core.c 213.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166
static atomic_t nr_switch_events __read_mostly;
167

P
Peter Zijlstra 已提交
168 169 170 171
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

172
/*
173
 * perf event paranoia level:
174 175
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
176
 *   1 - disallow cpu events for unpriv
177
 *   2 - disallow kernel profiling for unpriv
178
 */
179
int sysctl_perf_event_paranoid __read_mostly = 1;
180

181 182
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 184

/*
185
 * max perf event sample rate
186
 */
187 188 189 190 191 192 193 194 195
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
196 197
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 199 200 201 202 203

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
204
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
205
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206
}
P
Peter Zijlstra 已提交
207

208 209
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
210 211 212 213
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
214
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
215 216 217 218 219

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
238 239 240

	return 0;
}
241

242 243 244 245 246 247 248
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
249
static DEFINE_PER_CPU(u64, running_sample_length);
250

251
static void perf_duration_warn(struct irq_work *w)
252
{
253
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254
	u64 avg_local_sample_len;
255
	u64 local_samples_len;
256

257
	local_samples_len = __this_cpu_read(running_sample_length);
258 259 260 261 262
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
263
			avg_local_sample_len, allowed_ns >> 1,
264 265 266 267 268 269 270
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
271
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 273
	u64 avg_local_sample_len;
	u64 local_samples_len;
274

P
Peter Zijlstra 已提交
275
	if (allowed_ns == 0)
276 277 278
		return;

	/* decay the counter by 1 average sample */
279
	local_samples_len = __this_cpu_read(running_sample_length);
280 281
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
282
	__this_cpu_write(running_sample_length, local_samples_len);
283 284 285 286 287 288 289 290

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
291
	if (avg_local_sample_len <= allowed_ns)
292 293 294 295 296 297 298 299 300 301
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
302

303 304 305 306 307 308
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
309 310
}

311
static atomic64_t perf_event_id;
312

313 314 315 316
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
317 318 319 320 321
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
322

323
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
324

325
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
326
{
327
	return "pmu";
T
Thomas Gleixner 已提交
328 329
}

330 331 332 333 334
static inline u64 perf_clock(void)
{
	return local_clock();
}

335 336 337 338 339
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
340 341 342 343 344 345
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
362 363 364 365 366 367 368 369
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
386 387 388 389
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
390
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
429 430
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
431
	/*
432 433
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
434
	 */
435
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
436 437
		return;

438 439 440 441 442 443
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
444 445 446
}

static inline void
447 448
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
449 450 451 452
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

453 454 455 456 457 458
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
459 460 461 462
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
463
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 497
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
498 499 500 501 502 503 504 505 506

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
507 508
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
509 510 511 512 513 514 515 516 517 518 519

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
520
				WARN_ON_ONCE(cpuctx->cgrp);
521 522 523 524
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
525 526 527 528
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
529 530
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
531 532 533 534 535 536 537 538
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

539 540
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
541
{
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
564 565
}

566 567
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
568
{
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
587 588 589 590 591 592 593 594
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
595 596
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
597

598
	if (!f.file)
S
Stephane Eranian 已提交
599 600
		return -EBADF;

A
Al Viro 已提交
601
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602
					 &perf_event_cgrp_subsys);
603 604 605 606
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
620
out:
621
	fdput(f);
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

695 696
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
697 698 699
{
}

700 701
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
702 703 704 705 706 707 708 709 710 711 712
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
713 714
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

745 746 747 748 749 750 751 752
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
753
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 755 756 757 758 759 760 761 762
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
763 764
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
765
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
766 767 768
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
769

P
Peter Zijlstra 已提交
770
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 772
}

773
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774
{
775
	struct hrtimer *timer = &cpuctx->hrtimer;
776
	struct pmu *pmu = cpuctx->ctx.pmu;
777
	u64 interval;
778 779 780 781 782

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

783 784 785 786
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
787 788 789
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790

791
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792

P
Peter Zijlstra 已提交
793 794
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795
	timer->function = perf_mux_hrtimer_handler;
796 797
}

798
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799
{
800
	struct hrtimer *timer = &cpuctx->hrtimer;
801
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
802
	unsigned long flags;
803 804 805

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
806
		return 0;
807

P
Peter Zijlstra 已提交
808 809 810 811 812 813 814
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815

816
	return 0;
817 818
}

P
Peter Zijlstra 已提交
819
void perf_pmu_disable(struct pmu *pmu)
820
{
P
Peter Zijlstra 已提交
821 822 823
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
824 825
}

P
Peter Zijlstra 已提交
826
void perf_pmu_enable(struct pmu *pmu)
827
{
P
Peter Zijlstra 已提交
828 829 830
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
831 832
}

833
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 835

/*
836 837 838 839
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
840
 */
841
static void perf_event_ctx_activate(struct perf_event_context *ctx)
842
{
843
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844

845
	WARN_ON(!irqs_disabled());
846

847 848 849 850 851 852 853 854 855 856 857 858
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
859 860
}

861
static void get_ctx(struct perf_event_context *ctx)
862
{
863
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 865
}

866 867 868 869 870 871 872 873 874
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

875
static void put_ctx(struct perf_event_context *ctx)
876
{
877 878 879
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
880 881
		if (ctx->task)
			put_task_struct(ctx->task);
882
		call_rcu(&ctx->rcu_head, free_ctx);
883
	}
884 885
}

P
Peter Zijlstra 已提交
886 887 888 889 890 891 892
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
947 948
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
949 950 951 952 953 954 955 956 957 958 959 960
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
961
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
962 963 964 965 966 967 968 969 970
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
971 972 973 974 975 976
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
977 978 979 980 981 982 983
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

984 985 986 987 988 989 990
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
991
{
992 993 994 995 996
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
997
		ctx->parent_ctx = NULL;
998
	ctx->generation++;
999 1000

	return parent_ctx;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1025
/*
1026
 * If we inherit events we want to return the parent event id
1027 1028
 * to userspace.
 */
1029
static u64 primary_event_id(struct perf_event *event)
1030
{
1031
	u64 id = event->id;
1032

1033 1034
	if (event->parent)
		id = event->parent->id;
1035 1036 1037 1038

	return id;
}

1039
/*
1040
 * Get the perf_event_context for a task and lock it.
1041 1042 1043
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1044
static struct perf_event_context *
P
Peter Zijlstra 已提交
1045
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046
{
1047
	struct perf_event_context *ctx;
1048

P
Peter Zijlstra 已提交
1049
retry:
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1061
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 1063 1064 1065
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1066
		 * perf_event_task_sched_out, though the
1067 1068 1069 1070 1071 1072
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1073
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1074
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 1077
			rcu_read_unlock();
			preempt_enable();
1078 1079
			goto retry;
		}
1080 1081

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 1084
			ctx = NULL;
		}
1085 1086
	}
	rcu_read_unlock();
1087
	preempt_enable();
1088 1089 1090 1091 1092 1093 1094 1095
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1096 1097
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1098
{
1099
	struct perf_event_context *ctx;
1100 1101
	unsigned long flags;

P
Peter Zijlstra 已提交
1102
	ctx = perf_lock_task_context(task, ctxn, &flags);
1103 1104
	if (ctx) {
		++ctx->pin_count;
1105
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 1107 1108 1109
	}
	return ctx;
}

1110
static void perf_unpin_context(struct perf_event_context *ctx)
1111 1112 1113
{
	unsigned long flags;

1114
	raw_spin_lock_irqsave(&ctx->lock, flags);
1115
	--ctx->pin_count;
1116
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1130 1131 1132
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1133 1134 1135 1136

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1137 1138 1139
	return ctx ? ctx->time : 0;
}

1140 1141
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1142
 * The caller of this function needs to hold the ctx->lock.
1143 1144 1145 1146 1147 1148 1149 1150 1151
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1163
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1164 1165
	else if (ctx->is_active)
		run_end = ctx->time;
1166 1167 1168 1169
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1170 1171 1172 1173

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1174
		run_end = perf_event_time(event);
1175 1176

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1177

1178 1179
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1201
/*
1202
 * Add a event from the lists for its context.
1203 1204
 * Must be called with ctx->mutex and ctx->lock held.
 */
1205
static void
1206
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207
{
1208 1209
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1210 1211

	/*
1212 1213 1214
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1215
	 */
1216
	if (event->group_leader == event) {
1217 1218
		struct list_head *list;

1219 1220 1221
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1222 1223
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1224
	}
P
Peter Zijlstra 已提交
1225

1226
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1227 1228
		ctx->nr_cgroups++;

1229 1230 1231
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1232
		ctx->nr_stat++;
1233 1234

	ctx->generation++;
1235 1236
}

J
Jiri Olsa 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1285 1286 1287 1288 1289 1290
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1291 1292 1293
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1294 1295 1296
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1297 1298 1299
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1300 1301 1302
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1303 1304 1305 1306 1307 1308 1309 1310 1311
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1312 1313 1314 1315 1316 1317
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1318 1319 1320
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1321 1322 1323 1324 1325 1326 1327 1328 1329
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1330
	event->id_header_size = size;
1331 1332
}

1333 1334
static void perf_group_attach(struct perf_event *event)
{
1335
	struct perf_event *group_leader = event->group_leader, *pos;
1336

P
Peter Zijlstra 已提交
1337 1338 1339 1340 1341 1342
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1343 1344 1345 1346 1347
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1348 1349
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1350 1351 1352 1353 1354 1355
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1356 1357 1358 1359 1360

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1361 1362
}

1363
/*
1364
 * Remove a event from the lists for its context.
1365
 * Must be called with ctx->mutex and ctx->lock held.
1366
 */
1367
static void
1368
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1369
{
1370
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1371 1372 1373 1374

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1375 1376 1377 1378
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1379
		return;
1380 1381 1382

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1383
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1384
		ctx->nr_cgroups--;
1385 1386 1387 1388 1389 1390 1391 1392 1393
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1394

1395 1396
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1397
		ctx->nr_stat--;
1398

1399
	list_del_rcu(&event->event_entry);
1400

1401 1402
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1403

1404
	update_group_times(event);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1415 1416

	ctx->generation++;
1417 1418
}

1419
static void perf_group_detach(struct perf_event *event)
1420 1421
{
	struct perf_event *sibling, *tmp;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1438
		goto out;
1439 1440 1441 1442
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1443

1444
	/*
1445 1446
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1447
	 * to whatever list we are on.
1448
	 */
1449
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1450 1451
		if (list)
			list_move_tail(&sibling->group_entry, list);
1452
		sibling->group_leader = sibling;
1453 1454 1455

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1456 1457

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1458
	}
1459 1460 1461 1462 1463 1464

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1465 1466
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1506 1507 1508 1509 1510 1511
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1512 1513 1514
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1515
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1516
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1517 1518
}

1519 1520
static void
event_sched_out(struct perf_event *event,
1521
		  struct perf_cpu_context *cpuctx,
1522
		  struct perf_event_context *ctx)
1523
{
1524
	u64 tstamp = perf_event_time(event);
1525
	u64 delta;
P
Peter Zijlstra 已提交
1526 1527 1528 1529

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1530 1531 1532 1533 1534 1535 1536 1537
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1538
		delta = tstamp - event->tstamp_stopped;
1539
		event->tstamp_running += delta;
1540
		event->tstamp_stopped = tstamp;
1541 1542
	}

1543
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1544
		return;
1545

1546 1547
	perf_pmu_disable(event->pmu);

1548 1549 1550 1551
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1552
	}
1553
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1554
	event->pmu->del(event, 0);
1555
	event->oncpu = -1;
1556

1557
	if (!is_software_event(event))
1558
		cpuctx->active_oncpu--;
1559 1560
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1561 1562
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1563
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1564
		cpuctx->exclusive = 0;
1565

1566 1567 1568
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1569
	perf_pmu_enable(event->pmu);
1570 1571
}

1572
static void
1573
group_sched_out(struct perf_event *group_event,
1574
		struct perf_cpu_context *cpuctx,
1575
		struct perf_event_context *ctx)
1576
{
1577
	struct perf_event *event;
1578
	int state = group_event->state;
1579

1580
	event_sched_out(group_event, cpuctx, ctx);
1581 1582 1583 1584

	/*
	 * Schedule out siblings (if any):
	 */
1585 1586
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1587

1588
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1589 1590 1591
		cpuctx->exclusive = 0;
}

1592 1593 1594 1595 1596
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1597
/*
1598
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1599
 *
1600
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1601 1602
 * remove it from the context list.
 */
1603
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1604
{
1605 1606
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1607
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1608
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1609

1610
	raw_spin_lock(&ctx->lock);
1611
	event_sched_out(event, cpuctx, ctx);
1612 1613
	if (re->detach_group)
		perf_group_detach(event);
1614
	list_del_event(event, ctx);
1615 1616 1617 1618
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1619
	raw_spin_unlock(&ctx->lock);
1620 1621

	return 0;
T
Thomas Gleixner 已提交
1622 1623 1624 1625
}


/*
1626
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1627
 *
1628
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1629
 * call when the task is on a CPU.
1630
 *
1631 1632
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1633 1634
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1635
 * When called from perf_event_exit_task, it's OK because the
1636
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1637
 */
1638
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1639
{
1640
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1641
	struct task_struct *task = ctx->task;
1642 1643 1644 1645
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1646

1647 1648
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1649 1650
	if (!task) {
		/*
1651 1652 1653 1654
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1655
		 */
1656
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1657 1658 1659 1660
		return;
	}

retry:
1661
	if (!task_function_call(task, __perf_remove_from_context, &re))
1662
		return;
T
Thomas Gleixner 已提交
1663

1664
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1665
	/*
1666 1667
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1668
	 */
1669
	if (ctx->is_active) {
1670
		raw_spin_unlock_irq(&ctx->lock);
1671 1672 1673 1674 1675
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1676 1677 1678 1679
		goto retry;
	}

	/*
1680 1681
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1682
	 */
1683 1684
	if (detach_group)
		perf_group_detach(event);
1685
	list_del_event(event, ctx);
1686
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1687 1688
}

1689
/*
1690
 * Cross CPU call to disable a performance event
1691
 */
1692
int __perf_event_disable(void *info)
1693
{
1694 1695
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1696
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1697 1698

	/*
1699 1700
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1701 1702 1703
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1704
	 */
1705
	if (ctx->task && cpuctx->task_ctx != ctx)
1706
		return -EINVAL;
1707

1708
	raw_spin_lock(&ctx->lock);
1709 1710

	/*
1711
	 * If the event is on, turn it off.
1712 1713
	 * If it is in error state, leave it in error state.
	 */
1714
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1715
		update_context_time(ctx);
S
Stephane Eranian 已提交
1716
		update_cgrp_time_from_event(event);
1717 1718 1719
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1720
		else
1721 1722
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1723 1724
	}

