vm_flags & VM_WRITE)
4885
		flags |= RING_BUFFER_WRITABLE;
4886

4887
	if (!rb) {
4888 4889 4890
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4891

4892 4893 4894 4895
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4896

4897 4898 4899
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4900

4901
		ring_buffer_attach(event, rb);
4902

4903 4904 4905
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4906 4907
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4908 4909 4910
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4911

4912
unlock:
4913 4914 4915 4916
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4917
		atomic_inc(&event->mmap_count);
4918 4919 4920 4921
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4922
	mutex_unlock(&event->mmap_mutex);
4923

4924 4925 4926 4927
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4928
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4929
	vma->vm_ops = &perf_mmap_vmops;
4930

4931 4932 4933
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4934
	return ret;
4935 4936
}

P
Peter Zijlstra 已提交
4937 4938
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4939
	struct inode *inode = file_inode(filp);
4940
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4941 4942 4943
	int retval;

	mutex_lock(&inode->i_mutex);
4944
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4945 4946 4947 4948 4949 4950 4951 4952
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4953
static const struct file_operations perf_fops = {
4954
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4955 4956 4957
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4958
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4959
	.compat_ioctl		= perf_compat_ioctl,
4960
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4961
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4962 4963
};

4964
/*
4965
 * Perf event wakeup
4966 4967 4968 4969 4970
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4971 4972 4973 4974 4975 4976 4977 4978
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4979
void perf_event_wakeup(struct perf_event *event)
4980
{
4981
	ring_buffer_wakeup(event);
4982

4983
	if (event->pending_kill) {
4984
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4985
		event->pending_kill = 0;
4986
	}
4987 4988
}

4989
static void perf_pending_event(struct irq_work *entry)
4990
{
4991 4992
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4993 4994 4995 4996 4997 4998 4999
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5000

5001 5002 5003
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
5004 5005
	}

5006 5007 5008
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5009
	}
5010 5011 5012

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5013 5014
}

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5051
static void perf_sample_regs_user(struct perf_regs *regs_user,
5052 5053
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5054
{
5055 5056
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5057
		regs_user->regs = regs;
5058 5059
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5060 5061 5062
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5063 5064 5065
	}
}

5066 5067 5068 5069 5070 5071 5072 5073
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5169 5170 5171
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5185
		data->time = perf_event_clock(event);
5186

5187
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5199 5200 5201
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5226 5227 5228

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5229 5230
}

5231 5232 5233
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5234 5235 5236 5237 5238
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5239
static void perf_output_read_one(struct perf_output_handle *handle,
5240 5241
				 struct perf_event *event,
				 u64 enabled, u64 running)
5242
{
5243
	u64 read_format = event->attr.read_format;
5244 5245 5246
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5247
	values[n++] = perf_event_count(event);
5248
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5249
		values[n++] = enabled +
5250
			atomic64_read(&event->child_total_time_enabled);
5251 5252
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5253
		values[n++] = running +
5254
			atomic64_read(&event->child_total_time_running);
5255 5256
	}
	if (read_format & PERF_FORMAT_ID)
5257
		values[n++] = primary_event_id(event);
5258

5259
	__output_copy(handle, values, n * sizeof(u64));
5260 5261 5262
}

/*
5263
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5264 5265
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5266 5267
			    struct perf_event *event,
			    u64 enabled, u64 running)
5268
{
5269 5270
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5271 5272 5273 5274 5275 5276
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5277
		values[n++] = enabled;
5278 5279

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5280
		values[n++] = running;
5281

5282
	if (leader != event)
5283 5284
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5285
	values[n++] = perf_event_count(leader);
5286
	if (read_format & PERF_FORMAT_ID)
5287
		values[n++] = primary_event_id(leader);
5288

5289
	__output_copy(handle, values, n * sizeof(u64));
5290

5291
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5292 5293
		n = 0;

5294 5295
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5296 5297
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5298
		values[n++] = perf_event_count(sub);
5299
		if (read_format & PERF_FORMAT_ID)
5300
			values[n++] = primary_event_id(sub);
5301

5302
		__output_copy(handle, values, n * sizeof(u64));
5303 5304 5305
	}
}

5306 5307 5308
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5309
static void perf_output_read(struct perf_output_handle *handle,
5310
			     struct perf_event *event)
5311
{
5312
	u64 enabled = 0, running = 0, now;
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5324
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5325
		calc_timer_values(event, &now, &enabled, &running);
5326

5327
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5328
		perf_output_read_group(handle, event, enabled, running);
5329
	else
5330
		perf_output_read_one(handle, event, enabled, running);
5331 5332
}

5333 5334 5335
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5336
			struct perf_event *event)
5337 5338 5339 5340 5341
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5342 5343 5344
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5370
		perf_output_read(handle, event);
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5381
			__output_copy(handle, data->callchain, size);
5382 5383 5384 5385 5386 5387 5388 5389
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5390 5391 5392 5393 5394 5395 5396 5397 5398
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5410

5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5445

5446
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5447 5448 5449
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5450
	}
A
Andi Kleen 已提交
5451 5452 5453

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5454 5455 5456

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5457

A
Andi Kleen 已提交
5458 5459 5460
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5491 5492 5493 5494
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5495
			 struct perf_event *event,
5496
			 struct pt_regs *regs)
5497
{
5498
	u64 sample_type = event->attr.sample_type;
5499

5500
	header->type = PERF_RECORD_SAMPLE;
5501
	header->size = sizeof(*header) + event->header_size;
5502 5503 5504

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5505

5506
	__perf_event_header__init_id(header, data, event);
5507

5508
	if (sample_type & PERF_SAMPLE_IP)
5509 5510
		data->ip = perf_instruction_pointer(regs);

5511
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5512
		int size = 1;
5513

5514
		data->callchain = perf_callchain(event, regs);
5515 5516 5517 5518 5519

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5520 5521
	}

5522
	if (sample_type & PERF_SAMPLE_RAW) {
5523 5524 5525 5526 5527 5528 5529
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5530
		header->size += round_up(size, sizeof(u64));
5531
	}
5532 5533 5534 5535 5536 5537 5538 5539 5540

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5541

5542
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5543 5544
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5545

5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5569
						     data->regs_user.regs);
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5597
}
5598

5599 5600 5601
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5602 5603 5604
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5605

5606 5607 5608
	/* protect the callchain buffers */
	rcu_read_lock();

5609
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5610

5611
	if (perf_output_begin(&handle, event, header.size))
5612
		goto exit;
5613

5614
	perf_output_sample(&handle, &header, data, event);
5615

5616
	perf_output_end(&handle);
5617 5618 5619

exit:
	rcu_read_unlock();
5620 5621
}

5622
/*
5623
 * read event_id
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5634
perf_event_read_event(struct perf_event *event,
5635 5636 5637
			struct task_struct *task)
{
	struct perf_output_handle handle;
5638
	struct perf_sample_data sample;
5639
	struct perf_read_event read_event = {
5640
		.header = {
5641
			.type = PERF_RECORD_READ,
5642
			.misc = 0,
5643
			.size = sizeof(read_event) + event->read_size,
5644
		},
5645 5646
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5647
	};
5648
	int ret;
5649

5650
	perf_event_header__init_id(&read_event.header, &sample, event);
5651
	ret = perf_output_begin(&handle, event, read_event.header.size);
5652 5653 5654
	if (ret)
		return;

5655
	perf_output_put(&handle, read_event);
5656
	perf_output_read(&handle, event);
5657
	perf_event__output_id_sample(event, &handle, &sample);
5658

5659 5660 5661
	perf_output_end(&handle);
}

5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5676
		output(event, data);
5677 5678 5679
	}
}

