core.c 210.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
L
Li Zefan 已提交
39
#include <linux/ftrace_event.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54
struct remote_function_call {
55 56 57 58
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
92 93 94 95
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
116 117 118 119
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
120 121 122 123 124 125 126
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

127 128 129 130 131 132 133
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
134 135
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
136 137
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
138

139 140 141 142 143 144 145
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

146 147 148 149 150 151
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
152 153 154 155
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
156
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
157
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
158
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
159

160 161 162
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
163
static atomic_t nr_freq_events __read_mostly;
164

P
Peter Zijlstra 已提交
165 166 167 168
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

169
/*
170
 * perf event paranoia level:
171 172
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
173
 *   1 - disallow cpu events for unpriv
174
 *   2 - disallow kernel profiling for unpriv
175
 */
176
int sysctl_perf_event_paranoid __read_mostly = 1;
177

178 179
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
180 181

/*
182
 * max perf event sample rate
183
 */
184 185 186 187 188 189 190 191 192
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
193 194
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
195 196 197 198 199 200

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
201
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
202
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
203
}
P
Peter Zijlstra 已提交
204

205 206
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
207 208 209 210
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
211
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
212 213 214 215 216

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
235 236 237

	return 0;
}
238

239 240 241 242 243 244 245
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
246
static DEFINE_PER_CPU(u64, running_sample_length);
247

248
static void perf_duration_warn(struct irq_work *w)
249
{
250
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
251
	u64 avg_local_sample_len;
252
	u64 local_samples_len;
253

254
	local_samples_len = __this_cpu_read(running_sample_length);
255 256 257 258 259
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
260
			avg_local_sample_len, allowed_ns >> 1,
261 262 263 264 265 266 267
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
268
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
269 270
	u64 avg_local_sample_len;
	u64 local_samples_len;
271

P
Peter Zijlstra 已提交
272
	if (allowed_ns == 0)
273 274 275
		return;

	/* decay the counter by 1 average sample */
276
	local_samples_len = __this_cpu_read(running_sample_length);
277 278
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
279
	__this_cpu_write(running_sample_length, local_samples_len);
280 281 282 283 284 285 286 287

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
288
	if (avg_local_sample_len <= allowed_ns)
289 290 291 292 293 294 295 296 297 298
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
299

300 301 302 303 304 305
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
306 307
}

308
static atomic64_t perf_event_id;
309

310 311 312 313
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
314 315 316 317 318
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
319

320
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
321

322
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
323
{
324
	return "pmu";
T
Thomas Gleixner 已提交
325 326
}

327 328 329 330 331
static inline u64 perf_clock(void)
{
	return local_clock();
}

332 333 334 335 336
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
337 338 339 340 341 342
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
359 360 361 362 363 364 365 366
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
383 384 385 386
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
387
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
426 427
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
428
	/*
429 430
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
431
	 */
432
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
433 434
		return;

435 436 437 438 439 440
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
441 442 443
}

static inline void
444 445
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
446 447 448 449
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

450 451 452 453 454 455
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
456 457 458 459
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
460
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
493 494
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
495 496 497 498 499 500 501 502 503

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
504 505
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
506 507 508 509 510 511 512 513 514 515 516

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
517
				WARN_ON_ONCE(cpuctx->cgrp);
518 519 520 521
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
522 523 524 525
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
526 527
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
528 529 530 531 532 533 534 535
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

536 537
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
538
{
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
561 562
}

563 564
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
565
{
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
584 585 586 587 588 589 590 591
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
592 593
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
594

595
	if (!f.file)
S
Stephane Eranian 已提交
596 597
		return -EBADF;

A
Al Viro 已提交
598
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
599
					 &perf_event_cgrp_subsys);
600 601 602 603
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
617
out:
618
	fdput(f);
S
Stephane Eranian 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

692 693
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
694 695 696
{
}

697 698
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
699 700 701 702 703 704 705 706 707 708 709
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
710 711
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
805
	int timer;
806 807 808 809 810

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

811 812 813 814 815 816 817 818 819
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
842
void perf_pmu_disable(struct pmu *pmu)
843
{
P
Peter Zijlstra 已提交
844 845 846
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
847 848
}

P
Peter Zijlstra 已提交
849
void perf_pmu_enable(struct pmu *pmu)
850
{
P
Peter Zijlstra 已提交
851 852 853
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
854 855
}

856
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
857 858

/*
859 860 861 862
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
863
 */
864
static void perf_event_ctx_activate(struct perf_event_context *ctx)
865
{
866
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
867

868
	WARN_ON(!irqs_disabled());
869

870 871 872 873 874 875 876 877 878 879 880 881
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
882 883
}

884
static void get_ctx(struct perf_event_context *ctx)
885
{
886
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
887 888
}

889 890 891 892 893 894 895 896 897
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

898
static void put_ctx(struct perf_event_context *ctx)
899
{
900 901 902
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
903 904
		if (ctx->task)
			put_task_struct(ctx->task);
905
		call_rcu(&ctx->rcu_head, free_ctx);
906
	}
907 908
}

P
Peter Zijlstra 已提交
909 910 911 912 913 914 915
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
970 971
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
972 973 974 975 976 977 978 979 980 981 982 983
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
984
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
985 986 987 988 989 990 991 992 993
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
994 995 996 997 998 999
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1000 1001 1002 1003 1004 1005 1006
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1007 1008 1009 1010 1011 1012 1013
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1014
{
1015 1016 1017 1018 1019
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1020
		ctx->parent_ctx = NULL;
1021
	ctx->generation++;
1022 1023

	return parent_ctx;
1024 1025
}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1048
/*
1049
 * If we inherit events we want to return the parent event id
1050 1051
 * to userspace.
 */
1052
static u64 primary_event_id(struct perf_event *event)
1053
{
1054
	u64 id = event->id;
1055

1056 1057
	if (event->parent)
		id = event->parent->id;
1058 1059 1060 1061

	return id;
}

1062
/*
1063
 * Get the perf_event_context for a task and lock it.
1064 1065 1066
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1067
static struct perf_event_context *
P
Peter Zijlstra 已提交
1068
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1069
{
1070
	struct perf_event_context *ctx;
1071

P
Peter Zijlstra 已提交
1072
retry:
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1084
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1085 1086 1087 1088
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1089
		 * perf_event_task_sched_out, though the
1090 1091 1092 1093 1094 1095
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1096
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1097
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1098
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1099 1100
			rcu_read_unlock();
			preempt_enable();
1101 1102
			goto retry;
		}
1103 1104

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1105
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1106 1107
			ctx = NULL;
		}
1108 1109
	}
	rcu_read_unlock();
1110
	preempt_enable();
1111 1112 1113 1114 1115 1116 1117 1118
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1119 1120
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1121
{
1122
	struct perf_event_context *ctx;
1123 1124
	unsigned long flags;

P
Peter Zijlstra 已提交
1125
	ctx = perf_lock_task_context(task, ctxn, &flags);
1126 1127
	if (ctx) {
		++ctx->pin_count;
1128
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1129 1130 1131 1132
	}
	return ctx;
}

1133
static void perf_unpin_context(struct perf_event_context *ctx)
1134 1135 1136
{
	unsigned long flags;

1137
	raw_spin_lock_irqsave(&ctx->lock, flags);
1138
	--ctx->pin_count;
1139
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1140 1141
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1153 1154 1155
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1156 1157 1158 1159

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1160 1161 1162
	return ctx ? ctx->time : 0;
}

1163 1164
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1165
 * The caller of this function needs to hold the ctx->lock.
1166 1167 1168 1169 1170 1171 1172 1173 1174
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1186
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1187 1188
	else if (ctx->is_active)
		run_end = ctx->time;
1189 1190 1191 1192
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1193 1194 1195 1196

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1197
		run_end = perf_event_time(event);
1198 1199

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1200

1201 1202
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1215 1216 1217 1218 1219 1220 1221 1222 1223
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1224
/*
1225
 * Add a event from the lists for its context.
1226 1227
 * Must be called with ctx->mutex and ctx->lock held.
 */
1228
static void
1229
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1230
{
1231 1232
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1233 1234

	/*
1235 1236 1237
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1238
	 */
1239
	if (event->group_leader == event) {
1240 1241
		struct list_head *list;

1242 1243 1244
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1245 1246
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1247
	}
P
Peter Zijlstra 已提交
1248

1249
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1250 1251
		ctx->nr_cgroups++;

1252 1253 1254
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1255
		ctx->nr_stat++;
1256 1257

	ctx->generation++;
1258 1259
}

J
Jiri Olsa 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1308 1309 1310 1311 1312 1313
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1314 1315 1316
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1317 1318 1319
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1320 1321 1322
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1323 1324 1325
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1326 1327 1328 1329 1330 1331 1332 1333 1334
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1335 1336 1337 1338 1339 1340
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1341 1342 1343
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1344 1345 1346 1347 1348 1349 1350 1351 1352
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1353
	event->id_header_size = size;
1354 1355
}

1356 1357
static void perf_group_attach(struct perf_event *event)
{
1358
	struct perf_event *group_leader = event->group_leader, *pos;
1359

P
Peter Zijlstra 已提交
1360 1361 1362 1363 1364 1365
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1366 1367 1368 1369 1370
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1371 1372
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1373 1374 1375 1376 1377 1378
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1379 1380 1381 1382 1383

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1384 1385
}

1386
/*
1387
 * Remove a event from the lists for its context.
1388
 * Must be called with ctx->mutex and ctx->lock held.
1389
 */
1390
static void
1391
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1392
{
1393
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1394 1395 1396 1397

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1398 1399 1400 1401
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1402
		return;
1403 1404 1405

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1406
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1407
		ctx->nr_cgroups--;
1408 1409 1410 1411 1412 1413 1414 1415 1416
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1417

1418 1419
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1420
		ctx->nr_stat--;
1421

1422
	list_del_rcu(&event->event_entry);
1423

1424 1425
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1426

1427
	update_group_times(event);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1438 1439

	ctx->generation++;
1440 1441
}

1442
static void perf_group_detach(struct perf_event *event)
1443 1444
{
	struct perf_event *sibling, *tmp;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1461
		goto out;
1462 1463 1464 1465
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1466

1467
	/*
1468 1469
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1470
	 * to whatever list we are on.
1471
	 */
1472
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1473 1474
		if (list)
			list_move_tail(&sibling->group_entry, list);
1475
		sibling->group_leader = sibling;
1476 1477 1478

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1479 1480

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1481
	}
1482 1483 1484 1485 1486 1487

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1488 1489
}

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1529 1530 1531
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1532 1533
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1534 1535
}

1536 1537
static void
event_sched_out(struct perf_event *event,
1538
		  struct perf_cpu_context *cpuctx,
1539
		  struct perf_event_context *ctx)
1540
{
1541
	u64 tstamp = perf_event_time(event);
1542
	u64 delta;
P
Peter Zijlstra 已提交
1543 1544 1545 1546

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1547 1548 1549 1550 1551 1552 1553 1554
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1555
		delta = tstamp - event->tstamp_stopped;
1556
		event->tstamp_running += delta;
1557
		event->tstamp_stopped = tstamp;
1558 1559
	}

1560
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1561
		return;
1562

1563 1564
	perf_pmu_disable(event->pmu);

1565 1566 1567 1568
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1569
	}
1570
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1571
	event->pmu->del(event, 0);
1572
	event->oncpu = -1;
1573

1574
	if (!is_software_event(event))
1575
		cpuctx->active_oncpu--;
1576 1577
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1578 1579
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1580
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1581
		cpuctx->exclusive = 0;
1582

1583 1584 1585
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1586
	perf_pmu_enable(event->pmu);
1587 1588
}

1589
static void
1590
group_sched_out(struct perf_event *group_event,
1591
		struct perf_cpu_context *cpuctx,
1592
		struct perf_event_context *ctx)
1593
{
1594
	struct perf_event *event;
1595
	int state = group_event->state;
1596

1597
	event_sched_out(group_event, cpuctx, ctx);
1598 1599 1600 1601

	/*
	 * Schedule out siblings (if any):
	 */
1602 1603
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1604

1605
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1606 1607 1608
		cpuctx->exclusive = 0;
}

1609 1610 1611 1612 1613
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1614
/*
1615
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1616
 *
1617
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1618 1619
 * remove it from the context list.
 */
1620
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1621
{
1622 1623
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1624
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1625
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1626

1627
	raw_spin_lock(&ctx->lock);
1628
	event_sched_out(event, cpuctx, ctx);
1629 1630
	if (re->detach_group)
		perf_group_detach(event);
1631
	list_del_event(event, ctx);
1632 1633 1634 1635
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1636
	raw_spin_unlock(&ctx->lock);
1637 1638

	return 0;
T
Thomas Gleixner 已提交
1639 1640 1641 1642
}


/*
1643
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1644
 *
1645
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1646
 * call when the task is on a CPU.
1647
 *
1648 1649
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1650 1651
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1652
 * When called from perf_event_exit_task, it's OK because the
1653
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1654
 */
1655
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1656
{
1657
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1658
	struct task_struct *task = ctx->task;
1659 1660 1661 1662
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1663

1664 1665
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1666 1667
	if (!task) {
		/*
1668 1669 1670 1671
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1672
		 */
1673
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1674 1675 1676 1677
		return;
	}

retry:
1678
	if (!task_function_call(task, __perf_remove_from_context, &re))
1679
		return;
T
Thomas Gleixner 已提交
1680