1725
	raw_spin_unlock(&ctx->lock);
1726 1727

	return 0;
1728 1729 1730
}

/*
1731
 * Disable a event.
1732
 *
1733 1734
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1735
 * remains valid.  This condition is satisifed when called through
1736 1737 1738 1739
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1740
 * is the current context on this CPU and preemption is disabled,
1741
 * hence we can't get into perf_event_task_sched_out for this context.
1742
 */
P
Peter Zijlstra 已提交
1743
static void _perf_event_disable(struct perf_event *event)
1744
{
1745
	struct perf_event_context *ctx = event->ctx;
1746 1747 1748 1749
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1750
		 * Disable the event on the cpu that it's on
1751
		 */
1752
		cpu_function_call(event->cpu, __perf_event_disable, event);
1753 1754 1755
		return;
	}

P
Peter Zijlstra 已提交
1756
retry:
1757 1758
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1759

1760
	raw_spin_lock_irq(&ctx->lock);
1761
	/*
1762
	 * If the event is still active, we need to retry the cross-call.
1763
	 */
1764
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1765
		raw_spin_unlock_irq(&ctx->lock);
1766 1767 1768 1769 1770
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1771 1772 1773 1774 1775 1776 1777
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1778 1779 1780
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1781
	}
1782
	raw_spin_unlock_irq(&ctx->lock);
1783
}
P
Peter Zijlstra 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1797
EXPORT_SYMBOL_GPL(perf_event_disable);
1798

S
Stephane Eranian 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1834 1835 1836
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1837
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1838

1839
static int
1840
event_sched_in(struct perf_event *event,
1841
		 struct perf_cpu_context *cpuctx,
1842
		 struct perf_event_context *ctx)
1843
{
1844
	u64 tstamp = perf_event_time(event);
1845
	int ret = 0;
1846

1847 1848
	lockdep_assert_held(&ctx->lock);

1849
	if (event->state <= PERF_EVENT_STATE_OFF)
1850 1851
		return 0;

1852
	event->state = PERF_EVENT_STATE_ACTIVE;
1853
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1865 1866 1867 1868 1869
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1870 1871
	perf_pmu_disable(event->pmu);

1872 1873
	perf_set_shadow_time(event, ctx, tstamp);

1874 1875
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1876
	if (event->pmu->add(event, PERF_EF_START)) {
1877 1878
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1879 1880
		ret = -EAGAIN;
		goto out;
1881 1882
	}

1883 1884
	event->tstamp_running += tstamp - event->tstamp_stopped;

1885
	if (!is_software_event(event))
1886
		cpuctx->active_oncpu++;
1887 1888
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1889 1890
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1891

1892
	if (event->attr.exclusive)
1893 1894
		cpuctx->exclusive = 1;

1895 1896 1897
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1898 1899 1900 1901
out:
	perf_pmu_enable(event->pmu);

	return ret;
1902 1903
}

1904
static int
1905
group_sched_in(struct perf_event *group_event,
1906
	       struct perf_cpu_context *cpuctx,
1907
	       struct perf_event_context *ctx)
1908
{
1909
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1910
	struct pmu *pmu = ctx->pmu;
1911 1912
	u64 now = ctx->time;
	bool simulate = false;
1913

1914
	if (group_event->state == PERF_EVENT_STATE_OFF)
1915 1916
		return 0;

P
Peter Zijlstra 已提交
1917
	pmu->start_txn(pmu);
1918

1919
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1920
		pmu->cancel_txn(pmu);
1921
		perf_mux_hrtimer_restart(cpuctx);
1922
		return -EAGAIN;
1923
	}
1924 1925 1926 1927

	/*
	 * Schedule in siblings as one group (if any):
	 */
1928
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1929
		if (event_sched_in(event, cpuctx, ctx)) {
1930
			partial_group = event;
1931 1932 1933 1934
			goto group_error;
		}
	}

1935
	if (!pmu->commit_txn(pmu))
1936
		return 0;
1937

1938 1939 1940 1941
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1952
	 */
1953 1954
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1955 1956 1957 1958 1959 1960 1961 1962
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1963
	}
1964
	event_sched_out(group_event, cpuctx, ctx);
1965

P
Peter Zijlstra 已提交
1966
	pmu->cancel_txn(pmu);
1967

1968
	perf_mux_hrtimer_restart(cpuctx);
1969

1970 1971 1972
	return -EAGAIN;
}

1973
/*
1974
 * Work out whether we can put this event group on the CPU now.
1975
 */
1976
static int group_can_go_on(struct perf_event *event,
1977 1978 1979 1980
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1981
	 * Groups consisting entirely of software events can always go on.
1982
	 */
1983
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1984 1985 1986
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1987
	 * events can go on.
1988 1989 1990 1991 1992
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1993
	 * events on the CPU, it can't go on.
1994
	 */
1995
	if (event->attr.exclusive && cpuctx->active_oncpu)
1996 1997 1998 1999 2000 2001 2002 2003
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2004 2005
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2006
{
2007 2008
	u64 tstamp = perf_event_time(event);

2009
	list_add_event(event, ctx);
2010
	perf_group_attach(event);
2011 2012 2013
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2014 2015
}

2016 2017 2018 2019 2020 2021
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2035
/*
2036
 * Cross CPU call to install and enable a performance event
2037 2038
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2039
 */
2040
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2041
{
2042 2043
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2044
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 2046 2047
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2048
	perf_ctx_lock(cpuctx, task_ctx);
2049
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2050 2051

	/*
2052
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2053
	 */
2054
	if (task_ctx)
2055
		task_ctx_sched_out(task_ctx);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2070 2071
		task = task_ctx->task;
	}
2072

2073
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2074

2075
	update_context_time(ctx);
S
Stephane Eranian 已提交
2076 2077 2078 2079 2080 2081
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2082

2083
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2084

2085
	/*
2086
	 * Schedule everything back in
2087
	 */
2088
	perf_event_sched_in(cpuctx, task_ctx, task);
2089 2090 2091

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2092 2093

	return 0;
T
Thomas Gleixner 已提交
2094 2095 2096
}

/*
2097
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2098
 *
2099 2100
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2101
 *
2102
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2103 2104 2105 2106
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2107 2108
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2109 2110 2111 2112
			int cpu)
{
	struct task_struct *task = ctx->task;

2113 2114
	lockdep_assert_held(&ctx->mutex);

2115
	event->ctx = ctx;
2116 2117
	if (event->cpu != -1)
		event->cpu = cpu;
2118

T
Thomas Gleixner 已提交
2119 2120
	if (!task) {
		/*
2121
		 * Per cpu events are installed via an smp call and
2122
		 * the install is always successful.
T
Thomas Gleixner 已提交
2123
		 */
2124
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2125 2126 2127 2128
		return;
	}

retry:
2129 2130
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2131

2132
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2133
	/*
2134 2135
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2136
	 */
2137
	if (ctx->is_active) {
2138
		raw_spin_unlock_irq(&ctx->lock);
2139 2140 2141 2142 2143
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2144 2145 2146 2147
		goto retry;
	}

	/*
2148 2149
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2150
	 */
2151
	add_event_to_ctx(event, ctx);
2152
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2153 2154
}

2155
/*
2156
 * Put a event into inactive state and update time fields.
2157 2158 2159 2160 2161 2162
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2163
static void __perf_event_mark_enabled(struct perf_event *event)
2164
{
2165
	struct perf_event *sub;
2166
	u64 tstamp = perf_event_time(event);
2167

2168
	event->state = PERF_EVENT_STATE_INACTIVE;
2169
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2170
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2171 2172
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2173
	}
2174 2175
}

2176
/*
2177
 * Cross CPU call to enable a performance event
2178
 */
2179
static int __perf_event_enable(void *info)
2180
{
2181 2182 2183
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2184
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2185
	int err;
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2197
		return -EINVAL;
2198

2199
	raw_spin_lock(&ctx->lock);
2200
	update_context_time(ctx);
2201

2202
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2203
		goto unlock;
S
Stephane Eranian 已提交
2204 2205 2206 2207

	/*
	 * set current task's cgroup time reference point
	 */
2208
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2209

2210
	__perf_event_mark_enabled(event);
2211

S
Stephane Eranian 已提交
2212 2213 2214
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2215
		goto unlock;
S
Stephane Eranian 已提交
2216
	}
2217

2218
	/*
2219
	 * If the event is in a group and isn't the group leader,
2220
	 * then don't put it on unless the group is on.
2221
	 */
2222
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2223
		goto unlock;
2224

2225
	if (!group_can_go_on(event, cpuctx, 1)) {
2226
		err = -EEXIST;
2227
	} else {
2228
		if (event == leader)
2229
			err = group_sched_in(event, cpuctx, ctx);
2230
		else
2231
			err = event_sched_in(event, cpuctx, ctx);
2232
	}
2233 2234 2235

	if (err) {
		/*
2236
		 * If this event can't go on and it's part of a
2237 2238
		 * group, then the whole group has to come off.
		 */
2239
		if (leader != event) {
2240
			group_sched_out(leader, cpuctx, ctx);
2241
			perf_mux_hrtimer_restart(cpuctx);
2242
		}
2243
		if (leader->attr.pinned) {
2244
			update_group_times(leader);
2245
			leader->state = PERF_EVENT_STATE_ERROR;
2246
		}
2247 2248
	}

P
Peter Zijlstra 已提交
2249
unlock:
2250
	raw_spin_unlock(&ctx->lock);
2251 2252

	return 0;
2253 2254 2255
}

/*
2256
 * Enable a event.
2257
 *
2258 2259
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2260
 * remains valid.  This condition is satisfied when called through
2261 2262
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2263
 */
P
Peter Zijlstra 已提交
2264
static void _perf_event_enable(struct perf_event *event)
2265
{
2266
	struct perf_event_context *ctx = event->ctx;
2267 2268 2269 2270
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2271
		 * Enable the event on the cpu that it's on
2272
		 */
2273
		cpu_function_call(event->cpu, __perf_event_enable, event);
2274 2275 2276
		return;
	}

2277
	raw_spin_lock_irq(&ctx->lock);
2278
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2279 2280 2281
		goto out;

	/*
2282 2283
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2284 2285 2286 2287
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2288 2289
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2290

P
Peter Zijlstra 已提交
2291
retry:
2292
	if (!ctx->is_active) {
2293
		__perf_event_mark_enabled(event);
2294 2295 2296
		goto out;
	}

2297
	raw_spin_unlock_irq(&ctx->lock);
2298 2299 2300

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2301

2302
	raw_spin_lock_irq(&ctx->lock);
2303 2304

	/*
2305
	 * If the context is active and the event is still off,
2306 2307
	 * we need to retry the cross-call.
	 */
2308 2309 2310 2311 2312 2313
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2314
		goto retry;
2315
	}
2316

P
Peter Zijlstra 已提交
2317
out:
2318
	raw_spin_unlock_irq(&ctx->lock);
2319
}
P
Peter Zijlstra 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2332
EXPORT_SYMBOL_GPL(perf_event_enable);
2333

P
Peter Zijlstra 已提交
2334
static int _perf_event_refresh(struct perf_event *event, int refresh)
2335
{
2336
	/*
2337
	 * not supported on inherited events
2338
	 */
2339
	if (event->attr.inherit || !is_sampling_event(event))
2340 2341
		return -EINVAL;

2342
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2343
	_perf_event_enable(event);
2344 2345

	return 0;
2346
}
P
Peter Zijlstra 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2362
EXPORT_SYMBOL_GPL(perf_event_refresh);
2363

2364 2365 2366
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2367
{
2368
	struct perf_event *event;
2369
	int is_active = ctx->is_active;
2370

2371
	ctx->is_active &= ~event_type;
2372
	if (likely(!ctx->nr_events))
2373 2374
		return;

2375
	update_context_time(ctx);
S
Stephane Eranian 已提交
2376
	update_cgrp_time_from_cpuctx(cpuctx);
2377
	if (!ctx->nr_active)
2378
		return;
2379

P
Peter Zijlstra 已提交
2380
	perf_pmu_disable(ctx->pmu);
2381
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2382 2383
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2384
	}
2385

2386
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2387
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2388
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2389
	}
P
Peter Zijlstra 已提交
2390
	perf_pmu_enable(ctx->pmu);
2391 2392
}

2393
/*
2394 2395 2396 2397 2398 2399
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2400
 */
2401 2402
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2403
{
2404 2405 2406
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2429 2430
}

2431 2432
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2433 2434 2435
{
	u64 value;

2436
	if (!event->attr.inherit_stat)
2437 2438 2439
		return;

	/*
2440
	 * Update the event value, we cannot use perf_event_read()
2441 2442
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2443
	 * we know the event must be on the current CPU, therefore we
2444 2445
	 * don't need to use it.
	 */
2446 2447
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2448 2449
		event->pmu->read(event);
		/* fall-through */
2450

2451 2452
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2453 2454 2455 2456 2457 2458 2459
		break;

	default:
		break;
	}

	/*
2460
	 * In order to keep per-task stats reliable we need to flip the event
2461 2462
	 * values when we flip the contexts.
	 */
2463 2464 2465
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2466

2467 2468
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2469

2470
	/*
2471
	 * Since we swizzled the values, update the user visible data too.
2472
	 */
2473 2474
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2475 2476
}

2477 2478
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2479
{
2480
	struct perf_event *event, *next_event;
2481 2482 2483 2484

	if (!ctx->nr_stat)
		return;

2485 2486
	update_context_time(ctx);

2487 2488
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2489

2490 2491
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2492

2493 2494
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2495

2496
		__perf_event_sync_stat(event, next_event);
2497

2498 2499
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2500 2501 2502
	}
}

2503 2504
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2505
{
P
Peter Zijlstra 已提交
2506
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2507
	struct perf_event_context *next_ctx;
2508
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2509
	struct perf_cpu_context *cpuctx;
2510
	int do_switch = 1;
T
Thomas Gleixner 已提交
2511

P
Peter Zijlstra 已提交
2512 2513
	if (likely(!ctx))
		return;
2514

P
Peter Zijlstra 已提交
2515 2516
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2517 2518
		return;

2519
	rcu_read_lock();
P
Peter Zijlstra 已提交
2520
	next_ctx = next->perf_event_ctxp[ctxn];
2521 2522 2523 2524 2525 2526 2527
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2528
	if (!parent && !next_parent)
2529 2530 2531
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2532 2533 2534 2535 2536 2537 2538 2539 2540
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2541 2542
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2543
		if (context_equiv(ctx, next_ctx)) {
2544 2545
			/*
			 * XXX do we need a memory barrier of sorts
2546
			 * wrt to rcu_dereference() of perf_event_ctxp
2547
			 */
P
Peter Zijlstra 已提交
2548 2549
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2550 2551
			ctx->task = next;
			next_ctx->task = task;
2552 2553 2554

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2555
			do_switch = 0;
2556

2557
			perf_event_sync_stat(ctx, next_ctx);
2558
		}
2559 2560
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2561
	}
2562
unlock:
2563
	rcu_read_unlock();
2564