J
Jiri Olsa 已提交
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5691
static void
5692
perf_event_aux(perf_event_aux_output_cb output, void *data,
5693 5694 5695 5696 5697 5698 5699
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5711 5712 5713 5714 5715
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5716
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5717 5718 5719 5720 5721
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5722
			perf_event_aux_ctx(ctx, output, data);
5723 5724 5725 5726 5727 5728
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5729
/*
P
Peter Zijlstra 已提交
5730 5731
 * task tracking -- fork/exit
 *
5732
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5733 5734
 */

P
Peter Zijlstra 已提交
5735
struct perf_task_event {
5736
	struct task_struct		*task;
5737
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5738 5739 5740 5741 5742 5743

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5744 5745
		u32				tid;
		u32				ptid;
5746
		u64				time;
5747
	} event_id;
P
Peter Zijlstra 已提交
5748 5749
};

5750 5751
static int perf_event_task_match(struct perf_event *event)
{
5752 5753 5754
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5755 5756
}

5757
static void perf_event_task_output(struct perf_event *event,
5758
				   void *data)
P
Peter Zijlstra 已提交
5759
{
5760
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5761
	struct perf_output_handle handle;
5762
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5763
	struct task_struct *task = task_event->task;
5764
	int ret, size = task_event->event_id.header.size;
5765

5766 5767 5768
	if (!perf_event_task_match(event))
		return;

5769
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5770

5771
	ret = perf_output_begin(&handle, event,
5772
				task_event->event_id.header.size);
5773
	if (ret)
5774
		goto out;
P
Peter Zijlstra 已提交
5775

5776 5777
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5778

5779 5780
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5781

5782 5783
	task_event->event_id.time = perf_event_clock(event);

5784
	perf_output_put(&handle, task_event->event_id);
5785

5786 5787
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5788
	perf_output_end(&handle);
5789 5790
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5791 5792
}

5793 5794
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5795
			      int new)
P
Peter Zijlstra 已提交
5796
{
P
Peter Zijlstra 已提交
5797
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5798

5799 5800 5801
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5802 5803
		return;

P
Peter Zijlstra 已提交
5804
	task_event = (struct perf_task_event){
5805 5806
		.task	  = task,
		.task_ctx = task_ctx,
5807
		.event_id    = {
P
Peter Zijlstra 已提交
5808
			.header = {
5809
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5810
				.misc = 0,
5811
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5812
			},
5813 5814
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5815 5816
			/* .tid  */
			/* .ptid */
5817
			/* .time */
P
Peter Zijlstra 已提交
5818 5819 5820
		},
	};

5821
	perf_event_aux(perf_event_task_output,
5822 5823
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5824 5825
}

5826
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5827
{
5828
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5829 5830
}

5831 5832 5833 5834 5835
/*
 * comm tracking
 */

struct perf_comm_event {
5836 5837
	struct task_struct	*task;
	char			*comm;
5838 5839 5840 5841 5842 5843 5844
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5845
	} event_id;
5846 5847
};

5848 5849 5850 5851 5852
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5853
static void perf_event_comm_output(struct perf_event *event,
5854
				   void *data)
5855
{
5856
	struct perf_comm_event *comm_event = data;
5857
	struct perf_output_handle handle;
5858
	struct perf_sample_data sample;
5859
	int size = comm_event->event_id.header.size;
5860 5861
	int ret;

5862 5863 5864
	if (!perf_event_comm_match(event))
		return;

5865 5866
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5867
				comm_event->event_id.header.size);
5868 5869

	if (ret)
5870
		goto out;
5871

5872 5873
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5874

5875
	perf_output_put(&handle, comm_event->event_id);
5876
	__output_copy(&handle, comm_event->comm,
5877
				   comm_event->comm_size);
5878 5879 5880

	perf_event__output_id_sample(event, &handle, &sample);

5881
	perf_output_end(&handle);
5882 5883
out:
	comm_event->event_id.header.size = size;
5884 5885
}

5886
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5887
{
5888
	char comm[TASK_COMM_LEN];
5889 5890
	unsigned int size;

5891
	memset(comm, 0, sizeof(comm));
5892
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5893
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5894 5895 5896 5897

	comm_event->comm = comm;
	comm_event->comm_size = size;

5898
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5899

5900
	perf_event_aux(perf_event_comm_output,
5901 5902
		       comm_event,
		       NULL);
5903 5904
}

5905
void perf_event_comm(struct task_struct *task, bool exec)
5906
{
5907 5908
	struct perf_comm_event comm_event;

5909
	if (!atomic_read(&nr_comm_events))
5910
		return;
5911

5912
	comm_event = (struct perf_comm_event){
5913
		.task	= task,
5914 5915
		/* .comm      */
		/* .comm_size */
5916
		.event_id  = {
5917
			.header = {
5918
				.type = PERF_RECORD_COMM,
5919
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5920 5921 5922 5923
				/* .size */
			},
			/* .pid */
			/* .tid */
5924 5925 5926
		},
	};

5927
	perf_event_comm_event(&comm_event);
5928 5929
}

5930 5931 5932 5933 5934
/*
 * mmap tracking
 */

struct perf_mmap_event {
5935 5936 5937 5938
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5939 5940 5941
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5942
	u32			prot, flags;
5943 5944 5945 5946 5947 5948 5949 5950 5951

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5952
	} event_id;
5953 5954
};

5955 5956 5957 5958 5959 5960 5961 5962
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5963
	       (executable && (event->attr.mmap || event->attr.mmap2));
5964 5965
}

5966
static void perf_event_mmap_output(struct perf_event *event,
5967
				   void *data)
5968
{
5969
	struct perf_mmap_event *mmap_event = data;
5970
	struct perf_output_handle handle;
5971
	struct perf_sample_data sample;
5972
	int size = mmap_event->event_id.header.size;
5973
	int ret;
5974

5975 5976 5977
	if (!perf_event_mmap_match(event, data))
		return;

5978 5979 5980 5981 5982
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5983
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5984 5985
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5986 5987
	}

5988 5989
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5990
				mmap_event->event_id.header.size);
5991
	if (ret)
5992
		goto out;
5993

5994 5995
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5996

5997
	perf_output_put(&handle, mmap_event->event_id);
5998 5999 6000 6001 6002 6003

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6004 6005
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6006 6007
	}

6008
	__output_copy(&handle, mmap_event->file_name,
6009
				   mmap_event->file_size);
6010 6011 6012

	perf_event__output_id_sample(event, &handle, &sample);

6013
	perf_output_end(&handle);
6014 6015
out:
	mmap_event->event_id.header.size = size;
6016 6017
}

6018
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6019
{
6020 6021
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6022 6023
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6024
	u32 prot = 0, flags = 0;
6025 6026 6027
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6028
	char *name;
6029

6030
	if (file) {
6031 6032
		struct inode *inode;
		dev_t dev;
6033

6034
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6035
		if (!buf) {
6036 6037
			name = "//enomem";
			goto cpy_name;
6038
		}
6039
		/*
6040
		 * d_path() works from the end of the rb backwards, so we
6041 6042 6043
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6044
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6045
		if (IS_ERR(name)) {
6046 6047
			name = "//toolong";
			goto cpy_name;
6048
		}
6049 6050 6051 6052 6053 6054
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6077
		goto got_name;
6078
	} else {
6079 6080 6081 6082 6083 6084
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6085
		name = (char *)arch_vma_name(vma);
6086 6087
		if (name)
			goto cpy_name;
6088

6089
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6090
				vma->vm_end >= vma->vm_mm->brk) {
6091 6092
			name = "[heap]";
			goto cpy_name;
6093 6094
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6095
				vma->vm_end >= vma->vm_mm->start_stack) {
6096 6097
			name = "[stack]";
			goto cpy_name;
6098 6099
		}

6100 6101
		name = "//anon";
		goto cpy_name;
6102 6103
	}

6104 6105 6106
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6107
got_name:
6108 6109 6110 6111 6112 6113 6114 6115
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6116 6117 6118