1681
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1682
	/*
1683 1684
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1685
	 */
1686
	if (ctx->is_active) {
1687
		raw_spin_unlock_irq(&ctx->lock);
1688 1689 1690 1691 1692
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1693 1694 1695 1696
		goto retry;
	}

	/*
1697 1698
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1699
	 */
1700 1701
	if (detach_group)
		perf_group_detach(event);
1702
	list_del_event(event, ctx);
1703
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1704 1705
}

1706
/*
1707
 * Cross CPU call to disable a performance event
1708
 */
1709
int __perf_event_disable(void *info)
1710
{
1711 1712
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1713
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1714 1715

	/*
1716 1717
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1718 1719 1720
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1721
	 */
1722
	if (ctx->task && cpuctx->task_ctx != ctx)
1723
		return -EINVAL;
1724

1725
	raw_spin_lock(&ctx->lock);
1726 1727

	/*
1728
	 * If the event is on, turn it off.
1729 1730
	 * If it is in error state, leave it in error state.
	 */
1731
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1732
		update_context_time(ctx);
S
Stephane Eranian 已提交
1733
		update_cgrp_time_from_event(event);
1734 1735 1736
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1737
		else
1738 1739
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1740 1741
	}

1742
	raw_spin_unlock(&ctx->lock);
1743 1744

	return 0;
1745 1746 1747
}

/*
1748
 * Disable a event.
1749
 *
1750 1751
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1752
 * remains valid.  This condition is satisifed when called through
1753 1754 1755 1756
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1757
 * is the current context on this CPU and preemption is disabled,
1758
 * hence we can't get into perf_event_task_sched_out for this context.
1759
 */
P
Peter Zijlstra 已提交
1760
static void _perf_event_disable(struct perf_event *event)
1761
{
1762
	struct perf_event_context *ctx = event->ctx;
1763 1764 1765 1766
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1767
		 * Disable the event on the cpu that it's on
1768
		 */
1769
		cpu_function_call(event->cpu, __perf_event_disable, event);
1770 1771 1772
		return;
	}

P
Peter Zijlstra 已提交
1773
retry:
1774 1775
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1776

1777
	raw_spin_lock_irq(&ctx->lock);
1778
	/*
1779
	 * If the event is still active, we need to retry the cross-call.
1780
	 */
1781
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1782
		raw_spin_unlock_irq(&ctx->lock);
1783 1784 1785 1786 1787
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1788 1789 1790 1791 1792 1793 1794
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1795 1796 1797
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1798
	}
1799
	raw_spin_unlock_irq(&ctx->lock);
1800
}
P
Peter Zijlstra 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1814
EXPORT_SYMBOL_GPL(perf_event_disable);
1815

S
Stephane Eranian 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1851 1852 1853
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1854
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1855

1856
static int
1857
event_sched_in(struct perf_event *event,
1858
		 struct perf_cpu_context *cpuctx,
1859
		 struct perf_event_context *ctx)
1860
{
1861
	u64 tstamp = perf_event_time(event);
1862
	int ret = 0;
1863

1864 1865
	lockdep_assert_held(&ctx->lock);

1866
	if (event->state <= PERF_EVENT_STATE_OFF)
1867 1868
		return 0;

1869
	event->state = PERF_EVENT_STATE_ACTIVE;
1870
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1882 1883 1884 1885 1886
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1887 1888
	perf_pmu_disable(event->pmu);

1889 1890 1891 1892
	event->tstamp_running += tstamp - event->tstamp_stopped;

	perf_set_shadow_time(event, ctx, tstamp);

1893 1894
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1895
	if (event->pmu->add(event, PERF_EF_START)) {
1896 1897
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1898 1899
		ret = -EAGAIN;
		goto out;
1900 1901
	}

1902
	if (!is_software_event(event))
1903
		cpuctx->active_oncpu++;
1904 1905
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1906 1907
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1908

1909
	if (event->attr.exclusive)
1910 1911
		cpuctx->exclusive = 1;

1912 1913 1914
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1915 1916 1917 1918
out:
	perf_pmu_enable(event->pmu);

	return ret;
1919 1920
}

1921
static int
1922
group_sched_in(struct perf_event *group_event,
1923
	       struct perf_cpu_context *cpuctx,
1924
	       struct perf_event_context *ctx)
1925
{
1926
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1927
	struct pmu *pmu = ctx->pmu;
1928 1929
	u64 now = ctx->time;
	bool simulate = false;
1930

1931
	if (group_event->state == PERF_EVENT_STATE_OFF)
1932 1933
		return 0;

P
Peter Zijlstra 已提交
1934
	pmu->start_txn(pmu);
1935

1936
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1937
		pmu->cancel_txn(pmu);
1938
		perf_cpu_hrtimer_restart(cpuctx);
1939
		return -EAGAIN;
1940
	}
1941 1942 1943 1944

	/*
	 * Schedule in siblings as one group (if any):
	 */
1945
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1946
		if (event_sched_in(event, cpuctx, ctx)) {
1947
			partial_group = event;
1948 1949 1950 1951
			goto group_error;
		}
	}

1952
	if (!pmu->commit_txn(pmu))
1953
		return 0;
1954

1955 1956 1957 1958
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1969
	 */
1970 1971
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1972 1973 1974 1975 1976 1977 1978 1979
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1980
	}
1981
	event_sched_out(group_event, cpuctx, ctx);
1982

P
Peter Zijlstra 已提交
1983
	pmu->cancel_txn(pmu);
1984

1985 1986
	perf_cpu_hrtimer_restart(cpuctx);

1987 1988 1989
	return -EAGAIN;
}

1990
/*
1991
 * Work out whether we can put this event group on the CPU now.
1992
 */
1993
static int group_can_go_on(struct perf_event *event,
1994 1995 1996 1997
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1998
	 * Groups consisting entirely of software events can always go on.
1999
	 */
2000
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2001 2002 2003
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2004
	 * events can go on.
2005 2006 2007 2008 2009
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2010
	 * events on the CPU, it can't go on.
2011
	 */
2012
	if (event->attr.exclusive && cpuctx->active_oncpu)
2013 2014 2015 2016 2017 2018 2019 2020
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2021 2022
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2023
{
2024 2025
	u64 tstamp = perf_event_time(event);

2026
	list_add_event(event, ctx);
2027
	perf_group_attach(event);
2028 2029 2030
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2031 2032
}

2033 2034 2035 2036 2037 2038
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2039

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2052
/*
2053
 * Cross CPU call to install and enable a performance event
2054 2055
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2056
 */
2057
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2058
{
2059 2060
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2061
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2062 2063 2064
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2065
	perf_ctx_lock(cpuctx, task_ctx);
2066
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2067 2068

	/*
2069
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2070
	 */
2071
	if (task_ctx)
2072
		task_ctx_sched_out(task_ctx);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2087 2088
		task = task_ctx->task;
	}
2089

2090
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2091

2092
	update_context_time(ctx);
S
Stephane Eranian 已提交
2093 2094 2095 2096 2097 2098
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2099

2100
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2101

2102
	/*
2103
	 * Schedule everything back in
2104
	 */
2105
	perf_event_sched_in(cpuctx, task_ctx, task);
2106 2107 2108

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2109 2110

	return 0;
T
Thomas Gleixner 已提交
2111 2112 2113
}

/*
2114
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2115
 *
2116 2117
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2118
 *
2119
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2120 2121 2122 2123
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2124 2125
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2126 2127 2128 2129
			int cpu)
{
	struct task_struct *task = ctx->task;

2130 2131
	lockdep_assert_held(&ctx->mutex);

2132
	event->ctx = ctx;
2133 2134
	if (event->cpu != -1)
		event->cpu = cpu;
2135

T
Thomas Gleixner 已提交
2136 2137
	if (!task) {
		/*
2138
		 * Per cpu events are installed via an smp call and
2139
		 * the install is always successful.
T
Thomas Gleixner 已提交
2140
		 */
2141
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2142 2143 2144 2145
		return;
	}

retry:
2146 2147
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2148

2149
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2150
	/*
2151 2152
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2153
	 */
2154
	if (ctx->is_active) {
2155
		raw_spin_unlock_irq(&ctx->lock);
2156 2157 2158 2159 2160
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2161 2162 2163 2164
		goto retry;
	}

	/*
2165 2166
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2167
	 */
2168
	add_event_to_ctx(event, ctx);
2169
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2170 2171
}

2172
/*
2173
 * Put a event into inactive state and update time fields.
2174 2175 2176 2177 2178 2179
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2180
static void __perf_event_mark_enabled(struct perf_event *event)
2181
{
2182
	struct perf_event *sub;
2183
	u64 tstamp = perf_event_time(event);
2184

2185
	event->state = PERF_EVENT_STATE_INACTIVE;
2186
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2187
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2188 2189
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2190
	}
2191 2192
}

2193
/*
2194
 * Cross CPU call to enable a performance event
2195
 */
2196
static int __perf_event_enable(void *info)
2197
{
2198 2199 2200
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2201
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2202
	int err;
2203

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2214
		return -EINVAL;
2215

2216
	raw_spin_lock(&ctx->lock);
2217
	update_context_time(ctx);
2218

2219
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2220
		goto unlock;
S
Stephane Eranian 已提交
2221 2222 2223 2224

	/*
	 * set current task's cgroup time reference point
	 */
2225
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2226

2227
	__perf_event_mark_enabled(event);
2228

S
Stephane Eranian 已提交
2229 2230 2231
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2232
		goto unlock;
S
Stephane Eranian 已提交
2233
	}
2234

2235
	/*
2236
	 * If the event is in a group and isn't the group leader,
2237
	 * then don't put it on unless the group is on.
2238
	 */
2239
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2240
		goto unlock;
2241

2242
	if (!group_can_go_on(event, cpuctx, 1)) {
2243
		err = -EEXIST;
2244
	} else {
2245
		if (event == leader)
2246
			err = group_sched_in(event, cpuctx, ctx);
2247
		else
2248
			err = event_sched_in(event, cpuctx, ctx);
2249
	}
2250 2251 2252

	if (err) {
		/*
2253
		 * If this event can't go on and it's part of a
2254 2255
		 * group, then the whole group has to come off.
		 */
2256
		if (leader != event) {
2257
			group_sched_out(leader, cpuctx, ctx);
2258 2259
			perf_cpu_hrtimer_restart(cpuctx);
		}
2260
		if (leader->attr.pinned) {
2261
			update_group_times(leader);
2262
			leader->state = PERF_EVENT_STATE_ERROR;
2263
		}
2264 2265
	}

P
Peter Zijlstra 已提交
2266
unlock:
2267
	raw_spin_unlock(&ctx->lock);
2268 2269

	return 0;
2270 2271 2272
}

/*
2273
 * Enable a event.
2274
 *
2275 2276
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2277
 * remains valid.  This condition is satisfied when called through
2278 2279
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2280
 */
P
Peter Zijlstra 已提交
2281
static void _perf_event_enable(struct perf_event *event)
2282
{
2283
	struct perf_event_context *ctx = event->ctx;
2284 2285 2286 2287
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2288
		 * Enable the event on the cpu that it's on
2289
		 */
2290
		cpu_function_call(event->cpu, __perf_event_enable, event);
2291 2292 2293
		return;
	}

2294
	raw_spin_lock_irq(&ctx->lock);
2295
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2296 2297 2298
		goto out;

	/*
2299 2300
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2301 2302 2303 2304
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2305 2306
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2307

P
Peter Zijlstra 已提交
2308
retry:
2309
	if (!ctx->is_active) {
2310
		__perf_event_mark_enabled(event);
2311 2312 2313
		goto out;
	}

2314
	raw_spin_unlock_irq(&ctx->lock);
2315 2316 2317

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2318

2319
	raw_spin_lock_irq(&ctx->lock);
2320 2321

	/*
2322
	 * If the context is active and the event is still off,
2323 2324
	 * we need to retry the cross-call.
	 */
2325 2326 2327 2328 2329 2330
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2331
		goto retry;
2332
	}
2333

P
Peter Zijlstra 已提交
2334
out:
2335
	raw_spin_unlock_irq(&ctx->lock);
2336
}
P
Peter Zijlstra 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2349
EXPORT_SYMBOL_GPL(perf_event_enable);
2350

P
Peter Zijlstra 已提交
2351
static int _perf_event_refresh(struct perf_event *event, int refresh)
2352
{
2353
	/*
2354
	 * not supported on inherited events
2355
	 */
2356
	if (event->attr.inherit || !is_sampling_event(event))
2357 2358
		return -EINVAL;

2359
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2360
	_perf_event_enable(event);
2361 2362

	return 0;
2363
}
P
Peter Zijlstra 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2379
EXPORT_SYMBOL_GPL(perf_event_refresh);
2380

2381 2382 2383
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2384
{
2385
	struct perf_event *event;
2386
	int is_active = ctx->is_active;
2387

2388
	ctx->is_active &= ~event_type;
2389
	if (likely(!ctx->nr_events))
2390 2391
		return;

2392
	update_context_time(ctx);
S
Stephane Eranian 已提交
2393
	update_cgrp_time_from_cpuctx(cpuctx);
2394
	if (!ctx->nr_active)
2395
		return;
2396

P
Peter Zijlstra 已提交
2397
	perf_pmu_disable(ctx->pmu);
2398
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2399 2400
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2401
	}
2402

