core.c 161.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
39

40 41
#include "internal.h"

42 43
#include <asm/irq_regs.h>

44
struct remote_function_call {
45 46 47 48
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
82 83 84 85
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
106 107 108 109
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
110 111 112 113 114 115 116
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
117 118 119 120
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

121 122 123 124 125 126
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
127 128 129 130
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
131
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
132 133
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

134 135 136
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
137

P
Peter Zijlstra 已提交
138 139 140 141
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

142
/*
143
 * perf event paranoia level:
144 145
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
146
 *   1 - disallow cpu events for unpriv
147
 *   2 - disallow kernel profiling for unpriv
148
 */
149
int sysctl_perf_event_paranoid __read_mostly = 1;
150

151 152
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153 154

/*
155
 * max perf event sample rate
156
 */
P
Peter Zijlstra 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
175

176
static atomic64_t perf_event_id;
177

178 179 180 181
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
182 183 184 185 186
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
187

188 189 190
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

191
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
192

193
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
194
{
195
	return "pmu";
T
Thomas Gleixner 已提交
196 197
}

198 199 200 201 202
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
203 204 205 206 207 208
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
225 226
#ifdef CONFIG_CGROUP_PERF

227 228 229 230 231
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
299 300
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
301
	/*
302 303
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
304
	 */
305
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
306 307
		return;

308 309 310 311 312 313
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
314 315 316
}

static inline void
317 318
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
319 320 321 322
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

323 324 325 326 327 328
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
329 330 331 332
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
333
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
375 376
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
377 378 379 380 381 382 383 384 385 386 387

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
388
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
389 390 391 392 393 394 395
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
396 397
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
398 399 400 401 402 403 404 405
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

406 407
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
408
{
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
431 432
}

433 434
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
435
{
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
470 471 472 473
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
474 475 476 477

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

478 479 480
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
481 482 483 484 485 486 487 488 489
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
490
out:
S
Stephane Eranian 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

565 566
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
567 568 569
{
}

570 571
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
572 573 574 575 576 577 578 579 580 581 582
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
583 584
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
615
void perf_pmu_disable(struct pmu *pmu)
616
{
P
Peter Zijlstra 已提交
617 618 619
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
620 621
}

P
Peter Zijlstra 已提交
622
void perf_pmu_enable(struct pmu *pmu)
623
{
P
Peter Zijlstra 已提交
624 625 626
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
627 628
}

629 630 631 632 633 634 635
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
636
static void perf_pmu_rotate_start(struct pmu *pmu)
637
{
P
Peter Zijlstra 已提交
638
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639
	struct list_head *head = &__get_cpu_var(rotation_list);
640

641
	WARN_ON(!irqs_disabled());
642

643 644
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
645 646
}

647
static void get_ctx(struct perf_event_context *ctx)
648
{
649
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
650 651
}

652
static void put_ctx(struct perf_event_context *ctx)
653
{
654 655 656
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
657 658
		if (ctx->task)
			put_task_struct(ctx->task);
659
		kfree_rcu(ctx, rcu_head);
660
	}
661 662
}

663
static void unclone_ctx(struct perf_event_context *ctx)
664 665 666 667 668 669 670
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

693
/*
694
 * If we inherit events we want to return the parent event id
695 696
 * to userspace.
 */
697
static u64 primary_event_id(struct perf_event *event)
698
{
699
	u64 id = event->id;
700

701 702
	if (event->parent)
		id = event->parent->id;
703 704 705 706

	return id;
}

707
/*
708
 * Get the perf_event_context for a task and lock it.
709 710 711
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
712
static struct perf_event_context *
P
Peter Zijlstra 已提交
713
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
714
{
715
	struct perf_event_context *ctx;
716 717

	rcu_read_lock();
P
Peter Zijlstra 已提交
718
retry:
P
Peter Zijlstra 已提交
719
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
720 721 722 723
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
724
		 * perf_event_task_sched_out, though the
725 726 727 728 729 730
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
731
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
732
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
734 735
			goto retry;
		}
736 737

		if (!atomic_inc_not_zero(&ctx->refcount)) {
738
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
739 740
			ctx = NULL;
		}
741 742 743 744 745 746 747 748 749 750
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
751 752
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
753
{
754
	struct perf_event_context *ctx;
755 756
	unsigned long flags;

P
Peter Zijlstra 已提交
757
	ctx = perf_lock_task_context(task, ctxn, &flags);
758 759
	if (ctx) {
		++ctx->pin_count;
760
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
761 762 763 764
	}
	return ctx;
}

765
static void perf_unpin_context(struct perf_event_context *ctx)
766 767 768
{
	unsigned long flags;

769
	raw_spin_lock_irqsave(&ctx->lock, flags);
770
	--ctx->pin_count;
771
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 773
}

774 775 776 777 778 779 780 781 782 783 784
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

785 786 787
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
788 789 790 791

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

792 793 794
	return ctx ? ctx->time : 0;
}

795 796
/*
 * Update the total_time_enabled and total_time_running fields for a event.
797
 * The caller of this function needs to hold the ctx->lock.
798 799 800 801 802 803 804 805 806
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
807 808 809 810 811 812 813 814 815 816 817
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
818
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
819 820
	else if (ctx->is_active)
		run_end = ctx->time;
821 822 823 824
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
825 826 827 828

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
829
		run_end = perf_event_time(event);
830 831

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
832

833 834
}

835 836 837 838 839 840 841 842 843 844 845 846
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

847 848 849 850 851 852 853 854 855
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

856
/*
857
 * Add a event from the lists for its context.
858 859
 * Must be called with ctx->mutex and ctx->lock held.
 */
860
static void
861
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
862
{
863 864
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
865 866

	/*
867 868 869
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
870
	 */
871
	if (event->group_leader == event) {
872 873
		struct list_head *list;

874 875 876
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

877 878
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
879
	}
P
Peter Zijlstra 已提交
880

881
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
882 883
		ctx->nr_cgroups++;

884
	list_add_rcu(&event->event_entry, &ctx->event_list);
885
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
886
		perf_pmu_rotate_start(ctx->pmu);
887 888
	ctx->nr_events++;
	if (event->attr.inherit_stat)
889
		ctx->nr_stat++;
890 891
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

964
	event->id_header_size = size;
965 966
}

967 968
static void perf_group_attach(struct perf_event *event)
{
969
	struct perf_event *group_leader = event->group_leader, *pos;
970

P
Peter Zijlstra 已提交
971 972 973 974 975 976
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

977 978 979 980 981 982 983 984 985 986 987
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
988 989 990 991 992

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
993 994
}

995
/*
996
 * Remove a event from the lists for its context.
997
 * Must be called with ctx->mutex and ctx->lock held.
998
 */
999
static void
1000
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001
{
1002
	struct perf_cpu_context *cpuctx;
1003 1004 1005 1006
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007
		return;
1008 1009 1010

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1011
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1012
		ctx->nr_cgroups--;
1013 1014 1015 1016 1017 1018 1019 1020 1021
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1022

1023 1024
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1025
		ctx->nr_stat--;
1026

1027
	list_del_rcu(&event->event_entry);
1028

1029 1030
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1031

1032
	update_group_times(event);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1043 1044
}

1045
static void perf_group_detach(struct perf_event *event)
1046 1047
{
	struct perf_event *sibling, *tmp;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1064
		goto out;
1065 1066 1067 1068
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1069

1070
	/*
1071 1072
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1073
	 * to whatever list we are on.
1074
	 */
1075
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076 1077
		if (list)
			list_move_tail(&sibling->group_entry, list);
1078
		sibling->group_leader = sibling;
1079 1080 1081

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1082
	}
1083 1084 1085 1086 1087 1088

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1089 1090
}

1091 1092 1093
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1094 1095
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1096 1097
}

1098 1099
static void
event_sched_out(struct perf_event *event,
1100
		  struct perf_cpu_context *cpuctx,
1101
		  struct perf_event_context *ctx)
1102
{
1103
	u64 tstamp = perf_event_time(event);
1104 1105 1106 1107 1108 1109 1110 1111 1112
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1113
		delta = tstamp - event->tstamp_stopped;
1114
		event->tstamp_running += delta;
1115
		event->tstamp_stopped = tstamp;
1116 1117
	}

1118
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1119
		return;
1120

1121 1122 1123 1124
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1125
	}
1126
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1127
	event->pmu->del(event, 0);
1128
	event->oncpu = -1;
1129

1130
	if (!is_software_event(event))
1131 1132
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1133 1134
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1135
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1136 1137 1138
		cpuctx->exclusive = 0;
}

1139
static void
1140
group_sched_out(struct perf_event *group_event,
1141
		struct perf_cpu_context *cpuctx,
1142
		struct perf_event_context *ctx)
1143
{
1144
	struct perf_event *event;
1145
	int state = group_event->state;
1146

1147
	event_sched_out(group_event, cpuctx, ctx);
1148 1149 1150 1151

	/*
	 * Schedule out siblings (if any):
	 */
1152 1153
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1154

1155
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156 1157 1158
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1159
/*
1160
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1161
 *
1162
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1163 1164
 * remove it from the context list.
 */
1165
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1166
{
1167 1168
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1169
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1170

1171
	raw_spin_lock(&ctx->lock);
1172 1173
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1174 1175 1176 1177
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1178
	raw_spin_unlock(&ctx->lock);
1179 1180

	return 0;
T
Thomas Gleixner 已提交
1181 1182 1183 1184
}


/*
1185
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1186
 *
1187
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1188
 * call when the task is on a CPU.
1189
 *
1190 1191
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1192 1193
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1194
 * When called from perf_event_exit_task, it's OK because the
1195
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1196
 */
1197
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1198
{
1199
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1200 1201
	struct task_struct *task = ctx->task;

1202 1203
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1204 1205
	if (!task) {
		/*
1206
		 * Per cpu events are removed via an smp call and
1207
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1208
		 */
1209
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1210 1211 1212 1213
		return;
	}

retry:
1214 1215
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1216

1217
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1218
	/*
1219 1220
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1221
	 */
1222
	if (ctx->is_active) {
1223
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1224 1225 1226 1227
		goto retry;
	}

	/*
1228 1229
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1230
	 */
1231
	list_del_event(event, ctx);
1232
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1233 1234
}

1235
/*
1236
 * Cross CPU call to disable a performance event
1237
 */
1238
static int __perf_event_disable(void *info)
1239
{
1240 1241
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1242
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243 1244

	/*
1245 1246
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1247 1248 1249
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1250
	 */
1251
	if (ctx->task && cpuctx->task_ctx != ctx)
1252
		return -EINVAL;
1253

1254
	raw_spin_lock(&ctx->lock);
1255 1256

	/*
1257
	 * If the event is on, turn it off.
1258 1259
	 * If it is in error state, leave it in error state.
	 */
1260
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261
		update_context_time(ctx);
S
Stephane Eranian 已提交
1262
		update_cgrp_time_from_event(event);
1263 1264 1265
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1266
		else
1267 1268
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1269 1270
	}

1271
	raw_spin_unlock(&ctx->lock);
1272 1273

	return 0;
1274 1275 1276
}

/*
1277
 * Disable a event.
1278
 *
1279 1280
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1281
 * remains valid.  This condition is satisifed when called through
1282 1283 1284 1285
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1286
 * is the current context on this CPU and preemption is disabled,
1287
 * hence we can't get into perf_event_task_sched_out for this context.
1288
 */
1289
void perf_event_disable(struct perf_event *event)
1290
{
1291
	struct perf_event_context *ctx = event->ctx;
1292 1293 1294 1295
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1296
		 * Disable the event on the cpu that it's on
1297
		 */
1298
		cpu_function_call(event->cpu, __perf_event_disable, event);
1299 1300 1301
		return;
	}

P
Peter Zijlstra 已提交
1302
retry:
1303 1304
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1305

1306
	raw_spin_lock_irq(&ctx->lock);
1307
	/*
1308
	 * If the event is still active, we need to retry the cross-call.
1309
	 */
1310
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311
		raw_spin_unlock_irq(&ctx->lock);
1312 1313 1314 1315 1316
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1317 1318 1319 1320 1321 1322 1323
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1324 1325 1326
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1327
	}
1328
	raw_spin_unlock_irq(&ctx->lock);
1329
}
1330
EXPORT_SYMBOL_GPL(perf_event_disable);
1331

S
Stephane Eranian 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1367 1368 1369 1370
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1371
static int
1372
event_sched_in(struct perf_event *event,
1373
		 struct perf_cpu_context *cpuctx,
1374
		 struct perf_event_context *ctx)
1375
{
1376 1377
	u64 tstamp = perf_event_time(event);

1378
	if (event->state <= PERF_EVENT_STATE_OFF)
1379 1380
		return 0;

1381
	event->state = PERF_EVENT_STATE_ACTIVE;
1382
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1394 1395 1396 1397 1398
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1399
	if (event->pmu->add(event, PERF_EF_START)) {
1400 1401
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1402 1403 1404
		return -EAGAIN;
	}