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6119 6120 6121 6122
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6123 6124
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6125

6126 6127 6128
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6129
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6130

6131
	perf_event_aux(perf_event_mmap_output,
6132 6133
		       mmap_event,
		       NULL);
6134

6135 6136 6137
	kfree(buf);
}

6138
void perf_event_mmap(struct vm_area_struct *vma)
6139
{
6140 6141
	struct perf_mmap_event mmap_event;

6142
	if (!atomic_read(&nr_mmap_events))
6143 6144 6145
		return;

	mmap_event = (struct perf_mmap_event){
6146
		.vma	= vma,
6147 6148
		/* .file_name */
		/* .file_size */
6149
		.event_id  = {
6150
			.header = {
6151
				.type = PERF_RECORD_MMAP,
6152
				.misc = PERF_RECORD_MISC_USER,
6153 6154 6155 6156
				/* .size */
			},
			/* .pid */
			/* .tid */
6157 6158
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6159
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6160
		},
6161 6162 6163 6164
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6165 6166
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6167 6168
	};

6169
	perf_event_mmap_event(&mmap_event);
6170 6171
}

A
Alexander Shishkin 已提交
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6324 6325 6326 6327
/*
 * IRQ throttle logging
 */

6328
static void perf_log_throttle(struct perf_event *event, int enable)
6329 6330
{
	struct perf_output_handle handle;
6331
	struct perf_sample_data sample;
6332 6333 6334 6335 6336
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6337
		u64				id;
6338
		u64				stream_id;
6339 6340
	} throttle_event = {
		.header = {
6341
			.type = PERF_RECORD_THROTTLE,
6342 6343 6344
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6345
		.time		= perf_event_clock(event),
6346 6347
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6348 6349
	};

6350
	if (enable)
6351
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6352

6353 6354 6355
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6356
				throttle_event.header.size);
6357 6358 6359 6360
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6361
	perf_event__output_id_sample(event, &handle, &sample);
6362 6363 6364
	perf_output_end(&handle);
}

6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6401
/*
6402
 * Generic event overflow handling, sampling.
6403 6404
 */

6405
static int __perf_event_overflow(struct perf_event *event,
6406 6407
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6408
{
6409 6410
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6411
	u64 seq;
6412 6413
	int ret = 0;

6414 6415 6416 6417 6418 6419 6420
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6421 6422 6423 6424 6425 6426 6427 6428 6429
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6430 6431
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6432
			tick_nohz_full_kick();
6433 6434
			ret = 1;
		}
6435
	}
6436

6437
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6438
		u64 now = perf_clock();
6439
		s64 delta = now - hwc->freq_time_stamp;
6440

6441
		hwc->freq_time_stamp = now;
6442

6443
		if (delta > 0 && delta < 2*TICK_NSEC)
6444
			perf_adjust_period(event, delta, hwc->last_period, true);
6445 6446
	}

6447 6448
	/*
	 * XXX event_limit might not quite work as expected on inherited
6449
	 * events
6450 6451
	 */

6452 6453
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6454
		ret = 1;
6455
		event->pending_kill = POLL_HUP;
6456 6457
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6458 6459
	}

6460
	if (event->overflow_handler)
6461
		event->overflow_handler(event, data, regs);
6462
	else
6463
		perf_event_output(event, data, regs);
6464

6465
	if (*perf_event_fasync(event) && event->pending_kill) {
6466 6467
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6468 6469
	}

6470
	return ret;
6471 6472
}

6473
int perf_event_overflow(struct perf_event *event,
6474 6475
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6476
{
6477
	return __perf_event_overflow(event, 1, data, regs);
6478 6479
}

6480
/*
6481
 * Generic software event infrastructure
6482 6483
 */

6484 6485 6486 6487 6488 6489 6490
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6491 6492 6493

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6494 6495 6496 6497
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6498
/*
6499 6500
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6501 6502 6503 6504
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6505
u64 perf_swevent_set_period(struct perf_event *event)
6506
{
6507
	struct hw_perf_event *hwc = &event->hw;
6508 6509 6510 6511 6512
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6513 6514

again:
6515
	old = val = local64_read(&hwc->period_left);
6516 6517
	if (val < 0)
		return 0;
6518

6519 6520 6521
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6522
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6523
		goto again;
6524

6525
	return nr;
6526 6527
}

6528
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6529
				    struct perf_sample_data *data,
6530
				    struct pt_regs *regs)
6531
{
6532
	struct hw_perf_event *hwc = &event->hw;
6533
	int throttle = 0;
6534

6535 6536
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6537

6538 6539
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6540

6541
	for (; overflow; overflow--) {
6542
		if (__perf_event_overflow(event, throttle,
6543
					    data, regs)) {
6544 6545 6546 6547 6548 6549
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6550
		throttle = 1;
6551
	}
6552 6553
}

P
Peter Zijlstra 已提交
6554
static void perf_swevent_event(struct perf_event *event, u64 nr,
6555
			       struct perf_sample_data *data,
6556
			       struct pt_regs *regs)
6557
{
6558
	struct hw_perf_event *hwc = &event->hw;
6559

6560
	local64_add(nr, &event->count);
6561

6562 6563 6564
	if (!regs)
		return;

6565
	if (!is_sampling_event(event))
6566
		return;
6567

6568 6569 6570 6571 6572 6573
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6574
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6575
		return perf_swevent_overflow(event, 1, data, regs);
6576

6577
	if (local64_add_negative(nr, &hwc->period_left))
6578
		return;
6579

6580
	perf_swevent_overflow(event, 0, data, regs);
6581 6582
}

6583 6584 6585
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6586
	if (event->hw.state & PERF_HES_STOPPED)
6587
		return 1;
P
Peter Zijlstra 已提交
6588

6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6600
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6601
				enum perf_type_id type,
L
Li Zefan 已提交
6602 6603 6604
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6605
{
6606
	if (event->attr.type != type)
6607
		return 0;
6608

6609
	if (event->attr.config != event_id)
6610 6611
		return 0;

6612 6613
	if (perf_exclude_event(event, regs))
		return 0;
6614 6615 6616 6617

	return 1;
}

6618 6619 6620 6621 6622 6623 6624
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6625 6626
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6627
{
6628 6629 6630 6631
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6632

6633 6634
/* For the read side: events when they trigger */
static inline struct hlist_head *
6635
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6636 6637
{
	struct swevent_hlist *hlist;
6638

6639
	hlist = rcu_dereference(swhash->swevent_hlist);
6640 6641 6642
	if (!hlist)
		return NULL;

6643 6644 6645 6646 6647
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6648
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6659
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6660 6661 6662 6663 6664
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6665 6666 6667
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6668
				    u64 nr,
6669 6670
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6671
{
6672
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6673
	struct perf_event *event;
6674
	struct hlist_head *head;
6675

6676
	rcu_read_lock();
6677
	head = find_swevent_head_rcu(swhash, type, event_id);
6678 6679 6680
	if (!head)
		goto end;

6681
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6682
		if (perf_swevent_match(event, type, event_id, data, regs))
6683
			perf_swevent_event(event, nr, data, regs);
6684
	}
6685 6686
end:
	rcu_read_unlock();
6687 6688
}

6689 6690
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6691
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6692
{
6693
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6694

6695
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6696
}
I
Ingo Molnar 已提交
6697
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6698

6699
inline void perf_swevent_put_recursion_context(int rctx)
6700
{
6701
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6702

6703
	put_recursion_context(swhash->recursion, rctx);
6704
}
6705

6706
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6707
{
6708
	struct perf_sample_data data;
6709

6710
	if (WARN_ON_ONCE(!regs))
6711
		return;
6712

6713
	perf_sample_data_init(&data, addr, 0);
6714
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6727 6728

	perf_swevent_put_recursion_context(rctx);
6729
fail:
6730
	preempt_enable_notrace();
6731 6732
}