2403
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2404
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2405
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2406
	}
P
Peter Zijlstra 已提交
2407
	perf_pmu_enable(ctx->pmu);
2408 2409
}

2410
/*
2411 2412 2413 2414 2415 2416
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2417
 */
2418 2419
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2420
{
2421 2422 2423
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2446 2447
}

2448 2449
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2450 2451 2452
{
	u64 value;

2453
	if (!event->attr.inherit_stat)
2454 2455 2456
		return;

	/*
2457
	 * Update the event value, we cannot use perf_event_read()
2458 2459
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2460
	 * we know the event must be on the current CPU, therefore we
2461 2462
	 * don't need to use it.
	 */
2463 2464
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2465 2466
		event->pmu->read(event);
		/* fall-through */
2467

2468 2469
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2470 2471 2472 2473 2474 2475 2476
		break;

	default:
		break;
	}

	/*
2477
	 * In order to keep per-task stats reliable we need to flip the event
2478 2479
	 * values when we flip the contexts.
	 */
2480 2481 2482
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2483

2484 2485
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2486

2487
	/*
2488
	 * Since we swizzled the values, update the user visible data too.
2489
	 */
2490 2491
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2492 2493
}

2494 2495
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2496
{
2497
	struct perf_event *event, *next_event;
2498 2499 2500 2501

	if (!ctx->nr_stat)
		return;

2502 2503
	update_context_time(ctx);

2504 2505
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2506

2507 2508
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2509

2510 2511
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2512

2513
		__perf_event_sync_stat(event, next_event);
2514

2515 2516
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2517 2518 2519
	}
}

2520 2521
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2522
{
P
Peter Zijlstra 已提交
2523
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2524
	struct perf_event_context *next_ctx;
2525
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2526
	struct perf_cpu_context *cpuctx;
2527
	int do_switch = 1;
T
Thomas Gleixner 已提交
2528

P
Peter Zijlstra 已提交
2529 2530
	if (likely(!ctx))
		return;
2531

P
Peter Zijlstra 已提交
2532 2533
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2534 2535
		return;

2536
	rcu_read_lock();
P
Peter Zijlstra 已提交
2537
	next_ctx = next->perf_event_ctxp[ctxn];
2538 2539 2540 2541 2542 2543 2544
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2545
	if (!parent && !next_parent)
2546 2547 2548
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2549 2550 2551 2552 2553 2554 2555 2556 2557
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2558 2559
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2560
		if (context_equiv(ctx, next_ctx)) {
2561 2562
			/*
			 * XXX do we need a memory barrier of sorts
2563
			 * wrt to rcu_dereference() of perf_event_ctxp
2564
			 */
P
Peter Zijlstra 已提交
2565 2566
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2567 2568
			ctx->task = next;
			next_ctx->task = task;
2569 2570 2571

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2572
			do_switch = 0;
2573

2574
			perf_event_sync_stat(ctx, next_ctx);
2575
		}
2576 2577
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2578
	}
2579
unlock:
2580
	rcu_read_unlock();
2581

2582
	if (do_switch) {
2583
		raw_spin_lock(&ctx->lock);
2584
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2585
		cpuctx->task_ctx = NULL;
2586
		raw_spin_unlock(&ctx->lock);
2587
	}
T
Thomas Gleixner 已提交
2588 2589
}

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2654 2655
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2656 2657 2658
{
	int ctxn;

2659 2660 2661
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

P
Peter Zijlstra 已提交
2662 2663
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2664 2665 2666 2667 2668 2669

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2670
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2671
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2672 2673
}

2674
static void task_ctx_sched_out(struct perf_event_context *ctx)
2675
{
P
Peter Zijlstra 已提交
2676
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2677

2678 2679
	if (!cpuctx->task_ctx)
		return;
2680 2681 2682 2683

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2684
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2685 2686 2687
	cpuctx->task_ctx = NULL;
}

2688 2689 2690 2691 2692 2693 2694
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2695 2696
}

2697
static void
2698
ctx_pinned_sched_in(struct perf_event_context *ctx,
2699
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2700
{
2701
	struct perf_event *event;
T
Thomas Gleixner 已提交
2702

2703 2704
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2705
			continue;
2706
		if (!event_filter_match(event))
2707 2708
			continue;

S
Stephane Eranian 已提交
2709 2710 2711 2712
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2713
		if (group_can_go_on(event, cpuctx, 1))
2714
			group_sched_in(event, cpuctx, ctx);
2715 2716 2717 2718 2719

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2720 2721 2722
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2723
		}
2724
	}
2725 2726 2727 2728
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2729
		      struct perf_cpu_context *cpuctx)
2730 2731 2732
{
	struct perf_event *event;
	int can_add_hw = 1;
2733

2734 2735 2736
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2737
			continue;
2738 2739
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2740
		 * of events:
2741
		 */
2742
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2743 2744
			continue;

S
Stephane Eranian 已提交
2745 2746 2747 2748
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2749
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2750
			if (group_sched_in(event, cpuctx, ctx))
2751
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2752
		}
T
Thomas Gleixner 已提交
2753
	}
2754 2755 2756 2757 2758
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2759 2760
	     enum event_type_t event_type,
	     struct task_struct *task)
2761
{
S
Stephane Eranian 已提交
2762
	u64 now;
2763
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2764

2765
	ctx->is_active |= event_type;
2766
	if (likely(!ctx->nr_events))
2767
		return;
2768

S
Stephane Eranian 已提交
2769 2770
	now = perf_clock();
	ctx->timestamp = now;
2771
	perf_cgroup_set_timestamp(task, ctx);
2772 2773 2774 2775
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2776
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2777
		ctx_pinned_sched_in(ctx, cpuctx);
2778 2779

	/* Then walk through the lower prio flexible groups */
2780
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2781
		ctx_flexible_sched_in(ctx, cpuctx);
2782 2783
}

2784
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2785 2786
			     enum event_type_t event_type,
			     struct task_struct *task)
2787 2788 2789
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2790
	ctx_sched_in(ctx, cpuctx, event_type, task);
2791 2792
}

S
Stephane Eranian 已提交
2793 2794
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2795
{
P
Peter Zijlstra 已提交
2796
	struct perf_cpu_context *cpuctx;
2797

P
Peter Zijlstra 已提交
2798
	cpuctx = __get_cpu_context(ctx);
2799 2800 2801
	if (cpuctx->task_ctx == ctx)
		return;

2802
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2803
	perf_pmu_disable(ctx->pmu);
2804 2805 2806 2807 2808 2809 2810
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2811 2812
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2813

2814 2815
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2816 2817
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2818 2819
}

P
Peter Zijlstra 已提交
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2831 2832
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2833 2834 2835 2836 2837 2838 2839 2840 2841
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2842
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2843
	}
S
Stephane Eranian 已提交
2844 2845 2846 2847 2848
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2849
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2850
		perf_cgroup_sched_in(prev, task);
2851

2852 2853
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2854 2855
}

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2883
#define REDUCE_FLS(a, b)		\
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2923 2924 2925
	if (!divisor)
		return dividend;

2926 2927 2928
	return div64_u64(dividend, divisor);
}

2929 2930 2931
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2932
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2933
{
2934
	struct hw_perf_event *hwc = &event->hw;
2935
	s64 period, sample_period;
2936 2937
	s64 delta;

2938
	period = perf_calculate_period(event, nsec, count);
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2949

2950
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2951 2952 2953
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2954
		local64_set(&hwc->period_left, 0);
2955 2956 2957

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2958
	}
2959 2960
}

2961 2962 2963 2964 2965 2966 2967
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2968
{
2969 2970
	struct perf_event *event;
	struct hw_perf_event *hwc;
2971
	u64 now, period = TICK_NSEC;
2972
	s64 delta;
2973

2974 2975 2976 2977 2978 2979
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2980 2981
		return;

2982
	raw_spin_lock(&ctx->lock);
2983
	perf_pmu_disable(ctx->pmu);
2984

2985
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2986
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2987 2988
			continue;

2989
		if (!event_filter_match(event))
2990 2991
			continue;

2992 2993
		perf_pmu_disable(event->pmu);

2994
		hwc = &event->hw;
2995

2996
		if (hwc->interrupts == MAX_INTERRUPTS) {
2997
			hwc->interrupts = 0;
2998
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2999
			event->pmu->start(event, 0);
3000 3001
		}

3002
		if (!event->attr.freq || !event->attr.sample_freq)
3003
			goto next;
3004

3005 3006 3007 3008 3009
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3010
		now = local64_read(&event->count);
3011 3012
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3013

3014 3015 3016
		/*
		 * restart the event
		 * reload only if value has changed
3017 3018 3019
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3020
		 */
3021
		if (delta > 0)
3022
			perf_adjust_period(event, period, delta, false);
3023 3024

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3025 3026
	next:
		perf_pmu_enable(event->pmu);
3027
	}
3028

3029
	perf_pmu_enable(ctx->pmu);
3030
	raw_spin_unlock(&ctx->lock);
3031 3032
}

3033
/*
3034
 * Round-robin a context's events:
3035
 */
3036
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3037
{
3038 3039 3040 3041 3042 3043
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3044 3045
}

3046
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3047
{
P
Peter Zijlstra 已提交
3048
	struct perf_event_context *ctx = NULL;
3049
	int rotate = 0;
3050

3051 3052 3053 3054
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3055

P
Peter Zijlstra 已提交
3056
	ctx = cpuctx->task_ctx;
3057 3058 3059 3060
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3061

3062
	if (!rotate)
3063 3064
		goto done;

3065
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3066
	perf_pmu_disable(cpuctx->ctx.pmu);
3067

3068 3069 3070
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3071

3072 3073 3074
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3075

3076
	perf_event_sched_in(cpuctx, ctx, current);
3077

3078 3079
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3080
done:
3081 3082

	return rotate;
3083 3084
}

3085 3086 3087
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3088
	if (atomic_read(&nr_freq_events) ||
3089
	    __this_cpu_read(perf_throttled_count))
3090
		return false;
3091 3092
	else
		return true;
3093 3094 3095
}
#endif

3096 3097
void perf_event_task_tick(void)
{
3098 3099
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3100
	int throttled;
3101

3102 3103
	WARN_ON(!irqs_disabled());

3104 3105 3106
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3107
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3108
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3109 3110
}

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3121
	__perf_event_mark_enabled(event);
3122 3123 3124 3125

	return 1;
}

3126
/*
3127
 * Enable all of a task's events that have been marked enable-on-exec.
3128 3129
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3130
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3131
{
3132
	struct perf_event_context *clone_ctx = NULL;
3133
	struct perf_event *event;
3134 3135
	unsigned long flags;
	int enabled = 0;
3136
	int ret;
3137 3138

	local_irq_save(flags);
3139
	if (!ctx || !ctx->nr_events)
3140 3141
		goto out;

3142 3143 3144 3145 3146 3147 3148
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3149
	perf_cgroup_sched_out(current, NULL);
3150

3151
	raw_spin_lock(&ctx->lock);
3152
	task_ctx_sched_out(ctx);
3153

3154
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3155 3156 3157
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3158 3159 3160
	}

	/*
3161
	 * Unclone this context if we enabled any event.
3162
	 */
3163
	if (enabled)
3164
		clone_ctx = unclone_ctx(ctx);
3165

3166
	raw_spin_unlock(&ctx->lock);
3167

3168 3169 3170
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3171
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3172
out:
3173
	local_irq_restore(flags);
3174 3175 3176

	if (clone_ctx)
		put_ctx(clone_ctx);
3177 3178
}

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3195
/*
3196
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3197
 */
3198
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3199
{
3200 3201
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3202
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3203

3204 3205 3206 3207
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3208 3209
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3210 3211 3212 3213
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3214
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3215
	if (ctx->is_active) {
3216
		update_context_time(ctx);
S
Stephane Eranian 已提交
3217 3218
		update_cgrp_time_from_event(event);
	}
3219
	update_event_times(event);
3220 3221
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3222
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3223 3224
}

P
Peter Zijlstra 已提交
3225 3226
static inline u64 perf_event_count(struct perf_event *event)
{
3227 3228 3229 3230
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3231 3232
}

3233
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3234 3235
{
	/*
3236 3237
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3238
	 */
3239 3240 3241 3242
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3243 3244 3245
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3246
		raw_spin_lock_irqsave(&ctx->lock, flags);
3247 3248 3249 3250 3251
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3252
		if (ctx->is_active) {
3253
			update_context_time(ctx);
S
Stephane Eranian 已提交
3254 3255
			update_cgrp_time_from_event(event);
		}
3256
		update_event_times(event);
3257
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3258 3259
	}

P
Peter Zijlstra 已提交
3260
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3261 3262
}

3263
/*
3264
 * Initialize the perf_event context in a task_struct:
3265
 */
3266
static void __perf_event_init_context(struct perf_event_context *ctx)
3267
{
3268
	raw_spin_lock_init(&ctx->lock);
3269
	mutex_init(&ctx->mutex);
3270
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3271 3272
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3273 3274
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3275
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3291
	}
3292 3293 3294
	ctx->pmu = pmu;

	return ctx;
3295 3296
}

3297 3298 3299 3300 3301
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3302 3303

	rcu_read_lock();
3304
	if (!vpid)
T
Thomas Gleixner 已提交
3305 3306
		task = current;
	else
3307
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3308 3309 3310 3311 3312 3313 3314 3315
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3316 3317 3318 3319
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3320 3321 3322 3323 3324 3325 3326
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3327 3328 3329
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3330
static struct perf_event_context *
3331 3332
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3333
{
3334
	struct perf_event_context *ctx, *clone_ctx = NULL;
3335
	struct perf_cpu_context *cpuctx;
3336
	void *task_ctx_data = NULL;
3337
	unsigned long flags;
P
Peter Zijlstra 已提交
3338
	int ctxn, err;
3339
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3340