1405
	event->tstamp_running += tstamp - event->tstamp_stopped;
1406

S
Stephane Eranian 已提交
1407
	perf_set_shadow_time(event, ctx, tstamp);
1408

1409
	if (!is_software_event(event))
1410
		cpuctx->active_oncpu++;
1411
	ctx->nr_active++;
1412 1413
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1414

1415
	if (event->attr.exclusive)
1416 1417
		cpuctx->exclusive = 1;

1418 1419 1420
	return 0;
}

1421
static int
1422
group_sched_in(struct perf_event *group_event,
1423
	       struct perf_cpu_context *cpuctx,
1424
	       struct perf_event_context *ctx)
1425
{
1426
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1427
	struct pmu *pmu = group_event->pmu;
1428 1429
	u64 now = ctx->time;
	bool simulate = false;
1430

1431
	if (group_event->state == PERF_EVENT_STATE_OFF)
1432 1433
		return 0;

P
Peter Zijlstra 已提交
1434
	pmu->start_txn(pmu);
1435

1436
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1437
		pmu->cancel_txn(pmu);
1438
		return -EAGAIN;
1439
	}
1440 1441 1442 1443

	/*
	 * Schedule in siblings as one group (if any):
	 */
1444
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445
		if (event_sched_in(event, cpuctx, ctx)) {
1446
			partial_group = event;
1447 1448 1449 1450
			goto group_error;
		}
	}

1451
	if (!pmu->commit_txn(pmu))
1452
		return 0;
1453

1454 1455 1456 1457
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1468
	 */
1469 1470
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1471 1472 1473 1474 1475 1476 1477 1478
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1479
	}
1480
	event_sched_out(group_event, cpuctx, ctx);
1481

P
Peter Zijlstra 已提交
1482
	pmu->cancel_txn(pmu);
1483

1484 1485 1486
	return -EAGAIN;
}

1487
/*
1488
 * Work out whether we can put this event group on the CPU now.
1489
 */
1490
static int group_can_go_on(struct perf_event *event,
1491 1492 1493 1494
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1495
	 * Groups consisting entirely of software events can always go on.
1496
	 */
1497
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1498 1499 1500
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1501
	 * events can go on.
1502 1503 1504 1505 1506
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1507
	 * events on the CPU, it can't go on.
1508
	 */
1509
	if (event->attr.exclusive && cpuctx->active_oncpu)
1510 1511 1512 1513 1514 1515 1516 1517
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1518 1519
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1520
{
1521 1522
	u64 tstamp = perf_event_time(event);

1523
	list_add_event(event, ctx);
1524
	perf_group_attach(event);
1525 1526 1527
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1528 1529
}

1530 1531 1532 1533 1534 1535
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1549
/*
1550
 * Cross CPU call to install and enable a performance event
1551 1552
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1553
 */
1554
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1555
{
1556 1557
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1558
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559 1560 1561
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1562
	perf_ctx_lock(cpuctx, task_ctx);
1563
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1564 1565

	/*
1566
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1567
	 */
1568
	if (task_ctx)
1569
		task_ctx_sched_out(task_ctx);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1584 1585
		task = task_ctx->task;
	}
1586

1587
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1588

1589
	update_context_time(ctx);
S
Stephane Eranian 已提交
1590 1591 1592 1593 1594 1595
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1596

1597
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1598

1599
	/*
1600
	 * Schedule everything back in
1601
	 */
1602
	perf_event_sched_in(cpuctx, task_ctx, task);
1603 1604 1605

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1606 1607

	return 0;
T
Thomas Gleixner 已提交
1608 1609 1610
}

/*
1611
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1612
 *
1613 1614
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1615
 *
1616
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1617 1618 1619 1620
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1621 1622
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1623 1624 1625 1626
			int cpu)
{
	struct task_struct *task = ctx->task;

1627 1628
	lockdep_assert_held(&ctx->mutex);

1629 1630
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1631 1632
	if (!task) {
		/*
1633
		 * Per cpu events are installed via an smp call and
1634
		 * the install is always successful.
T
Thomas Gleixner 已提交
1635
		 */
1636
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1637 1638 1639 1640
		return;
	}

retry:
1641 1642
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1643

1644
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1645
	/*
1646 1647
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1648
	 */
1649
	if (ctx->is_active) {
1650
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1651 1652 1653 1654
		goto retry;
	}

	/*
1655 1656
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1657
	 */
1658
	add_event_to_ctx(event, ctx);
1659
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1660 1661
}

1662
/*
1663
 * Put a event into inactive state and update time fields.
1664 1665 1666 1667 1668 1669
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1670
static void __perf_event_mark_enabled(struct perf_event *event)
1671
{
1672
	struct perf_event *sub;
1673
	u64 tstamp = perf_event_time(event);
1674

1675
	event->state = PERF_EVENT_STATE_INACTIVE;
1676
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1677
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1678 1679
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1680
	}
1681 1682
}

1683
/*
1684
 * Cross CPU call to enable a performance event
1685
 */
1686
static int __perf_event_enable(void *info)
1687
{
1688 1689 1690
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1691
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1692
	int err;
1693

1694 1695
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1696

1697
	raw_spin_lock(&ctx->lock);
1698
	update_context_time(ctx);
1699

1700
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1701
		goto unlock;
S
Stephane Eranian 已提交
1702 1703 1704 1705

	/*
	 * set current task's cgroup time reference point
	 */
1706
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1707

1708
	__perf_event_mark_enabled(event);
1709

S
Stephane Eranian 已提交
1710 1711 1712
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1713
		goto unlock;
S
Stephane Eranian 已提交
1714
	}
1715

1716
	/*
1717
	 * If the event is in a group and isn't the group leader,
1718
	 * then don't put it on unless the group is on.
1719
	 */
1720
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1721
		goto unlock;
1722

1723
	if (!group_can_go_on(event, cpuctx, 1)) {
1724
		err = -EEXIST;
1725
	} else {
1726
		if (event == leader)
1727
			err = group_sched_in(event, cpuctx, ctx);
1728
		else
1729
			err = event_sched_in(event, cpuctx, ctx);
1730
	}
1731 1732 1733

	if (err) {
		/*
1734
		 * If this event can't go on and it's part of a
1735 1736
		 * group, then the whole group has to come off.
		 */
1737
		if (leader != event)
1738
			group_sched_out(leader, cpuctx, ctx);
1739
		if (leader->attr.pinned) {
1740
			update_group_times(leader);
1741
			leader->state = PERF_EVENT_STATE_ERROR;
1742
		}
1743 1744
	}

P
Peter Zijlstra 已提交
1745
unlock:
1746
	raw_spin_unlock(&ctx->lock);
1747 1748

	return 0;
1749 1750 1751
}

/*
1752
 * Enable a event.
1753
 *
1754 1755
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1756
 * remains valid.  This condition is satisfied when called through
1757 1758
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1759
 */
1760
void perf_event_enable(struct perf_event *event)
1761
{
1762
	struct perf_event_context *ctx = event->ctx;
1763 1764 1765 1766
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1767
		 * Enable the event on the cpu that it's on
1768
		 */
1769
		cpu_function_call(event->cpu, __perf_event_enable, event);
1770 1771 1772
		return;
	}

1773
	raw_spin_lock_irq(&ctx->lock);
1774
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1775 1776 1777
		goto out;

	/*
1778 1779
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1780 1781 1782 1783
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1784 1785
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1786

P
Peter Zijlstra 已提交
1787
retry:
1788
	if (!ctx->is_active) {
1789
		__perf_event_mark_enabled(event);
1790 1791 1792
		goto out;
	}

1793
	raw_spin_unlock_irq(&ctx->lock);
1794 1795 1796

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1797

1798
	raw_spin_lock_irq(&ctx->lock);
1799 1800

	/*
1801
	 * If the context is active and the event is still off,
1802 1803
	 * we need to retry the cross-call.
	 */
1804 1805 1806 1807 1808 1809
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1810
		goto retry;
1811
	}
1812

P
Peter Zijlstra 已提交
1813
out:
1814
	raw_spin_unlock_irq(&ctx->lock);
1815
}
1816
EXPORT_SYMBOL_GPL(perf_event_enable);
1817

1818
int perf_event_refresh(struct perf_event *event, int refresh)
1819
{
1820
	/*
1821
	 * not supported on inherited events
1822
	 */
1823
	if (event->attr.inherit || !is_sampling_event(event))
1824 1825
		return -EINVAL;

1826 1827
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1828 1829

	return 0;
1830
}
1831
EXPORT_SYMBOL_GPL(perf_event_refresh);
1832

1833 1834 1835
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1836
{
1837
	struct perf_event *event;
1838
	int is_active = ctx->is_active;
1839

1840
	ctx->is_active &= ~event_type;
1841
	if (likely(!ctx->nr_events))
1842 1843
		return;

1844
	update_context_time(ctx);
S
Stephane Eranian 已提交
1845
	update_cgrp_time_from_cpuctx(cpuctx);
1846
	if (!ctx->nr_active)
1847
		return;
1848

P
Peter Zijlstra 已提交
1849
	perf_pmu_disable(ctx->pmu);
1850
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1851 1852
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1853
	}
1854

1855
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1856
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1857
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1858
	}
P
Peter Zijlstra 已提交
1859
	perf_pmu_enable(ctx->pmu);
1860 1861
}

1862 1863 1864
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1865 1866 1867 1868
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1869
 * in them directly with an fd; we can only enable/disable all
1870
 * events via prctl, or enable/disable all events in a family
1871 1872
 * via ioctl, which will have the same effect on both contexts.
 */
1873 1874
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1875 1876
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1877
		&& ctx1->parent_gen == ctx2->parent_gen
1878
		&& !ctx1->pin_count && !ctx2->pin_count;
1879 1880
}

1881 1882
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1883 1884 1885
{
	u64 value;

1886
	if (!event->attr.inherit_stat)
1887 1888 1889
		return;

	/*
1890
	 * Update the event value, we cannot use perf_event_read()
1891 1892
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1893
	 * we know the event must be on the current CPU, therefore we
1894 1895
	 * don't need to use it.
	 */
1896 1897
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1898 1899
		event->pmu->read(event);
		/* fall-through */
1900

1901 1902
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1903 1904 1905 1906 1907 1908 1909
		break;

	default:
		break;
	}

	/*
1910
	 * In order to keep per-task stats reliable we need to flip the event
1911 1912
	 * values when we flip the contexts.
	 */
1913 1914 1915
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1916

1917 1918
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1919

1920
	/*
1921
	 * Since we swizzled the values, update the user visible data too.
1922
	 */
1923 1924
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1925 1926 1927 1928 1929
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1930 1931
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1932
{
1933
	struct perf_event *event, *next_event;
1934 1935 1936 1937

	if (!ctx->nr_stat)
		return;

1938 1939
	update_context_time(ctx);

1940 1941
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1942

1943 1944
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1945

1946 1947
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1948

1949
		__perf_event_sync_stat(event, next_event);
1950

1951 1952
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1953 1954 1955
	}
}

1956 1957
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1958
{
P
Peter Zijlstra 已提交
1959
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1960 1961
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1962
	struct perf_cpu_context *cpuctx;
1963
	int do_switch = 1;
T
Thomas Gleixner 已提交
1964

P
Peter Zijlstra 已提交
1965 1966
	if (likely(!ctx))
		return;
1967

P
Peter Zijlstra 已提交
1968 1969
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1970 1971
		return;

1972 1973
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1974
	next_ctx = next->perf_event_ctxp[ctxn];
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1986 1987
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1988
		if (context_equiv(ctx, next_ctx)) {
1989 1990
			/*
			 * XXX do we need a memory barrier of sorts
1991
			 * wrt to rcu_dereference() of perf_event_ctxp
1992
			 */
P
Peter Zijlstra 已提交
1993 1994
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1995 1996 1997
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1998

1999
			perf_event_sync_stat(ctx, next_ctx);
2000
		}
2001 2002
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2003
	}
2004
	rcu_read_unlock();
2005

2006
	if (do_switch) {
2007
		raw_spin_lock(&ctx->lock);
2008
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2009
		cpuctx->task_ctx = NULL;
2010
		raw_spin_unlock(&ctx->lock);
2011
	}
T
Thomas Gleixner 已提交
2012 2013
}

P
Peter Zijlstra 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2028 2029
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2030 2031 2032 2033 2034
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2035 2036 2037 2038 2039 2040 2041

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2042
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2043 2044
}

2045
static void task_ctx_sched_out(struct perf_event_context *ctx)
2046
{
P
Peter Zijlstra 已提交
2047
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2048

2049 2050
	if (!cpuctx->task_ctx)
		return;
2051 2052 2053 2054

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2055
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056 2057 2058
	cpuctx->task_ctx = NULL;
}

2059 2060 2061 2062 2063 2064 2065
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2066 2067
}

2068
static void
2069
ctx_pinned_sched_in(struct perf_event_context *ctx,
2070
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2071
{
2072
	struct perf_event *event;
T
Thomas Gleixner 已提交
2073

2074 2075
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2076
			continue;
2077
		if (!event_filter_match(event))
2078 2079
			continue;