6733
static void perf_swevent_read(struct perf_event *event)
6734 6735 6736
{
}

P
Peter Zijlstra 已提交
6737
static int perf_swevent_add(struct perf_event *event, int flags)
6738
{
6739
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6740
	struct hw_perf_event *hwc = &event->hw;
6741 6742
	struct hlist_head *head;

6743
	if (is_sampling_event(event)) {
6744
		hwc->last_period = hwc->sample_period;
6745
		perf_swevent_set_period(event);
6746
	}
6747

P
Peter Zijlstra 已提交
6748 6749
	hwc->state = !(flags & PERF_EF_START);

6750
	head = find_swevent_head(swhash, event);
6751 6752 6753 6754 6755 6756
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6757
		return -EINVAL;
6758
	}
6759 6760

	hlist_add_head_rcu(&event->hlist_entry, head);
6761
	perf_event_update_userpage(event);
6762

6763 6764 6765
	return 0;
}

P
Peter Zijlstra 已提交
6766
static void perf_swevent_del(struct perf_event *event, int flags)
6767
{
6768
	hlist_del_rcu(&event->hlist_entry);
6769 6770
}

P
Peter Zijlstra 已提交
6771
static void perf_swevent_start(struct perf_event *event, int flags)
6772
{
P
Peter Zijlstra 已提交
6773
	event->hw.state = 0;
6774
}
I
Ingo Molnar 已提交
6775

P
Peter Zijlstra 已提交
6776
static void perf_swevent_stop(struct perf_event *event, int flags)
6777
{
P
Peter Zijlstra 已提交
6778
	event->hw.state = PERF_HES_STOPPED;
6779 6780
}

6781 6782
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6783
swevent_hlist_deref(struct swevent_htable *swhash)
6784
{
6785 6786
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6787 6788
}

6789
static void swevent_hlist_release(struct swevent_htable *swhash)
6790
{
6791
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6792

6793
	if (!hlist)
6794 6795
		return;

6796
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6797
	kfree_rcu(hlist, rcu_head);
6798 6799 6800 6801
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6802
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6803

6804
	mutex_lock(&swhash->hlist_mutex);
6805

6806 6807
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6808

6809
	mutex_unlock(&swhash->hlist_mutex);
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6822
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6823 6824
	int err = 0;

6825
	mutex_lock(&swhash->hlist_mutex);
6826

6827
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6828 6829 6830 6831 6832 6833 6834
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6835
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6836
	}
6837
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6838
exit:
6839
	mutex_unlock(&swhash->hlist_mutex);
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6860
fail:
6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6871
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6872

6873 6874 6875
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6876

6877 6878
	WARN_ON(event->parent);

6879
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6880 6881 6882 6883 6884
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6885
	u64 event_id = event->attr.config;
6886 6887 6888 6889

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6890 6891 6892 6893 6894 6895
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6896 6897 6898 6899 6900 6901 6902 6903 6904
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6905
	if (event_id >= PERF_COUNT_SW_MAX)
6906 6907 6908 6909 6910 6911 6912 6913 6914
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6915
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6916 6917 6918 6919 6920 6921 6922
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6923
	.task_ctx_nr	= perf_sw_context,
6924

6925 6926
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6927
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6928 6929 6930 6931
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6932 6933 6934
	.read		= perf_swevent_read,
};

6935 6936
#ifdef CONFIG_EVENT_TRACING

6937 6938 6939 6940 6941
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6942 6943 6944 6945
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6946 6947 6948 6949 6950 6951 6952 6953 6954
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6955 6956
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6957 6958 6959 6960
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6961 6962 6963 6964 6965 6966 6967 6968 6969
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6970 6971
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6972 6973
{
	struct perf_sample_data data;
6974 6975
	struct perf_event *event;

6976 6977 6978 6979 6980
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6981
	perf_sample_data_init(&data, addr, 0);
6982 6983
	data.raw = &raw;

6984
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6985
		if (perf_tp_event_match(event, &data, regs))
6986
			perf_swevent_event(event, count, &data, regs);
6987
	}
6988

6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7014
	perf_swevent_put_recursion_context(rctx);
7015 7016 7017
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7018
static void tp_perf_event_destroy(struct perf_event *event)
7019
{
7020
	perf_trace_destroy(event);
7021 7022
}

7023
static int perf_tp_event_init(struct perf_event *event)
7024
{
7025 7026
	int err;

7027 7028 7029
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7030 7031 7032 7033 7034 7035
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7036 7037
	err = perf_trace_init(event);
	if (err)
7038
		return err;
7039

7040
	event->destroy = tp_perf_event_destroy;
7041

7042 7043 7044 7045
	return 0;
}

static struct pmu perf_tracepoint = {
7046 7047
	.task_ctx_nr	= perf_sw_context,

7048
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7049 7050 7051 7052
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7053 7054 7055 7056 7057
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7058
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7059
}
L
Li Zefan 已提交
7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7084 7085 7086 7087 7088 7089 7090 7091 7092 7093
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7094 7095
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7096 7097 7098 7099 7100 7101
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7102
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7127
#else
L
Li Zefan 已提交
7128

7129
static inline void perf_tp_register(void)
7130 7131
{
}
L
Li Zefan 已提交
7132 7133 7134 7135 7136 7137 7138 7139 7140 7141

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7142 7143 7144 7145 7146 7147 7148 7149
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7150
#endif /* CONFIG_EVENT_TRACING */
7151

7152
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7153
void perf_bp_event(struct perf_event *bp, void *data)
7154
{
7155 7156 7157
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7158
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7159

P
Peter Zijlstra 已提交
7160
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7161
		perf_swevent_event(bp, 1, &sample, regs);
7162 7163 7164
}
#endif

7165 7166 7167
/*
 * hrtimer based swevent callback
 */
7168

7169
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7170
{
7171 7172 7173 7174 7175
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7176

7177
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7178 7179 7180 7181

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7182
	event->pmu->read(event);
7183

7184
	perf_sample_data_init(&data, 0, event->hw.last_period);
7185 7186 7187
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7188
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7189
			if (__perf_event_overflow(event, 1, &data, regs))
7190 7191
				ret = HRTIMER_NORESTART;
	}
7192

7193 7194
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7195

7196
	return ret;
7197 7198
}

7199
static void perf_swevent_start_hrtimer(struct perf_event *event)
7200
{
7201
	struct hw_perf_event *hwc = &event->hw;
7202 7203 7204 7205
	s64 period;

	if (!is_sampling_event(event))
		return;
7206

7207 7208 7209 7210
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7211

7212 7213 7214 7215
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7216 7217
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7218
}
7219 7220

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7221
{
7222 7223
	struct hw_perf_event *hwc = &event->hw;

7224
	if (is_sampling_event(event)) {
7225
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7226
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7227 7228 7229

		hrtimer_cancel(&hwc->hrtimer);
	}
7230 7231
}

P
Peter Zijlstra 已提交
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7252
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7253 7254 7255 7256
		event->attr.freq = 0;
	}
}

7257 7258 7259 7260 7261
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7262
{
7263 7264 7265
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7266
	now = local_clock();
7267 7268
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7269 7270
}

P
Peter Zijlstra 已提交
7271
static void cpu_clock_event_start(struct perf_event *event, int flags)
7272
{
P
Peter Zijlstra 已提交
7273
	local64_set(&event->hw.prev_count, local_clock());
7274 7275 7276
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7277
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7278
{
7279 7280 7281
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7282

P
Peter Zijlstra 已提交
7283 7284 7285 7286
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7287
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7288 7289 7290 7291 7292 7293 7294 7295 7296

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7297 7298 7299 7300
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7301

7302 7303 7304 7305 7306 7307 7308 7309
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7310 7311 7312 7313 7314 7315
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7316 7317
	perf_swevent_init_hrtimer(event);