3341
	if (!task) {
3342
		/* Must be root to operate on a CPU event: */
3343
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3344 3345 3346
			return ERR_PTR(-EACCES);

		/*
3347
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3348 3349 3350
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3351
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3352 3353
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3354
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3355
		ctx = &cpuctx->ctx;
3356
		get_ctx(ctx);
3357
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3358 3359 3360 3361

		return ctx;
	}

P
Peter Zijlstra 已提交
3362 3363 3364 3365 3366
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3367 3368 3369 3370 3371 3372 3373 3374
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3375
retry:
P
Peter Zijlstra 已提交
3376
	ctx = perf_lock_task_context(task, ctxn, &flags);
3377
	if (ctx) {
3378
		clone_ctx = unclone_ctx(ctx);
3379
		++ctx->pin_count;
3380 3381 3382 3383 3384

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3385
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3386 3387 3388

		if (clone_ctx)
			put_ctx(clone_ctx);
3389
	} else {
3390
		ctx = alloc_perf_context(pmu, task);
3391 3392 3393
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3394

3395 3396 3397 3398 3399
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3410
		else {
3411
			get_ctx(ctx);
3412
			++ctx->pin_count;
3413
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3414
		}
3415 3416 3417
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3418
			put_ctx(ctx);
3419 3420 3421 3422

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3423 3424 3425
		}
	}

3426
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3427
	return ctx;
3428

P
Peter Zijlstra 已提交
3429
errout:
3430
	kfree(task_ctx_data);
3431
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3432 3433
}

L
Li Zefan 已提交
3434
static void perf_event_free_filter(struct perf_event *event);
3435
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3436

3437
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3438
{
3439
	struct perf_event *event;
P
Peter Zijlstra 已提交
3440

3441 3442 3443
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3444
	perf_event_free_filter(event);
3445
	kfree(event);
P
Peter Zijlstra 已提交
3446 3447
}

3448 3449
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3450

3451
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3452
{
3453 3454 3455 3456 3457 3458
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3459

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3473 3474
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3475 3476 3477 3478 3479 3480 3481
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3482

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3568 3569
static void __free_event(struct perf_event *event)
{
3570
	if (!event->parent) {
3571 3572
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3573
	}
3574

3575 3576
	perf_event_free_bpf_prog(event);

3577 3578 3579 3580 3581 3582
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3583 3584
	if (event->pmu) {
		exclusive_event_destroy(event);
3585
		module_put(event->pmu->module);
3586
	}
3587

3588 3589
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3590 3591

static void _free_event(struct perf_event *event)
3592
{
3593
	irq_work_sync(&event->pending);
3594

3595
	unaccount_event(event);
3596

3597
	if (event->rb) {
3598 3599 3600 3601 3602 3603 3604
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3605
		ring_buffer_attach(event, NULL);
3606
		mutex_unlock(&event->mmap_mutex);
3607 3608
	}

S
Stephane Eranian 已提交
3609 3610 3611
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3612
	__free_event(event);
3613 3614
}

P
Peter Zijlstra 已提交
3615 3616 3617 3618 3619
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3620
{
P
Peter Zijlstra 已提交
3621 3622 3623 3624 3625 3626
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3627

P
Peter Zijlstra 已提交
3628
	_free_event(event);
T
Thomas Gleixner 已提交
3629 3630
}

3631
/*
3632
 * Remove user event from the owner task.
3633
 */
3634
static void perf_remove_from_owner(struct perf_event *event)
3635
{
P
Peter Zijlstra 已提交
3636
	struct task_struct *owner;
3637

P
Peter Zijlstra 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3679 3680 3681 3682
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3683
	struct perf_event_context *ctx;
3684 3685 3686 3687 3688 3689

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3690

P
Peter Zijlstra 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3703 3704
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3705
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3706
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3707 3708

	_free_event(event);
3709 3710
}

P
Peter Zijlstra 已提交
3711 3712 3713 3714 3715 3716 3717
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3718 3719 3720
/*
 * Called when the last reference to the file is gone.
 */
3721 3722 3723 3724
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3725 3726
}

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3763
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3764
{
3765
	struct perf_event *child;
3766 3767
	u64 total = 0;

3768 3769 3770
	*enabled = 0;
	*running = 0;

3771
	mutex_lock(&event->child_mutex);
3772
	total += perf_event_read(event);
3773 3774 3775 3776 3777 3778
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3779
		total += perf_event_read(child);
3780 3781 3782
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3783
	mutex_unlock(&event->child_mutex);
3784 3785 3786

	return total;
}
3787
EXPORT_SYMBOL_GPL(perf_event_read_value);
3788

3789
static int perf_event_read_group(struct perf_event *event,
3790 3791
				   u64 read_format, char __user *buf)
{
3792
	struct perf_event *leader = event->group_leader, *sub;
3793
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3794
	int n = 0, size = 0, ret;
3795
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3796 3797 3798
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3799

3800
	count = perf_event_read_value(leader, &enabled, &running);
3801 3802

	values[n++] = 1 + leader->nr_siblings;
3803 3804 3805 3806
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3807 3808 3809
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3810 3811 3812 3813

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3814
		return -EFAULT;
3815

3816
	ret = size;
3817

3818
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3819
		n = 0;
3820

3821
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3822 3823 3824 3825 3826
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3827
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3828
			return -EFAULT;
3829
		}
3830 3831

		ret += size;
3832 3833
	}

3834
	return ret;
3835 3836
}

3837
static int perf_event_read_one(struct perf_event *event,
3838 3839
				 u64 read_format, char __user *buf)
{
3840
	u64 enabled, running;
3841 3842 3843
	u64 values[4];
	int n = 0;

3844 3845 3846 3847 3848
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3849
	if (read_format & PERF_FORMAT_ID)
3850
		values[n++] = primary_event_id(event);
3851 3852 3853 3854 3855 3856 3857

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3871
/*
3872
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3873 3874
 */
static ssize_t
3875
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3876
{
3877
	u64 read_format = event->attr.read_format;
3878
	int ret;
T
Thomas Gleixner 已提交
3879

3880
	/*
3881
	 * Return end-of-file for a read on a event that is in
3882 3883 3884
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3885
	if (event->state == PERF_EVENT_STATE_ERROR)
3886 3887
		return 0;

3888
	if (count < event->read_size)
3889 3890
		return -ENOSPC;

3891
	WARN_ON_ONCE(event->ctx->parent_ctx);
3892
	if (read_format & PERF_FORMAT_GROUP)
3893
		ret = perf_event_read_group(event, read_format, buf);
3894
	else
3895
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3896

3897
	return ret;
T
Thomas Gleixner 已提交
3898 3899 3900 3901 3902
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3903
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3904 3905
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3906

P
Peter Zijlstra 已提交
3907 3908 3909 3910 3911
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3912 3913 3914 3915
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3916
	struct perf_event *event = file->private_data;
3917
	struct ring_buffer *rb;
3918
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3919

3920
	poll_wait(file, &event->waitq, wait);
3921

3922
	if (is_event_hup(event))
3923
		return events;
P
Peter Zijlstra 已提交
3924

3925
	/*
3926 3927
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3928 3929
	 */
	mutex_lock(&event->mmap_mutex);
3930 3931
	rb = event->rb;
	if (rb)
3932
		events = atomic_xchg(&rb->poll, 0);
3933
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3934 3935 3936
	return events;
}

P
Peter Zijlstra 已提交
3937
static void _perf_event_reset(struct perf_event *event)
3938
{
3939
	(void)perf_event_read(event);
3940
	local64_set(&event->count, 0);
3941
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3942 3943
}

3944
/*
3945 3946 3947 3948
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3949
 */
3950 3951
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3952
{
3953
	struct perf_event *child;
P
Peter Zijlstra 已提交
3954

3955
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3956

3957 3958 3959
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3960
		func(child);
3961
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3962 3963
}

3964 3965
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3966
{
3967 3968
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3969

P
Peter Zijlstra 已提交
3970 3971
	lockdep_assert_held(&ctx->mutex);

3972
	event = event->group_leader;
3973

3974 3975
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3976
		perf_event_for_each_child(sibling, func);
3977 3978
}

3979
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3980
{
3981
	struct perf_event_context *ctx = event->ctx;
3982
	int ret = 0, active;
3983 3984
	u64 value;

3985
	if (!is_sampling_event(event))
3986 3987
		return -EINVAL;

3988
	if (copy_from_user(&value, arg, sizeof(value)))
3989 3990 3991 3992 3993
		return -EFAULT;

	if (!value)
		return -EINVAL;

3994
	raw_spin_lock_irq(&ctx->lock);
3995 3996
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3997 3998 3999 4000
			ret = -EINVAL;
			goto unlock;
		}

4001
		event->attr.sample_freq = value;
4002
	} else {
4003 4004
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4005
	}
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

4020
unlock:
4021
	raw_spin_unlock_irq(&ctx->lock);
4022 4023 4024 4025

	return ret;
}

4026 4027
static const struct file_operations perf_fops;

4028
static inline int perf_fget_light(int fd, struct fd *p)
4029
{
4030 4031 4032
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4033

4034 4035 4036
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4037
	}
4038 4039
	*p = f;
	return 0;
4040 4041 4042 4043
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4044
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4045
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4046

P
Peter Zijlstra 已提交
4047
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4048
{
4049
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4050
	u32 flags = arg;
4051 4052

	switch (cmd) {
4053
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4054
		func = _perf_event_enable;
4055
		break;
4056
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4057
		func = _perf_event_disable;
4058
		break;
4059
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4060
		func = _perf_event_reset;
4061
		break;
P
Peter Zijlstra 已提交
4062

4063
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4064
		return _perf_event_refresh(event, arg);
4065

4066 4067
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4068

4069 4070 4071 4072 4073 4074 4075 4076 4077
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4078
	case PERF_EVENT_IOC_SET_OUTPUT:
4079 4080 4081
	{
		int ret;
		if (arg != -1) {
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4092 4093 4094
		}
		return ret;
	}
4095

L
Li Zefan 已提交
4096 4097 4098
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4099 4100 4101
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4102
	default:
P
Peter Zijlstra 已提交
4103
		return -ENOTTY;
4104
	}
P
Peter Zijlstra 已提交
4105 4106

	if (flags & PERF_IOC_FLAG_GROUP)
4107
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4108
	else
4109
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4110 4111

	return 0;
4112 4113
}

P
Peter Zijlstra 已提交
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4147
int perf_event_task_enable(void)
4148
{
P
Peter Zijlstra 已提交
4149
	struct perf_event_context *ctx;
4150
	struct perf_event *event;
4151

4152
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4153 4154 4155 4156 4157
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4158
	mutex_unlock(&current->perf_event_mutex);
4159 4160 4161 4162

	return 0;
}

4163
int perf_event_task_disable(void)
4164
{
P
Peter Zijlstra 已提交
4165
	struct perf_event_context *ctx;
4166
	struct perf_event *event;
4167

4168
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4169 4170 4171 4172 4173
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4174
	mutex_unlock(&current->perf_event_mutex);
4175 4176 4177 4178

	return 0;
}

4179
static int perf_event_index(struct perf_event *event)
4180
{
P
Peter Zijlstra 已提交
4181 4182 4183
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4184
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4185 4186
		return 0;

4187
	return event->pmu->event_idx(event);
4188 4189
}

4190
static void calc_timer_values(struct perf_event *event,
4191
				u64 *now,
4192 4193
				u64 *enabled,
				u64 *running)
4194
{
4195
	u64 ctx_time;
4196

4197 4198
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4199 4200 4201 4202
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4218 4219
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4220 4221 4222 4223 4224

unlock:
	rcu_read_unlock();
}

4225 4226
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4227 4228 4229
{
}

4230 4231 4232 4233 4234
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4235
void perf_event_update_userpage(struct perf_event *event)
4236
{
4237
	struct perf_event_mmap_page *userpg;
4238
	struct ring_buffer *rb;
4239
	u64 enabled, running, now;
4240 4241

	rcu_read_lock();
4242 4243 4244 4245
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4246 4247 4248 4249 4250 4251 4252 4253 4254
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4255
	calc_timer_values(event, &now, &enabled, &running);
4256

4257
	userpg = rb->user_page;
4258 4259 4260 4261 4262
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4263
	++userpg->lock;
4264
	barrier();
4265
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4266
	userpg->offset = perf_event_count(event);
4267
	if (userpg->index)
4268
		userpg->offset -= local64_read(&event->hw.prev_count);
4269

4270
	userpg->time_enabled = enabled +
4271
			atomic64_read(&event->child_total_time_enabled);
4272

4273
	userpg->time_running = running +
4274
			atomic64_read(&event->child_total_time_running);
4275

4276
	arch_perf_update_userpage(event, userpg, now);
4277

4278
	barrier();
4279
	++userpg->lock;
4280
	preempt_enable();
4281
unlock:
4282
	rcu_read_unlock();
4283 4284
}