2565
	if (do_switch) {
2566
		raw_spin_lock(&ctx->lock);
2567
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2568
		cpuctx->task_ctx = NULL;
2569
		raw_spin_unlock(&ctx->lock);
2570
	}
T
Thomas Gleixner 已提交
2571 2572
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2623 2624 2625
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2640 2641
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2642 2643 2644
{
	int ctxn;

2645 2646 2647
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2648 2649 2650
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2651 2652
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2653 2654 2655 2656 2657 2658

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2659
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2660
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2661 2662
}

2663
static void task_ctx_sched_out(struct perf_event_context *ctx)
2664
{
P
Peter Zijlstra 已提交
2665
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2666

2667 2668
	if (!cpuctx->task_ctx)
		return;
2669 2670 2671 2672

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2673
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2674 2675 2676
	cpuctx->task_ctx = NULL;
}

2677 2678 2679 2680 2681 2682 2683
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2684 2685
}

2686
static void
2687
ctx_pinned_sched_in(struct perf_event_context *ctx,
2688
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2689
{
2690
	struct perf_event *event;
T
Thomas Gleixner 已提交
2691

2692 2693
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2694
			continue;
2695
		if (!event_filter_match(event))
2696 2697
			continue;

S
Stephane Eranian 已提交
2698 2699 2700 2701
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2702
		if (group_can_go_on(event, cpuctx, 1))
2703
			group_sched_in(event, cpuctx, ctx);
2704 2705 2706 2707 2708

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2709 2710 2711
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2712
		}
2713
	}
2714 2715 2716 2717
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2718
		      struct perf_cpu_context *cpuctx)
2719 2720 2721
{
	struct perf_event *event;
	int can_add_hw = 1;
2722

2723 2724 2725
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2726
			continue;
2727 2728
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2729
		 * of events:
2730
		 */
2731
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2732 2733
			continue;

S
Stephane Eranian 已提交
2734 2735 2736 2737
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2738
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2739
			if (group_sched_in(event, cpuctx, ctx))
2740
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2741
		}
T
Thomas Gleixner 已提交
2742
	}
2743 2744 2745 2746 2747
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2748 2749
	     enum event_type_t event_type,
	     struct task_struct *task)
2750
{
S
Stephane Eranian 已提交
2751
	u64 now;
2752
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2753

2754
	ctx->is_active |= event_type;
2755
	if (likely(!ctx->nr_events))
2756
		return;
2757

S
Stephane Eranian 已提交
2758 2759
	now = perf_clock();
	ctx->timestamp = now;
2760
	perf_cgroup_set_timestamp(task, ctx);
2761 2762 2763 2764
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2765
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2766
		ctx_pinned_sched_in(ctx, cpuctx);
2767 2768

	/* Then walk through the lower prio flexible groups */
2769
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2770
		ctx_flexible_sched_in(ctx, cpuctx);
2771 2772
}

2773
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2774 2775
			     enum event_type_t event_type,
			     struct task_struct *task)
2776 2777 2778
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2779
	ctx_sched_in(ctx, cpuctx, event_type, task);
2780 2781
}

S
Stephane Eranian 已提交
2782 2783
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2784
{
P
Peter Zijlstra 已提交
2785
	struct perf_cpu_context *cpuctx;
2786

P
Peter Zijlstra 已提交
2787
	cpuctx = __get_cpu_context(ctx);
2788 2789 2790
	if (cpuctx->task_ctx == ctx)
		return;

2791
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2792
	perf_pmu_disable(ctx->pmu);
2793 2794 2795 2796 2797 2798 2799
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2800 2801
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2802

2803 2804
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2805 2806
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2807 2808
}

P
Peter Zijlstra 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2820 2821
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2831
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2832
	}
S
Stephane Eranian 已提交
2833 2834 2835 2836 2837
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2838
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839
		perf_cgroup_sched_in(prev, task);
2840

2841 2842 2843
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2844 2845
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2846 2847
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2875
#define REDUCE_FLS(a, b)		\
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2915 2916 2917
	if (!divisor)
		return dividend;

2918 2919 2920
	return div64_u64(dividend, divisor);
}

2921 2922 2923
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2924
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2925
{
2926
	struct hw_perf_event *hwc = &event->hw;
2927
	s64 period, sample_period;
2928 2929
	s64 delta;

2930
	period = perf_calculate_period(event, nsec, count);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2941

2942
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2943 2944 2945
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2946
		local64_set(&hwc->period_left, 0);
2947 2948 2949

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2950
	}
2951 2952
}

2953 2954 2955 2956 2957 2958 2959
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2960
{
2961 2962
	struct perf_event *event;
	struct hw_perf_event *hwc;
2963
	u64 now, period = TICK_NSEC;
2964
	s64 delta;
2965

2966 2967 2968 2969 2970 2971
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2972 2973
		return;

2974
	raw_spin_lock(&ctx->lock);
2975
	perf_pmu_disable(ctx->pmu);
2976

2977
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2978
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2979 2980
			continue;

2981
		if (!event_filter_match(event))
2982 2983
			continue;

2984 2985
		perf_pmu_disable(event->pmu);

2986
		hwc = &event->hw;
2987

2988
		if (hwc->interrupts == MAX_INTERRUPTS) {
2989
			hwc->interrupts = 0;
2990
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2991
			event->pmu->start(event, 0);
2992 2993
		}

2994
		if (!event->attr.freq || !event->attr.sample_freq)
2995
			goto next;
2996

2997 2998 2999 3000 3001
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3002
		now = local64_read(&event->count);
3003 3004
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3005

3006 3007 3008
		/*
		 * restart the event
		 * reload only if value has changed
3009 3010 3011
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3012
		 */
3013
		if (delta > 0)
3014
			perf_adjust_period(event, period, delta, false);
3015 3016

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3017 3018
	next:
		perf_pmu_enable(event->pmu);
3019
	}
3020

3021
	perf_pmu_enable(ctx->pmu);
3022
	raw_spin_unlock(&ctx->lock);
3023 3024
}

3025
/*
3026
 * Round-robin a context's events:
3027
 */
3028
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3029
{
3030 3031 3032 3033 3034 3035
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3036 3037
}

3038
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3039
{
P
Peter Zijlstra 已提交
3040
	struct perf_event_context *ctx = NULL;
3041
	int rotate = 0;
3042

3043 3044 3045 3046
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3047

P
Peter Zijlstra 已提交
3048
	ctx = cpuctx->task_ctx;
3049 3050 3051 3052
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3053

3054
	if (!rotate)
3055 3056
		goto done;

3057
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3058
	perf_pmu_disable(cpuctx->ctx.pmu);
3059

3060 3061 3062
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3063

3064 3065 3066
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3067

3068
	perf_event_sched_in(cpuctx, ctx, current);
3069

3070 3071
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3072
done:
3073 3074

	return rotate;
3075 3076
}

3077 3078 3079
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3080
	if (atomic_read(&nr_freq_events) ||
3081
	    __this_cpu_read(perf_throttled_count))
3082
		return false;
3083 3084
	else
		return true;
3085 3086 3087
}
#endif

3088 3089
void perf_event_task_tick(void)
{
3090 3091
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3092
	int throttled;
3093

3094 3095
	WARN_ON(!irqs_disabled());

3096 3097 3098
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3099
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3100
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3101 3102
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3113
	__perf_event_mark_enabled(event);
3114 3115 3116 3117

	return 1;
}

3118
/*
3119
 * Enable all of a task's events that have been marked enable-on-exec.
3120 3121
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3122
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3123
{
3124
	struct perf_event_context *clone_ctx = NULL;
3125
	struct perf_event *event;
3126 3127
	unsigned long flags;
	int enabled = 0;
3128
	int ret;
3129 3130

	local_irq_save(flags);
3131
	if (!ctx || !ctx->nr_events)
3132 3133
		goto out;

3134 3135 3136 3137 3138 3139 3140
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3141
	perf_cgroup_sched_out(current, NULL);
3142

3143
	raw_spin_lock(&ctx->lock);
3144
	task_ctx_sched_out(ctx);
3145

3146
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3147 3148 3149
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3150 3151 3152
	}

	/*
3153
	 * Unclone this context if we enabled any event.
3154
	 */
3155
	if (enabled)
3156
		clone_ctx = unclone_ctx(ctx);
3157

3158
	raw_spin_unlock(&ctx->lock);
3159

3160 3161 3162
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3163
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3164
out:
3165
	local_irq_restore(flags);
3166 3167 3168

	if (clone_ctx)
		put_ctx(clone_ctx);
3169 3170
}

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3187
/*
3188
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3189
 */
3190
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3191
{
3192 3193
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3194
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3195

3196 3197 3198 3199
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3200 3201
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3202 3203 3204 3205
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3206
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3207
	if (ctx->is_active) {
3208
		update_context_time(ctx);
S
Stephane Eranian 已提交
3209 3210
		update_cgrp_time_from_event(event);
	}
3211
	update_event_times(event);
3212 3213
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3214
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3215 3216
}

P
Peter Zijlstra 已提交
3217 3218
static inline u64 perf_event_count(struct perf_event *event)
{
3219 3220 3221 3222
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3223 3224
}

3225
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3226 3227
{
	/*
3228 3229
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3230
	 */
3231 3232 3233 3234
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3235 3236 3237
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3238
		raw_spin_lock_irqsave(&ctx->lock, flags);
3239 3240 3241 3242 3243
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3244
		if (ctx->is_active) {
3245
			update_context_time(ctx);
S
Stephane Eranian 已提交
3246 3247
			update_cgrp_time_from_event(event);
		}
3248
		update_event_times(event);
3249
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3250 3251
	}

P
Peter Zijlstra 已提交
3252
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3253 3254
}

3255
/*
3256
 * Initialize the perf_event context in a task_struct:
3257
 */
3258
static void __perf_event_init_context(struct perf_event_context *ctx)
3259
{
3260
	raw_spin_lock_init(&ctx->lock);
3261
	mutex_init(&ctx->mutex);
3262
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3263 3264
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3265 3266
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3267
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3283
	}
3284 3285 3286
	ctx->pmu = pmu;

	return ctx;
3287 3288
}

3289 3290 3291 3292 3293
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3294 3295

	rcu_read_lock();
3296
	if (!vpid)
T
Thomas Gleixner 已提交
3297 3298
		task = current;
	else
3299
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3300 3301 3302 3303 3304 3305 3306 3307
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3308 3309 3310 3311
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3312 3313 3314 3315 3316 3317 3318
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3319 3320 3321
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3322
static struct perf_event_context *
3323 3324
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3325
{
3326
	struct perf_event_context *ctx, *clone_ctx = NULL;
3327
	struct perf_cpu_context *cpuctx;
3328
	void *task_ctx_data = NULL;
3329
	unsigned long flags;
P
Peter Zijlstra 已提交
3330
	int ctxn, err;
3331
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3332

3333
	if (!task) {
3334
		/* Must be root to operate on a CPU event: */
3335
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3336 3337 3338
			return ERR_PTR(-EACCES);

		/*
3339
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3340 3341 3342
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3343
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3344 3345
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3346
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3347
		ctx = &cpuctx->ctx;
3348
		get_ctx(ctx);
3349
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3350 3351 3352 3353

		return ctx;
	}

P
Peter Zijlstra 已提交
3354 3355 3356 3357 3358
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3359 3360 3361 3362 3363 3364 3365 3366
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3367
retry:
P
Peter Zijlstra 已提交
3368
	ctx = perf_lock_task_context(task, ctxn, &flags);
3369
	if (ctx) {
3370
		clone_ctx = unclone_ctx(ctx);
3371
		++ctx->pin_count;
3372 3373 3374 3375 3376

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3377
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3378 3379 3380

		if (clone_ctx)
			put_ctx(clone_ctx);
3381
	} else {
3382
		ctx = alloc_perf_context(pmu, task);
3383 3384 3385
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3386

3387 3388 3389 3390 3391
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3402
		else {
3403
			get_ctx(ctx);
3404
			++ctx->pin_count;
3405
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3406
		}
3407 3408 3409
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3410
			put_ctx(ctx);
3411 3412 3413 3414

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3415 3416 3417
		}
	}

3418
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3419
	return ctx;
3420

P
Peter Zijlstra 已提交
3421
errout:
3422
	kfree(task_ctx_data);
3423
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3424 3425
}

L
Li Zefan 已提交
3426
static void perf_event_free_filter(struct perf_event *event);
3427
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3428

3429
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3430
{
3431
	struct perf_event *event;
P
Peter Zijlstra 已提交
3432

3433 3434 3435
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3436
	perf_event_free_filter(event);
3437
	kfree(event);
P
Peter Zijlstra 已提交
3438 3439
}

3440 3441
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3442

3443
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3444
{
3445 3446 3447 3448 3449 3450
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3451

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3465 3466
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3467 3468 3469 3470
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3471 3472 3473 3474 3475 3476 3477
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3478

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3564 3565
static void __free_event(struct perf_event *event)
{
3566
	if (!event->parent) {
3567 3568
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3569
	}
3570

3571 3572
	perf_event_free_bpf_prog(event);

3573 3574 3575 3576 3577 3578
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3579 3580
	if (event->pmu) {
		exclusive_event_destroy(event);
3581
		module_put(event->pmu->module);
3582
	}
3583

3584 3585
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3586 3587

static void _free_event(struct perf_event *event)
3588
{
3589
	irq_work_sync(&event->pending);
3590

3591
	unaccount_event(event);
3592

3593
	if (event->rb) {
3594 3595 3596 3597 3598 3599 3600
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3601
		ring_buffer_attach(event, NULL);
3602
		mutex_unlock(&event->mmap_mutex);
3603 3604
	}

S
Stephane Eranian 已提交
3605 3606 3607
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3608
	__free_event(event);
3609 3610
}

P
Peter Zijlstra 已提交
3611 3612 3613 3614 3615
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3616
{
P
Peter Zijlstra 已提交
3617 3618 3619 3620 3621 3622
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3623

P
Peter Zijlstra 已提交
3624
	_free_event(event);
T
Thomas Gleixner 已提交
3625 3626
}

3627
/*
3628
 * Remove user event from the owner task.
3629
 */
3630
static void perf_remove_from_owner(struct perf_event *event)
3631
{
P
Peter Zijlstra 已提交
3632
	struct task_struct *owner;
3633

P
Peter Zijlstra 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3675 3676 3677 3678
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3679
	struct perf_event_context *ctx;
3680 3681 3682 3683 3684 3685

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3686

P
Peter Zijlstra 已提交
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3699 3700
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3701
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3702
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3703 3704

	_free_event(event);
3705 3706
}

P
Peter Zijlstra 已提交
3707 3708 3709 3710 3711 3712 3713
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3714 3715 3716
/*
 * Called when the last reference to the file is gone.
 */
3717 3718 3719 3720
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3721 3722
}

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3759
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3760
{
3761
	struct perf_event *child;
3762 3763
	u64 total = 0;