7318
	return 0;
7319 7320
}

7321
static struct pmu perf_cpu_clock = {
7322 7323
	.task_ctx_nr	= perf_sw_context,

7324 7325
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7326
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7327 7328 7329 7330
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7331 7332 7333 7334 7335 7336 7337 7338
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7339
{
7340 7341
	u64 prev;
	s64 delta;
7342

7343 7344 7345 7346
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7347

P
Peter Zijlstra 已提交
7348
static void task_clock_event_start(struct perf_event *event, int flags)
7349
{
P
Peter Zijlstra 已提交
7350
	local64_set(&event->hw.prev_count, event->ctx->time);
7351 7352 7353
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7354
static void task_clock_event_stop(struct perf_event *event, int flags)
7355 7356 7357
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7358 7359 7360 7361 7362 7363
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7364
	perf_event_update_userpage(event);
7365

P
Peter Zijlstra 已提交
7366 7367 7368 7369 7370 7371
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7372 7373 7374 7375
}

static void task_clock_event_read(struct perf_event *event)
{
7376 7377 7378
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7379 7380 7381 7382 7383

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7384
{
7385 7386 7387 7388 7389 7390
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7391 7392 7393 7394 7395 7396
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7397 7398
	perf_swevent_init_hrtimer(event);

7399
	return 0;
L
Li Zefan 已提交
7400 7401
}

7402
static struct pmu perf_task_clock = {
7403 7404
	.task_ctx_nr	= perf_sw_context,

7405 7406
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7407
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7408 7409 7410 7411
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7412 7413
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7414

P
Peter Zijlstra 已提交
7415
static void perf_pmu_nop_void(struct pmu *pmu)
7416 7417
{
}
L
Li Zefan 已提交
7418

7419 7420 7421 7422
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7423
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7424
{
P
Peter Zijlstra 已提交
7425
	return 0;
L
Li Zefan 已提交
7426 7427
}

7428
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7429 7430

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7431
{
7432 7433 7434 7435 7436
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7437
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7438 7439
}

P
Peter Zijlstra 已提交
7440 7441
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7442 7443 7444 7445 7446 7447 7448
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7449 7450 7451
	perf_pmu_enable(pmu);
	return 0;
}
7452

P
Peter Zijlstra 已提交
7453
static void perf_pmu_cancel_txn(struct pmu *pmu)
7454
{
7455 7456 7457 7458 7459 7460 7461
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7462
	perf_pmu_enable(pmu);
7463 7464
}

7465 7466
static int perf_event_idx_default(struct perf_event *event)
{
7467
	return 0;
7468 7469
}

P
Peter Zijlstra 已提交
7470 7471 7472 7473
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7474
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7475
{
P
Peter Zijlstra 已提交
7476
	struct pmu *pmu;
7477

P
Peter Zijlstra 已提交
7478 7479
	if (ctxn < 0)
		return NULL;
7480

P
Peter Zijlstra 已提交
7481 7482 7483 7484
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7485

P
Peter Zijlstra 已提交
7486
	return NULL;
7487 7488
}

7489
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7490
{
7491 7492 7493 7494 7495 7496 7497
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7498 7499
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7500 7501 7502 7503 7504 7505
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7506

P
Peter Zijlstra 已提交
7507
	mutex_lock(&pmus_lock);
7508
	/*
P
Peter Zijlstra 已提交
7509
	 * Like a real lame refcount.
7510
	 */
7511 7512 7513
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7514
			goto out;
7515
		}
P
Peter Zijlstra 已提交
7516
	}
7517

7518
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7519 7520
out:
	mutex_unlock(&pmus_lock);
7521
}
P
Peter Zijlstra 已提交
7522
static struct idr pmu_idr;
7523

P
Peter Zijlstra 已提交
7524 7525 7526 7527 7528 7529 7530
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7531
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7532

7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7543 7544
static DEFINE_MUTEX(mux_interval_mutex);

7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7564
	mutex_lock(&mux_interval_mutex);
7565 7566 7567
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7568 7569
	get_online_cpus();
	for_each_online_cpu(cpu) {
7570 7571 7572 7573
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7574 7575
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7576
	}
7577 7578
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7579 7580 7581

	return count;
}
7582
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7583

7584 7585 7586 7587
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7588
};
7589
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7590 7591 7592 7593

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7594
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7610
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7631
static struct lock_class_key cpuctx_mutex;
7632
static struct lock_class_key cpuctx_lock;
7633

7634
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7635
{
P
Peter Zijlstra 已提交
7636
	int cpu, ret;
7637

7638
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7639 7640 7641 7642
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7643

P
Peter Zijlstra 已提交
7644 7645 7646 7647 7648 7649
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7650 7651 7652
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7653 7654 7655 7656 7657
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7658 7659 7660 7661 7662 7663
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7664
skip_type:
P
Peter Zijlstra 已提交
7665 7666 7667
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7668

W
Wei Yongjun 已提交
7669
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7670 7671
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7672
		goto free_dev;
7673

P
Peter Zijlstra 已提交
7674 7675 7676 7677
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7678
		__perf_event_init_context(&cpuctx->ctx);
7679
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7680
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7681
		cpuctx->ctx.pmu = pmu;
7682

7683
		__perf_mux_hrtimer_init(cpuctx, cpu);
7684

7685
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7686
	}
7687

P
Peter Zijlstra 已提交
7688
got_cpu_context:
P
Peter Zijlstra 已提交
7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7700
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7701 7702
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7703
		}
7704
	}
7705

P
Peter Zijlstra 已提交
7706 7707 7708 7709 7710
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7711 7712 7713
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7714
	list_add_rcu(&pmu->entry, &pmus);
7715
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7716 7717
	ret = 0;
unlock:
7718 7719
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7720
	return ret;
P
Peter Zijlstra 已提交
7721

P
Peter Zijlstra 已提交
7722 7723 7724 7725
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7726 7727 7728 7729
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7730 7731 7732
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7733
}
7734
EXPORT_SYMBOL_GPL(perf_pmu_register);
7735

7736
void perf_pmu_unregister(struct pmu *pmu)
7737
{
7738 7739 7740
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7741

7742
	/*
P
Peter Zijlstra 已提交
7743 7744
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7745
	 */
7746
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7747
	synchronize_rcu();
7748

P
Peter Zijlstra 已提交
7749
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7750 7751
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7752 7753
	device_del(pmu->dev);
	put_device(pmu->dev);
7754
	free_pmu_context(pmu);
7755
}
7756
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7757

7758 7759
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7760
	struct perf_event_context *ctx = NULL;
7761 7762 7763 7764
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7765 7766

	if (event->group_leader != event) {
7767 7768 7769 7770 7771 7772
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7773 7774 7775
		BUG_ON(!ctx);
	}

7776 7777
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7778 7779 7780 7781

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7782 7783 7784 7785 7786 7787
	if (ret)
		module_put(pmu->module);

	return ret;
}

7788
static struct pmu *perf_init_event(struct perf_event *event)
7789 7790 7791
{
	struct pmu *pmu = NULL;
	int idx;
7792
	int ret;
7793 7794

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7795 7796 7797 7798

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7799
	if (pmu) {
7800
		ret = perf_try_init_event(pmu, event);
7801 7802
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7803
		goto unlock;
7804
	}
P
Peter Zijlstra 已提交
7805

7806
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7807
		ret = perf_try_init_event(pmu, event);
7808
		if (!ret)
P
Peter Zijlstra 已提交
7809
			goto unlock;
7810

7811 7812
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7813
			goto unlock;
7814
		}
7815
	}
P
Peter Zijlstra 已提交
7816 7817
	pmu = ERR_PTR(-ENOENT);
unlock:
7818
	srcu_read_unlock(&pmus_srcu, idx);
7819

7820
	return pmu;
7821 7822
}

7823 7824 7825 7826 7827 7828 7829 7830 7831
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7832 7833
static void account_event(struct perf_event *event)
{
7834 7835 7836
	if (event->parent)
		return;