4285 4286 4287
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4288
	struct ring_buffer *rb;
4289 4290 4291 4292 4293 4294 4295 4296 4297
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4298 4299
	rb = rcu_dereference(event->rb);
	if (!rb)
4300 4301 4302 4303 4304
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4305
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4320 4321 4322
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4323
	struct ring_buffer *old_rb = NULL;
4324 4325
	unsigned long flags;

4326 4327 4328 4329 4330 4331
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4332

4333 4334 4335
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4336

4337 4338 4339 4340
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4341

4342 4343 4344 4345
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4346

4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4364 4365 4366 4367 4368 4369 4370 4371
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4372 4373 4374 4375
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4376 4377 4378
	rcu_read_unlock();
}

4379
static void rb_free_rcu(struct rcu_head *rcu_head)
4380
{
4381
	struct ring_buffer *rb;
4382

4383 4384
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4385 4386
}

4387
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4388
{
4389
	struct ring_buffer *rb;
4390

4391
	rcu_read_lock();
4392 4393 4394 4395
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4396 4397 4398
	}
	rcu_read_unlock();

4399
	return rb;
4400 4401
}

4402
void ring_buffer_put(struct ring_buffer *rb)
4403
{
4404
	if (!atomic_dec_and_test(&rb->refcount))
4405
		return;
4406

4407
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4408

4409
	call_rcu(&rb->rcu_head, rb_free_rcu);
4410 4411 4412 4413
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4414
	struct perf_event *event = vma->vm_file->private_data;
4415

4416
	atomic_inc(&event->mmap_count);
4417
	atomic_inc(&event->rb->mmap_count);
4418

4419 4420 4421
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4422 4423
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4424 4425
}

4426 4427 4428 4429 4430 4431 4432 4433
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4434 4435
static void perf_mmap_close(struct vm_area_struct *vma)
{
4436
	struct perf_event *event = vma->vm_file->private_data;
4437

4438
	struct ring_buffer *rb = ring_buffer_get(event);
4439 4440 4441
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4442

4443 4444 4445
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4460 4461 4462
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4463
		goto out_put;
4464

4465
	ring_buffer_attach(event, NULL);
4466 4467 4468
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4469 4470
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4471

4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4488

4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4500 4501 4502
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4503
		mutex_unlock(&event->mmap_mutex);
4504
		put_event(event);
4505

4506 4507 4508 4509 4510
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4511
	}
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4527
out_put:
4528
	ring_buffer_put(rb); /* could be last */
4529 4530
}

4531
static const struct vm_operations_struct perf_mmap_vmops = {
4532
	.open		= perf_mmap_open,
4533
	.close		= perf_mmap_close, /* non mergable */
4534 4535
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4536 4537 4538 4539
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4540
	struct perf_event *event = file->private_data;
4541
	unsigned long user_locked, user_lock_limit;
4542
	struct user_struct *user = current_user();
4543
	unsigned long locked, lock_limit;
4544
	struct ring_buffer *rb = NULL;
4545 4546
	unsigned long vma_size;
	unsigned long nr_pages;
4547
	long user_extra = 0, extra = 0;
4548
	int ret = 0, flags = 0;
4549

4550 4551 4552
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4553
	 * same rb.
4554 4555 4556 4557
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4558
	if (!(vma->vm_flags & VM_SHARED))
4559
		return -EINVAL;
4560 4561

	vma_size = vma->vm_end - vma->vm_start;
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4622

4623
	/*
4624
	 * If we have rb pages ensure they're a power-of-two number, so we
4625 4626
	 * can do bitmasks instead of modulo.
	 */
4627
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4628 4629
		return -EINVAL;

4630
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4631 4632
		return -EINVAL;

4633
	WARN_ON_ONCE(event->ctx->parent_ctx);
4634
again:
4635
	mutex_lock(&event->mmap_mutex);
4636
	if (event->rb) {
4637
		if (event->rb->nr_pages != nr_pages) {
4638
			ret = -EINVAL;
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4652 4653 4654
		goto unlock;
	}

4655
	user_extra = nr_pages + 1;
4656 4657

accounting:
4658
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4659 4660 4661 4662 4663 4664

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4665
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4666

4667 4668
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4669

4670
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4671
	lock_limit >>= PAGE_SHIFT;
4672
	locked = vma->vm_mm->pinned_vm + extra;
4673

4674 4675
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4676 4677 4678
		ret = -EPERM;
		goto unlock;
	}
4679

4680
	WARN_ON(!rb && event->rb);
4681

4682
	if (vma->vm_flags & VM_WRITE)
4683
		flags |= RING_BUFFER_WRITABLE;
4684

4685
	if (!rb) {
4686 4687 4688
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4689

4690 4691 4692 4693
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4694

4695 4696 4697
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4698

4699
		ring_buffer_attach(event, rb);
4700

4701 4702 4703
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4704 4705
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4706 4707 4708
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4709

4710
unlock:
4711 4712 4713 4714
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4715
		atomic_inc(&event->mmap_count);
4716 4717 4718 4719
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4720
	mutex_unlock(&event->mmap_mutex);
4721

4722 4723 4724 4725
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4726
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4727
	vma->vm_ops = &perf_mmap_vmops;
4728

4729 4730 4731
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4732
	return ret;
4733 4734
}

P
Peter Zijlstra 已提交
4735 4736
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4737
	struct inode *inode = file_inode(filp);
4738
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4739 4740 4741
	int retval;

	mutex_lock(&inode->i_mutex);
4742
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4743 4744 4745 4746 4747 4748 4749 4750
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4751
static const struct file_operations perf_fops = {
4752
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4753 4754 4755
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4756
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4757
	.compat_ioctl		= perf_compat_ioctl,
4758
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4759
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4760 4761
};

4762
/*
4763
 * Perf event wakeup
4764 4765 4766 4767 4768
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4769
void perf_event_wakeup(struct perf_event *event)
4770
{
4771
	ring_buffer_wakeup(event);
4772

4773 4774 4775
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4776
	}
4777 4778
}

4779
static void perf_pending_event(struct irq_work *entry)
4780
{
4781 4782
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4783 4784 4785 4786 4787 4788 4789
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4790

4791 4792 4793
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4794 4795
	}

4796 4797 4798
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4799
	}
4800 4801 4802

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4803 4804
}

4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4841
static void perf_sample_regs_user(struct perf_regs *regs_user,
4842 4843
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4844
{
4845 4846
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4847
		regs_user->regs = regs;
4848 4849
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4850 4851 4852
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4853 4854 4855
	}
}

4856 4857 4858 4859 4860 4861 4862 4863
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4959 4960 4961
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
4975
		data->time = perf_event_clock(event);
4976

4977
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4989 4990 4991
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5016 5017 5018

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5019 5020
}

5021 5022 5023
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5024 5025 5026 5027 5028
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5029
static void perf_output_read_one(struct perf_output_handle *handle,
5030 5031
				 struct perf_event *event,
				 u64 enabled, u64 running)
5032
{
5033
	u64 read_format = event->attr.read_format;
5034 5035 5036
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5037
	values[n++] = perf_event_count(event);
5038
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5039
		values[n++] = enabled +
5040
			atomic64_read(&event->child_total_time_enabled);
5041 5042
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5043
		values[n++] = running +
5044
			atomic64_read(&event->child_total_time_running);
5045 5046
	}
	if (read_format & PERF_FORMAT_ID)
5047
		values[n++] = primary_event_id(event);
5048

5049
	__output_copy(handle, values, n * sizeof(u64));
5050 5051 5052
}

/*
5053
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5054 5055
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5056 5057
			    struct perf_event *event,
			    u64 enabled, u64 running)
5058
{
5059 5060
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5061 5062 5063 5064 5065 5066
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5067
		values[n++] = enabled;
5068 5069

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5070
		values[n++] = running;
5071

5072
	if (leader != event)
5073 5074
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5075
	values[n++] = perf_event_count(leader);
5076
	if (read_format & PERF_FORMAT_ID)
5077
		values[n++] = primary_event_id(leader);
5078

5079
	__output_copy(handle, values, n * sizeof(u64));
5080

5081
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5082 5083
		n = 0;

5084 5085
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5086 5087
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5088
		values[n++] = perf_event_count(sub);
5089
		if (read_format & PERF_FORMAT_ID)
5090
			values[n++] = primary_event_id(sub);
5091

5092
		__output_copy(handle, values, n * sizeof(u64));
5093 5094 5095
	}
}

5096 5097 5098
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5099
static void perf_output_read(struct perf_output_handle *handle,
5100
			     struct perf_event *event)
5101
{
5102
	u64 enabled = 0, running = 0, now;
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5114
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5115
		calc_timer_values(event, &now, &enabled, &running);
5116

5117
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5118
		perf_output_read_group(handle, event, enabled, running);
5119
	else
5120
		perf_output_read_one(handle, event, enabled, running);
5121 5122
}

5123 5124 5125
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5126
			struct perf_event *event)
5127 5128 5129 5130 5131
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5132 5133 5134
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5160
		perf_output_read(handle, event);
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5171
			__output_copy(handle, data->callchain, size);
5172 5173 5174 5175 5176 5177 5178 5179 5180
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
5181 5182
			__output_copy(handle, data->raw->data,
					   data->raw->size);
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5194

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5229

5230
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5231 5232 5233
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5234
	}
A
Andi Kleen 已提交
5235 5236 5237

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5238 5239 5240

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5241

A
Andi Kleen 已提交
5242 5243 5244
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5275 5276 5277 5278
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5279
			 struct perf_event *event,
5280
			 struct pt_regs *regs)
5281
{
5282
	u64 sample_type = event->attr.sample_type;
5283

5284
	header->type = PERF_RECORD_SAMPLE;
5285
	header->size = sizeof(*header) + event->header_size;
5286 5287 5288

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5289

5290
	__perf_event_header__init_id(header, data, event);
5291

5292
	if (sample_type & PERF_SAMPLE_IP)
5293 5294
		data->ip = perf_instruction_pointer(regs);

5295
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5296
		int size = 1;
5297

5298
		data->callchain = perf_callchain(event, regs);
5299 5300 5301 5302 5303

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5304 5305
	}

5306
	if (sample_type & PERF_SAMPLE_RAW) {
5307 5308 5309 5310 5311 5312 5313 5314
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5315
		header->size += size;
5316
	}
5317 5318 5319 5320 5321 5322 5323 5324 5325

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5326

5327
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5328 5329
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5330

5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5354
						     data->regs_user.regs);
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5382
}
5383

5384 5385 5386
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5387 5388 5389
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5390

5391 5392 5393
	/* protect the callchain buffers */
	rcu_read_lock();

5394
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5395

5396
	if (perf_output_begin(&handle, event, header.size))
5397
		goto exit;
5398

5399
	perf_output_sample(&handle, &header, data, event);
5400

5401
	perf_output_end(&handle);
5402 5403 5404

exit:
	rcu_read_unlock();
5405 5406
}

5407
/*
5408
 * read event_id
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5419
perf_event_read_event(struct perf_event *event,
5420 5421 5422
			struct task_struct *task)
{
	struct perf_output_handle handle;
5423
	struct perf_sample_data sample;
5424
	struct perf_read_event read_event = {
5425
		.header = {
5426
			.type = PERF_RECORD_READ,
5427
			.misc = 0,
5428
			.size = sizeof(read_event) + event->read_size,
5429
		},
5430 5431
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5432
	};
5433
	int ret;
5434

5435
	perf_event_header__init_id(&read_event.header, &sample, event);
5436
	ret = perf_output_begin(&handle, event, read_event.header.size);
5437 5438 5439
	if (ret)
		return;

5440
	perf_output_put(&handle, read_event);
5441
	perf_output_read(&handle, event);
5442
	perf_event__output_id_sample(event, &handle, &sample);
5443

5444 5445 5446
	perf_output_end(&handle);
}

5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5461
		output(event, data);
5462 5463 5464 5465
	}
}

static void
5466
perf_event_aux(perf_event_aux_output_cb output, void *data,
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5479
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5480 5481 5482 5483 5484 5485 5486
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5487
			perf_event_aux_ctx(ctx, output, data);
5488 5489 5490 5491 5492 5493
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5494
		perf_event_aux_ctx(task_ctx, output, data);
5495 5496 5497 5498 5499
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5500
/*
P
Peter Zijlstra 已提交
5501 5502
 * task tracking -- fork/exit
 *
5503
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5504 5505
 */

P
Peter Zijlstra 已提交
5506
struct perf_task_event {
5507
	struct task_struct		*task;
5508
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5509 5510 5511 5512 5513 5514

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5515 5516
		u32				tid;
		u32				ptid;
5517
		u64				time;
5518
	} event_id;
P
Peter Zijlstra 已提交
5519 5520
};

5521 5522
static int perf_event_task_match(struct perf_event *event)
{
5523 5524 5525
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5526 5527
}

5528
static void perf_event_task_output(struct perf_event *event,
5529
				   void *data)
P
Peter Zijlstra 已提交
5530
{
5531
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5532
	struct perf_output_handle handle;
5533
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5534
	struct task_struct *task = task_event->task;
5535
	int ret, size = task_event->event_id.header.size;
5536

5537 5538 5539
	if (!perf_event_task_match(event))
		return;

5540
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5541

5542
	ret = perf_output_begin(&handle, event,
5543
				task_event->event_id.header.size);
5544
	if (ret)
5545
		goto out;
P
Peter Zijlstra 已提交
5546

5547 5548
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5549

5550 5551
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5552

5553 5554
	task_event->event_id.time = perf_event_clock(event);