S
Stephane Eranian 已提交
2080 2081 2082 2083
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2084
		if (group_can_go_on(event, cpuctx, 1))
2085
			group_sched_in(event, cpuctx, ctx);
2086 2087 2088 2089 2090

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2091 2092 2093
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2094
		}
2095
	}
2096 2097 2098 2099
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2100
		      struct perf_cpu_context *cpuctx)
2101 2102 2103
{
	struct perf_event *event;
	int can_add_hw = 1;
2104

2105 2106 2107
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2108
			continue;
2109 2110
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2111
		 * of events:
2112
		 */
2113
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2114 2115
			continue;

S
Stephane Eranian 已提交
2116 2117 2118 2119
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2120
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2121
			if (group_sched_in(event, cpuctx, ctx))
2122
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2123
		}
T
Thomas Gleixner 已提交
2124
	}
2125 2126 2127 2128 2129
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2130 2131
	     enum event_type_t event_type,
	     struct task_struct *task)
2132
{
S
Stephane Eranian 已提交
2133
	u64 now;
2134
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2135

2136
	ctx->is_active |= event_type;
2137
	if (likely(!ctx->nr_events))
2138
		return;
2139

S
Stephane Eranian 已提交
2140 2141
	now = perf_clock();
	ctx->timestamp = now;
2142
	perf_cgroup_set_timestamp(task, ctx);
2143 2144 2145 2146
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2147
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2148
		ctx_pinned_sched_in(ctx, cpuctx);
2149 2150

	/* Then walk through the lower prio flexible groups */
2151
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2152
		ctx_flexible_sched_in(ctx, cpuctx);
2153 2154
}

2155
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2156 2157
			     enum event_type_t event_type,
			     struct task_struct *task)
2158 2159 2160
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2161
	ctx_sched_in(ctx, cpuctx, event_type, task);
2162 2163
}

S
Stephane Eranian 已提交
2164 2165
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2166
{
P
Peter Zijlstra 已提交
2167
	struct perf_cpu_context *cpuctx;
2168

P
Peter Zijlstra 已提交
2169
	cpuctx = __get_cpu_context(ctx);
2170 2171 2172
	if (cpuctx->task_ctx == ctx)
		return;

2173
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2174
	perf_pmu_disable(ctx->pmu);
2175 2176 2177 2178 2179 2180 2181
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2182 2183
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2184

2185 2186
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2187 2188 2189
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2190 2191 2192 2193
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2194
	perf_pmu_rotate_start(ctx->pmu);
2195 2196
}

P
Peter Zijlstra 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2208 2209
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2219
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2220
	}
S
Stephane Eranian 已提交
2221 2222 2223 2224 2225 2226
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2227
		perf_cgroup_sched_in(prev, task);
2228 2229
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2257
#define REDUCE_FLS(a, b)		\
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2297 2298 2299
	if (!divisor)
		return dividend;

2300 2301 2302
	return div64_u64(dividend, divisor);
}

2303 2304 2305
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2306
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2307
{
2308
	struct hw_perf_event *hwc = &event->hw;
2309
	s64 period, sample_period;
2310 2311
	s64 delta;

2312
	period = perf_calculate_period(event, nsec, count);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2323

2324
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2325 2326 2327
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2328
		local64_set(&hwc->period_left, 0);
2329 2330 2331

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2332
	}
2333 2334
}

2335 2336 2337 2338 2339 2340 2341
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2342
{
2343 2344
	struct perf_event *event;
	struct hw_perf_event *hwc;
2345
	u64 now, period = TICK_NSEC;
2346
	s64 delta;
2347

2348 2349 2350 2351 2352 2353
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2354 2355
		return;

2356
	raw_spin_lock(&ctx->lock);
2357
	perf_pmu_disable(ctx->pmu);
2358

2359
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2360
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2361 2362
			continue;

2363
		if (!event_filter_match(event))
2364 2365
			continue;

2366
		hwc = &event->hw;
2367

2368 2369
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2370
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2371
			event->pmu->start(event, 0);
2372 2373
		}

2374
		if (!event->attr.freq || !event->attr.sample_freq)
2375 2376
			continue;

2377 2378 2379 2380 2381
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2382
		now = local64_read(&event->count);
2383 2384
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2385

2386 2387 2388
		/*
		 * restart the event
		 * reload only if value has changed
2389 2390 2391
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2392
		 */
2393
		if (delta > 0)
2394
			perf_adjust_period(event, period, delta, false);
2395 2396

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2397
	}
2398

2399
	perf_pmu_enable(ctx->pmu);
2400
	raw_spin_unlock(&ctx->lock);
2401 2402
}

2403
/*
2404
 * Round-robin a context's events:
2405
 */
2406
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2407
{
2408 2409 2410 2411 2412 2413
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2414 2415
}

2416
/*
2417 2418 2419
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2420
 */
2421
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2422
{
P
Peter Zijlstra 已提交
2423
	struct perf_event_context *ctx = NULL;
2424
	int rotate = 0, remove = 1;
2425

2426
	if (cpuctx->ctx.nr_events) {
2427
		remove = 0;
2428 2429 2430
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2431

P
Peter Zijlstra 已提交
2432
	ctx = cpuctx->task_ctx;
2433
	if (ctx && ctx->nr_events) {
2434
		remove = 0;
2435 2436 2437
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2438

2439
	if (!rotate)
2440 2441
		goto done;

2442
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2443
	perf_pmu_disable(cpuctx->ctx.pmu);
2444

2445 2446 2447
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2448

2449 2450 2451
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2452

2453
	perf_event_sched_in(cpuctx, ctx, current);
2454

2455 2456
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2457
done:
2458 2459 2460 2461 2462 2463 2464 2465
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2466 2467
	struct perf_event_context *ctx;
	int throttled;
2468

2469 2470
	WARN_ON(!irqs_disabled());

2471 2472 2473
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2474
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2475 2476 2477 2478 2479 2480 2481
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2482 2483 2484 2485
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2486 2487
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2498
	__perf_event_mark_enabled(event);
2499 2500 2501 2502

	return 1;
}

2503
/*
2504
 * Enable all of a task's events that have been marked enable-on-exec.
2505 2506
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2507
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2508
{
2509
	struct perf_event *event;
2510 2511
	unsigned long flags;
	int enabled = 0;
2512
	int ret;
2513 2514

	local_irq_save(flags);
2515
	if (!ctx || !ctx->nr_events)
2516 2517
		goto out;

2518 2519 2520 2521 2522 2523 2524
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2525
	perf_cgroup_sched_out(current, NULL);
2526

2527
	raw_spin_lock(&ctx->lock);
2528
	task_ctx_sched_out(ctx);
2529

2530
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2531 2532 2533
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2534 2535 2536
	}

	/*
2537
	 * Unclone this context if we enabled any event.
2538
	 */
2539 2540
	if (enabled)
		unclone_ctx(ctx);
2541

2542
	raw_spin_unlock(&ctx->lock);
2543

2544 2545 2546
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2547
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2548
out:
2549 2550 2551
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2552
/*
2553
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2554
 */
2555
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2556
{
2557 2558
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2559
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2560

2561 2562 2563 2564
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2565 2566
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2567 2568 2569 2570
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2571
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2572
	if (ctx->is_active) {
2573
		update_context_time(ctx);
S
Stephane Eranian 已提交
2574 2575
		update_cgrp_time_from_event(event);
	}
2576
	update_event_times(event);
2577 2578
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2579
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2580 2581
}

P
Peter Zijlstra 已提交
2582 2583
static inline u64 perf_event_count(struct perf_event *event)
{
2584
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2585 2586
}

2587
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2588 2589
{
	/*
2590 2591
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2592
	 */
2593 2594 2595 2596
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2597 2598 2599
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2600
		raw_spin_lock_irqsave(&ctx->lock, flags);
2601 2602 2603 2604 2605
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2606
		if (ctx->is_active) {
2607
			update_context_time(ctx);
S
Stephane Eranian 已提交
2608 2609
			update_cgrp_time_from_event(event);
		}
2610
		update_event_times(event);
2611
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2612 2613
	}

P
Peter Zijlstra 已提交
2614
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2615 2616
}

2617
/*
2618
 * Initialize the perf_event context in a task_struct:
2619
 */
2620
static void __perf_event_init_context(struct perf_event_context *ctx)
2621
{
2622
	raw_spin_lock_init(&ctx->lock);
2623
	mutex_init(&ctx->mutex);
2624 2625
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2626 2627
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2643
	}
2644 2645 2646
	ctx->pmu = pmu;

	return ctx;
2647 2648
}

2649 2650 2651 2652 2653
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2654 2655

	rcu_read_lock();
2656
	if (!vpid)
T
Thomas Gleixner 已提交
2657 2658
		task = current;
	else
2659
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2660 2661 2662 2663 2664 2665 2666 2667
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2668 2669 2670 2671
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2672 2673 2674 2675 2676 2677 2678
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2679 2680 2681
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2682
static struct perf_event_context *
M
Matt Helsley 已提交
2683
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2684
{
2685
	struct perf_event_context *ctx;
2686
	struct perf_cpu_context *cpuctx;
2687
	unsigned long flags;
P
Peter Zijlstra 已提交
2688
	int ctxn, err;
T
Thomas Gleixner 已提交
2689

2690
	if (!task) {
2691
		/* Must be root to operate on a CPU event: */
2692
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2693 2694 2695
			return ERR_PTR(-EACCES);

		/*
2696
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2697 2698 2699
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2700
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2701 2702
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2703
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2704
		ctx = &cpuctx->ctx;
2705
		get_ctx(ctx);
2706
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2707 2708 2709 2710

		return ctx;
	}

P
Peter Zijlstra 已提交
2711 2712 2713 2714 2715
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2716
retry:
P
Peter Zijlstra 已提交
2717
	ctx = perf_lock_task_context(task, ctxn, &flags);
2718
	if (ctx) {
2719
		unclone_ctx(ctx);
2720
		++ctx->pin_count;
2721
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2722
	} else {
2723
		ctx = alloc_perf_context(pmu, task);
2724 2725 2726
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2727

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2738
		else {
2739
			get_ctx(ctx);
2740
			++ctx->pin_count;
2741
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2742
		}
2743 2744 2745
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2746
			put_ctx(ctx);
2747 2748 2749 2750

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2751 2752 2753
		}
	}

T
Thomas Gleixner 已提交
2754
	return ctx;
2755

P
Peter Zijlstra 已提交
2756
errout:
2757
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2758 2759
}

L
Li Zefan 已提交
2760 2761
static void perf_event_free_filter(struct perf_event *event);

2762
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2763
{
2764
	struct perf_event *event;
P
Peter Zijlstra 已提交
2765

2766 2767 2768
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2769
	perf_event_free_filter(event);
2770
	kfree(event);
P
Peter Zijlstra 已提交
2771 2772
}

2773
static void ring_buffer_put(struct ring_buffer *rb);
2774

2775
static void free_event(struct perf_event *event)
2776
{
2777
	irq_work_sync(&event->pending);
2778

2779
	if (!event->parent) {
2780
		if (event->attach_state & PERF_ATTACH_TASK)
2781
			static_key_slow_dec_deferred(&perf_sched_events);
2782
		if (event->attr.mmap || event->attr.mmap_data)
2783 2784 2785 2786 2787
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2788 2789
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2790 2791
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2792
			static_key_slow_dec_deferred(&perf_sched_events);
2793
		}
2794
	}
2795

2796 2797 2798
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2799 2800
	}

S
Stephane Eranian 已提交
2801 2802 2803
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2804 2805
	if (event->destroy)
		event->destroy(event);
2806

P
Peter Zijlstra 已提交
2807 2808 2809
	if (event->ctx)
		put_ctx(event->ctx);

2810
	call_rcu(&event->rcu_head, free_event_rcu);
2811 2812
}

2813
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2814
{
2815
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2816

2817
	WARN_ON_ONCE(ctx->parent_ctx);
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2831
	raw_spin_lock_irq(&ctx->lock);
2832
	perf_group_detach(event);
2833
	raw_spin_unlock_irq(&ctx->lock);
2834
	perf_remove_from_context(event);
2835
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2836

2837
	free_event(event);
T
Thomas Gleixner 已提交
2838 2839 2840

	return 0;
}
2841
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2842

2843 2844 2845 2846
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2847
{
2848
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2849
	struct task_struct *owner;
2850

2851
	file->private_data = NULL;
2852

P
Peter Zijlstra 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2886
	return perf_event_release_kernel(event);
2887 2888
}

2889
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2890
{
2891
	struct perf_event *child;
2892 2893
	u64 total = 0;

2894 2895 2896
	*enabled = 0;
	*running = 0;