3764 3765 3766
	*enabled = 0;
	*running = 0;

3767
	mutex_lock(&event->child_mutex);
3768
	total += perf_event_read(event);
3769 3770 3771 3772 3773 3774
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3775
		total += perf_event_read(child);
3776 3777 3778
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3779
	mutex_unlock(&event->child_mutex);
3780 3781 3782

	return total;
}
3783
EXPORT_SYMBOL_GPL(perf_event_read_value);
3784

3785
static int perf_event_read_group(struct perf_event *event,
3786 3787
				   u64 read_format, char __user *buf)
{
3788
	struct perf_event *leader = event->group_leader, *sub;
3789
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3790
	int n = 0, size = 0, ret;
3791
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3792 3793 3794
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3795

3796
	count = perf_event_read_value(leader, &enabled, &running);
3797 3798

	values[n++] = 1 + leader->nr_siblings;
3799 3800 3801 3802
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3803 3804 3805
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3806 3807 3808 3809

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3810
		return -EFAULT;
3811

3812
	ret = size;
3813

3814
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3815
		n = 0;
3816

3817
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3818 3819 3820 3821 3822
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3823
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3824
			return -EFAULT;
3825
		}
3826 3827

		ret += size;
3828 3829
	}

3830
	return ret;
3831 3832
}

3833
static int perf_event_read_one(struct perf_event *event,
3834 3835
				 u64 read_format, char __user *buf)
{
3836
	u64 enabled, running;
3837 3838 3839
	u64 values[4];
	int n = 0;

3840 3841 3842 3843 3844
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3845
	if (read_format & PERF_FORMAT_ID)
3846
		values[n++] = primary_event_id(event);
3847 3848 3849 3850 3851 3852 3853

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3867
/*
3868
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3869 3870
 */
static ssize_t
3871
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3872
{
3873
	u64 read_format = event->attr.read_format;
3874
	int ret;
T
Thomas Gleixner 已提交
3875

3876
	/*
3877
	 * Return end-of-file for a read on a event that is in
3878 3879 3880
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3881
	if (event->state == PERF_EVENT_STATE_ERROR)
3882 3883
		return 0;

3884
	if (count < event->read_size)
3885 3886
		return -ENOSPC;

3887
	WARN_ON_ONCE(event->ctx->parent_ctx);
3888
	if (read_format & PERF_FORMAT_GROUP)
3889
		ret = perf_event_read_group(event, read_format, buf);
3890
	else
3891
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3892

3893
	return ret;
T
Thomas Gleixner 已提交
3894 3895 3896 3897 3898
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3899
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3900 3901
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3902

P
Peter Zijlstra 已提交
3903 3904 3905 3906 3907
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3908 3909 3910 3911
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3912
	struct perf_event *event = file->private_data;
3913
	struct ring_buffer *rb;
3914
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3915

3916
	poll_wait(file, &event->waitq, wait);
3917

3918
	if (is_event_hup(event))
3919
		return events;
P
Peter Zijlstra 已提交
3920

3921
	/*
3922 3923
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3924 3925
	 */
	mutex_lock(&event->mmap_mutex);
3926 3927
	rb = event->rb;
	if (rb)
3928
		events = atomic_xchg(&rb->poll, 0);
3929
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3930 3931 3932
	return events;
}

P
Peter Zijlstra 已提交
3933
static void _perf_event_reset(struct perf_event *event)
3934
{
3935
	(void)perf_event_read(event);
3936
	local64_set(&event->count, 0);
3937
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3938 3939
}

3940
/*
3941 3942 3943 3944
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3945
 */
3946 3947
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3948
{
3949
	struct perf_event *child;
P
Peter Zijlstra 已提交
3950

3951
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3952

3953 3954 3955
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3956
		func(child);
3957
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3958 3959
}

3960 3961
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3962
{
3963 3964
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3965

P
Peter Zijlstra 已提交
3966 3967
	lockdep_assert_held(&ctx->mutex);

3968
	event = event->group_leader;
3969

3970 3971
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3972
		perf_event_for_each_child(sibling, func);
3973 3974
}

3975
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3976
{
3977
	struct perf_event_context *ctx = event->ctx;
3978
	int ret = 0, active;
3979 3980
	u64 value;

3981
	if (!is_sampling_event(event))
3982 3983
		return -EINVAL;

3984
	if (copy_from_user(&value, arg, sizeof(value)))
3985 3986 3987 3988 3989
		return -EFAULT;

	if (!value)
		return -EINVAL;

3990
	raw_spin_lock_irq(&ctx->lock);
3991 3992
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3993 3994 3995 3996
			ret = -EINVAL;
			goto unlock;
		}

3997
		event->attr.sample_freq = value;
3998
	} else {
3999 4000
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4001
	}
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

4016
unlock:
4017
	raw_spin_unlock_irq(&ctx->lock);
4018 4019 4020 4021

	return ret;
}

4022 4023
static const struct file_operations perf_fops;

4024
static inline int perf_fget_light(int fd, struct fd *p)
4025
{
4026 4027 4028
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4029

4030 4031 4032
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4033
	}
4034 4035
	*p = f;
	return 0;
4036 4037 4038 4039
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4040
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4041
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4042

P
Peter Zijlstra 已提交
4043
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4044
{
4045
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4046
	u32 flags = arg;
4047 4048

	switch (cmd) {
4049
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4050
		func = _perf_event_enable;
4051
		break;
4052
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4053
		func = _perf_event_disable;
4054
		break;
4055
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4056
		func = _perf_event_reset;
4057
		break;
P
Peter Zijlstra 已提交
4058

4059
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4060
		return _perf_event_refresh(event, arg);
4061

4062 4063
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4064

4065 4066 4067 4068 4069 4070 4071 4072 4073
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4074
	case PERF_EVENT_IOC_SET_OUTPUT:
4075 4076 4077
	{
		int ret;
		if (arg != -1) {
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4088 4089 4090
		}
		return ret;
	}
4091

L
Li Zefan 已提交
4092 4093 4094
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4095 4096 4097
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4098
	default:
P
Peter Zijlstra 已提交
4099
		return -ENOTTY;
4100
	}
P
Peter Zijlstra 已提交
4101 4102

	if (flags & PERF_IOC_FLAG_GROUP)
4103
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4104
	else
4105
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4106 4107

	return 0;
4108 4109
}

P
Peter Zijlstra 已提交
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4143
int perf_event_task_enable(void)
4144
{
P
Peter Zijlstra 已提交
4145
	struct perf_event_context *ctx;
4146
	struct perf_event *event;
4147

4148
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4149 4150 4151 4152 4153
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4154
	mutex_unlock(&current->perf_event_mutex);
4155 4156 4157 4158

	return 0;
}

4159
int perf_event_task_disable(void)
4160
{
P
Peter Zijlstra 已提交
4161
	struct perf_event_context *ctx;
4162
	struct perf_event *event;
4163

4164
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4165 4166 4167 4168 4169
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4170
	mutex_unlock(&current->perf_event_mutex);
4171 4172 4173 4174

	return 0;
}

4175
static int perf_event_index(struct perf_event *event)
4176
{
P
Peter Zijlstra 已提交
4177 4178 4179
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4180
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4181 4182
		return 0;

4183
	return event->pmu->event_idx(event);
4184 4185
}

4186
static void calc_timer_values(struct perf_event *event,
4187
				u64 *now,
4188 4189
				u64 *enabled,
				u64 *running)
4190
{
4191
	u64 ctx_time;
4192

4193 4194
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4195 4196 4197 4198
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4214 4215
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4216 4217 4218 4219 4220

unlock:
	rcu_read_unlock();
}

4221 4222
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4223 4224 4225
{
}

4226 4227 4228 4229 4230
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4231
void perf_event_update_userpage(struct perf_event *event)
4232
{
4233
	struct perf_event_mmap_page *userpg;
4234
	struct ring_buffer *rb;
4235
	u64 enabled, running, now;
4236 4237

	rcu_read_lock();
4238 4239 4240 4241
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4242 4243 4244 4245 4246 4247 4248 4249 4250
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4251
	calc_timer_values(event, &now, &enabled, &running);
4252

4253
	userpg = rb->user_page;
4254 4255 4256 4257 4258
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4259
	++userpg->lock;
4260
	barrier();
4261
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4262
	userpg->offset = perf_event_count(event);
4263
	if (userpg->index)
4264
		userpg->offset -= local64_read(&event->hw.prev_count);
4265

4266
	userpg->time_enabled = enabled +
4267
			atomic64_read(&event->child_total_time_enabled);
4268

4269
	userpg->time_running = running +
4270
			atomic64_read(&event->child_total_time_running);
4271

4272
	arch_perf_update_userpage(event, userpg, now);
4273

4274
	barrier();
4275
	++userpg->lock;
4276
	preempt_enable();
4277
unlock:
4278
	rcu_read_unlock();
4279 4280
}

4281 4282 4283
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4284
	struct ring_buffer *rb;
4285 4286 4287 4288 4289 4290 4291 4292 4293
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4294 4295
	rb = rcu_dereference(event->rb);
	if (!rb)
4296 4297 4298 4299 4300
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4301
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4316 4317 4318
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4319
	struct ring_buffer *old_rb = NULL;
4320 4321
	unsigned long flags;

4322 4323 4324 4325 4326 4327
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4328

4329 4330 4331 4332
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4333

4334 4335
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4336
	}
4337

4338
	if (rb) {
4339 4340 4341 4342 4343
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4360 4361 4362 4363 4364 4365 4366 4367
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4368 4369 4370 4371
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4372 4373 4374
	rcu_read_unlock();
}

4375
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4376
{
4377
	struct ring_buffer *rb;
4378

4379
	rcu_read_lock();
4380 4381 4382 4383
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4384 4385 4386
	}
	rcu_read_unlock();

4387
	return rb;
4388 4389
}

4390
void ring_buffer_put(struct ring_buffer *rb)
4391
{
4392
	if (!atomic_dec_and_test(&rb->refcount))
4393
		return;
4394

4395
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4396

4397
	call_rcu(&rb->rcu_head, rb_free_rcu);
4398 4399 4400 4401
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4402
	struct perf_event *event = vma->vm_file->private_data;
4403

4404
	atomic_inc(&event->mmap_count);
4405
	atomic_inc(&event->rb->mmap_count);
4406

4407 4408 4409
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4410 4411
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4412 4413
}

4414 4415 4416 4417 4418 4419 4420 4421
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4422 4423
static void perf_mmap_close(struct vm_area_struct *vma)
{
4424
	struct perf_event *event = vma->vm_file->private_data;
4425

4426
	struct ring_buffer *rb = ring_buffer_get(event);
4427 4428 4429
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4430

4431 4432 4433
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4448 4449 4450
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4451
		goto out_put;
4452

4453
	ring_buffer_attach(event, NULL);
4454 4455 4456
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4457 4458
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4459

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4476

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4488 4489 4490
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4491
		mutex_unlock(&event->mmap_mutex);
4492
		put_event(event);
4493

4494 4495 4496 4497 4498
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4499
	}
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4515
out_put:
4516
	ring_buffer_put(rb); /* could be last */
4517 4518
}

4519
static const struct vm_operations_struct perf_mmap_vmops = {
4520
	.open		= perf_mmap_open,
4521
	.close		= perf_mmap_close, /* non mergable */
4522 4523
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4524 4525 4526 4527
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4528
	struct perf_event *event = file->private_data;
4529
	unsigned long user_locked, user_lock_limit;
4530
	struct user_struct *user = current_user();
4531
	unsigned long locked, lock_limit;
4532
	struct ring_buffer *rb = NULL;
4533 4534
	unsigned long vma_size;
	unsigned long nr_pages;
4535
	long user_extra = 0, extra = 0;
4536
	int ret = 0, flags = 0;
4537

4538 4539 4540
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4541
	 * same rb.
4542 4543 4544 4545
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4546
	if (!(vma->vm_flags & VM_SHARED))
4547
		return -EINVAL;
4548 4549

	vma_size = vma->vm_end - vma->vm_start;
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4610

4611
	/*
4612
	 * If we have rb pages ensure they're a power-of-two number, so we
4613 4614
	 * can do bitmasks instead of modulo.
	 */
4615
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4616 4617
		return -EINVAL;

4618
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4619 4620
		return -EINVAL;

4621
	WARN_ON_ONCE(event->ctx->parent_ctx);
4622
again:
4623
	mutex_lock(&event->mmap_mutex);
4624
	if (event->rb) {
4625
		if (event->rb->nr_pages != nr_pages) {
4626
			ret = -EINVAL;
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4640 4641 4642
		goto unlock;
	}

4643
	user_extra = nr_pages + 1;
4644 4645

accounting:
4646
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4647 4648 4649 4650 4651 4652

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4653
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4654

4655 4656
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4657

4658
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4659
	lock_limit >>= PAGE_SHIFT;
4660
	locked = vma->vm_mm->pinned_vm + extra;
4661

4662 4663
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4664 4665 4666
		ret = -EPERM;
		goto unlock;
	}
4667

4668
	WARN_ON(!rb && event->rb);
4669

4670
	if (vma->vm_flags & VM_WRITE)
4671
		flags |= RING_BUFFER_WRITABLE;
4672

4673
	if (!rb) {
4674 4675 4676
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4677

4678 4679 4680 4681
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4682

4683 4684 4685
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4686

4687
		ring_buffer_attach(event, rb);
4688

4689 4690 4691
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4692 4693
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4694 4695 4696
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4697

4698
unlock:
4699 4700 4701 4702
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4703
		atomic_inc(&event->mmap_count);
4704 4705 4706 4707
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4708
	mutex_unlock(&event->mmap_mutex);
4709

4710 4711 4712 4713
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4714
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4715
	vma->vm_ops = &perf_mmap_vmops;
4716

4717 4718 4719
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4720
	return ret;
4721 4722
}

P
Peter Zijlstra 已提交
4723 4724
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4725
	struct inode *inode = file_inode(filp);
4726
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4727 4728 4729
	int retval;

	mutex_lock(&inode->i_mutex);
4730
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4731 4732 4733 4734 4735 4736 4737 4738
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4739
static const struct file_operations perf_fops = {
4740
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4741 4742 4743
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4744
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4745
	.compat_ioctl		= perf_compat_ioctl,
4746
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4747
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4748 4749
};

4750
/*
4751
 * Perf event wakeup
4752 4753 4754 4755 4756
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4757
void perf_event_wakeup(struct perf_event *event)
4758
{
4759
	ring_buffer_wakeup(event);
4760

4761 4762 4763
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4764
	}
4765 4766
}

4767
static void perf_pending_event(struct irq_work *entry)
4768
{
4769 4770
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4771 4772 4773 4774 4775 4776 4777
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4778

4779 4780 4781
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4782 4783
	}

4784 4785 4786
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4787
	}
4788 4789 4790