5555
	perf_output_put(&handle, task_event->event_id);
5556

5557 5558
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5559
	perf_output_end(&handle);
5560 5561
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5562 5563
}

5564 5565
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5566
			      int new)
P
Peter Zijlstra 已提交
5567
{
P
Peter Zijlstra 已提交
5568
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5569

5570 5571 5572
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5573 5574
		return;

P
Peter Zijlstra 已提交
5575
	task_event = (struct perf_task_event){
5576 5577
		.task	  = task,
		.task_ctx = task_ctx,
5578
		.event_id    = {
P
Peter Zijlstra 已提交
5579
			.header = {
5580
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5581
				.misc = 0,
5582
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5583
			},
5584 5585
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5586 5587
			/* .tid  */
			/* .ptid */
5588
			/* .time */
P
Peter Zijlstra 已提交
5589 5590 5591
		},
	};

5592
	perf_event_aux(perf_event_task_output,
5593 5594
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5595 5596
}

5597
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5598
{
5599
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5600 5601
}

5602 5603 5604 5605 5606
/*
 * comm tracking
 */

struct perf_comm_event {
5607 5608
	struct task_struct	*task;
	char			*comm;
5609 5610 5611 5612 5613 5614 5615
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5616
	} event_id;
5617 5618
};

5619 5620 5621 5622 5623
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5624
static void perf_event_comm_output(struct perf_event *event,
5625
				   void *data)
5626
{
5627
	struct perf_comm_event *comm_event = data;
5628
	struct perf_output_handle handle;
5629
	struct perf_sample_data sample;
5630
	int size = comm_event->event_id.header.size;
5631 5632
	int ret;

5633 5634 5635
	if (!perf_event_comm_match(event))
		return;

5636 5637
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5638
				comm_event->event_id.header.size);
5639 5640

	if (ret)
5641
		goto out;
5642

5643 5644
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5645

5646
	perf_output_put(&handle, comm_event->event_id);
5647
	__output_copy(&handle, comm_event->comm,
5648
				   comm_event->comm_size);
5649 5650 5651

	perf_event__output_id_sample(event, &handle, &sample);

5652
	perf_output_end(&handle);
5653 5654
out:
	comm_event->event_id.header.size = size;
5655 5656
}

5657
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5658
{
5659
	char comm[TASK_COMM_LEN];
5660 5661
	unsigned int size;

5662
	memset(comm, 0, sizeof(comm));
5663
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5664
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5665 5666 5667 5668

	comm_event->comm = comm;
	comm_event->comm_size = size;

5669
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5670

5671
	perf_event_aux(perf_event_comm_output,
5672 5673
		       comm_event,
		       NULL);
5674 5675
}

5676
void perf_event_comm(struct task_struct *task, bool exec)
5677
{
5678 5679
	struct perf_comm_event comm_event;

5680
	if (!atomic_read(&nr_comm_events))
5681
		return;
5682

5683
	comm_event = (struct perf_comm_event){
5684
		.task	= task,
5685 5686
		/* .comm      */
		/* .comm_size */
5687
		.event_id  = {
5688
			.header = {
5689
				.type = PERF_RECORD_COMM,
5690
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5691 5692 5693 5694
				/* .size */
			},
			/* .pid */
			/* .tid */
5695 5696 5697
		},
	};

5698
	perf_event_comm_event(&comm_event);
5699 5700
}

5701 5702 5703 5704 5705
/*
 * mmap tracking
 */

struct perf_mmap_event {
5706 5707 5708 5709
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5710 5711 5712
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5713
	u32			prot, flags;
5714 5715 5716 5717 5718 5719 5720 5721 5722

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5723
	} event_id;
5724 5725
};

5726 5727 5728 5729 5730 5731 5732 5733
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5734
	       (executable && (event->attr.mmap || event->attr.mmap2));
5735 5736
}

5737
static void perf_event_mmap_output(struct perf_event *event,
5738
				   void *data)
5739
{
5740
	struct perf_mmap_event *mmap_event = data;
5741
	struct perf_output_handle handle;
5742
	struct perf_sample_data sample;
5743
	int size = mmap_event->event_id.header.size;
5744
	int ret;
5745

5746 5747 5748
	if (!perf_event_mmap_match(event, data))
		return;

5749 5750 5751 5752 5753
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5754
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5755 5756
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5757 5758
	}

5759 5760
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5761
				mmap_event->event_id.header.size);
5762
	if (ret)
5763
		goto out;
5764

5765 5766
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5767

5768
	perf_output_put(&handle, mmap_event->event_id);
5769 5770 5771 5772 5773 5774

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5775 5776
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5777 5778
	}

5779
	__output_copy(&handle, mmap_event->file_name,
5780
				   mmap_event->file_size);
5781 5782 5783

	perf_event__output_id_sample(event, &handle, &sample);

5784
	perf_output_end(&handle);
5785 5786
out:
	mmap_event->event_id.header.size = size;
5787 5788
}

5789
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5790
{
5791 5792
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5793 5794
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5795
	u32 prot = 0, flags = 0;
5796 5797 5798
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5799
	char *name;
5800

5801
	if (file) {
5802 5803
		struct inode *inode;
		dev_t dev;
5804

5805
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5806
		if (!buf) {
5807 5808
			name = "//enomem";
			goto cpy_name;
5809
		}
5810
		/*
5811
		 * d_path() works from the end of the rb backwards, so we
5812 5813 5814
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5815
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5816
		if (IS_ERR(name)) {
5817 5818
			name = "//toolong";
			goto cpy_name;
5819
		}
5820 5821 5822 5823 5824 5825
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5848
		goto got_name;
5849
	} else {
5850 5851 5852 5853 5854 5855
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5856
		name = (char *)arch_vma_name(vma);
5857 5858
		if (name)
			goto cpy_name;
5859

5860
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5861
				vma->vm_end >= vma->vm_mm->brk) {
5862 5863
			name = "[heap]";
			goto cpy_name;
5864 5865
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5866
				vma->vm_end >= vma->vm_mm->start_stack) {
5867 5868
			name = "[stack]";
			goto cpy_name;
5869 5870
		}

5871 5872
		name = "//anon";
		goto cpy_name;
5873 5874
	}

5875 5876 5877
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5878
got_name:
5879 5880 5881 5882 5883 5884 5885 5886
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5887 5888 5889

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5890 5891 5892 5893
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5894 5895
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5896

5897 5898 5899
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5900
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5901

5902
	perf_event_aux(perf_event_mmap_output,
5903 5904
		       mmap_event,
		       NULL);
5905

5906 5907 5908
	kfree(buf);
}

5909
void perf_event_mmap(struct vm_area_struct *vma)
5910
{
5911 5912
	struct perf_mmap_event mmap_event;

5913
	if (!atomic_read(&nr_mmap_events))
5914 5915 5916
		return;

	mmap_event = (struct perf_mmap_event){
5917
		.vma	= vma,
5918 5919
		/* .file_name */
		/* .file_size */
5920
		.event_id  = {
5921
			.header = {
5922
				.type = PERF_RECORD_MMAP,
5923
				.misc = PERF_RECORD_MISC_USER,
5924 5925 5926 5927
				/* .size */
			},
			/* .pid */
			/* .tid */
5928 5929
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5930
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5931
		},
5932 5933 5934 5935
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5936 5937
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5938 5939
	};

5940
	perf_event_mmap_event(&mmap_event);
5941 5942
}

A
Alexander Shishkin 已提交
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

5977 5978 5979 5980
/*
 * IRQ throttle logging
 */

5981
static void perf_log_throttle(struct perf_event *event, int enable)
5982 5983
{
	struct perf_output_handle handle;
5984
	struct perf_sample_data sample;
5985 5986 5987 5988 5989
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5990
		u64				id;
5991
		u64				stream_id;
5992 5993
	} throttle_event = {
		.header = {
5994
			.type = PERF_RECORD_THROTTLE,
5995 5996 5997
			.misc = 0,
			.size = sizeof(throttle_event),
		},
5998
		.time		= perf_event_clock(event),
5999 6000
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6001 6002
	};

6003
	if (enable)
6004
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6005

6006 6007 6008
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6009
				throttle_event.header.size);
6010 6011 6012 6013
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6014
	perf_event__output_id_sample(event, &handle, &sample);
6015 6016 6017
	perf_output_end(&handle);
}

6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	event->hw.itrace_started = 1;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6056
/*
6057
 * Generic event overflow handling, sampling.
6058 6059
 */

6060
static int __perf_event_overflow(struct perf_event *event,
6061 6062
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6063
{
6064 6065
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6066
	u64 seq;
6067 6068
	int ret = 0;

6069 6070 6071 6072 6073 6074 6075
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6076 6077 6078 6079 6080 6081 6082 6083 6084
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6085 6086
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6087
			tick_nohz_full_kick();
6088 6089
			ret = 1;
		}
6090
	}
6091

6092
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6093
		u64 now = perf_clock();
6094
		s64 delta = now - hwc->freq_time_stamp;
6095

6096
		hwc->freq_time_stamp = now;
6097

6098
		if (delta > 0 && delta < 2*TICK_NSEC)
6099
			perf_adjust_period(event, delta, hwc->last_period, true);
6100 6101
	}

6102 6103
	/*
	 * XXX event_limit might not quite work as expected on inherited
6104
	 * events
6105 6106
	 */

6107 6108
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6109
		ret = 1;
6110
		event->pending_kill = POLL_HUP;
6111 6112
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6113 6114
	}

6115
	if (event->overflow_handler)
6116
		event->overflow_handler(event, data, regs);
6117
	else
6118
		perf_event_output(event, data, regs);
6119

P
Peter Zijlstra 已提交
6120
	if (event->fasync && event->pending_kill) {
6121 6122
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6123 6124
	}

6125
	return ret;
6126 6127
}

6128
int perf_event_overflow(struct perf_event *event,
6129 6130
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6131
{
6132
	return __perf_event_overflow(event, 1, data, regs);
6133 6134
}

6135
/*
6136
 * Generic software event infrastructure
6137 6138
 */

6139 6140 6141 6142 6143 6144 6145
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6146 6147 6148

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6149 6150 6151 6152
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6153
/*
6154 6155
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6156 6157 6158 6159
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6160
u64 perf_swevent_set_period(struct perf_event *event)
6161
{
6162
	struct hw_perf_event *hwc = &event->hw;
6163 6164 6165 6166 6167
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6168 6169

again:
6170
	old = val = local64_read(&hwc->period_left);
6171 6172
	if (val < 0)
		return 0;
6173

6174 6175 6176
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6177
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6178
		goto again;
6179

6180
	return nr;
6181 6182
}

6183
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6184
				    struct perf_sample_data *data,
6185
				    struct pt_regs *regs)
6186
{
6187
	struct hw_perf_event *hwc = &event->hw;
6188
	int throttle = 0;
6189

6190 6191
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6192

6193 6194
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6195

6196
	for (; overflow; overflow--) {
6197
		if (__perf_event_overflow(event, throttle,
6198
					    data, regs)) {
6199 6200 6201 6202 6203 6204
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6205
		throttle = 1;
6206
	}
6207 6208
}

P
Peter Zijlstra 已提交
6209
static void perf_swevent_event(struct perf_event *event, u64 nr,
6210
			       struct perf_sample_data *data,
6211
			       struct pt_regs *regs)
6212
{
6213
	struct hw_perf_event *hwc = &event->hw;
6214

6215
	local64_add(nr, &event->count);
6216

6217 6218 6219
	if (!regs)
		return;

6220
	if (!is_sampling_event(event))
6221
		return;
6222

6223 6224 6225 6226 6227 6228
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6229
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6230
		return perf_swevent_overflow(event, 1, data, regs);
6231

6232
	if (local64_add_negative(nr, &hwc->period_left))
6233
		return;
6234

6235
	perf_swevent_overflow(event, 0, data, regs);
6236 6237
}

6238 6239 6240
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6241
	if (event->hw.state & PERF_HES_STOPPED)
6242
		return 1;
P
Peter Zijlstra 已提交
6243

6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6255
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6256
				enum perf_type_id type,
L
Li Zefan 已提交
6257 6258 6259
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6260
{
6261
	if (event->attr.type != type)
6262
		return 0;
6263

6264
	if (event->attr.config != event_id)
6265 6266
		return 0;

6267 6268
	if (perf_exclude_event(event, regs))
		return 0;
6269 6270 6271 6272

	return 1;
}

6273 6274 6275 6276 6277 6278 6279
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6280 6281
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6282
{
6283 6284 6285 6286
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6287

6288 6289
/* For the read side: events when they trigger */
static inline struct hlist_head *
6290
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6291 6292
{
	struct swevent_hlist *hlist;
6293

6294
	hlist = rcu_dereference(swhash->swevent_hlist);
6295 6296 6297
	if (!hlist)
		return NULL;

6298 6299 6300 6301 6302
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6303
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6314
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6315 6316 6317 6318 6319
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6320 6321 6322
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6323
				    u64 nr,
6324 6325
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6326
{
6327
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6328
	struct perf_event *event;
6329
	struct hlist_head *head;
6330

6331
	rcu_read_lock();
6332
	head = find_swevent_head_rcu(swhash, type, event_id);
6333 6334 6335
	if (!head)
		goto end;

6336
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6337
		if (perf_swevent_match(event, type, event_id, data, regs))
6338
			perf_swevent_event(event, nr, data, regs);
6339
	}
6340 6341
end:
	rcu_read_unlock();
6342 6343
}