7837 7838 7839 7840 7841 7842 7843 7844
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7845 7846 7847 7848
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7849 7850 7851 7852
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7853
	if (has_branch_stack(event))
7854
		static_key_slow_inc(&perf_sched_events.key);
7855
	if (is_cgroup_event(event))
7856
		static_key_slow_inc(&perf_sched_events.key);
7857 7858

	account_event_cpu(event, event->cpu);
7859 7860
}

T
Thomas Gleixner 已提交
7861
/*
7862
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7863
 */
7864
static struct perf_event *
7865
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7866 7867 7868
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7869
		 perf_overflow_handler_t overflow_handler,
7870
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7871
{
P
Peter Zijlstra 已提交
7872
	struct pmu *pmu;
7873 7874
	struct perf_event *event;
	struct hw_perf_event *hwc;
7875
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7876

7877 7878 7879 7880 7881
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7882
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7883
	if (!event)
7884
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7885

7886
	/*
7887
	 * Single events are their own group leaders, with an
7888 7889 7890
	 * empty sibling list:
	 */
	if (!group_leader)
7891
		group_leader = event;
7892

7893 7894
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7895

7896 7897 7898
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7899
	INIT_LIST_HEAD(&event->rb_entry);
7900
	INIT_LIST_HEAD(&event->active_entry);
7901 7902
	INIT_HLIST_NODE(&event->hlist_entry);

7903

7904
	init_waitqueue_head(&event->waitq);
7905
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7906

7907
	mutex_init(&event->mmap_mutex);
7908

7909
	atomic_long_set(&event->refcount, 1);
7910 7911 7912 7913 7914
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7915

7916
	event->parent		= parent_event;
7917

7918
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7919
	event->id		= atomic64_inc_return(&perf_event_id);
7920

7921
	event->state		= PERF_EVENT_STATE_INACTIVE;
7922

7923 7924 7925
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7926 7927 7928
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7929
		 */
7930
		event->hw.target = task;
7931 7932
	}

7933 7934 7935 7936
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7937
	if (!overflow_handler && parent_event) {
7938
		overflow_handler = parent_event->overflow_handler;
7939 7940
		context = parent_event->overflow_handler_context;
	}
7941

7942
	event->overflow_handler	= overflow_handler;
7943
	event->overflow_handler_context = context;
7944

J
Jiri Olsa 已提交
7945
	perf_event__state_init(event);
7946

7947
	pmu = NULL;
7948

7949
	hwc = &event->hw;
7950
	hwc->sample_period = attr->sample_period;
7951
	if (attr->freq && attr->sample_freq)
7952
		hwc->sample_period = 1;
7953
	hwc->last_period = hwc->sample_period;
7954

7955
	local64_set(&hwc->period_left, hwc->sample_period);
7956

7957
	/*
7958
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7959
	 */
7960
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7961
		goto err_ns;
7962 7963 7964

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7965

7966 7967 7968 7969 7970 7971
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7972
	pmu = perf_init_event(event);
7973
	if (!pmu)
7974 7975
		goto err_ns;
	else if (IS_ERR(pmu)) {
7976
		err = PTR_ERR(pmu);
7977
		goto err_ns;
I
Ingo Molnar 已提交
7978
	}
7979

7980 7981 7982 7983
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7984
	if (!event->parent) {
7985 7986
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7987
			if (err)
7988
				goto err_per_task;
7989
		}
7990
	}
7991

7992
	return event;
7993

7994 7995 7996
err_per_task:
	exclusive_event_destroy(event);

7997 7998 7999
err_pmu:
	if (event->destroy)
		event->destroy(event);
8000
	module_put(pmu->module);
8001
err_ns:
8002 8003
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
8004 8005 8006 8007 8008
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
8009 8010
}

8011 8012
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
8013 8014
{
	u32 size;
8015
	int ret;
8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8040 8041 8042
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8043 8044
	 */
	if (size > sizeof(*attr)) {
8045 8046 8047
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8048

8049 8050
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8051

8052
		for (; addr < end; addr++) {
8053 8054 8055 8056 8057 8058
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8059
		size = sizeof(*attr);
8060 8061 8062 8063 8064 8065
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8066
	if (attr->__reserved_1)
8067 8068 8069 8070 8071 8072 8073 8074
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8103 8104
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8105 8106
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8107
	}
8108

8109
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8110
		ret = perf_reg_validate(attr->sample_regs_user);
8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8129

8130 8131
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8132 8133 8134 8135 8136 8137 8138 8139 8140
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8141 8142
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8143
{
8144
	struct ring_buffer *rb = NULL;
8145 8146
	int ret = -EINVAL;

8147
	if (!output_event)
8148 8149
		goto set;

8150 8151
	/* don't allow circular references */
	if (event == output_event)
8152 8153
		goto out;

8154 8155 8156 8157 8158 8159 8160
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8161
	 * If its not a per-cpu rb, it must be the same task.
8162 8163 8164 8165
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8166 8167 8168 8169 8170 8171
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8172 8173 8174 8175 8176 8177 8178
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8179
set:
8180
	mutex_lock(&event->mmap_mutex);
8181 8182 8183
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8184

8185
	if (output_event) {
8186 8187 8188
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8189
			goto unlock;
8190 8191
	}

8192
	ring_buffer_attach(event, rb);
8193

8194
	ret = 0;
8195 8196 8197
unlock:
	mutex_unlock(&event->mmap_mutex);

8198 8199 8200 8201
out:
	return ret;
}

P
Peter Zijlstra 已提交
8202 8203 8204 8205 8206 8207 8208 8209 8210
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8248
/**
8249
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8250
 *
8251
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8252
 * @pid:		target pid
I
Ingo Molnar 已提交
8253
 * @cpu:		target cpu
8254
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8255
 */
8256 8257
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8258
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8259
{
8260 8261
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8262
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8263
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8264
	struct file *event_file = NULL;
8265
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8266
	struct task_struct *task = NULL;
8267
	struct pmu *pmu;
8268
	int event_fd;
8269
	int move_group = 0;
8270
	int err;
8271
	int f_flags = O_RDWR;
8272
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8273

8274
	/* for future expandability... */
S
Stephane Eranian 已提交
8275
	if (flags & ~PERF_FLAG_ALL)
8276 8277
		return -EINVAL;

8278 8279 8280
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8281

8282 8283 8284 8285 8286
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8287
	if (attr.freq) {
8288
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8289
			return -EINVAL;
8290 8291 8292
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8293 8294
	}

S
Stephane Eranian 已提交
8295 8296 8297 8298 8299 8300 8301 8302 8303
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8304 8305 8306 8307
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8308 8309 8310
	if (event_fd < 0)
		return event_fd;

8311
	if (group_fd != -1) {
8312 8313
		err = perf_fget_light(group_fd, &group);
		if (err)
8314
			goto err_fd;
8315
		group_leader = group.file->private_data;
8316 8317 8318 8319 8320 8321
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8322
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8323 8324 8325 8326 8327 8328 8329
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8330 8331 8332 8333 8334 8335
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8336 8337
	get_online_cpus();

8338 8339 8340
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8341
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8342
				 NULL, NULL, cgroup_fd);
8343 8344
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8345
		goto err_cpus;
8346 8347
	}

8348 8349 8350 8351 8352 8353 8354
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8355 8356
	account_event(event);

8357 8358 8359 8360 8361
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8362

8363 8364 8365 8366 8367 8368
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8391 8392 8393 8394

	/*
	 * Get the target context (task or percpu):
	 */
8395
	ctx = find_get_context(pmu, task, event);
8396 8397
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8398
		goto err_alloc;
8399 8400
	}