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4791 4792
}

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4829
static void perf_sample_regs_user(struct perf_regs *regs_user,
4830 4831
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4832
{
4833 4834
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4835
		regs_user->regs = regs;
4836 4837
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4838 4839 4840
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4841 4842 4843
	}
}

4844 4845 4846 4847 4848 4849 4850 4851
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4947 4948 4949
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
4963
		data->time = perf_event_clock(event);
4964

4965
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4977 4978 4979
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5004 5005 5006

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5007 5008
}

5009 5010 5011
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5012 5013 5014 5015 5016
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5017
static void perf_output_read_one(struct perf_output_handle *handle,
5018 5019
				 struct perf_event *event,
				 u64 enabled, u64 running)
5020
{
5021
	u64 read_format = event->attr.read_format;
5022 5023 5024
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5025
	values[n++] = perf_event_count(event);
5026
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5027
		values[n++] = enabled +
5028
			atomic64_read(&event->child_total_time_enabled);
5029 5030
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5031
		values[n++] = running +
5032
			atomic64_read(&event->child_total_time_running);
5033 5034
	}
	if (read_format & PERF_FORMAT_ID)
5035
		values[n++] = primary_event_id(event);
5036

5037
	__output_copy(handle, values, n * sizeof(u64));
5038 5039 5040
}

/*
5041
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5042 5043
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5044 5045
			    struct perf_event *event,
			    u64 enabled, u64 running)
5046
{
5047 5048
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5049 5050 5051 5052 5053 5054
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5055
		values[n++] = enabled;
5056 5057

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5058
		values[n++] = running;
5059

5060
	if (leader != event)
5061 5062
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5063
	values[n++] = perf_event_count(leader);
5064
	if (read_format & PERF_FORMAT_ID)
5065
		values[n++] = primary_event_id(leader);
5066

5067
	__output_copy(handle, values, n * sizeof(u64));
5068

5069
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5070 5071
		n = 0;

5072 5073
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5074 5075
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5076
		values[n++] = perf_event_count(sub);
5077
		if (read_format & PERF_FORMAT_ID)
5078
			values[n++] = primary_event_id(sub);
5079

5080
		__output_copy(handle, values, n * sizeof(u64));
5081 5082 5083
	}
}

5084 5085 5086
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5087
static void perf_output_read(struct perf_output_handle *handle,
5088
			     struct perf_event *event)
5089
{
5090
	u64 enabled = 0, running = 0, now;
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5102
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5103
		calc_timer_values(event, &now, &enabled, &running);
5104

5105
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5106
		perf_output_read_group(handle, event, enabled, running);
5107
	else
5108
		perf_output_read_one(handle, event, enabled, running);
5109 5110
}

5111 5112 5113
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5114
			struct perf_event *event)
5115 5116 5117 5118 5119
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5120 5121 5122
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5148
		perf_output_read(handle, event);
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5159
			__output_copy(handle, data->callchain, size);
5160 5161 5162 5163 5164 5165 5166 5167 5168
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
5169 5170
			__output_copy(handle, data->raw->data,
					   data->raw->size);
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5182

5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5217

5218
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5219 5220 5221
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5222
	}
A
Andi Kleen 已提交
5223 5224 5225

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5226 5227 5228

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5229

A
Andi Kleen 已提交
5230 5231 5232
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5263 5264 5265 5266
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5267
			 struct perf_event *event,
5268
			 struct pt_regs *regs)
5269
{
5270
	u64 sample_type = event->attr.sample_type;
5271

5272
	header->type = PERF_RECORD_SAMPLE;
5273
	header->size = sizeof(*header) + event->header_size;
5274 5275 5276

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5277

5278
	__perf_event_header__init_id(header, data, event);
5279

5280
	if (sample_type & PERF_SAMPLE_IP)
5281 5282
		data->ip = perf_instruction_pointer(regs);

5283
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5284
		int size = 1;
5285

5286
		data->callchain = perf_callchain(event, regs);
5287 5288 5289 5290 5291

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5292 5293
	}

5294
	if (sample_type & PERF_SAMPLE_RAW) {
5295 5296 5297 5298 5299 5300 5301 5302
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5303
		header->size += size;
5304
	}
5305 5306 5307 5308 5309 5310 5311 5312 5313

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5314

5315
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5316 5317
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5318

5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5342
						     data->regs_user.regs);
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5370
}
5371

5372 5373 5374
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5375 5376 5377
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5378

5379 5380 5381
	/* protect the callchain buffers */
	rcu_read_lock();

5382
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5383

5384
	if (perf_output_begin(&handle, event, header.size))
5385
		goto exit;
5386

5387
	perf_output_sample(&handle, &header, data, event);
5388

5389
	perf_output_end(&handle);
5390 5391 5392

exit:
	rcu_read_unlock();
5393 5394
}

5395
/*
5396
 * read event_id
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5407
perf_event_read_event(struct perf_event *event,
5408 5409 5410
			struct task_struct *task)
{
	struct perf_output_handle handle;
5411
	struct perf_sample_data sample;
5412
	struct perf_read_event read_event = {
5413
		.header = {
5414
			.type = PERF_RECORD_READ,
5415
			.misc = 0,
5416
			.size = sizeof(read_event) + event->read_size,
5417
		},
5418 5419
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5420
	};
5421
	int ret;
5422

5423
	perf_event_header__init_id(&read_event.header, &sample, event);
5424
	ret = perf_output_begin(&handle, event, read_event.header.size);
5425 5426 5427
	if (ret)
		return;

5428
	perf_output_put(&handle, read_event);
5429
	perf_output_read(&handle, event);
5430
	perf_event__output_id_sample(event, &handle, &sample);
5431

5432 5433 5434
	perf_output_end(&handle);
}

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5449
		output(event, data);
5450 5451 5452 5453
	}
}

static void
5454
perf_event_aux(perf_event_aux_output_cb output, void *data,
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5467
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5468 5469 5470 5471 5472 5473 5474
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5475
			perf_event_aux_ctx(ctx, output, data);
5476 5477 5478 5479 5480 5481
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5482
		perf_event_aux_ctx(task_ctx, output, data);
5483 5484 5485 5486 5487
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5488
/*
P
Peter Zijlstra 已提交
5489 5490
 * task tracking -- fork/exit
 *
5491
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5492 5493
 */

P
Peter Zijlstra 已提交
5494
struct perf_task_event {
5495
	struct task_struct		*task;
5496
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5497 5498 5499 5500 5501 5502

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5503 5504
		u32				tid;
		u32				ptid;
5505
		u64				time;
5506
	} event_id;
P
Peter Zijlstra 已提交
5507 5508
};

5509 5510
static int perf_event_task_match(struct perf_event *event)
{
5511 5512 5513
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5514 5515
}

5516
static void perf_event_task_output(struct perf_event *event,
5517
				   void *data)
P
Peter Zijlstra 已提交
5518
{
5519
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5520
	struct perf_output_handle handle;
5521
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5522
	struct task_struct *task = task_event->task;
5523
	int ret, size = task_event->event_id.header.size;
5524

5525 5526 5527
	if (!perf_event_task_match(event))
		return;

5528
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5529

5530
	ret = perf_output_begin(&handle, event,
5531
				task_event->event_id.header.size);
5532
	if (ret)
5533
		goto out;
P
Peter Zijlstra 已提交
5534

5535 5536
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5537

5538 5539
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5540

5541 5542
	task_event->event_id.time = perf_event_clock(event);

5543
	perf_output_put(&handle, task_event->event_id);
5544

5545 5546
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5547
	perf_output_end(&handle);
5548 5549
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5550 5551
}

5552 5553
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5554
			      int new)
P
Peter Zijlstra 已提交
5555
{
P
Peter Zijlstra 已提交
5556
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5557

5558 5559 5560
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5561 5562
		return;

P
Peter Zijlstra 已提交
5563
	task_event = (struct perf_task_event){
5564 5565
		.task	  = task,
		.task_ctx = task_ctx,
5566
		.event_id    = {
P
Peter Zijlstra 已提交
5567
			.header = {
5568
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5569
				.misc = 0,
5570
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5571
			},
5572 5573
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5574 5575
			/* .tid  */
			/* .ptid */
5576
			/* .time */
P
Peter Zijlstra 已提交
5577 5578 5579
		},
	};

5580
	perf_event_aux(perf_event_task_output,
5581 5582
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5583 5584
}

5585
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5586
{
5587
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5588 5589
}

5590 5591 5592 5593 5594
/*
 * comm tracking
 */

struct perf_comm_event {
5595 5596
	struct task_struct	*task;
	char			*comm;
5597 5598 5599 5600 5601 5602 5603
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5604
	} event_id;
5605 5606
};

5607 5608 5609 5610 5611
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5612
static void perf_event_comm_output(struct perf_event *event,
5613
				   void *data)
5614
{
5615
	struct perf_comm_event *comm_event = data;
5616
	struct perf_output_handle handle;
5617
	struct perf_sample_data sample;
5618
	int size = comm_event->event_id.header.size;
5619 5620
	int ret;

5621 5622 5623
	if (!perf_event_comm_match(event))
		return;

5624 5625
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5626
				comm_event->event_id.header.size);
5627 5628

	if (ret)
5629
		goto out;
5630

5631 5632
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5633

5634
	perf_output_put(&handle, comm_event->event_id);
5635
	__output_copy(&handle, comm_event->comm,
5636
				   comm_event->comm_size);
5637 5638 5639

	perf_event__output_id_sample(event, &handle, &sample);

5640
	perf_output_end(&handle);
5641 5642
out:
	comm_event->event_id.header.size = size;
5643 5644
}

5645
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5646
{
5647
	char comm[TASK_COMM_LEN];
5648 5649
	unsigned int size;

5650
	memset(comm, 0, sizeof(comm));
5651
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5652
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5653 5654 5655 5656

	comm_event->comm = comm;
	comm_event->comm_size = size;

5657
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5658

5659
	perf_event_aux(perf_event_comm_output,
5660 5661
		       comm_event,
		       NULL);
5662 5663
}

5664
void perf_event_comm(struct task_struct *task, bool exec)
5665
{
5666 5667
	struct perf_comm_event comm_event;

5668
	if (!atomic_read(&nr_comm_events))
5669
		return;
5670

5671
	comm_event = (struct perf_comm_event){
5672
		.task	= task,
5673 5674
		/* .comm      */
		/* .comm_size */
5675
		.event_id  = {
5676
			.header = {
5677
				.type = PERF_RECORD_COMM,
5678
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5679 5680 5681 5682
				/* .size */
			},
			/* .pid */
			/* .tid */
5683 5684 5685
		},
	};

5686
	perf_event_comm_event(&comm_event);
5687 5688
}

5689 5690 5691 5692 5693
/*
 * mmap tracking
 */

struct perf_mmap_event {
5694 5695 5696 5697
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5698 5699 5700
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5701
	u32			prot, flags;
5702 5703 5704 5705 5706 5707 5708 5709 5710

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5711
	} event_id;
5712 5713
};

5714 5715 5716 5717 5718 5719 5720 5721
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5722
	       (executable && (event->attr.mmap || event->attr.mmap2));
5723 5724
}

5725
static void perf_event_mmap_output(struct perf_event *event,
5726
				   void *data)
5727
{
5728
	struct perf_mmap_event *mmap_event = data;
5729
	struct perf_output_handle handle;
5730
	struct perf_sample_data sample;
5731
	int size = mmap_event->event_id.header.size;
5732
	int ret;
5733

5734 5735 5736
	if (!perf_event_mmap_match(event, data))
		return;

5737 5738 5739 5740 5741
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5742
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5743 5744
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5745 5746
	}

5747 5748
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5749
				mmap_event->event_id.header.size);
5750
	if (ret)
5751
		goto out;
5752

5753 5754
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5755

5756
	perf_output_put(&handle, mmap_event->event_id);
5757 5758 5759 5760 5761 5762

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5763 5764
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5765 5766
	}

5767
	__output_copy(&handle, mmap_event->file_name,
5768
				   mmap_event->file_size);
5769 5770 5771

	perf_event__output_id_sample(event, &handle, &sample);

5772
	perf_output_end(&handle);
5773 5774
out:
	mmap_event->event_id.header.size = size;
5775 5776
}

5777
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5778
{
5779 5780
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5781 5782
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5783
	u32 prot = 0, flags = 0;
5784 5785 5786
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5787
	char *name;
5788

5789
	if (file) {
5790 5791
		struct inode *inode;
		dev_t dev;
5792

5793
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5794
		if (!buf) {
5795 5796
			name = "//enomem";
			goto cpy_name;
5797
		}
5798
		/*
5799
		 * d_path() works from the end of the rb backwards, so we
5800 5801 5802
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5803
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5804
		if (IS_ERR(name)) {
5805 5806
			name = "//toolong";
			goto cpy_name;
5807
		}
5808 5809 5810 5811 5812 5813
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5836
		goto got_name;
5837
	} else {
5838 5839 5840 5841 5842 5843
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5844
		name = (char *)arch_vma_name(vma);
5845 5846
		if (name)
			goto cpy_name;
5847

5848
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5849
				vma->vm_end >= vma->vm_mm->brk) {
5850 5851
			name = "[heap]";
			goto cpy_name;
5852 5853
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5854
				vma->vm_end >= vma->vm_mm->start_stack) {
5855 5856
			name = "[stack]";
			goto cpy_name;
5857 5858
		}

5859 5860
		name = "//anon";
		goto cpy_name;
5861 5862
	}

5863 5864 5865
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5866
got_name:
5867 5868 5869 5870 5871 5872 5873 5874
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5875 5876 5877

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5878 5879 5880 5881
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5882 5883
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5884

5885 5886 5887
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5888
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5889

5890
	perf_event_aux(perf_event_mmap_output,
5891 5892
		       mmap_event,
		       NULL);
5893

5894 5895 5896
	kfree(buf);
}

5897
void perf_event_mmap(struct vm_area_struct *vma)
5898
{
5899 5900
	struct perf_mmap_event mmap_event;

5901
	if (!atomic_read(&nr_mmap_events))
5902 5903 5904
		return;

	mmap_event = (struct perf_mmap_event){
5905
		.vma	= vma,
5906 5907
		/* .file_name */
		/* .file_size */
5908
		.event_id  = {
5909
			.header = {
5910
				.type = PERF_RECORD_MMAP,
5911
				.misc = PERF_RECORD_MISC_USER,
5912 5913 5914 5915
				/* .size */
			},
			/* .pid */
			/* .tid */
5916 5917
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5918
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5919
		},
5920 5921 5922 5923
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5924 5925
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5926 5927
	};

5928
	perf_event_mmap_event(&mmap_event);
5929 5930
}

A
Alexander Shishkin 已提交
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6083 6084 6085 6086
/*
 * IRQ throttle logging
 */