2897
	mutex_lock(&event->child_mutex);
2898
	total += perf_event_read(event);
2899 2900 2901 2902 2903 2904
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2905
		total += perf_event_read(child);
2906 2907 2908
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2909
	mutex_unlock(&event->child_mutex);
2910 2911 2912

	return total;
}
2913
EXPORT_SYMBOL_GPL(perf_event_read_value);
2914

2915
static int perf_event_read_group(struct perf_event *event,
2916 2917
				   u64 read_format, char __user *buf)
{
2918
	struct perf_event *leader = event->group_leader, *sub;
2919 2920
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2921
	u64 values[5];
2922
	u64 count, enabled, running;
2923

2924
	mutex_lock(&ctx->mutex);
2925
	count = perf_event_read_value(leader, &enabled, &running);
2926 2927

	values[n++] = 1 + leader->nr_siblings;
2928 2929 2930 2931
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2932 2933 2934
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2935 2936 2937 2938

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2939
		goto unlock;
2940

2941
	ret = size;
2942

2943
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2944
		n = 0;
2945

2946
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2947 2948 2949 2950 2951
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2952
		if (copy_to_user(buf + ret, values, size)) {
2953 2954 2955
			ret = -EFAULT;
			goto unlock;
		}
2956 2957

		ret += size;
2958
	}
2959 2960
unlock:
	mutex_unlock(&ctx->mutex);
2961

2962
	return ret;
2963 2964
}

2965
static int perf_event_read_one(struct perf_event *event,
2966 2967
				 u64 read_format, char __user *buf)
{
2968
	u64 enabled, running;
2969 2970 2971
	u64 values[4];
	int n = 0;

2972 2973 2974 2975 2976
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2977
	if (read_format & PERF_FORMAT_ID)
2978
		values[n++] = primary_event_id(event);
2979 2980 2981 2982 2983 2984 2985

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2986
/*
2987
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2988 2989
 */
static ssize_t
2990
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2991
{
2992
	u64 read_format = event->attr.read_format;
2993
	int ret;
T
Thomas Gleixner 已提交
2994

2995
	/*
2996
	 * Return end-of-file for a read on a event that is in
2997 2998 2999
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3000
	if (event->state == PERF_EVENT_STATE_ERROR)
3001 3002
		return 0;

3003
	if (count < event->read_size)
3004 3005
		return -ENOSPC;

3006
	WARN_ON_ONCE(event->ctx->parent_ctx);
3007
	if (read_format & PERF_FORMAT_GROUP)
3008
		ret = perf_event_read_group(event, read_format, buf);
3009
	else
3010
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3011

3012
	return ret;
T
Thomas Gleixner 已提交
3013 3014 3015 3016 3017
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3018
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3019

3020
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3021 3022 3023 3024
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3025
	struct perf_event *event = file->private_data;
3026
	struct ring_buffer *rb;
3027
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3028

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3046
	rcu_read_lock();
3047
	rb = rcu_dereference(event->rb);
3048 3049
	if (rb) {
		ring_buffer_attach(event, rb);
3050
		events = atomic_xchg(&rb->poll, 0);
3051
	}
P
Peter Zijlstra 已提交
3052
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3053

3054 3055
	mutex_unlock(&event->mmap_mutex);

3056
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3057 3058 3059 3060

	return events;
}

3061
static void perf_event_reset(struct perf_event *event)
3062
{
3063
	(void)perf_event_read(event);
3064
	local64_set(&event->count, 0);
3065
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3066 3067
}

3068
/*
3069 3070 3071 3072
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3073
 */
3074 3075
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3076
{
3077
	struct perf_event *child;
P
Peter Zijlstra 已提交
3078

3079 3080 3081 3082
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3083
		func(child);
3084
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3085 3086
}

3087 3088
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3089
{
3090 3091
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3092

3093 3094
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3095
	event = event->group_leader;
3096

3097 3098 3099 3100
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3101
	mutex_unlock(&ctx->mutex);
3102 3103
}

3104
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3105
{
3106
	struct perf_event_context *ctx = event->ctx;
3107 3108 3109
	int ret = 0;
	u64 value;

3110
	if (!is_sampling_event(event))
3111 3112
		return -EINVAL;

3113
	if (copy_from_user(&value, arg, sizeof(value)))
3114 3115 3116 3117 3118
		return -EFAULT;

	if (!value)
		return -EINVAL;

3119
	raw_spin_lock_irq(&ctx->lock);
3120 3121
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3122 3123 3124 3125
			ret = -EINVAL;
			goto unlock;
		}

3126
		event->attr.sample_freq = value;
3127
	} else {
3128 3129
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3130 3131
	}
unlock:
3132
	raw_spin_unlock_irq(&ctx->lock);
3133 3134 3135 3136

	return ret;
}

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3158
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3159

3160 3161
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3162 3163
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3164
	u32 flags = arg;
3165 3166

	switch (cmd) {
3167 3168
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3169
		break;
3170 3171
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3172
		break;
3173 3174
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3175
		break;
P
Peter Zijlstra 已提交
3176

3177 3178
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3179

3180 3181
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3182

3183
	case PERF_EVENT_IOC_SET_OUTPUT:
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3201

L
Li Zefan 已提交
3202 3203 3204
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3205
	default:
P
Peter Zijlstra 已提交
3206
		return -ENOTTY;
3207
	}
P
Peter Zijlstra 已提交
3208 3209

	if (flags & PERF_IOC_FLAG_GROUP)
3210
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3211
	else
3212
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3213 3214

	return 0;
3215 3216
}

3217
int perf_event_task_enable(void)
3218
{
3219
	struct perf_event *event;
3220

3221 3222 3223 3224
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3225 3226 3227 3228

	return 0;
}

3229
int perf_event_task_disable(void)
3230
{
3231
	struct perf_event *event;
3232

3233 3234 3235 3236
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3237 3238 3239 3240

	return 0;
}

3241
static int perf_event_index(struct perf_event *event)
3242
{
P
Peter Zijlstra 已提交
3243 3244 3245
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3246
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3247 3248
		return 0;

3249
	return event->pmu->event_idx(event);
3250 3251
}

3252
static void calc_timer_values(struct perf_event *event,
3253
				u64 *now,
3254 3255
				u64 *enabled,
				u64 *running)
3256
{
3257
	u64 ctx_time;
3258

3259 3260
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3261 3262 3263 3264
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3265 3266 3267 3268
void __weak perf_update_user_clock(struct perf_event_mmap_page *userpg, u64 now)
{
}

3269 3270 3271 3272 3273
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3274
void perf_event_update_userpage(struct perf_event *event)
3275
{
3276
	struct perf_event_mmap_page *userpg;
3277
	struct ring_buffer *rb;
3278
	u64 enabled, running, now;
3279 3280

	rcu_read_lock();
3281 3282 3283 3284 3285 3286 3287 3288 3289
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3290
	calc_timer_values(event, &now, &enabled, &running);
3291 3292
	rb = rcu_dereference(event->rb);
	if (!rb)
3293 3294
		goto unlock;

3295
	userpg = rb->user_page;
3296

3297 3298 3299 3300 3301
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3302
	++userpg->lock;
3303
	barrier();
3304
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3305
	userpg->offset = perf_event_count(event);
3306
	if (userpg->index)
3307
		userpg->offset -= local64_read(&event->hw.prev_count);
3308

3309
	userpg->time_enabled = enabled +
3310
			atomic64_read(&event->child_total_time_enabled);
3311

3312
	userpg->time_running = running +
3313
			atomic64_read(&event->child_total_time_running);
3314

3315 3316
	perf_update_user_clock(userpg, now);

3317
	barrier();
3318
	++userpg->lock;
3319
	preempt_enable();
3320
unlock:
3321
	rcu_read_unlock();
3322 3323
}

3324 3325 3326
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3327
	struct ring_buffer *rb;
3328 3329 3330 3331 3332 3333 3334 3335 3336
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3337 3338
	rb = rcu_dereference(event->rb);
	if (!rb)
3339 3340 3341 3342 3343
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3344
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3396 3397 3398 3399
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3400
		wake_up_all(&event->waitq);
3401 3402

unlock:
3403 3404 3405
	rcu_read_unlock();
}

3406
static void rb_free_rcu(struct rcu_head *rcu_head)
3407
{
3408
	struct ring_buffer *rb;
3409

3410 3411
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3412 3413
}

3414
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3415
{
3416
	struct ring_buffer *rb;
3417

3418
	rcu_read_lock();
3419 3420 3421 3422
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3423 3424 3425
	}
	rcu_read_unlock();

3426
	return rb;
3427 3428
}

3429
static void ring_buffer_put(struct ring_buffer *rb)
3430
{
3431 3432 3433
	struct perf_event *event, *n;
	unsigned long flags;

3434
	if (!atomic_dec_and_test(&rb->refcount))
3435
		return;
3436

3437 3438 3439 3440 3441 3442 3443
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3444
	call_rcu(&rb->rcu_head, rb_free_rcu);
3445 3446 3447 3448
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3449
	struct perf_event *event = vma->vm_file->private_data;
3450

3451
	atomic_inc(&event->mmap_count);
3452 3453 3454 3455
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3456
	struct perf_event *event = vma->vm_file->private_data;
3457

3458
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3459
		unsigned long size = perf_data_size(event->rb);
3460
		struct user_struct *user = event->mmap_user;
3461
		struct ring_buffer *rb = event->rb;
3462

3463
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3464
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3465
		rcu_assign_pointer(event->rb, NULL);
3466
		ring_buffer_detach(event, rb);
3467
		mutex_unlock(&event->mmap_mutex);
3468

3469
		ring_buffer_put(rb);
3470
		free_uid(user);
3471
	}
3472 3473
}

3474
static const struct vm_operations_struct perf_mmap_vmops = {
3475 3476 3477 3478
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3479 3480 3481 3482
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3483
	struct perf_event *event = file->private_data;
3484
	unsigned long user_locked, user_lock_limit;
3485
	struct user_struct *user = current_user();
3486
	unsigned long locked, lock_limit;
3487
	struct ring_buffer *rb;
3488 3489
	unsigned long vma_size;
	unsigned long nr_pages;
3490
	long user_extra, extra;
3491
	int ret = 0, flags = 0;
3492

3493 3494 3495
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3496
	 * same rb.
3497 3498 3499 3500
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3501
	if (!(vma->vm_flags & VM_SHARED))
3502
		return -EINVAL;
3503 3504 3505 3506

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3507
	/*
3508
	 * If we have rb pages ensure they're a power-of-two number, so we
3509 3510 3511
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3512 3513
		return -EINVAL;

3514
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3515 3516
		return -EINVAL;

3517 3518
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3519

3520 3521
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3522 3523 3524
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3525
		else
3526 3527 3528 3529
			ret = -EINVAL;
		goto unlock;
	}

3530
	user_extra = nr_pages + 1;
3531
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3532 3533 3534 3535 3536 3537

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3538
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3539

3540 3541 3542
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3543

3544
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3545
	lock_limit >>= PAGE_SHIFT;
3546
	locked = vma->vm_mm->pinned_vm + extra;
3547

3548 3549
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3550 3551 3552
		ret = -EPERM;
		goto unlock;
	}
3553

3554
	WARN_ON(event->rb);
3555

3556
	if (vma->vm_flags & VM_WRITE)
3557
		flags |= RING_BUFFER_WRITABLE;
3558

3559 3560 3561 3562
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3563
	if (!rb) {
3564
		ret = -ENOMEM;
3565
		goto unlock;
3566
	}
3567
	rcu_assign_pointer(event->rb, rb);
3568

3569 3570 3571
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3572
	vma->vm_mm->pinned_vm += event->mmap_locked;
3573

3574 3575
	perf_event_update_userpage(event);

3576
unlock:
3577 3578
	if (!ret)
		atomic_inc(&event->mmap_count);
3579
	mutex_unlock(&event->mmap_mutex);
3580 3581 3582

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3583 3584

	return ret;
3585 3586
}

P
Peter Zijlstra 已提交
3587 3588 3589
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3590
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3591 3592 3593
	int retval;

	mutex_lock(&inode->i_mutex);
3594
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3595 3596 3597 3598 3599 3600 3601 3602
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3603
static const struct file_operations perf_fops = {
3604
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3605 3606 3607
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3608 3609
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3610
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3611
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3612 3613
};

3614
/*
3615
 * Perf event wakeup
3616 3617 3618 3619 3620
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3621
void perf_event_wakeup(struct perf_event *event)
3622
{
3623
	ring_buffer_wakeup(event);
3624

3625 3626 3627
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3628
	}
3629 3630
}

3631
static void perf_pending_event(struct irq_work *entry)
3632
{
3633 3634
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3635

3636 3637 3638
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3639 3640
	}

3641 3642 3643
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3644 3645 3646
	}
}

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3668 3669 3670
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3698 3699 3700
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3727 3728 3729
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3730 3731 3732 3733 3734
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3735
static void perf_output_read_one(struct perf_output_handle *handle,
3736 3737
				 struct perf_event *event,
				 u64 enabled, u64 running)
3738
{
3739
	u64 read_format = event->attr.read_format;
3740 3741 3742
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3743
	values[n++] = perf_event_count(event);
3744
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3745
		values[n++] = enabled +
3746
			atomic64_read(&event->child_total_time_enabled);
3747 3748
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3749
		values[n++] = running +
3750
			atomic64_read(&event->child_total_time_running);
3751 3752
	}
	if (read_format & PERF_FORMAT_ID)
3753
		values[n++] = primary_event_id(event);
3754