6344 6345
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6346
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6347
{
6348
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6349

6350
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6351
}
I
Ingo Molnar 已提交
6352
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6353

6354
inline void perf_swevent_put_recursion_context(int rctx)
6355
{
6356
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6357

6358
	put_recursion_context(swhash->recursion, rctx);
6359
}
6360

6361
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6362
{
6363
	struct perf_sample_data data;
6364

6365
	if (WARN_ON_ONCE(!regs))
6366
		return;
6367

6368
	perf_sample_data_init(&data, addr, 0);
6369
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6382 6383

	perf_swevent_put_recursion_context(rctx);
6384
fail:
6385
	preempt_enable_notrace();
6386 6387
}

6388
static void perf_swevent_read(struct perf_event *event)
6389 6390 6391
{
}

P
Peter Zijlstra 已提交
6392
static int perf_swevent_add(struct perf_event *event, int flags)
6393
{
6394
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6395
	struct hw_perf_event *hwc = &event->hw;
6396 6397
	struct hlist_head *head;

6398
	if (is_sampling_event(event)) {
6399
		hwc->last_period = hwc->sample_period;
6400
		perf_swevent_set_period(event);
6401
	}
6402

P
Peter Zijlstra 已提交
6403 6404
	hwc->state = !(flags & PERF_EF_START);

6405
	head = find_swevent_head(swhash, event);
6406 6407 6408 6409 6410 6411
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6412
		return -EINVAL;
6413
	}
6414 6415

	hlist_add_head_rcu(&event->hlist_entry, head);
6416
	perf_event_update_userpage(event);
6417

6418 6419 6420
	return 0;
}

P
Peter Zijlstra 已提交
6421
static void perf_swevent_del(struct perf_event *event, int flags)
6422
{
6423
	hlist_del_rcu(&event->hlist_entry);
6424 6425
}

P
Peter Zijlstra 已提交
6426
static void perf_swevent_start(struct perf_event *event, int flags)
6427
{
P
Peter Zijlstra 已提交
6428
	event->hw.state = 0;
6429
}
I
Ingo Molnar 已提交
6430

P
Peter Zijlstra 已提交
6431
static void perf_swevent_stop(struct perf_event *event, int flags)
6432
{
P
Peter Zijlstra 已提交
6433
	event->hw.state = PERF_HES_STOPPED;
6434 6435
}

6436 6437
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6438
swevent_hlist_deref(struct swevent_htable *swhash)
6439
{
6440 6441
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6442 6443
}

6444
static void swevent_hlist_release(struct swevent_htable *swhash)
6445
{
6446
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6447

6448
	if (!hlist)
6449 6450
		return;

6451
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6452
	kfree_rcu(hlist, rcu_head);
6453 6454 6455 6456
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6457
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6458

6459
	mutex_lock(&swhash->hlist_mutex);
6460

6461 6462
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6463

6464
	mutex_unlock(&swhash->hlist_mutex);
6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6477
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6478 6479
	int err = 0;

6480
	mutex_lock(&swhash->hlist_mutex);
6481

6482
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6483 6484 6485 6486 6487 6488 6489
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6490
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6491
	}
6492
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6493
exit:
6494
	mutex_unlock(&swhash->hlist_mutex);
6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6515
fail:
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6526
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6527

6528 6529 6530
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6531

6532 6533
	WARN_ON(event->parent);

6534
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6535 6536 6537 6538 6539
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6540
	u64 event_id = event->attr.config;
6541 6542 6543 6544

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6545 6546 6547 6548 6549 6550
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6551 6552 6553 6554 6555 6556 6557 6558 6559
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6560
	if (event_id >= PERF_COUNT_SW_MAX)
6561 6562 6563 6564 6565 6566 6567 6568 6569
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6570
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6571 6572 6573 6574 6575 6576 6577
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6578
	.task_ctx_nr	= perf_sw_context,
6579

6580 6581
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6582
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6583 6584 6585 6586
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6587 6588 6589
	.read		= perf_swevent_read,
};

6590 6591
#ifdef CONFIG_EVENT_TRACING

6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6606 6607
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6608 6609 6610 6611
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6612 6613 6614 6615 6616 6617 6618 6619 6620
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6621 6622
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6623 6624
{
	struct perf_sample_data data;
6625 6626
	struct perf_event *event;

6627 6628 6629 6630 6631
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6632
	perf_sample_data_init(&data, addr, 0);
6633 6634
	data.raw = &raw;

6635
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6636
		if (perf_tp_event_match(event, &data, regs))
6637
			perf_swevent_event(event, count, &data, regs);
6638
	}
6639

6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6665
	perf_swevent_put_recursion_context(rctx);
6666 6667 6668
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6669
static void tp_perf_event_destroy(struct perf_event *event)
6670
{
6671
	perf_trace_destroy(event);
6672 6673
}

6674
static int perf_tp_event_init(struct perf_event *event)
6675
{
6676 6677
	int err;

6678 6679 6680
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6681 6682 6683 6684 6685 6686
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6687 6688
	err = perf_trace_init(event);
	if (err)
6689
		return err;
6690

6691
	event->destroy = tp_perf_event_destroy;
6692

6693 6694 6695 6696
	return 0;
}

static struct pmu perf_tracepoint = {
6697 6698
	.task_ctx_nr	= perf_sw_context,

6699
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6700 6701 6702 6703
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6704 6705 6706 6707 6708
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6709
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6710
}
L
Li Zefan 已提交
6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

	if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
		/* bpf programs can only be attached to kprobes */
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

6753
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

6778
#else
L
Li Zefan 已提交
6779

6780
static inline void perf_tp_register(void)
6781 6782
{
}
L
Li Zefan 已提交
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6793 6794 6795 6796 6797 6798 6799 6800
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
6801
#endif /* CONFIG_EVENT_TRACING */
6802

6803
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6804
void perf_bp_event(struct perf_event *bp, void *data)
6805
{
6806 6807 6808
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6809
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6810

P
Peter Zijlstra 已提交
6811
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6812
		perf_swevent_event(bp, 1, &sample, regs);
6813 6814 6815
}
#endif

6816 6817 6818
/*
 * hrtimer based swevent callback
 */
6819

6820
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6821
{
6822 6823 6824 6825 6826
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6827

6828
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6829 6830 6831 6832

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6833
	event->pmu->read(event);
6834

6835
	perf_sample_data_init(&data, 0, event->hw.last_period);
6836 6837 6838
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6839
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6840
			if (__perf_event_overflow(event, 1, &data, regs))
6841 6842
				ret = HRTIMER_NORESTART;
	}
6843

6844 6845
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6846

6847
	return ret;
6848 6849
}

6850
static void perf_swevent_start_hrtimer(struct perf_event *event)
6851
{
6852
	struct hw_perf_event *hwc = &event->hw;
6853 6854 6855 6856
	s64 period;

	if (!is_sampling_event(event))
		return;
6857

6858 6859 6860 6861
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6862

6863 6864 6865 6866 6867
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6868
				ns_to_ktime(period), 0,
6869
				HRTIMER_MODE_REL_PINNED, 0);
6870
}
6871 6872

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6873
{
6874 6875
	struct hw_perf_event *hwc = &event->hw;

6876
	if (is_sampling_event(event)) {
6877
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6878
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6879 6880 6881

		hrtimer_cancel(&hwc->hrtimer);
	}
6882 6883
}

P
Peter Zijlstra 已提交
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6904
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6905 6906 6907 6908
		event->attr.freq = 0;
	}
}

6909 6910 6911 6912 6913
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6914
{
6915 6916 6917
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6918
	now = local_clock();
6919 6920
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6921 6922
}

P
Peter Zijlstra 已提交
6923
static void cpu_clock_event_start(struct perf_event *event, int flags)
6924
{
P
Peter Zijlstra 已提交
6925
	local64_set(&event->hw.prev_count, local_clock());
6926 6927 6928
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6929
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6930
{
6931 6932 6933
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6934

P
Peter Zijlstra 已提交
6935 6936 6937 6938
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
6939
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
6940 6941 6942 6943 6944 6945 6946 6947 6948

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6949 6950 6951 6952
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6953

6954 6955 6956 6957 6958 6959 6960 6961
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6962 6963 6964 6965 6966 6967
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6968 6969
	perf_swevent_init_hrtimer(event);

6970
	return 0;
6971 6972
}

6973
static struct pmu perf_cpu_clock = {
6974 6975
	.task_ctx_nr	= perf_sw_context,

6976 6977
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6978
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6979 6980 6981 6982
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6983 6984 6985 6986 6987 6988 6989 6990
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6991
{
6992 6993
	u64 prev;
	s64 delta;
6994

6995 6996 6997 6998
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6999

P
Peter Zijlstra 已提交
7000
static void task_clock_event_start(struct perf_event *event, int flags)
7001
{
P
Peter Zijlstra 已提交
7002
	local64_set(&event->hw.prev_count, event->ctx->time);
7003 7004 7005
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7006
static void task_clock_event_stop(struct perf_event *event, int flags)
7007 7008 7009
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7010 7011 7012 7013 7014 7015
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7016
	perf_event_update_userpage(event);
7017

P
Peter Zijlstra 已提交
7018 7019 7020 7021 7022 7023
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7024 7025 7026 7027
}

static void task_clock_event_read(struct perf_event *event)
{
7028 7029 7030
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7031 7032 7033 7034 7035

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7036
{
7037 7038 7039 7040 7041 7042
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7043 7044 7045 7046 7047 7048
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7049 7050
	perf_swevent_init_hrtimer(event);

7051
	return 0;
L
Li Zefan 已提交
7052 7053
}

7054
static struct pmu perf_task_clock = {
7055 7056
	.task_ctx_nr	= perf_sw_context,

7057 7058
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7059
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7060 7061 7062 7063
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7064 7065
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7066

P
Peter Zijlstra 已提交
7067
static void perf_pmu_nop_void(struct pmu *pmu)
7068 7069
{
}
L
Li Zefan 已提交
7070

P
Peter Zijlstra 已提交
7071
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7072
{
P
Peter Zijlstra 已提交
7073
	return 0;
L
Li Zefan 已提交
7074 7075
}

P
Peter Zijlstra 已提交
7076
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
7077
{
P
Peter Zijlstra 已提交
7078
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7079 7080
}

P
Peter Zijlstra 已提交
7081 7082 7083 7084 7085
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
7086

P
Peter Zijlstra 已提交
7087
static void perf_pmu_cancel_txn(struct pmu *pmu)
7088
{
P
Peter Zijlstra 已提交
7089
	perf_pmu_enable(pmu);
7090 7091
}

7092 7093
static int perf_event_idx_default(struct perf_event *event)
{
7094
	return 0;
7095 7096
}

P
Peter Zijlstra 已提交
7097 7098 7099 7100
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7101
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7102
{
P
Peter Zijlstra 已提交
7103
	struct pmu *pmu;
7104

P
Peter Zijlstra 已提交
7105 7106
	if (ctxn < 0)
		return NULL;
7107

P
Peter Zijlstra 已提交
7108 7109 7110 7111
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7112

P
Peter Zijlstra 已提交
7113
	return NULL;
7114 7115
}

7116
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7117
{
7118 7119 7120 7121 7122 7123 7124
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7125 7126
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7127 7128 7129 7130 7131 7132
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7133

P
Peter Zijlstra 已提交
7134
	mutex_lock(&pmus_lock);
7135
	/*
P
Peter Zijlstra 已提交
7136
	 * Like a real lame refcount.
7137
	 */
7138 7139 7140
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7141
			goto out;
7142
		}
P
Peter Zijlstra 已提交
7143
	}
7144

7145
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7146 7147
out:
	mutex_unlock(&pmus_lock);
7148
}
P
Peter Zijlstra 已提交
7149
static struct idr pmu_idr;
7150

P
Peter Zijlstra 已提交
7151 7152 7153 7154 7155 7156 7157
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7158
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7159

7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
7203
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7204

7205 7206 7207 7208
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7209
};
7210
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7211 7212 7213 7214

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7215
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7231
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7252
static struct lock_class_key cpuctx_mutex;
7253
static struct lock_class_key cpuctx_lock;
7254

7255
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7256
{
P
Peter Zijlstra 已提交
7257
	int cpu, ret;
7258

7259
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7260 7261 7262 7263
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7264

P
Peter Zijlstra 已提交
7265 7266 7267 7268 7269 7270
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7271 7272 7273
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7274 7275 7276 7277 7278
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7279 7280 7281 7282 7283 7284
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7285
skip_type:
P
Peter Zijlstra 已提交
7286 7287 7288
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7289

W
Wei Yongjun 已提交
7290
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7291 7292
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7293
		goto free_dev;
7294

P
Peter Zijlstra 已提交
7295 7296 7297 7298
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7299
		__perf_event_init_context(&cpuctx->ctx);
7300
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7301
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7302
		cpuctx->ctx.pmu = pmu;
7303 7304 7305

		__perf_cpu_hrtimer_init(cpuctx, cpu);

7306
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7307
	}
7308

P
Peter Zijlstra 已提交
7309
got_cpu_context:
P
Peter Zijlstra 已提交
7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7324
		}
7325
	}
7326

P
Peter Zijlstra 已提交
7327 7328 7329 7330 7331
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7332 7333 7334
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7335
	list_add_rcu(&pmu->entry, &pmus);
7336
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7337 7338
	ret = 0;
unlock:
7339 7340
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7341
	return ret;
P
Peter Zijlstra 已提交
7342