6087
static void perf_log_throttle(struct perf_event *event, int enable)
6088 6089
{
	struct perf_output_handle handle;
6090
	struct perf_sample_data sample;
6091 6092 6093 6094 6095
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6096
		u64				id;
6097
		u64				stream_id;
6098 6099
	} throttle_event = {
		.header = {
6100
			.type = PERF_RECORD_THROTTLE,
6101 6102 6103
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6104
		.time		= perf_event_clock(event),
6105 6106
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6107 6108
	};

6109
	if (enable)
6110
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6111

6112 6113 6114
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6115
				throttle_event.header.size);
6116 6117 6118 6119
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6120
	perf_event__output_id_sample(event, &handle, &sample);
6121 6122 6123
	perf_output_end(&handle);
}

6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6160
/*
6161
 * Generic event overflow handling, sampling.
6162 6163
 */

6164
static int __perf_event_overflow(struct perf_event *event,
6165 6166
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6167
{
6168 6169
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6170
	u64 seq;
6171 6172
	int ret = 0;

6173 6174 6175 6176 6177 6178 6179
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6180 6181 6182 6183 6184 6185 6186 6187 6188
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6189 6190
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6191
			tick_nohz_full_kick();
6192 6193
			ret = 1;
		}
6194
	}
6195

6196
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6197
		u64 now = perf_clock();
6198
		s64 delta = now - hwc->freq_time_stamp;
6199

6200
		hwc->freq_time_stamp = now;
6201

6202
		if (delta > 0 && delta < 2*TICK_NSEC)
6203
			perf_adjust_period(event, delta, hwc->last_period, true);
6204 6205
	}

6206 6207
	/*
	 * XXX event_limit might not quite work as expected on inherited
6208
	 * events
6209 6210
	 */

6211 6212
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6213
		ret = 1;
6214
		event->pending_kill = POLL_HUP;
6215 6216
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6217 6218
	}

6219
	if (event->overflow_handler)
6220
		event->overflow_handler(event, data, regs);
6221
	else
6222
		perf_event_output(event, data, regs);
6223

P
Peter Zijlstra 已提交
6224
	if (event->fasync && event->pending_kill) {
6225 6226
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6227 6228
	}

6229
	return ret;
6230 6231
}

6232
int perf_event_overflow(struct perf_event *event,
6233 6234
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6235
{
6236
	return __perf_event_overflow(event, 1, data, regs);
6237 6238
}

6239
/*
6240
 * Generic software event infrastructure
6241 6242
 */

6243 6244 6245 6246 6247 6248 6249
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6250 6251 6252

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6253 6254 6255 6256
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6257
/*
6258 6259
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6260 6261 6262 6263
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6264
u64 perf_swevent_set_period(struct perf_event *event)
6265
{
6266
	struct hw_perf_event *hwc = &event->hw;
6267 6268 6269 6270 6271
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6272 6273

again:
6274
	old = val = local64_read(&hwc->period_left);
6275 6276
	if (val < 0)
		return 0;
6277

6278 6279 6280
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6281
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6282
		goto again;
6283

6284
	return nr;
6285 6286
}

6287
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6288
				    struct perf_sample_data *data,
6289
				    struct pt_regs *regs)
6290
{
6291
	struct hw_perf_event *hwc = &event->hw;
6292
	int throttle = 0;
6293

6294 6295
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6296

6297 6298
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6299

6300
	for (; overflow; overflow--) {
6301
		if (__perf_event_overflow(event, throttle,
6302
					    data, regs)) {
6303 6304 6305 6306 6307 6308
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6309
		throttle = 1;
6310
	}
6311 6312
}

P
Peter Zijlstra 已提交
6313
static void perf_swevent_event(struct perf_event *event, u64 nr,
6314
			       struct perf_sample_data *data,
6315
			       struct pt_regs *regs)
6316
{
6317
	struct hw_perf_event *hwc = &event->hw;
6318

6319
	local64_add(nr, &event->count);
6320

6321 6322 6323
	if (!regs)
		return;

6324
	if (!is_sampling_event(event))
6325
		return;
6326

6327 6328 6329 6330 6331 6332
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6333
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6334
		return perf_swevent_overflow(event, 1, data, regs);
6335

6336
	if (local64_add_negative(nr, &hwc->period_left))
6337
		return;
6338

6339
	perf_swevent_overflow(event, 0, data, regs);
6340 6341
}

6342 6343 6344
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6345
	if (event->hw.state & PERF_HES_STOPPED)
6346
		return 1;
P
Peter Zijlstra 已提交
6347

6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6359
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6360
				enum perf_type_id type,
L
Li Zefan 已提交
6361 6362 6363
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6364
{
6365
	if (event->attr.type != type)
6366
		return 0;
6367

6368
	if (event->attr.config != event_id)
6369 6370
		return 0;

6371 6372
	if (perf_exclude_event(event, regs))
		return 0;
6373 6374 6375 6376

	return 1;
}

6377 6378 6379 6380 6381 6382 6383
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6384 6385
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6386
{
6387 6388 6389 6390
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6391

6392 6393
/* For the read side: events when they trigger */
static inline struct hlist_head *
6394
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6395 6396
{
	struct swevent_hlist *hlist;
6397

6398
	hlist = rcu_dereference(swhash->swevent_hlist);
6399 6400 6401
	if (!hlist)
		return NULL;

6402 6403 6404 6405 6406
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6407
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6418
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6419 6420 6421 6422 6423
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6424 6425 6426
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6427
				    u64 nr,
6428 6429
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6430
{
6431
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6432
	struct perf_event *event;
6433
	struct hlist_head *head;
6434

6435
	rcu_read_lock();
6436
	head = find_swevent_head_rcu(swhash, type, event_id);
6437 6438 6439
	if (!head)
		goto end;

6440
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6441
		if (perf_swevent_match(event, type, event_id, data, regs))
6442
			perf_swevent_event(event, nr, data, regs);
6443
	}
6444 6445
end:
	rcu_read_unlock();
6446 6447
}

6448 6449
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6450
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6451
{
6452
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6453

6454
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6455
}
I
Ingo Molnar 已提交
6456
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6457

6458
inline void perf_swevent_put_recursion_context(int rctx)
6459
{
6460
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6461

6462
	put_recursion_context(swhash->recursion, rctx);
6463
}
6464

6465
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6466
{
6467
	struct perf_sample_data data;
6468

6469
	if (WARN_ON_ONCE(!regs))
6470
		return;
6471

6472
	perf_sample_data_init(&data, addr, 0);
6473
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6486 6487

	perf_swevent_put_recursion_context(rctx);
6488
fail:
6489
	preempt_enable_notrace();
6490 6491
}

6492
static void perf_swevent_read(struct perf_event *event)
6493 6494 6495
{
}

P
Peter Zijlstra 已提交
6496
static int perf_swevent_add(struct perf_event *event, int flags)
6497
{
6498
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6499
	struct hw_perf_event *hwc = &event->hw;
6500 6501
	struct hlist_head *head;

6502
	if (is_sampling_event(event)) {
6503
		hwc->last_period = hwc->sample_period;
6504
		perf_swevent_set_period(event);
6505
	}
6506

P
Peter Zijlstra 已提交
6507 6508
	hwc->state = !(flags & PERF_EF_START);

6509
	head = find_swevent_head(swhash, event);
6510 6511 6512 6513 6514 6515
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6516
		return -EINVAL;
6517
	}
6518 6519

	hlist_add_head_rcu(&event->hlist_entry, head);
6520
	perf_event_update_userpage(event);
6521

6522 6523 6524
	return 0;
}

P
Peter Zijlstra 已提交
6525
static void perf_swevent_del(struct perf_event *event, int flags)
6526
{
6527
	hlist_del_rcu(&event->hlist_entry);
6528 6529
}

P
Peter Zijlstra 已提交
6530
static void perf_swevent_start(struct perf_event *event, int flags)
6531
{
P
Peter Zijlstra 已提交
6532
	event->hw.state = 0;
6533
}
I
Ingo Molnar 已提交
6534

P
Peter Zijlstra 已提交
6535
static void perf_swevent_stop(struct perf_event *event, int flags)
6536
{
P
Peter Zijlstra 已提交
6537
	event->hw.state = PERF_HES_STOPPED;
6538 6539
}

6540 6541
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6542
swevent_hlist_deref(struct swevent_htable *swhash)
6543
{
6544 6545
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6546 6547
}

6548
static void swevent_hlist_release(struct swevent_htable *swhash)
6549
{
6550
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6551

6552
	if (!hlist)
6553 6554
		return;

6555
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6556
	kfree_rcu(hlist, rcu_head);
6557 6558 6559 6560
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6561
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6562

6563
	mutex_lock(&swhash->hlist_mutex);
6564

6565 6566
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6567

6568
	mutex_unlock(&swhash->hlist_mutex);
6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6581
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6582 6583
	int err = 0;

6584
	mutex_lock(&swhash->hlist_mutex);
6585

6586
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6587 6588 6589 6590 6591 6592 6593
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6594
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6595
	}
6596
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6597
exit:
6598
	mutex_unlock(&swhash->hlist_mutex);
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6619
fail:
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6630
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6631

6632 6633 6634
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6635

6636 6637
	WARN_ON(event->parent);

6638
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6639 6640 6641 6642 6643
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6644
	u64 event_id = event->attr.config;
6645 6646 6647 6648

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6649 6650 6651 6652 6653 6654
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6655 6656 6657 6658 6659 6660 6661 6662 6663
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6664
	if (event_id >= PERF_COUNT_SW_MAX)
6665 6666 6667 6668 6669 6670 6671 6672 6673
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6674
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6675 6676 6677 6678 6679 6680 6681
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6682
	.task_ctx_nr	= perf_sw_context,
6683

6684 6685
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6686
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6687 6688 6689 6690
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6691 6692 6693
	.read		= perf_swevent_read,
};

6694 6695
#ifdef CONFIG_EVENT_TRACING

6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6710 6711
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6712 6713 6714 6715
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6716 6717 6718 6719 6720 6721 6722 6723 6724
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6725 6726
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6727 6728
{
	struct perf_sample_data data;
6729 6730
	struct perf_event *event;

6731 6732 6733 6734 6735
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6736
	perf_sample_data_init(&data, addr, 0);
6737 6738
	data.raw = &raw;

6739
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6740
		if (perf_tp_event_match(event, &data, regs))
6741
			perf_swevent_event(event, count, &data, regs);
6742
	}
6743

6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6769
	perf_swevent_put_recursion_context(rctx);
6770 6771 6772
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6773
static void tp_perf_event_destroy(struct perf_event *event)
6774
{
6775
	perf_trace_destroy(event);
6776 6777
}

6778
static int perf_tp_event_init(struct perf_event *event)
6779
{
6780 6781
	int err;

6782 6783 6784
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6785 6786 6787 6788 6789 6790
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6791 6792
	err = perf_trace_init(event);
	if (err)
6793
		return err;
6794

6795
	event->destroy = tp_perf_event_destroy;
6796

6797 6798 6799 6800
	return 0;
}

static struct pmu perf_tracepoint = {
6801 6802
	.task_ctx_nr	= perf_sw_context,

6803
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6804 6805 6806 6807
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6808 6809 6810 6811 6812
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6813
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6814
}
L
Li Zefan 已提交
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

	if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
		/* bpf programs can only be attached to kprobes */
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

6857
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

6882
#else
L
Li Zefan 已提交
6883

6884
static inline void perf_tp_register(void)
6885 6886
{
}
L
Li Zefan 已提交
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6897 6898 6899 6900 6901 6902 6903 6904
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
6905
#endif /* CONFIG_EVENT_TRACING */
6906

6907
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6908
void perf_bp_event(struct perf_event *bp, void *data)
6909
{
6910 6911 6912
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6913
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6914

P
Peter Zijlstra 已提交
6915
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6916
		perf_swevent_event(bp, 1, &sample, regs);
6917 6918 6919
}
#endif

6920 6921 6922
/*
 * hrtimer based swevent callback
 */
6923

6924
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6925
{
6926 6927 6928 6929 6930
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6931

6932
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6933 6934 6935 6936

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6937
	event->pmu->read(event);
6938

6939
	perf_sample_data_init(&data, 0, event->hw.last_period);
6940 6941 6942
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6943
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6944
			if (__perf_event_overflow(event, 1, &data, regs))
6945 6946
				ret = HRTIMER_NORESTART;
	}
6947

6948 6949
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6950

6951
	return ret;
6952 6953
}

6954
static void perf_swevent_start_hrtimer(struct perf_event *event)
6955
{
6956
	struct hw_perf_event *hwc = &event->hw;
6957 6958 6959 6960
	s64 period;

	if (!is_sampling_event(event))
		return;
6961

6962 6963 6964 6965
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6966

6967 6968 6969 6970
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
6971 6972
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
6973
}
6974 6975

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6976
{
6977 6978
	struct hw_perf_event *hwc = &event->hw;

6979
	if (is_sampling_event(event)) {
6980
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6981
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6982 6983 6984

		hrtimer_cancel(&hwc->hrtimer);
	}
6985 6986
}

P
Peter Zijlstra 已提交
6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7007
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7008 7009 7010 7011
		event->attr.freq = 0;
	}
}

7012 7013 7014 7015 7016
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7017
{
7018 7019 7020
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7021
	now = local_clock();
7022 7023
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7024 7025
}

P
Peter Zijlstra 已提交
7026
static void cpu_clock_event_start(struct perf_event *event, int flags)
7027
{
P
Peter Zijlstra 已提交
7028
	local64_set(&event->hw.prev_count, local_clock());
7029 7030 7031
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7032
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7033
{
7034 7035 7036
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7037

P
Peter Zijlstra 已提交
7038 7039 7040 7041
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7042
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7043 7044 7045 7046 7047 7048 7049 7050 7051

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7052 7053 7054 7055
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7056

7057 7058 7059 7060 7061 7062 7063 7064
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7065 7066 7067 7068 7069 7070
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7071 7072
	perf_swevent_init_hrtimer(event);

7073
	return 0;
7074 7075
}

7076
static struct pmu perf_cpu_clock = {
7077 7078
	.task_ctx_nr	= perf_sw_context,

7079 7080
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7081
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7082 7083 7084 7085
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7086 7087 7088 7089 7090 7091 7092 7093
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7094
{
7095 7096
	u64 prev;
	s64 delta;
7097

7098 7099 7100 7101
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7102

P
Peter Zijlstra 已提交
7103
static void task_clock_event_start(struct perf_event *event, int flags)
7104
{
P
Peter Zijlstra 已提交
7105
	local64_set(&event->hw.prev_count, event->ctx->time);
7106 7107 7108
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7109
static void task_clock_event_stop(struct perf_event *event, int flags)
7110 7111 7112
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7113 7114 7115 7116 7117 7118
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7119
	perf_event_update_userpage(event);
7120

P
Peter Zijlstra 已提交
7121 7122 7123 7124 7125 7126
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7127 7128 7129 7130
}

static void task_clock_event_read(struct perf_event *event)
{
7131 7132 7133
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7134 7135 7136 7137 7138