3755
	__output_copy(handle, values, n * sizeof(u64));
3756 3757 3758
}

/*
3759
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3760 3761
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3762 3763
			    struct perf_event *event,
			    u64 enabled, u64 running)
3764
{
3765 3766
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3767 3768 3769 3770 3771 3772
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3773
		values[n++] = enabled;
3774 3775

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3776
		values[n++] = running;
3777

3778
	if (leader != event)
3779 3780
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3781
	values[n++] = perf_event_count(leader);
3782
	if (read_format & PERF_FORMAT_ID)
3783
		values[n++] = primary_event_id(leader);
3784

3785
	__output_copy(handle, values, n * sizeof(u64));
3786

3787
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3788 3789
		n = 0;

3790
		if (sub != event)
3791 3792
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3793
		values[n++] = perf_event_count(sub);
3794
		if (read_format & PERF_FORMAT_ID)
3795
			values[n++] = primary_event_id(sub);
3796

3797
		__output_copy(handle, values, n * sizeof(u64));
3798 3799 3800
	}
}

3801 3802 3803
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3804
static void perf_output_read(struct perf_output_handle *handle,
3805
			     struct perf_event *event)
3806
{
3807
	u64 enabled = 0, running = 0, now;
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
3819
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3820
		calc_timer_values(event, &now, &enabled, &running);
3821

3822
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3823
		perf_output_read_group(handle, event, enabled, running);
3824
	else
3825
		perf_output_read_one(handle, event, enabled, running);
3826 3827
}

3828 3829 3830
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3831
			struct perf_event *event)
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3862
		perf_output_read(handle, event);
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

3873
			__output_copy(handle, data->callchain, size);
3874 3875 3876 3877 3878 3879 3880 3881 3882
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
3883 3884
			__output_copy(handle, data->raw->data,
					   data->raw->size);
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
3910 3911 3912 3913
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3914
			 struct perf_event *event,
3915
			 struct pt_regs *regs)
3916
{
3917
	u64 sample_type = event->attr.sample_type;
3918

3919
	header->type = PERF_RECORD_SAMPLE;
3920
	header->size = sizeof(*header) + event->header_size;
3921 3922 3923

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3924

3925
	__perf_event_header__init_id(header, data, event);
3926

3927
	if (sample_type & PERF_SAMPLE_IP)
3928 3929
		data->ip = perf_instruction_pointer(regs);

3930
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3931
		int size = 1;
3932

3933 3934 3935 3936 3937 3938
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3939 3940
	}

3941
	if (sample_type & PERF_SAMPLE_RAW) {
3942 3943 3944 3945 3946 3947 3948 3949
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3950
		header->size += size;
3951
	}
3952
}
3953

3954
static void perf_event_output(struct perf_event *event,
3955 3956 3957 3958 3959
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3960

3961 3962 3963
	/* protect the callchain buffers */
	rcu_read_lock();

3964
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3965

3966
	if (perf_output_begin(&handle, event, header.size))
3967
		goto exit;
3968

3969
	perf_output_sample(&handle, &header, data, event);
3970

3971
	perf_output_end(&handle);
3972 3973 3974

exit:
	rcu_read_unlock();
3975 3976
}

3977
/*
3978
 * read event_id
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3989
perf_event_read_event(struct perf_event *event,
3990 3991 3992
			struct task_struct *task)
{
	struct perf_output_handle handle;
3993
	struct perf_sample_data sample;
3994
	struct perf_read_event read_event = {
3995
		.header = {
3996
			.type = PERF_RECORD_READ,
3997
			.misc = 0,
3998
			.size = sizeof(read_event) + event->read_size,
3999
		},
4000 4001
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4002
	};
4003
	int ret;
4004

4005
	perf_event_header__init_id(&read_event.header, &sample, event);
4006
	ret = perf_output_begin(&handle, event, read_event.header.size);
4007 4008 4009
	if (ret)
		return;

4010
	perf_output_put(&handle, read_event);
4011
	perf_output_read(&handle, event);
4012
	perf_event__output_id_sample(event, &handle, &sample);
4013

4014 4015 4016
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4017
/*
P
Peter Zijlstra 已提交
4018 4019
 * task tracking -- fork/exit
 *
4020
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4021 4022
 */

P
Peter Zijlstra 已提交
4023
struct perf_task_event {
4024
	struct task_struct		*task;
4025
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4026 4027 4028 4029 4030 4031

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4032 4033
		u32				tid;
		u32				ptid;
4034
		u64				time;
4035
	} event_id;
P
Peter Zijlstra 已提交
4036 4037
};

4038
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4039
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4040 4041
{
	struct perf_output_handle handle;
4042
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4043
	struct task_struct *task = task_event->task;
4044
	int ret, size = task_event->event_id.header.size;
4045

4046
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4047

4048
	ret = perf_output_begin(&handle, event,
4049
				task_event->event_id.header.size);
4050
	if (ret)
4051
		goto out;
P
Peter Zijlstra 已提交
4052

4053 4054
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4055

4056 4057
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4058

4059
	perf_output_put(&handle, task_event->event_id);
4060

4061 4062
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4063
	perf_output_end(&handle);
4064 4065
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4066 4067
}

4068
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4069
{
P
Peter Zijlstra 已提交
4070
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4071 4072
		return 0;

4073
	if (!event_filter_match(event))
4074 4075
		return 0;

4076 4077
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4078 4079 4080 4081 4082
		return 1;

	return 0;
}

4083
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4084
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4085
{
4086
	struct perf_event *event;
P
Peter Zijlstra 已提交
4087

4088 4089 4090
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4091 4092 4093
	}
}

4094
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4095 4096
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4097
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4098
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4099
	int ctxn;
P
Peter Zijlstra 已提交
4100

4101
	rcu_read_lock();
P
Peter Zijlstra 已提交
4102
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4103
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4104 4105
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4106
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4107 4108 4109 4110 4111

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4112
				goto next;
P
Peter Zijlstra 已提交
4113 4114 4115 4116
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4117 4118
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4119
	}
P
Peter Zijlstra 已提交
4120 4121 4122
	rcu_read_unlock();
}

4123 4124
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4125
			      int new)
P
Peter Zijlstra 已提交
4126
{
P
Peter Zijlstra 已提交
4127
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4128

4129 4130 4131
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4132 4133
		return;

P
Peter Zijlstra 已提交
4134
	task_event = (struct perf_task_event){
4135 4136
		.task	  = task,
		.task_ctx = task_ctx,
4137
		.event_id    = {
P
Peter Zijlstra 已提交
4138
			.header = {
4139
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4140
				.misc = 0,
4141
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4142
			},
4143 4144
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4145 4146
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4147
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4148 4149 4150
		},
	};

4151
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4152 4153
}

4154
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4155
{
4156
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4157 4158
}

4159 4160 4161 4162 4163
/*
 * comm tracking
 */

struct perf_comm_event {
4164 4165
	struct task_struct	*task;
	char			*comm;
4166 4167 4168 4169 4170 4171 4172
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4173
	} event_id;
4174 4175
};

4176
static void perf_event_comm_output(struct perf_event *event,
4177 4178 4179
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4180
	struct perf_sample_data sample;
4181
	int size = comm_event->event_id.header.size;
4182 4183 4184 4185
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4186
				comm_event->event_id.header.size);
4187 4188

	if (ret)
4189
		goto out;
4190

4191 4192
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4193

4194
	perf_output_put(&handle, comm_event->event_id);
4195
	__output_copy(&handle, comm_event->comm,
4196
				   comm_event->comm_size);
4197 4198 4199

	perf_event__output_id_sample(event, &handle, &sample);

4200
	perf_output_end(&handle);
4201 4202
out:
	comm_event->event_id.header.size = size;
4203 4204
}

4205
static int perf_event_comm_match(struct perf_event *event)
4206
{
P
Peter Zijlstra 已提交
4207
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4208 4209
		return 0;

4210
	if (!event_filter_match(event))
4211 4212
		return 0;

4213
	if (event->attr.comm)
4214 4215 4216 4217 4218
		return 1;

	return 0;
}

4219
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4220 4221
				  struct perf_comm_event *comm_event)
{
4222
	struct perf_event *event;
4223

4224 4225 4226
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4227 4228 4229
	}
}

4230
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4231 4232
{
	struct perf_cpu_context *cpuctx;
4233
	struct perf_event_context *ctx;
4234
	char comm[TASK_COMM_LEN];
4235
	unsigned int size;
P
Peter Zijlstra 已提交
4236
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4237
	int ctxn;
4238

4239
	memset(comm, 0, sizeof(comm));
4240
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4241
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4242 4243 4244 4245

	comm_event->comm = comm;
	comm_event->comm_size = size;

4246
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4247
	rcu_read_lock();
P
Peter Zijlstra 已提交
4248
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4249
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4250 4251
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4252
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4253 4254 4255

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4256
			goto next;
P
Peter Zijlstra 已提交
4257 4258 4259 4260

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4261 4262
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4263
	}
4264
	rcu_read_unlock();
4265 4266
}

4267
void perf_event_comm(struct task_struct *task)
4268
{
4269
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4270 4271
	struct perf_event_context *ctx;
	int ctxn;
4272

P
Peter Zijlstra 已提交
4273 4274 4275 4276
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4277

P
Peter Zijlstra 已提交
4278 4279
		perf_event_enable_on_exec(ctx);
	}
4280

4281
	if (!atomic_read(&nr_comm_events))
4282
		return;
4283

4284
	comm_event = (struct perf_comm_event){
4285
		.task	= task,
4286 4287
		/* .comm      */
		/* .comm_size */
4288
		.event_id  = {
4289
			.header = {
4290
				.type = PERF_RECORD_COMM,
4291 4292 4293 4294 4295
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4296 4297 4298
		},
	};

4299
	perf_event_comm_event(&comm_event);
4300 4301
}

4302 4303 4304 4305 4306
/*
 * mmap tracking
 */

struct perf_mmap_event {
4307 4308 4309 4310
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4311 4312 4313 4314 4315 4316 4317 4318 4319

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4320
	} event_id;
4321 4322
};

4323
static void perf_event_mmap_output(struct perf_event *event,
4324 4325 4326
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4327
	struct perf_sample_data sample;
4328
	int size = mmap_event->event_id.header.size;
4329
	int ret;
4330

4331 4332
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4333
				mmap_event->event_id.header.size);
4334
	if (ret)
4335
		goto out;
4336

4337 4338
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4339

4340
	perf_output_put(&handle, mmap_event->event_id);
4341
	__output_copy(&handle, mmap_event->file_name,
4342
				   mmap_event->file_size);
4343 4344 4345

	perf_event__output_id_sample(event, &handle, &sample);

4346
	perf_output_end(&handle);
4347 4348
out:
	mmap_event->event_id.header.size = size;
4349 4350
}

4351
static int perf_event_mmap_match(struct perf_event *event,
4352 4353
				   struct perf_mmap_event *mmap_event,
				   int executable)
4354
{
P
Peter Zijlstra 已提交
4355
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4356 4357
		return 0;

4358
	if (!event_filter_match(event))
4359 4360
		return 0;

4361 4362
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4363 4364 4365 4366 4367
		return 1;

	return 0;
}

4368
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4369 4370
				  struct perf_mmap_event *mmap_event,
				  int executable)
4371
{
4372
	struct perf_event *event;
4373

4374
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4375
		if (perf_event_mmap_match(event, mmap_event, executable))
4376
			perf_event_mmap_output(event, mmap_event);
4377 4378 4379
	}
}

4380
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4381 4382
{
	struct perf_cpu_context *cpuctx;
4383
	struct perf_event_context *ctx;
4384 4385
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4386 4387 4388
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4389
	const char *name;
P
Peter Zijlstra 已提交
4390
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4391
	int ctxn;
4392

4393 4394
	memset(tmp, 0, sizeof(tmp));

4395
	if (file) {
4396
		/*
4397
		 * d_path works from the end of the rb backwards, so we
4398 4399 4400 4401
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4402 4403 4404 4405
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4406
		name = d_path(&file->f_path, buf, PATH_MAX);
4407 4408 4409 4410 4411
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4412 4413 4414
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4415
			goto got_name;
4416
		}
4417 4418 4419 4420

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4421 4422 4423 4424 4425 4426 4427 4428
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4429 4430
		}

4431 4432 4433 4434 4435
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4436
	size = ALIGN(strlen(name)+1, sizeof(u64));
4437 4438 4439 4440

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4441
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4442

4443
	rcu_read_lock();
P
Peter Zijlstra 已提交
4444
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4445
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4446 4447
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4448 4449
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4450 4451 4452

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4453
			goto next;
P
Peter Zijlstra 已提交
4454 4455 4456 4457 4458 4459

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4460 4461
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4462
	}
4463 4464
	rcu_read_unlock();