8401 8402 8403 8404 8405
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8406 8407 8408 8409 8410
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8411
	/*
8412
	 * Look up the group leader (we will attach this event to it):
8413
	 */
8414
	if (group_leader) {
8415
		err = -EINVAL;
8416 8417

		/*
I
Ingo Molnar 已提交
8418 8419 8420 8421
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8422
			goto err_context;
8423 8424 8425 8426 8427

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8428 8429 8430
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8431
		 */
8432
		if (move_group) {
8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8446 8447 8448 8449 8450 8451
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8452 8453 8454
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8455
		if (attr.exclusive || attr.pinned)
8456
			goto err_context;
8457 8458 8459 8460 8461
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8462
			goto err_context;
8463
	}
T
Thomas Gleixner 已提交
8464

8465 8466
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8467 8468
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8469
		goto err_context;
8470
	}
8471

8472
	if (move_group) {
P
Peter Zijlstra 已提交
8473
		gctx = group_leader->ctx;
8474 8475 8476 8477 8478
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8479 8480 8481 8482 8483
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8484 8485 8486 8487 8488 8489 8490
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8491

8492 8493 8494
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8495

8496 8497 8498
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8499 8500 8501 8502
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8503
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8504

8505 8506
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8507
			perf_remove_from_context(sibling, false);
8508 8509 8510
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8511 8512 8513 8514
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8515
		synchronize_rcu();
P
Peter Zijlstra 已提交
8516

8517 8518 8519 8520 8521 8522 8523 8524 8525 8526
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8527 8528
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8529
			perf_event__state_init(sibling);
8530
			perf_install_in_context(ctx, sibling, sibling->cpu);
8531 8532
			get_ctx(ctx);
		}
8533 8534 8535 8536 8537 8538 8539 8540 8541

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8542

8543 8544 8545 8546 8547 8548
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8549 8550
	}

8551 8552 8553 8554 8555 8556 8557 8558 8559
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8560
	perf_install_in_context(ctx, event, event->cpu);
8561
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8562

8563
	if (move_group)
P
Peter Zijlstra 已提交
8564
		mutex_unlock(&gctx->mutex);
8565
	mutex_unlock(&ctx->mutex);
8566

8567 8568
	put_online_cpus();

8569
	event->owner = current;
P
Peter Zijlstra 已提交
8570

8571 8572 8573
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8574

8575 8576 8577 8578 8579 8580
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8581
	fdput(group);
8582 8583
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8584

8585 8586 8587 8588 8589 8590
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8591
err_context:
8592
	perf_unpin_context(ctx);
8593
	put_ctx(ctx);
8594
err_alloc:
8595
	free_event(event);
8596
err_cpus:
8597
	put_online_cpus();
8598
err_task:
P
Peter Zijlstra 已提交
8599 8600
	if (task)
		put_task_struct(task);
8601
err_group_fd:
8602
	fdput(group);
8603 8604
err_fd:
	put_unused_fd(event_fd);
8605
	return err;
T
Thomas Gleixner 已提交
8606 8607
}

8608 8609 8610 8611 8612
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8613
 * @task: task to profile (NULL for percpu)
8614 8615 8616
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8617
				 struct task_struct *task,
8618 8619
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8620 8621
{
	struct perf_event_context *ctx;
8622
	struct perf_event *event;
8623
	int err;
8624

8625 8626 8627
	/*
	 * Get the target context (task or percpu):
	 */
8628

8629
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8630
				 overflow_handler, context, -1);
8631 8632 8633 8634
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8635

8636 8637 8638
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8639 8640
	account_event(event);

8641
	ctx = find_get_context(event->pmu, task, event);
8642 8643
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8644
		goto err_free;
8645
	}
8646 8647 8648

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8649 8650 8651 8652 8653 8654 8655 8656
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8657
	perf_install_in_context(ctx, event, cpu);
8658
	perf_unpin_context(ctx);
8659 8660 8661 8662
	mutex_unlock(&ctx->mutex);

	return event;

8663 8664 8665
err_free:
	free_event(event);
err:
8666
	return ERR_PTR(err);
8667
}
8668
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8669

8670 8671 8672 8673 8674 8675 8676 8677 8678 8679
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8680 8681 8682 8683 8684
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8685 8686
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8687
		perf_remove_from_context(event, false);
8688
		unaccount_event_cpu(event, src_cpu);
8689
		put_ctx(src_ctx);
8690
		list_add(&event->migrate_entry, &events);
8691 8692
	}

8693 8694 8695
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8696 8697
	synchronize_rcu();

8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8722 8723
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8724 8725
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8726
		account_event_cpu(event, dst_cpu);
8727 8728 8729 8730
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8731
	mutex_unlock(&src_ctx->mutex);
8732 8733 8734
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8735
static void sync_child_event(struct perf_event *child_event,
8736
			       struct task_struct *child)
8737
{
8738
	struct perf_event *parent_event = child_event->parent;
8739
	u64 child_val;
8740

8741 8742
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8743

P
Peter Zijlstra 已提交
8744
	child_val = perf_event_count(child_event);
8745 8746 8747 8748

	/*
	 * Add back the child's count to the parent's count:
	 */
8749
	atomic64_add(child_val, &parent_event->child_count);
8750 8751 8752 8753
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8754 8755

	/*
8756
	 * Remove this event from the parent's list
8757
	 */
8758 8759 8760 8761
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8762

8763 8764 8765 8766 8767 8768
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8769
	/*
8770
	 * Release the parent event, if this was the last
8771 8772
	 * reference to it.
	 */
8773
	put_event(parent_event);
8774 8775
}

8776
static void
8777 8778
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8779
			 struct task_struct *child)
8780
{
8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8794

8795
	/*
8796
	 * It can happen that the parent exits first, and has events
8797
	 * that are still around due to the child reference. These
8798
	 * events need to be zapped.
8799
	 */
8800
	if (child_event->parent) {
8801 8802
		sync_child_event(child_event, child);
		free_event(child_event);
8803 8804 8805
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8806
	}
8807 8808
}

P
Peter Zijlstra 已提交
8809
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8810
{
8811
	struct perf_event *child_event, *next;
8812
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8813
	unsigned long flags;
8814

J
Jiri Olsa 已提交
8815
	if (likely(!child->perf_event_ctxp[ctxn]))
8816 8817
		return;

8818
	local_irq_save(flags);
8819 8820 8821 8822 8823 8824
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8825
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8826 8827 8828

	/*
	 * Take the context lock here so that if find_get_context is
8829
	 * reading child->perf_event_ctxp, we wait until it has
8830 8831
	 * incremented the context's refcount before we do put_ctx below.
	 */
8832
	raw_spin_lock(&child_ctx->lock);
8833
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8834
	child->perf_event_ctxp[ctxn] = NULL;
8835

8836 8837 8838
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8839
	 * the events from it.
8840
	 */
8841
	clone_ctx = unclone_ctx(child_ctx);
8842
	update_context_time(child_ctx);
8843
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8844

8845 8846
	if (clone_ctx)
		put_ctx(clone_ctx);
8847

P
Peter Zijlstra 已提交
8848
	/*
8849 8850 8851
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8852
	 */
8853
	perf_event_task(child, child_ctx, 0);
8854

8855 8856 8857
	/*
	 * We can recurse on the same lock type through:
	 *
8858 8859
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8860 8861
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8862 8863 8864
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8865
	mutex_lock(&child_ctx->mutex);
8866

8867
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8868
		__perf_event_exit_task(child_event, child_ctx, child);
8869

8870 8871 8872
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8873 8874
}

P
Peter Zijlstra 已提交
8875 8876 8877 8878 8879
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8880
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8881 8882
	int ctxn;

P
Peter Zijlstra 已提交
8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8898 8899
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8900 8901 8902 8903 8904 8905 8906 8907

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8908 8909
}

8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8922
	put_event(parent);
8923