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7139
{
7140 7141 7142 7143 7144 7145
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7146 7147 7148 7149 7150 7151
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7152 7153
	perf_swevent_init_hrtimer(event);

7154
	return 0;
L
Li Zefan 已提交
7155 7156
}

7157
static struct pmu perf_task_clock = {
7158 7159
	.task_ctx_nr	= perf_sw_context,

7160 7161
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7162
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7163 7164 7165 7166
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7167 7168
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7169

P
Peter Zijlstra 已提交
7170
static void perf_pmu_nop_void(struct pmu *pmu)
7171 7172
{
}
L
Li Zefan 已提交
7173

P
Peter Zijlstra 已提交
7174
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7175
{
P
Peter Zijlstra 已提交
7176
	return 0;
L
Li Zefan 已提交
7177 7178
}

P
Peter Zijlstra 已提交
7179
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
7180
{
P
Peter Zijlstra 已提交
7181
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7182 7183
}

P
Peter Zijlstra 已提交
7184 7185 7186 7187 7188
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
7189

P
Peter Zijlstra 已提交
7190
static void perf_pmu_cancel_txn(struct pmu *pmu)
7191
{
P
Peter Zijlstra 已提交
7192
	perf_pmu_enable(pmu);
7193 7194
}

7195 7196
static int perf_event_idx_default(struct perf_event *event)
{
7197
	return 0;
7198 7199
}

P
Peter Zijlstra 已提交
7200 7201 7202 7203
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7204
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7205
{
P
Peter Zijlstra 已提交
7206
	struct pmu *pmu;
7207

P
Peter Zijlstra 已提交
7208 7209
	if (ctxn < 0)
		return NULL;
7210

P
Peter Zijlstra 已提交
7211 7212 7213 7214
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7215

P
Peter Zijlstra 已提交
7216
	return NULL;
7217 7218
}

7219
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7220
{
7221 7222 7223 7224 7225 7226 7227
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7228 7229
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7230 7231 7232 7233 7234 7235
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7236

P
Peter Zijlstra 已提交
7237
	mutex_lock(&pmus_lock);
7238
	/*
P
Peter Zijlstra 已提交
7239
	 * Like a real lame refcount.
7240
	 */
7241 7242 7243
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7244
			goto out;
7245
		}
P
Peter Zijlstra 已提交
7246
	}
7247

7248
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7249 7250
out:
	mutex_unlock(&pmus_lock);
7251
}
P
Peter Zijlstra 已提交
7252
static struct idr pmu_idr;
7253

P
Peter Zijlstra 已提交
7254 7255 7256 7257 7258 7259 7260
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7261
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7262

7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7273 7274
static DEFINE_MUTEX(mux_interval_mutex);

7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7294
	mutex_lock(&mux_interval_mutex);
7295 7296 7297
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7298 7299
	get_online_cpus();
	for_each_online_cpu(cpu) {
7300 7301 7302 7303
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7304 7305
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7306
	}
7307 7308
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7309 7310 7311

	return count;
}
7312
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7313

7314 7315 7316 7317
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7318
};
7319
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7320 7321 7322 7323

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7324
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7340
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7361
static struct lock_class_key cpuctx_mutex;
7362
static struct lock_class_key cpuctx_lock;
7363

7364
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7365
{
P
Peter Zijlstra 已提交
7366
	int cpu, ret;
7367

7368
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7369 7370 7371 7372
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7373

P
Peter Zijlstra 已提交
7374 7375 7376 7377 7378 7379
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7380 7381 7382
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7383 7384 7385 7386 7387
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7388 7389 7390 7391 7392 7393
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7394
skip_type:
P
Peter Zijlstra 已提交
7395 7396 7397
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7398

W
Wei Yongjun 已提交
7399
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7400 7401
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7402
		goto free_dev;
7403

P
Peter Zijlstra 已提交
7404 7405 7406 7407
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7408
		__perf_event_init_context(&cpuctx->ctx);
7409
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7410
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7411
		cpuctx->ctx.pmu = pmu;
7412

7413
		__perf_mux_hrtimer_init(cpuctx, cpu);
7414

7415
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7416
	}
7417

P
Peter Zijlstra 已提交
7418
got_cpu_context:
P
Peter Zijlstra 已提交
7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7433
		}
7434
	}
7435

P
Peter Zijlstra 已提交
7436 7437 7438 7439 7440
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7441 7442 7443
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7444
	list_add_rcu(&pmu->entry, &pmus);
7445
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7446 7447
	ret = 0;
unlock:
7448 7449
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7450
	return ret;
P
Peter Zijlstra 已提交
7451

P
Peter Zijlstra 已提交
7452 7453 7454 7455
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7456 7457 7458 7459
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7460 7461 7462
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7463
}
7464
EXPORT_SYMBOL_GPL(perf_pmu_register);
7465

7466
void perf_pmu_unregister(struct pmu *pmu)
7467
{
7468 7469 7470
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7471

7472
	/*
P
Peter Zijlstra 已提交
7473 7474
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7475
	 */
7476
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7477
	synchronize_rcu();
7478

P
Peter Zijlstra 已提交
7479
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7480 7481
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7482 7483
	device_del(pmu->dev);
	put_device(pmu->dev);
7484
	free_pmu_context(pmu);
7485
}
7486
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7487

7488 7489
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7490
	struct perf_event_context *ctx = NULL;
7491 7492 7493 7494
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7495 7496

	if (event->group_leader != event) {
7497 7498 7499 7500 7501 7502
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7503 7504 7505
		BUG_ON(!ctx);
	}

7506 7507
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7508 7509 7510 7511

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7512 7513 7514 7515 7516 7517
	if (ret)
		module_put(pmu->module);

	return ret;
}

7518 7519 7520 7521
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7522
	int ret;
7523 7524

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7525 7526 7527 7528

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7529
	if (pmu) {
7530
		ret = perf_try_init_event(pmu, event);
7531 7532
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7533
		goto unlock;
7534
	}
P
Peter Zijlstra 已提交
7535

7536
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7537
		ret = perf_try_init_event(pmu, event);
7538
		if (!ret)
P
Peter Zijlstra 已提交
7539
			goto unlock;
7540

7541 7542
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7543
			goto unlock;
7544
		}
7545
	}
P
Peter Zijlstra 已提交
7546 7547
	pmu = ERR_PTR(-ENOENT);
unlock:
7548
	srcu_read_unlock(&pmus_srcu, idx);
7549

7550
	return pmu;
7551 7552
}

7553 7554 7555 7556 7557 7558 7559 7560 7561
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7562 7563
static void account_event(struct perf_event *event)
{
7564 7565 7566
	if (event->parent)
		return;

7567 7568 7569 7570 7571 7572 7573 7574
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7575 7576 7577 7578
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7579 7580 7581 7582
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7583
	if (has_branch_stack(event))
7584
		static_key_slow_inc(&perf_sched_events.key);
7585
	if (is_cgroup_event(event))
7586
		static_key_slow_inc(&perf_sched_events.key);
7587 7588

	account_event_cpu(event, event->cpu);
7589 7590
}

T
Thomas Gleixner 已提交
7591
/*
7592
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7593
 */
7594
static struct perf_event *
7595
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7596 7597 7598
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7599
		 perf_overflow_handler_t overflow_handler,
7600
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7601
{
P
Peter Zijlstra 已提交
7602
	struct pmu *pmu;
7603 7604
	struct perf_event *event;
	struct hw_perf_event *hwc;
7605
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7606

7607 7608 7609 7610 7611
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7612
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7613
	if (!event)
7614
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7615

7616
	/*
7617
	 * Single events are their own group leaders, with an
7618 7619 7620
	 * empty sibling list:
	 */
	if (!group_leader)
7621
		group_leader = event;
7622

7623 7624
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7625

7626 7627 7628
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7629
	INIT_LIST_HEAD(&event->rb_entry);
7630
	INIT_LIST_HEAD(&event->active_entry);
7631 7632
	INIT_HLIST_NODE(&event->hlist_entry);

7633

7634
	init_waitqueue_head(&event->waitq);
7635
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7636

7637
	mutex_init(&event->mmap_mutex);
7638

7639
	atomic_long_set(&event->refcount, 1);
7640 7641 7642 7643 7644
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7645

7646
	event->parent		= parent_event;
7647

7648
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7649
	event->id		= atomic64_inc_return(&perf_event_id);
7650

7651
	event->state		= PERF_EVENT_STATE_INACTIVE;
7652

7653 7654 7655
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7656 7657 7658
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7659
		 */
7660
		event->hw.target = task;
7661 7662
	}

7663 7664 7665 7666
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7667
	if (!overflow_handler && parent_event) {
7668
		overflow_handler = parent_event->overflow_handler;
7669 7670
		context = parent_event->overflow_handler_context;
	}
7671

7672
	event->overflow_handler	= overflow_handler;
7673
	event->overflow_handler_context = context;
7674

J
Jiri Olsa 已提交
7675
	perf_event__state_init(event);
7676

7677
	pmu = NULL;
7678

7679
	hwc = &event->hw;
7680
	hwc->sample_period = attr->sample_period;
7681
	if (attr->freq && attr->sample_freq)
7682
		hwc->sample_period = 1;
7683
	hwc->last_period = hwc->sample_period;
7684

7685
	local64_set(&hwc->period_left, hwc->sample_period);
7686

7687
	/*
7688
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7689
	 */
7690
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7691
		goto err_ns;
7692 7693 7694

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7695

7696 7697 7698 7699 7700 7701
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7702
	pmu = perf_init_event(event);
7703
	if (!pmu)
7704 7705
		goto err_ns;
	else if (IS_ERR(pmu)) {
7706
		err = PTR_ERR(pmu);
7707
		goto err_ns;
I
Ingo Molnar 已提交
7708
	}
7709

7710 7711 7712 7713
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7714
	if (!event->parent) {
7715 7716
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7717
			if (err)
7718
				goto err_per_task;
7719
		}
7720
	}
7721

7722
	return event;
7723

7724 7725 7726
err_per_task:
	exclusive_event_destroy(event);

7727 7728 7729
err_pmu:
	if (event->destroy)
		event->destroy(event);
7730
	module_put(pmu->module);
7731
err_ns:
7732 7733
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7734 7735 7736 7737 7738
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7739 7740
}

7741 7742
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7743 7744
{
	u32 size;
7745
	int ret;
7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7770 7771 7772
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7773 7774
	 */
	if (size > sizeof(*attr)) {
7775 7776 7777
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7778

7779 7780
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7781

7782
		for (; addr < end; addr++) {
7783 7784 7785 7786 7787 7788
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7789
		size = sizeof(*attr);
7790 7791 7792 7793 7794 7795
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7796
	if (attr->__reserved_1)
7797 7798 7799 7800 7801 7802 7803 7804
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7833 7834
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7835 7836
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7837
	}
7838

7839
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7840
		ret = perf_reg_validate(attr->sample_regs_user);
7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7859

7860 7861
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7862 7863 7864 7865 7866 7867 7868 7869 7870
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7871 7872
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7873
{
7874
	struct ring_buffer *rb = NULL;
7875 7876
	int ret = -EINVAL;

7877
	if (!output_event)
7878 7879
		goto set;

7880 7881
	/* don't allow circular references */
	if (event == output_event)
7882 7883
		goto out;

7884 7885 7886 7887 7888 7889 7890
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7891
	 * If its not a per-cpu rb, it must be the same task.
7892 7893 7894 7895
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7896 7897 7898 7899 7900 7901
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

7902 7903 7904 7905 7906 7907 7908
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

7909
set:
7910
	mutex_lock(&event->mmap_mutex);
7911 7912 7913
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7914

7915
	if (output_event) {
7916 7917 7918
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7919
			goto unlock;
7920 7921
	}

7922
	ring_buffer_attach(event, rb);
7923

7924
	ret = 0;
7925 7926 7927
unlock:
	mutex_unlock(&event->mmap_mutex);

7928 7929 7930 7931
out:
	return ret;
}

P
Peter Zijlstra 已提交
7932 7933 7934 7935 7936 7937 7938 7939 7940
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
7978
/**
7979
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7980
 *
7981
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7982
 * @pid:		target pid
I
Ingo Molnar 已提交
7983
 * @cpu:		target cpu
7984
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7985
 */
7986 7987
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7988
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7989
{
7990 7991
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7992
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7993
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7994
	struct file *event_file = NULL;
7995
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7996
	struct task_struct *task = NULL;
7997
	struct pmu *pmu;
7998
	int event_fd;
7999
	int move_group = 0;
8000
	int err;
8001
	int f_flags = O_RDWR;
8002
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8003

8004
	/* for future expandability... */
S
Stephane Eranian 已提交
8005
	if (flags & ~PERF_FLAG_ALL)
8006 8007
		return -EINVAL;

8008 8009 8010
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8011

8012 8013 8014 8015 8016
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8017
	if (attr.freq) {
8018
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8019
			return -EINVAL;
8020 8021 8022
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8023 8024
	}

S
Stephane Eranian 已提交
8025 8026 8027 8028 8029 8030 8031 8032 8033
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8034 8035 8036 8037
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8038 8039 8040
	if (event_fd < 0)
		return event_fd;

8041
	if (group_fd != -1) {
8042 8043
		err = perf_fget_light(group_fd, &group);
		if (err)
8044
			goto err_fd;
8045
		group_leader = group.file->private_data;
8046 8047 8048 8049 8050 8051
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8052
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8053 8054 8055 8056 8057 8058 8059
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8060 8061 8062 8063 8064 8065
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8066 8067
	get_online_cpus();

8068 8069 8070
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8071
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8072
				 NULL, NULL, cgroup_fd);
8073 8074
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8075
		goto err_cpus;
8076 8077
	}

8078 8079 8080 8081 8082 8083 8084
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8085 8086
	account_event(event);

8087 8088 8089 8090 8091
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8092

8093 8094 8095 8096 8097 8098
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8121 8122 8123 8124

	/*
	 * Get the target context (task or percpu):
	 */
8125
	ctx = find_get_context(pmu, task, event);
8126 8127
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8128
		goto err_alloc;
8129 8130
	}

8131 8132 8133 8134 8135
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8136 8137 8138 8139 8140
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8141
	/*
8142
	 * Look up the group leader (we will attach this event to it):
8143
	 */
8144
	if (group_leader) {
8145
		err = -EINVAL;
8146 8147

		/*
I
Ingo Molnar 已提交
8148 8149 8150 8151
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8152
			goto err_context;
8153 8154 8155 8156 8157

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8158 8159 8160
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8161
		 */
8162
		if (move_group) {
8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8176 8177 8178 8179 8180 8181
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8182 8183 8184
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8185
		if (attr.exclusive || attr.pinned)
8186
			goto err_context;
8187 8188 8189 8190 8191
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8192
			goto err_context;
8193
	}
T
Thomas Gleixner 已提交
8194