4465 4466 4467
	kfree(buf);
}

4468
void perf_event_mmap(struct vm_area_struct *vma)
4469
{
4470 4471
	struct perf_mmap_event mmap_event;

4472
	if (!atomic_read(&nr_mmap_events))
4473 4474 4475
		return;

	mmap_event = (struct perf_mmap_event){
4476
		.vma	= vma,
4477 4478
		/* .file_name */
		/* .file_size */
4479
		.event_id  = {
4480
			.header = {
4481
				.type = PERF_RECORD_MMAP,
4482
				.misc = PERF_RECORD_MISC_USER,
4483 4484 4485 4486
				/* .size */
			},
			/* .pid */
			/* .tid */
4487 4488
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4489
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4490 4491 4492
		},
	};

4493
	perf_event_mmap_event(&mmap_event);
4494 4495
}

4496 4497 4498 4499
/*
 * IRQ throttle logging
 */

4500
static void perf_log_throttle(struct perf_event *event, int enable)
4501 4502
{
	struct perf_output_handle handle;
4503
	struct perf_sample_data sample;
4504 4505 4506 4507 4508
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4509
		u64				id;
4510
		u64				stream_id;
4511 4512
	} throttle_event = {
		.header = {
4513
			.type = PERF_RECORD_THROTTLE,
4514 4515 4516
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4517
		.time		= perf_clock(),
4518 4519
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4520 4521
	};

4522
	if (enable)
4523
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4524

4525 4526 4527
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4528
				throttle_event.header.size);
4529 4530 4531 4532
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4533
	perf_event__output_id_sample(event, &handle, &sample);
4534 4535 4536
	perf_output_end(&handle);
}

4537
/*
4538
 * Generic event overflow handling, sampling.
4539 4540
 */

4541
static int __perf_event_overflow(struct perf_event *event,
4542 4543
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4544
{
4545 4546
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4547
	u64 seq;
4548 4549
	int ret = 0;

4550 4551 4552 4553 4554 4555 4556
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4557 4558 4559 4560 4561 4562 4563 4564 4565
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4566 4567
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4568 4569
			ret = 1;
		}
4570
	}
4571

4572
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4573
		u64 now = perf_clock();
4574
		s64 delta = now - hwc->freq_time_stamp;
4575

4576
		hwc->freq_time_stamp = now;
4577

4578
		if (delta > 0 && delta < 2*TICK_NSEC)
4579
			perf_adjust_period(event, delta, hwc->last_period, true);
4580 4581
	}

4582 4583
	/*
	 * XXX event_limit might not quite work as expected on inherited
4584
	 * events
4585 4586
	 */

4587 4588
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4589
		ret = 1;
4590
		event->pending_kill = POLL_HUP;
4591 4592
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4593 4594
	}

4595
	if (event->overflow_handler)
4596
		event->overflow_handler(event, data, regs);
4597
	else
4598
		perf_event_output(event, data, regs);
4599

P
Peter Zijlstra 已提交
4600
	if (event->fasync && event->pending_kill) {
4601 4602
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4603 4604
	}

4605
	return ret;
4606 4607
}

4608
int perf_event_overflow(struct perf_event *event,
4609 4610
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4611
{
4612
	return __perf_event_overflow(event, 1, data, regs);
4613 4614
}

4615
/*
4616
 * Generic software event infrastructure
4617 4618
 */

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4630
/*
4631 4632
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4633 4634 4635 4636
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4637
static u64 perf_swevent_set_period(struct perf_event *event)
4638
{
4639
	struct hw_perf_event *hwc = &event->hw;
4640 4641 4642 4643 4644
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4645 4646

again:
4647
	old = val = local64_read(&hwc->period_left);
4648 4649
	if (val < 0)
		return 0;
4650

4651 4652 4653
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4654
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4655
		goto again;
4656

4657
	return nr;
4658 4659
}

4660
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4661
				    struct perf_sample_data *data,
4662
				    struct pt_regs *regs)
4663
{
4664
	struct hw_perf_event *hwc = &event->hw;
4665
	int throttle = 0;
4666

4667 4668
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4669

4670 4671
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4672

4673
	for (; overflow; overflow--) {
4674
		if (__perf_event_overflow(event, throttle,
4675
					    data, regs)) {
4676 4677 4678 4679 4680 4681
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4682
		throttle = 1;
4683
	}
4684 4685
}

P
Peter Zijlstra 已提交
4686
static void perf_swevent_event(struct perf_event *event, u64 nr,
4687
			       struct perf_sample_data *data,
4688
			       struct pt_regs *regs)
4689
{
4690
	struct hw_perf_event *hwc = &event->hw;
4691

4692
	local64_add(nr, &event->count);
4693

4694 4695 4696
	if (!regs)
		return;

4697
	if (!is_sampling_event(event))
4698
		return;
4699

4700 4701 4702 4703 4704 4705
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

4706
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4707
		return perf_swevent_overflow(event, 1, data, regs);
4708

4709
	if (local64_add_negative(nr, &hwc->period_left))
4710
		return;
4711

4712
	perf_swevent_overflow(event, 0, data, regs);
4713 4714
}

4715 4716 4717
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4718
	if (event->hw.state & PERF_HES_STOPPED)
4719
		return 1;
P
Peter Zijlstra 已提交
4720

4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4732
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4733
				enum perf_type_id type,
L
Li Zefan 已提交
4734 4735 4736
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4737
{
4738
	if (event->attr.type != type)
4739
		return 0;
4740

4741
	if (event->attr.config != event_id)
4742 4743
		return 0;

4744 4745
	if (perf_exclude_event(event, regs))
		return 0;
4746 4747 4748 4749

	return 1;
}

4750 4751 4752 4753 4754 4755 4756
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4757 4758
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4759
{
4760 4761 4762 4763
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4764

4765 4766
/* For the read side: events when they trigger */
static inline struct hlist_head *
4767
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4768 4769
{
	struct swevent_hlist *hlist;
4770

4771
	hlist = rcu_dereference(swhash->swevent_hlist);
4772 4773 4774
	if (!hlist)
		return NULL;

4775 4776 4777 4778 4779
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4780
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4791
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4792 4793 4794 4795 4796
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4797 4798 4799
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4800
				    u64 nr,
4801 4802
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4803
{
4804
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4805
	struct perf_event *event;
4806 4807
	struct hlist_node *node;
	struct hlist_head *head;
4808

4809
	rcu_read_lock();
4810
	head = find_swevent_head_rcu(swhash, type, event_id);
4811 4812 4813 4814
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4815
		if (perf_swevent_match(event, type, event_id, data, regs))
4816
			perf_swevent_event(event, nr, data, regs);
4817
	}
4818 4819
end:
	rcu_read_unlock();
4820 4821
}

4822
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4823
{
4824
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4825

4826
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4827
}
I
Ingo Molnar 已提交
4828
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4829

4830
inline void perf_swevent_put_recursion_context(int rctx)
4831
{
4832
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4833

4834
	put_recursion_context(swhash->recursion, rctx);
4835
}
4836

4837
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4838
{
4839
	struct perf_sample_data data;
4840 4841
	int rctx;

4842
	preempt_disable_notrace();
4843 4844 4845
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4846

4847
	perf_sample_data_init(&data, addr);
4848

4849
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4850 4851

	perf_swevent_put_recursion_context(rctx);
4852
	preempt_enable_notrace();
4853 4854
}

4855
static void perf_swevent_read(struct perf_event *event)
4856 4857 4858
{
}

P
Peter Zijlstra 已提交
4859
static int perf_swevent_add(struct perf_event *event, int flags)
4860
{
4861
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4862
	struct hw_perf_event *hwc = &event->hw;
4863 4864
	struct hlist_head *head;

4865
	if (is_sampling_event(event)) {
4866
		hwc->last_period = hwc->sample_period;
4867
		perf_swevent_set_period(event);
4868
	}
4869

P
Peter Zijlstra 已提交
4870 4871
	hwc->state = !(flags & PERF_EF_START);

4872
	head = find_swevent_head(swhash, event);
4873 4874 4875 4876 4877
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4878 4879 4880
	return 0;
}

P
Peter Zijlstra 已提交
4881
static void perf_swevent_del(struct perf_event *event, int flags)
4882
{
4883
	hlist_del_rcu(&event->hlist_entry);
4884 4885
}

P
Peter Zijlstra 已提交
4886
static void perf_swevent_start(struct perf_event *event, int flags)
4887
{
P
Peter Zijlstra 已提交
4888
	event->hw.state = 0;
4889
}
I
Ingo Molnar 已提交
4890

P
Peter Zijlstra 已提交
4891
static void perf_swevent_stop(struct perf_event *event, int flags)
4892
{
P
Peter Zijlstra 已提交
4893
	event->hw.state = PERF_HES_STOPPED;
4894 4895
}

4896 4897
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4898
swevent_hlist_deref(struct swevent_htable *swhash)
4899
{
4900 4901
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4902 4903
}

4904
static void swevent_hlist_release(struct swevent_htable *swhash)
4905
{
4906
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4907

4908
	if (!hlist)
4909 4910
		return;

4911
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4912
	kfree_rcu(hlist, rcu_head);
4913 4914 4915 4916
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4917
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4918

4919
	mutex_lock(&swhash->hlist_mutex);
4920

4921 4922
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4923

4924
	mutex_unlock(&swhash->hlist_mutex);
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4942
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4943 4944
	int err = 0;

4945
	mutex_lock(&swhash->hlist_mutex);
4946

4947
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4948 4949 4950 4951 4952 4953 4954
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4955
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4956
	}
4957
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4958
exit:
4959
	mutex_unlock(&swhash->hlist_mutex);
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4983
fail:
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4994
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4995

4996 4997 4998
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
4999

5000 5001
	WARN_ON(event->parent);

5002
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5022
	if (event_id >= PERF_COUNT_SW_MAX)
5023 5024 5025 5026 5027 5028 5029 5030 5031
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5032
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5033 5034 5035 5036 5037 5038
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5039 5040 5041 5042 5043
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5044
static struct pmu perf_swevent = {
5045
	.task_ctx_nr	= perf_sw_context,
5046

5047
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5048 5049 5050 5051
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5052
	.read		= perf_swevent_read,
5053 5054

	.event_idx	= perf_swevent_event_idx,
5055 5056
};

5057 5058
#ifdef CONFIG_EVENT_TRACING

5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5073 5074
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5075 5076 5077 5078
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5079 5080 5081 5082 5083 5084 5085 5086 5087
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5088
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5089 5090
{
	struct perf_sample_data data;
5091 5092 5093
	struct perf_event *event;
	struct hlist_node *node;

5094 5095 5096 5097 5098 5099 5100 5101
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5102 5103
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5104
			perf_swevent_event(event, count, &data, regs);
5105
	}
5106 5107

	perf_swevent_put_recursion_context(rctx);
5108 5109 5110
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5111
static void tp_perf_event_destroy(struct perf_event *event)
5112
{
5113
	perf_trace_destroy(event);
5114 5115
}

5116
static int perf_tp_event_init(struct perf_event *event)
5117
{
5118 5119
	int err;

5120 5121 5122
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5123 5124
	err = perf_trace_init(event);
	if (err)
5125
		return err;
5126

5127
	event->destroy = tp_perf_event_destroy;
5128

5129 5130 5131 5132
	return 0;
}

static struct pmu perf_tracepoint = {
5133 5134
	.task_ctx_nr	= perf_sw_context,

5135
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5136 5137 5138 5139
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5140
	.read		= perf_swevent_read,
5141 5142

	.event_idx	= perf_swevent_event_idx,
5143 5144 5145 5146
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5147
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5148
}
L
Li Zefan 已提交
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5173
#else
L
Li Zefan 已提交
5174

5175
static inline void perf_tp_register(void)
5176 5177
{
}
L
Li Zefan 已提交
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5188
#endif /* CONFIG_EVENT_TRACING */
5189

5190
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5191
void perf_bp_event(struct perf_event *bp, void *data)
5192
{
5193 5194 5195
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5196
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5197

P
Peter Zijlstra 已提交
5198
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5199
		perf_swevent_event(bp, 1, &sample, regs);
5200 5201 5202
}
#endif

5203 5204 5205
/*
 * hrtimer based swevent callback
 */
5206

5207
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5208
{
5209 5210 5211 5212 5213
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5214

5215
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5216 5217 5218 5219

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5220
	event->pmu->read(event);
5221

5222 5223 5224 5225 5226
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5227
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5228
			if (perf_event_overflow(event, &data, regs))
5229 5230
				ret = HRTIMER_NORESTART;
	}
5231

5232 5233
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5234

5235
	return ret;
5236 5237
}

5238
static void perf_swevent_start_hrtimer(struct perf_event *event)
5239
{
5240
	struct hw_perf_event *hwc = &event->hw;
5241 5242 5243 5244
	s64 period;

	if (!is_sampling_event(event))
		return;
5245

5246 5247 5248 5249
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5250

5251 5252 5253 5254 5255
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5256
				ns_to_ktime(period), 0,
5257
				HRTIMER_MODE_REL_PINNED, 0);
5258
}
5259 5260