P
Peter Zijlstra 已提交
8924
	raw_spin_lock_irq(&ctx->lock);
8925
	perf_group_detach(event);
8926
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8927
	raw_spin_unlock_irq(&ctx->lock);
8928 8929 8930
	free_event(event);
}

8931
/*
P
Peter Zijlstra 已提交
8932
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8933
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8934 8935 8936
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8937
 */
8938
void perf_event_free_task(struct task_struct *task)
8939
{
P
Peter Zijlstra 已提交
8940
	struct perf_event_context *ctx;
8941
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8942
	int ctxn;
8943

P
Peter Zijlstra 已提交
8944 8945 8946 8947
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8948

P
Peter Zijlstra 已提交
8949
		mutex_lock(&ctx->mutex);
8950
again:
P
Peter Zijlstra 已提交
8951 8952 8953
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8954

P
Peter Zijlstra 已提交
8955 8956 8957
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8958

P
Peter Zijlstra 已提交
8959 8960 8961
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8962

P
Peter Zijlstra 已提交
8963
		mutex_unlock(&ctx->mutex);
8964

P
Peter Zijlstra 已提交
8965 8966
		put_ctx(ctx);
	}
8967 8968
}

8969 8970 8971 8972 8973 8974 8975 8976
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
9013
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
9014
	struct perf_event *child_event;
9015
	unsigned long flags;
P
Peter Zijlstra 已提交
9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
9028
					   child,
P
Peter Zijlstra 已提交
9029
					   group_leader, parent_event,
9030
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
9031 9032
	if (IS_ERR(child_event))
		return child_event;
9033

9034 9035
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9036 9037 9038 9039
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
9040 9041 9042 9043 9044 9045 9046
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9047
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9064 9065
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9066

9067 9068 9069 9070
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9071
	perf_event__id_header_size(child_event);
9072

P
Peter Zijlstra 已提交
9073 9074 9075
	/*
	 * Link it up in the child's context:
	 */
9076
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9077
	add_event_to_ctx(child_event, child_ctx);
9078
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9112 9113 9114 9115 9116
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9117
		   struct task_struct *child, int ctxn,
9118 9119 9120
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9121
	struct perf_event_context *child_ctx;
9122 9123 9124 9125

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9126 9127
	}

9128
	child_ctx = child->perf_event_ctxp[ctxn];
9129 9130 9131 9132 9133 9134 9135
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9136

9137
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9138 9139
		if (!child_ctx)
			return -ENOMEM;
9140

P
Peter Zijlstra 已提交
9141
		child->perf_event_ctxp[ctxn] = child_ctx;
9142 9143 9144 9145 9146 9147 9148 9149 9150
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9151 9152
}

9153
/*
9154
 * Initialize the perf_event context in task_struct
9155
 */
9156
static int perf_event_init_context(struct task_struct *child, int ctxn)
9157
{
9158
	struct perf_event_context *child_ctx, *parent_ctx;
9159 9160
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9161
	struct task_struct *parent = current;
9162
	int inherited_all = 1;
9163
	unsigned long flags;
9164
	int ret = 0;
9165

P
Peter Zijlstra 已提交
9166
	if (likely(!parent->perf_event_ctxp[ctxn]))
9167 9168
		return 0;

9169
	/*
9170 9171
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9172
	 */
P
Peter Zijlstra 已提交
9173
	parent_ctx = perf_pin_task_context(parent, ctxn);
9174 9175
	if (!parent_ctx)
		return 0;
9176

9177 9178 9179 9180 9181 9182 9183
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9184 9185 9186 9187
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9188
	mutex_lock(&parent_ctx->mutex);
9189 9190 9191 9192 9193

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9194
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9195 9196
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9197 9198 9199
		if (ret)
			break;
	}
9200

9201 9202 9203 9204 9205 9206 9207 9208 9209
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9210
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9211 9212
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9213
		if (ret)
9214
			break;
9215 9216
	}

9217 9218 9219
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9220
	child_ctx = child->perf_event_ctxp[ctxn];
9221

9222
	if (child_ctx && inherited_all) {
9223 9224 9225
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9226 9227 9228
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9229
		 */
P
Peter Zijlstra 已提交
9230
		cloned_ctx = parent_ctx->parent_ctx;
9231 9232
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9233
			child_ctx->parent_gen = parent_ctx->parent_gen;
9234 9235 9236 9237 9238
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9239 9240
	}

P
Peter Zijlstra 已提交
9241
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9242
	mutex_unlock(&parent_ctx->mutex);
9243

9244
	perf_unpin_context(parent_ctx);
9245
	put_ctx(parent_ctx);
9246

9247
	return ret;
9248 9249
}

P
Peter Zijlstra 已提交
9250 9251 9252 9253 9254 9255 9256
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9257 9258 9259 9260
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9261 9262
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9263 9264
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9265
			return ret;
P
Peter Zijlstra 已提交
9266
		}
P
Peter Zijlstra 已提交
9267 9268 9269 9270 9271
	}

	return 0;
}

9272 9273
static void __init perf_event_init_all_cpus(void)
{
9274
	struct swevent_htable *swhash;
9275 9276 9277
	int cpu;

	for_each_possible_cpu(cpu) {
9278 9279
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9280
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9281 9282 9283
	}
}

9284
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9285
{
P
Peter Zijlstra 已提交
9286
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9287

9288
	mutex_lock(&swhash->hlist_mutex);
9289
	swhash->online = true;
9290
	if (swhash->hlist_refcount > 0) {
9291 9292
		struct swevent_hlist *hlist;

9293 9294 9295
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9296
	}
9297
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9298 9299
}

9300
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9301
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9302
{
9303
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9304
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9305

P
Peter Zijlstra 已提交
9306
	rcu_read_lock();
9307 9308
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9309
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9310
}
P
Peter Zijlstra 已提交
9311 9312 9313 9314 9315 9316 9317 9318 9319

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9320
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9321 9322 9323 9324 9325 9326 9327 9328

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9329
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9330
{
9331
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9332

P
Peter Zijlstra 已提交
9333 9334
	perf_event_exit_cpu_context(cpu);

9335
	mutex_lock(&swhash->hlist_mutex);
9336
	swhash->online = false;
9337 9338
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9339 9340
}
#else
9341
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9342 9343
#endif

P
Peter Zijlstra 已提交
9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9364
static int
T
Thomas Gleixner 已提交
9365 9366 9367 9368
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9369
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9370 9371

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9372
	case CPU_DOWN_FAILED:
9373
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9374 9375
		break;

P
Peter Zijlstra 已提交
9376
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9377
	case CPU_DOWN_PREPARE:
9378
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9379 9380 9381 9382 9383 9384 9385 9386
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9387
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9388
{
9389 9390
	int ret;

P
Peter Zijlstra 已提交
9391 9392
	idr_init(&pmu_idr);

9393
	perf_event_init_all_cpus();
9394
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9395 9396 9397
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9398 9399
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9400
	register_reboot_notifier(&perf_reboot_notifier);
9401 9402 9403

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9404 9405 9406

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9407 9408 9409 9410 9411 9412 9413

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9414
}
P
Peter Zijlstra 已提交
9415

9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9455 9456

#ifdef CONFIG_CGROUP_PERF
9457 9458
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9459 9460 9461
{
	struct perf_cgroup *jc;

9462
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9475
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9476
{
9477 9478
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9479 9480 9481 9482 9483 9484 9485
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9486
	rcu_read_lock();
S
Stephane Eranian 已提交
9487
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9488
	rcu_read_unlock();
S
Stephane Eranian 已提交
9489 9490 9491
	return 0;
}

9492 9493
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9494
{
9495 9496
	struct task_struct *task;

9497
	cgroup_taskset_for_each(task, tset)
9498
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9499 9500
}

9501
struct cgroup_subsys perf_event_cgrp_subsys = {
9502 9503
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9504
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9505 9506
};
#endif /* CONFIG_CGROUP_PERF */