8195 8196
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8197 8198
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8199
		goto err_context;
8200
	}
8201

8202
	if (move_group) {
P
Peter Zijlstra 已提交
8203 8204 8205 8206 8207 8208 8209
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8210

8211
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8212

8213 8214
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8215
			perf_remove_from_context(sibling, false);
8216 8217
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
8218 8219
	} else {
		mutex_lock(&ctx->mutex);
8220
	}
8221

8222
	WARN_ON_ONCE(ctx->parent_ctx);
8223 8224

	if (move_group) {
P
Peter Zijlstra 已提交
8225 8226 8227 8228
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8229
		synchronize_rcu();
P
Peter Zijlstra 已提交
8230

8231 8232 8233 8234 8235 8236 8237 8238 8239 8240
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8241 8242
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8243
			perf_event__state_init(sibling);
8244
			perf_install_in_context(ctx, sibling, sibling->cpu);
8245 8246
			get_ctx(ctx);
		}
8247 8248 8249 8250 8251 8252 8253 8254 8255

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8256 8257
	}

8258 8259 8260 8261 8262 8263 8264
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
		mutex_unlock(&ctx->mutex);
		fput(event_file);
		goto err_context;
	}

8265
	perf_install_in_context(ctx, event, event->cpu);
8266
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8267 8268 8269 8270 8271

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
8272
	mutex_unlock(&ctx->mutex);
8273

8274 8275
	put_online_cpus();

8276
	event->owner = current;
P
Peter Zijlstra 已提交
8277

8278 8279 8280
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8281

8282 8283 8284 8285
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
8286
	perf_event__id_header_size(event);
8287

8288 8289 8290 8291 8292 8293
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8294
	fdput(group);
8295 8296
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8297

8298
err_context:
8299
	perf_unpin_context(ctx);
8300
	put_ctx(ctx);
8301
err_alloc:
8302
	free_event(event);
8303
err_cpus:
8304
	put_online_cpus();
8305
err_task:
P
Peter Zijlstra 已提交
8306 8307
	if (task)
		put_task_struct(task);
8308
err_group_fd:
8309
	fdput(group);
8310 8311
err_fd:
	put_unused_fd(event_fd);
8312
	return err;
T
Thomas Gleixner 已提交
8313 8314
}

8315 8316 8317 8318 8319
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8320
 * @task: task to profile (NULL for percpu)
8321 8322 8323
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8324
				 struct task_struct *task,
8325 8326
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8327 8328
{
	struct perf_event_context *ctx;
8329
	struct perf_event *event;
8330
	int err;
8331

8332 8333 8334
	/*
	 * Get the target context (task or percpu):
	 */
8335

8336
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8337
				 overflow_handler, context, -1);
8338 8339 8340 8341
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8342

8343 8344 8345
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8346 8347
	account_event(event);

8348
	ctx = find_get_context(event->pmu, task, event);
8349 8350
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8351
		goto err_free;
8352
	}
8353 8354 8355

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8356 8357 8358 8359 8360 8361 8362 8363
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8364
	perf_install_in_context(ctx, event, cpu);
8365
	perf_unpin_context(ctx);
8366 8367 8368 8369
	mutex_unlock(&ctx->mutex);

	return event;

8370 8371 8372
err_free:
	free_event(event);
err:
8373
	return ERR_PTR(err);
8374
}
8375
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8376

8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8387 8388 8389 8390 8391
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8392 8393
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8394
		perf_remove_from_context(event, false);
8395
		unaccount_event_cpu(event, src_cpu);
8396
		put_ctx(src_ctx);
8397
		list_add(&event->migrate_entry, &events);
8398 8399
	}

8400 8401 8402
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8403 8404
	synchronize_rcu();

8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8429 8430
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8431 8432
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8433
		account_event_cpu(event, dst_cpu);
8434 8435 8436 8437
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8438
	mutex_unlock(&src_ctx->mutex);
8439 8440 8441
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8442
static void sync_child_event(struct perf_event *child_event,
8443
			       struct task_struct *child)
8444
{
8445
	struct perf_event *parent_event = child_event->parent;
8446
	u64 child_val;
8447

8448 8449
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8450

P
Peter Zijlstra 已提交
8451
	child_val = perf_event_count(child_event);
8452 8453 8454 8455

	/*
	 * Add back the child's count to the parent's count:
	 */
8456
	atomic64_add(child_val, &parent_event->child_count);
8457 8458 8459 8460
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8461 8462

	/*
8463
	 * Remove this event from the parent's list
8464
	 */
8465 8466 8467 8468
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8469

8470 8471 8472 8473 8474 8475
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8476
	/*
8477
	 * Release the parent event, if this was the last
8478 8479
	 * reference to it.
	 */
8480
	put_event(parent_event);
8481 8482
}

8483
static void
8484 8485
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8486
			 struct task_struct *child)
8487
{
8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8501

8502
	/*
8503
	 * It can happen that the parent exits first, and has events
8504
	 * that are still around due to the child reference. These
8505
	 * events need to be zapped.
8506
	 */
8507
	if (child_event->parent) {
8508 8509
		sync_child_event(child_event, child);
		free_event(child_event);
8510 8511 8512
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8513
	}
8514 8515
}

P
Peter Zijlstra 已提交
8516
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8517
{
8518
	struct perf_event *child_event, *next;
8519
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8520
	unsigned long flags;
8521

P
Peter Zijlstra 已提交
8522
	if (likely(!child->perf_event_ctxp[ctxn])) {
8523
		perf_event_task(child, NULL, 0);
8524
		return;
P
Peter Zijlstra 已提交
8525
	}
8526

8527
	local_irq_save(flags);
8528 8529 8530 8531 8532 8533
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8534
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8535 8536 8537

	/*
	 * Take the context lock here so that if find_get_context is
8538
	 * reading child->perf_event_ctxp, we wait until it has
8539 8540
	 * incremented the context's refcount before we do put_ctx below.
	 */
8541
	raw_spin_lock(&child_ctx->lock);
8542
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8543
	child->perf_event_ctxp[ctxn] = NULL;
8544

8545 8546 8547
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8548
	 * the events from it.
8549
	 */
8550
	clone_ctx = unclone_ctx(child_ctx);
8551
	update_context_time(child_ctx);
8552
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8553

8554 8555
	if (clone_ctx)
		put_ctx(clone_ctx);
8556

P
Peter Zijlstra 已提交
8557
	/*
8558 8559 8560
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8561
	 */
8562
	perf_event_task(child, child_ctx, 0);
8563

8564 8565 8566
	/*
	 * We can recurse on the same lock type through:
	 *
8567 8568
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8569 8570
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8571 8572 8573
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8574
	mutex_lock(&child_ctx->mutex);
8575

8576
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8577
		__perf_event_exit_task(child_event, child_ctx, child);
8578

8579 8580 8581
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8582 8583
}

P
Peter Zijlstra 已提交
8584 8585 8586 8587 8588
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8589
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8590 8591
	int ctxn;

P
Peter Zijlstra 已提交
8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8607 8608 8609 8610
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8623
	put_event(parent);
8624

P
Peter Zijlstra 已提交
8625
	raw_spin_lock_irq(&ctx->lock);
8626
	perf_group_detach(event);
8627
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8628
	raw_spin_unlock_irq(&ctx->lock);
8629 8630 8631
	free_event(event);
}

8632
/*
P
Peter Zijlstra 已提交
8633
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8634
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8635 8636 8637
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8638
 */
8639
void perf_event_free_task(struct task_struct *task)
8640
{
P
Peter Zijlstra 已提交
8641
	struct perf_event_context *ctx;
8642
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8643
	int ctxn;
8644

P
Peter Zijlstra 已提交
8645 8646 8647 8648
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8649

P
Peter Zijlstra 已提交
8650
		mutex_lock(&ctx->mutex);
8651
again:
P
Peter Zijlstra 已提交
8652 8653 8654
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8655

P
Peter Zijlstra 已提交
8656 8657 8658
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8659

P
Peter Zijlstra 已提交
8660 8661 8662
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8663

P
Peter Zijlstra 已提交
8664
		mutex_unlock(&ctx->mutex);
8665

P
Peter Zijlstra 已提交
8666 8667
		put_ctx(ctx);
	}
8668 8669
}

8670 8671 8672 8673 8674 8675 8676 8677
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8689
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8690
	struct perf_event *child_event;
8691
	unsigned long flags;
P
Peter Zijlstra 已提交
8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8704
					   child,
P
Peter Zijlstra 已提交
8705
					   group_leader, parent_event,
8706
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8707 8708
	if (IS_ERR(child_event))
		return child_event;
8709

8710 8711
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8712 8713 8714 8715
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8716 8717 8718 8719 8720 8721 8722
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8723
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8740 8741
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8742

8743 8744 8745 8746
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8747
	perf_event__id_header_size(child_event);
8748

P
Peter Zijlstra 已提交
8749 8750 8751
	/*
	 * Link it up in the child's context:
	 */
8752
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8753
	add_event_to_ctx(child_event, child_ctx);
8754
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8788 8789 8790 8791 8792
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8793
		   struct task_struct *child, int ctxn,
8794 8795 8796
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8797
	struct perf_event_context *child_ctx;
8798 8799 8800 8801

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8802 8803
	}

8804
	child_ctx = child->perf_event_ctxp[ctxn];
8805 8806 8807 8808 8809 8810 8811
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8812

8813
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8814 8815
		if (!child_ctx)
			return -ENOMEM;
8816

P
Peter Zijlstra 已提交
8817
		child->perf_event_ctxp[ctxn] = child_ctx;
8818 8819 8820 8821 8822 8823 8824 8825 8826
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8827 8828
}

8829
/*
8830
 * Initialize the perf_event context in task_struct
8831
 */
8832
static int perf_event_init_context(struct task_struct *child, int ctxn)
8833
{
8834
	struct perf_event_context *child_ctx, *parent_ctx;
8835 8836
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8837
	struct task_struct *parent = current;
8838
	int inherited_all = 1;
8839
	unsigned long flags;
8840
	int ret = 0;
8841

P
Peter Zijlstra 已提交
8842
	if (likely(!parent->perf_event_ctxp[ctxn]))
8843 8844
		return 0;

8845
	/*
8846 8847
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8848
	 */
P
Peter Zijlstra 已提交
8849
	parent_ctx = perf_pin_task_context(parent, ctxn);
8850 8851
	if (!parent_ctx)
		return 0;
8852

8853 8854 8855 8856 8857 8858 8859
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8860 8861 8862 8863
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8864
	mutex_lock(&parent_ctx->mutex);
8865 8866 8867 8868 8869

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8870
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8871 8872
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8873 8874 8875
		if (ret)
			break;
	}
8876

8877 8878 8879 8880 8881 8882 8883 8884 8885
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8886
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8887 8888
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8889
		if (ret)
8890
			break;
8891 8892
	}

8893 8894 8895
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8896
	child_ctx = child->perf_event_ctxp[ctxn];
8897

8898
	if (child_ctx && inherited_all) {
8899 8900 8901
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8902 8903 8904
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8905
		 */
P
Peter Zijlstra 已提交
8906
		cloned_ctx = parent_ctx->parent_ctx;
8907 8908
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8909
			child_ctx->parent_gen = parent_ctx->parent_gen;
8910 8911 8912 8913 8914
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8915 8916
	}

P
Peter Zijlstra 已提交
8917
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8918
	mutex_unlock(&parent_ctx->mutex);
8919

8920
	perf_unpin_context(parent_ctx);
8921
	put_ctx(parent_ctx);
8922

8923
	return ret;
8924 8925
}

P
Peter Zijlstra 已提交
8926 8927 8928 8929 8930 8931 8932
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8933 8934 8935 8936
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8937 8938
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8939 8940
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8941
			return ret;
P
Peter Zijlstra 已提交
8942
		}
P
Peter Zijlstra 已提交
8943 8944 8945 8946 8947
	}

	return 0;
}

8948 8949
static void __init perf_event_init_all_cpus(void)
{
8950
	struct swevent_htable *swhash;
8951 8952 8953
	int cpu;

	for_each_possible_cpu(cpu) {
8954 8955
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8956
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8957 8958 8959
	}
}

8960
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8961
{
P
Peter Zijlstra 已提交
8962
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8963

8964
	mutex_lock(&swhash->hlist_mutex);
8965
	swhash->online = true;
8966
	if (swhash->hlist_refcount > 0) {
8967 8968
		struct swevent_hlist *hlist;

8969 8970 8971
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8972
	}
8973
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8974 8975
}

P
Peter Zijlstra 已提交
8976
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
P
Peter Zijlstra 已提交
8977
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8978
{
8979
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8980
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8981

P
Peter Zijlstra 已提交
8982
	rcu_read_lock();
8983 8984
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8985
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8986
}
P
Peter Zijlstra 已提交
8987 8988 8989 8990 8991 8992 8993 8994 8995

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8996
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8997 8998 8999 9000 9001 9002 9003 9004

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9005
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9006
{
9007
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9008

P
Peter Zijlstra 已提交
9009 9010
	perf_event_exit_cpu_context(cpu);

9011
	mutex_lock(&swhash->hlist_mutex);
9012
	swhash->online = false;
9013 9014
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9015 9016
}
#else
9017
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9018 9019
#endif

P
Peter Zijlstra 已提交
9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9040
static int
T
Thomas Gleixner 已提交
9041 9042 9043 9044
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9045
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9046 9047

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9048
	case CPU_DOWN_FAILED:
9049
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9050 9051
		break;

P
Peter Zijlstra 已提交
9052
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9053
	case CPU_DOWN_PREPARE:
9054
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9055 9056 9057 9058 9059 9060 9061 9062
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9063
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9064
{
9065 9066
	int ret;

P
Peter Zijlstra 已提交
9067 9068
	idr_init(&pmu_idr);

9069
	perf_event_init_all_cpus();
9070
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9071 9072 9073
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9074 9075
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9076
	register_reboot_notifier(&perf_reboot_notifier);
9077 9078 9079

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9080 9081 9082

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9083 9084 9085 9086 9087 9088 9089

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9090
}
P
Peter Zijlstra 已提交
9091

9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9131 9132

#ifdef CONFIG_CGROUP_PERF
9133 9134
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9135 9136 9137
{
	struct perf_cgroup *jc;

9138
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9151
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9152
{
9153 9154
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

9166 9167
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9168
{
9169 9170
	struct task_struct *task;

9171
	cgroup_taskset_for_each(task, tset)
9172
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9173 9174
}

9175 9176
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
9177
			     struct task_struct *task)
S
Stephane Eranian 已提交
9178 9179 9180 9181 9182 9183 9184 9185 9186
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

9187
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9188 9189
}

9190
struct cgroup_subsys perf_event_cgrp_subsys = {
9191 9192
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9193
	.exit		= perf_cgroup_exit,
9194
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9195 9196
};
#endif /* CONFIG_CGROUP_PERF */