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5261
{
5262 5263
	struct hw_perf_event *hwc = &event->hw;

5264
	if (is_sampling_event(event)) {
5265
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5266
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5267 5268 5269

		hrtimer_cancel(&hwc->hrtimer);
	}
5270 5271
}

P
Peter Zijlstra 已提交
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5296 5297 5298 5299 5300
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5301
{
5302 5303 5304
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5305
	now = local_clock();
5306 5307
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5308 5309
}

P
Peter Zijlstra 已提交
5310
static void cpu_clock_event_start(struct perf_event *event, int flags)
5311
{
P
Peter Zijlstra 已提交
5312
	local64_set(&event->hw.prev_count, local_clock());
5313 5314 5315
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5316
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5317
{
5318 5319 5320
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5321

P
Peter Zijlstra 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5335 5336 5337 5338
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5339

5340 5341 5342 5343 5344 5345 5346 5347
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5348 5349
	perf_swevent_init_hrtimer(event);

5350
	return 0;
5351 5352
}

5353
static struct pmu perf_cpu_clock = {
5354 5355
	.task_ctx_nr	= perf_sw_context,

5356
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5357 5358 5359 5360
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5361
	.read		= cpu_clock_event_read,
5362 5363

	.event_idx	= perf_swevent_event_idx,
5364 5365 5366 5367 5368 5369 5370
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5371
{
5372 5373
	u64 prev;
	s64 delta;
5374

5375 5376 5377 5378
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5379

P
Peter Zijlstra 已提交
5380
static void task_clock_event_start(struct perf_event *event, int flags)
5381
{
P
Peter Zijlstra 已提交
5382
	local64_set(&event->hw.prev_count, event->ctx->time);
5383 5384 5385
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5386
static void task_clock_event_stop(struct perf_event *event, int flags)
5387 5388 5389
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5390 5391 5392 5393 5394 5395
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5396

P
Peter Zijlstra 已提交
5397 5398 5399 5400 5401 5402
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5403 5404 5405 5406
}

static void task_clock_event_read(struct perf_event *event)
{
5407 5408 5409
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5410 5411 5412 5413 5414

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5415
{
5416 5417 5418 5419 5420 5421
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5422 5423
	perf_swevent_init_hrtimer(event);

5424
	return 0;
L
Li Zefan 已提交
5425 5426
}

5427
static struct pmu perf_task_clock = {
5428 5429
	.task_ctx_nr	= perf_sw_context,

5430
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5431 5432 5433 5434
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5435
	.read		= task_clock_event_read,
5436 5437

	.event_idx	= perf_swevent_event_idx,
5438
};
L
Li Zefan 已提交
5439

P
Peter Zijlstra 已提交
5440
static void perf_pmu_nop_void(struct pmu *pmu)
5441 5442
{
}
L
Li Zefan 已提交
5443

P
Peter Zijlstra 已提交
5444
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5445
{
P
Peter Zijlstra 已提交
5446
	return 0;
L
Li Zefan 已提交
5447 5448
}

P
Peter Zijlstra 已提交
5449
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5450
{
P
Peter Zijlstra 已提交
5451
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5452 5453
}

P
Peter Zijlstra 已提交
5454 5455 5456 5457 5458
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5459

P
Peter Zijlstra 已提交
5460
static void perf_pmu_cancel_txn(struct pmu *pmu)
5461
{
P
Peter Zijlstra 已提交
5462
	perf_pmu_enable(pmu);
5463 5464
}

5465 5466 5467 5468 5469
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5470 5471 5472 5473 5474
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5475
{
P
Peter Zijlstra 已提交
5476
	struct pmu *pmu;
5477

P
Peter Zijlstra 已提交
5478 5479
	if (ctxn < 0)
		return NULL;
5480

P
Peter Zijlstra 已提交
5481 5482 5483 5484
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5485

P
Peter Zijlstra 已提交
5486
	return NULL;
5487 5488
}

5489
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5490
{
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5506

P
Peter Zijlstra 已提交
5507
	mutex_lock(&pmus_lock);
5508
	/*
P
Peter Zijlstra 已提交
5509
	 * Like a real lame refcount.
5510
	 */
5511 5512 5513
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5514
			goto out;
5515
		}
P
Peter Zijlstra 已提交
5516
	}
5517

5518
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5519 5520
out:
	mutex_unlock(&pmus_lock);
5521
}
P
Peter Zijlstra 已提交
5522
static struct idr pmu_idr;
5523

P
Peter Zijlstra 已提交
5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5556
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5577
static struct lock_class_key cpuctx_mutex;
5578
static struct lock_class_key cpuctx_lock;
5579

P
Peter Zijlstra 已提交
5580
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5581
{
P
Peter Zijlstra 已提交
5582
	int cpu, ret;
5583

5584
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5585 5586 5587 5588
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5589

P
Peter Zijlstra 已提交
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5608 5609 5610 5611 5612 5613
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5614
skip_type:
P
Peter Zijlstra 已提交
5615 5616 5617
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5618

P
Peter Zijlstra 已提交
5619 5620
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5621
		goto free_dev;
5622

P
Peter Zijlstra 已提交
5623 5624 5625 5626
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5627
		__perf_event_init_context(&cpuctx->ctx);
5628
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5629
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5630
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5631
		cpuctx->ctx.pmu = pmu;
5632 5633
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5634
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5635
	}
5636

P
Peter Zijlstra 已提交
5637
got_cpu_context:
P
Peter Zijlstra 已提交
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5652
		}
5653
	}
5654

P
Peter Zijlstra 已提交
5655 5656 5657 5658 5659
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5660 5661 5662
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

5663
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5664 5665
	ret = 0;
unlock:
5666 5667
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5668
	return ret;
P
Peter Zijlstra 已提交
5669

P
Peter Zijlstra 已提交
5670 5671 5672 5673
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5674 5675 5676 5677
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5678 5679 5680
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5681 5682
}

5683
void perf_pmu_unregister(struct pmu *pmu)
5684
{
5685 5686 5687
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5688

5689
	/*
P
Peter Zijlstra 已提交
5690 5691
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5692
	 */
5693
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5694
	synchronize_rcu();
5695

P
Peter Zijlstra 已提交
5696
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5697 5698
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5699 5700
	device_del(pmu->dev);
	put_device(pmu->dev);
5701
	free_pmu_context(pmu);
5702
}
5703

5704 5705 5706 5707
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5708
	int ret;
5709 5710

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5711 5712 5713 5714

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5715
	if (pmu) {
5716
		event->pmu = pmu;
5717 5718 5719
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5720
		goto unlock;
5721
	}
P
Peter Zijlstra 已提交
5722

5723
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5724
		event->pmu = pmu;
5725
		ret = pmu->event_init(event);
5726
		if (!ret)
P
Peter Zijlstra 已提交
5727
			goto unlock;
5728

5729 5730
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5731
			goto unlock;
5732
		}
5733
	}
P
Peter Zijlstra 已提交
5734 5735
	pmu = ERR_PTR(-ENOENT);
unlock:
5736
	srcu_read_unlock(&pmus_srcu, idx);
5737

5738
	return pmu;
5739 5740
}

T
Thomas Gleixner 已提交
5741
/*
5742
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5743
 */
5744
static struct perf_event *
5745
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5746 5747 5748
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
5749 5750
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
5751
{
P
Peter Zijlstra 已提交
5752
	struct pmu *pmu;
5753 5754
	struct perf_event *event;
	struct hw_perf_event *hwc;
5755
	long err;
T
Thomas Gleixner 已提交
5756

5757 5758 5759 5760 5761
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5762
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5763
	if (!event)
5764
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5765

5766
	/*
5767
	 * Single events are their own group leaders, with an
5768 5769 5770
	 * empty sibling list:
	 */
	if (!group_leader)
5771
		group_leader = event;
5772

5773 5774
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5775

5776 5777 5778
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
5779 5780
	INIT_LIST_HEAD(&event->rb_entry);

5781
	init_waitqueue_head(&event->waitq);
5782
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5783

5784
	mutex_init(&event->mmap_mutex);
5785

5786 5787 5788 5789 5790
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5791

5792
	event->parent		= parent_event;
5793

5794 5795
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5796

5797
	event->state		= PERF_EVENT_STATE_INACTIVE;
5798

5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5810
	if (!overflow_handler && parent_event) {
5811
		overflow_handler = parent_event->overflow_handler;
5812 5813
		context = parent_event->overflow_handler_context;
	}
5814

5815
	event->overflow_handler	= overflow_handler;
5816
	event->overflow_handler_context = context;
5817

5818
	if (attr->disabled)
5819
		event->state = PERF_EVENT_STATE_OFF;
5820

5821
	pmu = NULL;
5822

5823
	hwc = &event->hw;
5824
	hwc->sample_period = attr->sample_period;
5825
	if (attr->freq && attr->sample_freq)
5826
		hwc->sample_period = 1;
5827
	hwc->last_period = hwc->sample_period;
5828

5829
	local64_set(&hwc->period_left, hwc->sample_period);
5830

5831
	/*
5832
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5833
	 */
5834
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5835 5836
		goto done;

5837
	pmu = perf_init_event(event);
5838

5839 5840
done:
	err = 0;
5841
	if (!pmu)
5842
		err = -EINVAL;
5843 5844
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5845

5846
	if (err) {
5847 5848 5849
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5850
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5851
	}
5852

5853
	if (!event->parent) {
5854
		if (event->attach_state & PERF_ATTACH_TASK)
5855
			static_key_slow_inc(&perf_sched_events.key);
5856
		if (event->attr.mmap || event->attr.mmap_data)
5857 5858 5859 5860 5861
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5862 5863 5864 5865 5866 5867 5868
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5869
	}
5870

5871
	return event;
T
Thomas Gleixner 已提交
5872 5873
}

5874 5875
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5876 5877
{
	u32 size;
5878
	int ret;
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5903 5904 5905
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5906 5907
	 */
	if (size > sizeof(*attr)) {
5908 5909 5910
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5911

5912 5913
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5914

5915
		for (; addr < end; addr++) {
5916 5917 5918 5919 5920 5921
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5922
		size = sizeof(*attr);
5923 5924 5925 5926 5927 5928
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

5929
	if (attr->__reserved_1)
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5947 5948
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5949
{
5950
	struct ring_buffer *rb = NULL, *old_rb = NULL;
5951 5952
	int ret = -EINVAL;

5953
	if (!output_event)
5954 5955
		goto set;

5956 5957
	/* don't allow circular references */
	if (event == output_event)
5958 5959
		goto out;

5960 5961 5962 5963 5964 5965 5966
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
5967
	 * If its not a per-cpu rb, it must be the same task.
5968 5969 5970 5971
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5972
set:
5973
	mutex_lock(&event->mmap_mutex);
5974 5975 5976
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5977

5978
	if (output_event) {
5979 5980 5981
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
5982
			goto unlock;
5983 5984
	}

5985 5986
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
5987 5988
	if (old_rb)
		ring_buffer_detach(event, old_rb);
5989
	ret = 0;
5990 5991 5992
unlock:
	mutex_unlock(&event->mmap_mutex);

5993 5994
	if (old_rb)
		ring_buffer_put(old_rb);
5995 5996 5997 5998
out:
	return ret;
}

T
Thomas Gleixner 已提交
5999
/**
6000
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6001
 *
6002
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6003
 * @pid:		target pid
I
Ingo Molnar 已提交
6004
 * @cpu:		target cpu
6005
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6006
 */
6007 6008
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6009
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6010
{
6011 6012
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6013 6014 6015
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6016
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6017
	struct task_struct *task = NULL;
6018
	struct pmu *pmu;
6019
	int event_fd;
6020
	int move_group = 0;
6021
	int fput_needed = 0;
6022
	int err;
T
Thomas Gleixner 已提交
6023

6024
	/* for future expandability... */
S
Stephane Eranian 已提交
6025
	if (flags & ~PERF_FLAG_ALL)
6026 6027
		return -EINVAL;

6028 6029 6030
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6031

6032 6033 6034 6035 6036
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6037
	if (attr.freq) {
6038
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6039 6040 6041
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6042 6043 6044 6045 6046 6047 6048 6049 6050
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6051 6052 6053 6054
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6055 6056 6057 6058
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6059
			goto err_fd;
6060 6061 6062 6063 6064 6065 6066 6067
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6068
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6069 6070 6071 6072 6073 6074 6075
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6076 6077
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6078 6079
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6080
		goto err_task;
6081 6082
	}

S
Stephane Eranian 已提交
6083 6084 6085 6086
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6087 6088 6089 6090 6091 6092
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6093
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6094 6095
	}

6096 6097 6098 6099 6100
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6124 6125 6126 6127

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6128
	ctx = find_get_context(pmu, task, cpu);
6129 6130
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6131
		goto err_alloc;
6132 6133
	}

6134 6135 6136 6137 6138
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6139
	/*
6140
	 * Look up the group leader (we will attach this event to it):
6141
	 */
6142
	if (group_leader) {
6143
		err = -EINVAL;
6144 6145

		/*
I
Ingo Molnar 已提交
6146 6147 6148 6149
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6150
			goto err_context;
I
Ingo Molnar 已提交
6151 6152 6153
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6154
		 */
6155 6156 6157 6158 6159 6160 6161 6162
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6163 6164 6165
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6166
		if (attr.exclusive || attr.pinned)
6167
			goto err_context;
6168 6169 6170 6171 6172
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6173
			goto err_context;
6174
	}
T
Thomas Gleixner 已提交
6175

6176 6177 6178
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6179
		goto err_context;
6180
	}
6181

6182 6183 6184 6185
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6186
		perf_remove_from_context(group_leader);
6187 6188
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6189
			perf_remove_from_context(sibling);
6190 6191 6192 6193
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6194
	}
6195

6196
	event->filp = event_file;
6197
	WARN_ON_ONCE(ctx->parent_ctx);
6198
	mutex_lock(&ctx->mutex);
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6210
	perf_install_in_context(ctx, event, cpu);
6211
	++ctx->generation;
6212
	perf_unpin_context(ctx);
6213
	mutex_unlock(&ctx->mutex);
6214

6215
	event->owner = current;
P
Peter Zijlstra 已提交
6216

6217 6218 6219
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6220

6221 6222 6223 6224
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6225
	perf_event__id_header_size(event);
6226

6227 6228 6229 6230 6231 6232
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6233 6234 6235
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6236

6237
err_context:
6238
	perf_unpin_context(ctx);
6239
	put_ctx(ctx);
6240
err_alloc:
6241
	free_event(event);
P
Peter Zijlstra 已提交
6242 6243 6244
err_task:
	if (task)
		put_task_struct(task);
6245
err_group_fd:
6246
	fput_light(group_file, fput_needed);
6247 6248
err_fd:
	put_unused_fd(event_fd);
6249
	return err;
T
Thomas Gleixner 已提交
6250 6251
}

6252 6253 6254 6255 6256
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6257
 * @task: task to profile (NULL for percpu)
6258 6259 6260
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6261
				 struct task_struct *task,
6262 6263
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6264 6265
{
	struct perf_event_context *ctx;
6266
	struct perf_event *event;
6267
	int err;
6268

6269 6270 6271
	/*
	 * Get the target context (task or percpu):
	 */
6272

6273 6274
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6275 6276 6277 6278
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6279

M
Matt Helsley 已提交
6280
	ctx = find_get_context(event->pmu, task, cpu);
6281 6282
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6283
		goto err_free;
6284
	}
6285 6286 6287 6288 6289 6290

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6291
	perf_unpin_context(ctx);
6292 6293 6294 6295
	mutex_unlock(&ctx->mutex);

	return event;

6296 6297 6298
err_free:
	free_event(event);
err:
6299
	return ERR_PTR(err);
6300
}
6301
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6302

6303
static void sync_child_event(struct perf_event *child_event,
6304
			       struct task_struct *child)
6305
{
6306
	struct perf_event *parent_event = child_event->parent;
6307
	u64 child_val;
6308

6309 6310
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6311

P
Peter Zijlstra 已提交
6312
	child_val = perf_event_count(child_event);
6313 6314 6315 6316

	/*
	 * Add back the child's count to the parent's count:
	 */
6317
	atomic64_add(child_val, &parent_event->child_count);
6318 6319 6320 6321
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6322 6323

	/*
6324
	 * Remove this event from the parent's list
6325
	 */
6326 6327 6328 6329
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6330 6331

	/*
6332
	 * Release the parent event, if this was the last
6333 6334
	 * reference to it.
	 */
6335
	fput(parent_event->filp);
6336 6337
}

6338
static void
6339 6340
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6341
			 struct task_struct *child)
6342
{
6343 6344 6345 6346 6347
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6348

6349
	perf_remove_from_context(child_event);
6350

6351
	/*
6352
	 * It can happen that the parent exits first, and has events
6353
	 * that are still around due to the child reference. These
6354
	 * events need to be zapped.
6355
	 */
6356
	if (child_event->parent) {
6357 6358
		sync_child_event(child_event, child);
		free_event(child_event);
6359
	}
6360 6361
}

P
Peter Zijlstra 已提交
6362
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6363
{
6364 6365
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6366
	unsigned long flags;
6367

P
Peter Zijlstra 已提交
6368
	if (likely(!child->perf_event_ctxp[ctxn])) {
6369
		perf_event_task(child, NULL, 0);
6370
		return;
P
Peter Zijlstra 已提交
6371
	}
6372

6373
	local_irq_save(flags);
6374 6375 6376 6377 6378 6379
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6380
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6381 6382 6383

	/*
	 * Take the context lock here so that if find_get_context is
6384
	 * reading child->perf_event_ctxp, we wait until it has
6385 6386
	 * incremented the context's refcount before we do put_ctx below.
	 */
6387
	raw_spin_lock(&child_ctx->lock);
6388
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6389
	child->perf_event_ctxp[ctxn] = NULL;
6390 6391 6392
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6393
	 * the events from it.
6394 6395
	 */
	unclone_ctx(child_ctx);
6396
	update_context_time(child_ctx);
6397
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6398 6399

	/*
6400 6401 6402
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6403
	 */
6404
	perf_event_task(child, child_ctx, 0);
6405

6406 6407 6408
	/*
	 * We can recurse on the same lock type through:
	 *
6409 6410 6411
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6412 6413 6414 6415 6416
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6417
	mutex_lock(&child_ctx->mutex);
6418

6419
again:
6420 6421 6422 6423 6424
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6425
				 group_entry)
6426
		__perf_event_exit_task(child_event, child_ctx, child);
6427 6428

	/*
6429
	 * If the last event was a group event, it will have appended all
6430 6431 6432
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6433 6434
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6435
		goto again;
6436 6437 6438 6439

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6440 6441
}

P
Peter Zijlstra 已提交
6442 6443 6444 6445 6446
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6447
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6448 6449
	int ctxn;

P
Peter Zijlstra 已提交
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6465 6466 6467 6468
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6483
	perf_group_detach(event);
6484 6485 6486 6487
	list_del_event(event, ctx);
	free_event(event);
}

6488 6489
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6490
 * perf_event_init_task below, used by fork() in case of fail.
6491
 */
6492
void perf_event_free_task(struct task_struct *task)
6493
{
P
Peter Zijlstra 已提交
6494
	struct perf_event_context *ctx;
6495
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6496
	int ctxn;
6497

P
Peter Zijlstra 已提交
6498 6499 6500 6501
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6502

P
Peter Zijlstra 已提交
6503
		mutex_lock(&ctx->mutex);
6504
again:
P
Peter Zijlstra 已提交
6505 6506 6507
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6508

P
Peter Zijlstra 已提交
6509 6510 6511
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6512

P
Peter Zijlstra 已提交
6513 6514 6515
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6516

P
Peter Zijlstra 已提交
6517
		mutex_unlock(&ctx->mutex);
6518

P
Peter Zijlstra 已提交
6519 6520
		put_ctx(ctx);
	}
6521 6522
}

6523 6524 6525 6526 6527 6528 6529 6530
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6543
	unsigned long flags;
P
Peter Zijlstra 已提交
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6556
					   child,
P
Peter Zijlstra 已提交
6557
					   group_leader, parent_event,
6558
				           NULL, NULL);
P
Peter Zijlstra 已提交
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
6585 6586
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
6587

6588 6589 6590 6591
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6592
	perf_event__id_header_size(child_event);
6593

P
Peter Zijlstra 已提交
6594 6595 6596
	/*
	 * Link it up in the child's context:
	 */
6597
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6598
	add_event_to_ctx(child_event, child_ctx);
6599
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6641 6642 6643 6644 6645
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6646
		   struct task_struct *child, int ctxn,
6647 6648 6649
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6650
	struct perf_event_context *child_ctx;
6651 6652 6653 6654

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6655 6656
	}

6657
	child_ctx = child->perf_event_ctxp[ctxn];
6658 6659 6660 6661 6662 6663 6664
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6665

6666
		child_ctx = alloc_perf_context(event->pmu, child);
6667 6668
		if (!child_ctx)
			return -ENOMEM;
6669

P
Peter Zijlstra 已提交
6670
		child->perf_event_ctxp[ctxn] = child_ctx;
6671 6672 6673 6674 6675 6676 6677 6678 6679
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6680 6681
}

6682
/*
6683
 * Initialize the perf_event context in task_struct
6684
 */
P
Peter Zijlstra 已提交
6685
int perf_event_init_context(struct task_struct *child, int ctxn)
6686
{
6687
	struct perf_event_context *child_ctx, *parent_ctx;
6688 6689
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6690
	struct task_struct *parent = current;
6691
	int inherited_all = 1;
6692
	unsigned long flags;
6693
	int ret = 0;
6694

P
Peter Zijlstra 已提交
6695
	if (likely(!parent->perf_event_ctxp[ctxn]))
6696 6697
		return 0;

6698
	/*
6699 6700
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6701
	 */
P
Peter Zijlstra 已提交
6702
	parent_ctx = perf_pin_task_context(parent, ctxn);
6703

6704 6705 6706 6707 6708 6709 6710
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6711 6712 6713 6714
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6715
	mutex_lock(&parent_ctx->mutex);
6716 6717 6718 6719 6720

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6721
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6722 6723
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6724 6725 6726
		if (ret)
			break;
	}
6727

6728 6729 6730 6731 6732 6733 6734 6735 6736
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6737
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6738 6739
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6740
		if (ret)
6741
			break;
6742 6743
	}

6744 6745 6746
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6747
	child_ctx = child->perf_event_ctxp[ctxn];
6748

6749
	if (child_ctx && inherited_all) {
6750 6751 6752
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6753 6754 6755
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6756
		 */
P
Peter Zijlstra 已提交
6757
		cloned_ctx = parent_ctx->parent_ctx;
6758 6759
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6760
			child_ctx->parent_gen = parent_ctx->parent_gen;
6761 6762 6763 6764 6765
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6766 6767
	}

P
Peter Zijlstra 已提交
6768
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6769
	mutex_unlock(&parent_ctx->mutex);
6770

6771
	perf_unpin_context(parent_ctx);
6772
	put_ctx(parent_ctx);
6773

6774
	return ret;
6775 6776
}

P
Peter Zijlstra 已提交
6777 6778 6779 6780 6781 6782 6783
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6784 6785 6786 6787
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6788 6789 6790 6791 6792 6793 6794 6795 6796
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6797 6798
static void __init perf_event_init_all_cpus(void)
{
6799
	struct swevent_htable *swhash;
6800 6801 6802
	int cpu;

	for_each_possible_cpu(cpu) {
6803 6804
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6805
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6806 6807 6808
	}
}

6809
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6810
{
P
Peter Zijlstra 已提交
6811
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6812

6813
	mutex_lock(&swhash->hlist_mutex);
6814
	if (swhash->hlist_refcount > 0) {
6815 6816
		struct swevent_hlist *hlist;

6817 6818 6819
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6820
	}
6821
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6822 6823
}

P
Peter Zijlstra 已提交
6824
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6825
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6826
{
6827 6828 6829 6830 6831 6832 6833
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6834
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6835
{
P
Peter Zijlstra 已提交
6836
	struct perf_event_context *ctx = __info;
6837
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6838

P
Peter Zijlstra 已提交
6839
	perf_pmu_rotate_stop(ctx->pmu);
6840

6841
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6842
		__perf_remove_from_context(event);
6843
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6844
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
6845
}
P
Peter Zijlstra 已提交
6846 6847 6848 6849 6850 6851 6852 6853 6854

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6855
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6856 6857 6858 6859 6860 6861 6862 6863

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6864
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6865
{
6866
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6867

6868 6869 6870
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6871

P
Peter Zijlstra 已提交
6872
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6873 6874
}
#else
6875
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6876 6877
#endif

P
Peter Zijlstra 已提交
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
6898 6899 6900 6901 6902
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

6903
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6904 6905

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6906
	case CPU_DOWN_FAILED:
6907
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6908 6909
		break;

P
Peter Zijlstra 已提交
6910
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6911
	case CPU_DOWN_PREPARE:
6912
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6913 6914 6915 6916 6917 6918 6919 6920 6921
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6922
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6923
{
6924 6925
	int ret;

P
Peter Zijlstra 已提交
6926 6927
	idr_init(&pmu_idr);

6928
	perf_event_init_all_cpus();
6929
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
6930 6931 6932
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
6933 6934
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
6935
	register_reboot_notifier(&perf_reboot_notifier);
6936 6937 6938

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6939 6940 6941

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
T
Thomas Gleixner 已提交
6942
}
P
Peter Zijlstra 已提交
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
6971 6972 6973 6974 6975 6976 6977

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

6978
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7008 7009
static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7010
{
7011 7012 7013 7014
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7028
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7029 7030 7031
}

struct cgroup_subsys perf_subsys = {
7032 7033 7034 7035 7036
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
7037
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7038 7039
};
#endif /* CONFIG_CGROUP_PERF */