P
Peter Zijlstra 已提交
7343 7344 7345 7346
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7347 7348 7349 7350
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7351 7352 7353
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7354
}
7355
EXPORT_SYMBOL_GPL(perf_pmu_register);
7356

7357
void perf_pmu_unregister(struct pmu *pmu)
7358
{
7359 7360 7361
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7362

7363
	/*
P
Peter Zijlstra 已提交
7364 7365
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7366
	 */
7367
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7368
	synchronize_rcu();
7369

P
Peter Zijlstra 已提交
7370
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7371 7372
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7373 7374
	device_del(pmu->dev);
	put_device(pmu->dev);
7375
	free_pmu_context(pmu);
7376
}
7377
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7378

7379 7380
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7381
	struct perf_event_context *ctx = NULL;
7382 7383 7384 7385
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7386 7387

	if (event->group_leader != event) {
7388 7389 7390 7391 7392 7393
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7394 7395 7396
		BUG_ON(!ctx);
	}

7397 7398
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7399 7400 7401 7402

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7403 7404 7405 7406 7407 7408
	if (ret)
		module_put(pmu->module);

	return ret;
}

7409 7410 7411 7412
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7413
	int ret;
7414 7415

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7416 7417 7418 7419

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7420
	if (pmu) {
7421
		ret = perf_try_init_event(pmu, event);
7422 7423
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7424
		goto unlock;
7425
	}
P
Peter Zijlstra 已提交
7426

7427
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7428
		ret = perf_try_init_event(pmu, event);
7429
		if (!ret)
P
Peter Zijlstra 已提交
7430
			goto unlock;
7431

7432 7433
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7434
			goto unlock;
7435
		}
7436
	}
P
Peter Zijlstra 已提交
7437 7438
	pmu = ERR_PTR(-ENOENT);
unlock:
7439
	srcu_read_unlock(&pmus_srcu, idx);
7440

7441
	return pmu;
7442 7443
}

7444 7445 7446 7447 7448 7449 7450 7451 7452
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7453 7454
static void account_event(struct perf_event *event)
{
7455 7456 7457
	if (event->parent)
		return;

7458 7459 7460 7461 7462 7463 7464 7465
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7466 7467 7468 7469
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7470
	if (has_branch_stack(event))
7471
		static_key_slow_inc(&perf_sched_events.key);
7472
	if (is_cgroup_event(event))
7473
		static_key_slow_inc(&perf_sched_events.key);
7474 7475

	account_event_cpu(event, event->cpu);
7476 7477
}

T
Thomas Gleixner 已提交
7478
/*
7479
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7480
 */
7481
static struct perf_event *
7482
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7483 7484 7485
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7486
		 perf_overflow_handler_t overflow_handler,
7487
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7488
{
P
Peter Zijlstra 已提交
7489
	struct pmu *pmu;
7490 7491
	struct perf_event *event;
	struct hw_perf_event *hwc;
7492
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7493

7494 7495 7496 7497 7498
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7499
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7500
	if (!event)
7501
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7502

7503
	/*
7504
	 * Single events are their own group leaders, with an
7505 7506 7507
	 * empty sibling list:
	 */
	if (!group_leader)
7508
		group_leader = event;
7509

7510 7511
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7512

7513 7514 7515
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7516
	INIT_LIST_HEAD(&event->rb_entry);
7517
	INIT_LIST_HEAD(&event->active_entry);
7518 7519
	INIT_HLIST_NODE(&event->hlist_entry);

7520

7521
	init_waitqueue_head(&event->waitq);
7522
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7523

7524
	mutex_init(&event->mmap_mutex);
7525

7526
	atomic_long_set(&event->refcount, 1);
7527 7528 7529 7530 7531
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7532

7533
	event->parent		= parent_event;
7534

7535
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7536
	event->id		= atomic64_inc_return(&perf_event_id);
7537

7538
	event->state		= PERF_EVENT_STATE_INACTIVE;
7539

7540 7541 7542
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7543 7544 7545
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7546
		 */
7547
		event->hw.target = task;
7548 7549
	}

7550 7551 7552 7553
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7554
	if (!overflow_handler && parent_event) {
7555
		overflow_handler = parent_event->overflow_handler;
7556 7557
		context = parent_event->overflow_handler_context;
	}
7558

7559
	event->overflow_handler	= overflow_handler;
7560
	event->overflow_handler_context = context;
7561

J
Jiri Olsa 已提交
7562
	perf_event__state_init(event);
7563

7564
	pmu = NULL;
7565

7566
	hwc = &event->hw;
7567
	hwc->sample_period = attr->sample_period;
7568
	if (attr->freq && attr->sample_freq)
7569
		hwc->sample_period = 1;
7570
	hwc->last_period = hwc->sample_period;
7571

7572
	local64_set(&hwc->period_left, hwc->sample_period);
7573

7574
	/*
7575
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7576
	 */
7577
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7578
		goto err_ns;
7579 7580 7581

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7582

7583 7584 7585 7586 7587 7588
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7589
	pmu = perf_init_event(event);
7590
	if (!pmu)
7591 7592
		goto err_ns;
	else if (IS_ERR(pmu)) {
7593
		err = PTR_ERR(pmu);
7594
		goto err_ns;
I
Ingo Molnar 已提交
7595
	}
7596

7597 7598 7599 7600
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7601
	if (!event->parent) {
7602 7603
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7604
			if (err)
7605
				goto err_per_task;
7606
		}
7607
	}
7608

7609
	return event;
7610

7611 7612 7613
err_per_task:
	exclusive_event_destroy(event);

7614 7615 7616
err_pmu:
	if (event->destroy)
		event->destroy(event);
7617
	module_put(pmu->module);
7618
err_ns:
7619 7620
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7621 7622 7623 7624 7625
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7626 7627
}

7628 7629
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7630 7631
{
	u32 size;
7632
	int ret;
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7657 7658 7659
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7660 7661
	 */
	if (size > sizeof(*attr)) {
7662 7663 7664
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7665

7666 7667
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7668

7669
		for (; addr < end; addr++) {
7670 7671 7672 7673 7674 7675
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7676
		size = sizeof(*attr);
7677 7678 7679 7680 7681 7682
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7683
	if (attr->__reserved_1)
7684 7685 7686 7687 7688 7689 7690 7691
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7720 7721
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7722 7723
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7724
	}
7725

7726
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7727
		ret = perf_reg_validate(attr->sample_regs_user);
7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7746

7747 7748
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7749 7750 7751 7752 7753 7754 7755 7756 7757
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7758 7759
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7760
{
7761
	struct ring_buffer *rb = NULL;
7762 7763
	int ret = -EINVAL;

7764
	if (!output_event)
7765 7766
		goto set;

7767 7768
	/* don't allow circular references */
	if (event == output_event)
7769 7770
		goto out;

7771 7772 7773 7774 7775 7776 7777
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7778
	 * If its not a per-cpu rb, it must be the same task.
7779 7780 7781 7782
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7783 7784 7785 7786 7787 7788
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

7789 7790 7791 7792 7793 7794 7795
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

7796
set:
7797
	mutex_lock(&event->mmap_mutex);
7798 7799 7800
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7801

7802
	if (output_event) {
7803 7804 7805
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7806
			goto unlock;
7807 7808
	}

7809
	ring_buffer_attach(event, rb);
7810

7811
	ret = 0;
7812 7813 7814
unlock:
	mutex_unlock(&event->mmap_mutex);

7815 7816 7817 7818
out:
	return ret;
}

P
Peter Zijlstra 已提交
7819 7820 7821 7822 7823 7824 7825 7826 7827
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
7865
/**
7866
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7867
 *
7868
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7869
 * @pid:		target pid
I
Ingo Molnar 已提交
7870
 * @cpu:		target cpu
7871
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7872
 */
7873 7874
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7875
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7876
{
7877 7878
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7879
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7880
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7881
	struct file *event_file = NULL;
7882
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7883
	struct task_struct *task = NULL;
7884
	struct pmu *pmu;
7885
	int event_fd;
7886
	int move_group = 0;
7887
	int err;
7888
	int f_flags = O_RDWR;
7889
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
7890

7891
	/* for future expandability... */
S
Stephane Eranian 已提交
7892
	if (flags & ~PERF_FLAG_ALL)
7893 7894
		return -EINVAL;

7895 7896 7897
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7898

7899 7900 7901 7902 7903
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7904
	if (attr.freq) {
7905
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7906
			return -EINVAL;
7907 7908 7909
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7910 7911
	}

S
Stephane Eranian 已提交
7912 7913 7914 7915 7916 7917 7918 7919 7920
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7921 7922 7923 7924
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7925 7926 7927
	if (event_fd < 0)
		return event_fd;

7928
	if (group_fd != -1) {
7929 7930
		err = perf_fget_light(group_fd, &group);
		if (err)
7931
			goto err_fd;
7932
		group_leader = group.file->private_data;
7933 7934 7935 7936 7937 7938
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7939
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7940 7941 7942 7943 7944 7945 7946
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7947 7948 7949 7950 7951 7952
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7953 7954
	get_online_cpus();

7955 7956 7957
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

7958
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7959
				 NULL, NULL, cgroup_fd);
7960 7961
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7962
		goto err_cpus;
7963 7964
	}

7965 7966 7967 7968 7969 7970 7971
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7972 7973
	account_event(event);

7974 7975 7976 7977 7978
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7979

7980 7981 7982 7983 7984 7985
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8008 8009 8010 8011

	/*
	 * Get the target context (task or percpu):
	 */
8012
	ctx = find_get_context(pmu, task, event);
8013 8014
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8015
		goto err_alloc;
8016 8017
	}

8018 8019 8020 8021 8022
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8023 8024 8025 8026 8027
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8028
	/*
8029
	 * Look up the group leader (we will attach this event to it):
8030
	 */
8031
	if (group_leader) {
8032
		err = -EINVAL;
8033 8034

		/*
I
Ingo Molnar 已提交
8035 8036 8037 8038
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8039
			goto err_context;
8040 8041 8042 8043 8044

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8045 8046 8047
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8048
		 */
8049
		if (move_group) {
8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8063 8064 8065 8066 8067 8068
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8069 8070 8071
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8072
		if (attr.exclusive || attr.pinned)
8073
			goto err_context;
8074 8075 8076 8077 8078
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8079
			goto err_context;
8080
	}
T
Thomas Gleixner 已提交
8081

8082 8083
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8084 8085
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8086
		goto err_context;
8087
	}
8088

8089
	if (move_group) {
P
Peter Zijlstra 已提交
8090 8091 8092 8093 8094 8095 8096
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8097

8098
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8099

8100 8101
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8102
			perf_remove_from_context(sibling, false);
8103 8104
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
8105 8106
	} else {
		mutex_lock(&ctx->mutex);
8107
	}
8108

8109
	WARN_ON_ONCE(ctx->parent_ctx);
8110 8111

	if (move_group) {
P
Peter Zijlstra 已提交
8112 8113 8114 8115
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8116
		synchronize_rcu();
P
Peter Zijlstra 已提交
8117

8118 8119 8120 8121 8122 8123 8124 8125 8126 8127
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8128 8129
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8130
			perf_event__state_init(sibling);
8131
			perf_install_in_context(ctx, sibling, sibling->cpu);
8132 8133
			get_ctx(ctx);
		}
8134 8135 8136 8137 8138 8139 8140 8141 8142

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8143 8144
	}

8145 8146 8147 8148 8149 8150 8151
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
		mutex_unlock(&ctx->mutex);
		fput(event_file);
		goto err_context;
	}

8152
	perf_install_in_context(ctx, event, event->cpu);
8153
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8154 8155 8156 8157 8158

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
8159
	mutex_unlock(&ctx->mutex);
8160

8161 8162
	put_online_cpus();

8163
	event->owner = current;
P
Peter Zijlstra 已提交
8164

8165 8166 8167
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8168

8169 8170 8171 8172
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
8173
	perf_event__id_header_size(event);
8174

8175 8176 8177 8178 8179 8180
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8181
	fdput(group);
8182 8183
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8184

8185
err_context:
8186
	perf_unpin_context(ctx);
8187
	put_ctx(ctx);
8188
err_alloc:
8189
	free_event(event);
8190
err_cpus:
8191
	put_online_cpus();
8192
err_task:
P
Peter Zijlstra 已提交
8193 8194
	if (task)
		put_task_struct(task);
8195
err_group_fd:
8196
	fdput(group);
8197 8198
err_fd:
	put_unused_fd(event_fd);
8199
	return err;
T
Thomas Gleixner 已提交
8200 8201
}

8202 8203 8204 8205 8206
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8207
 * @task: task to profile (NULL for percpu)
8208 8209 8210
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8211
				 struct task_struct *task,
8212 8213
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8214 8215
{
	struct perf_event_context *ctx;
8216
	struct perf_event *event;
8217
	int err;
8218

8219 8220 8221
	/*
	 * Get the target context (task or percpu):
	 */
8222

8223
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8224
				 overflow_handler, context, -1);
8225 8226 8227 8228
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8229

8230 8231 8232
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8233 8234
	account_event(event);

8235
	ctx = find_get_context(event->pmu, task, event);
8236 8237
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8238
		goto err_free;
8239
	}
8240 8241 8242

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8243 8244 8245 8246 8247 8248 8249 8250
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8251
	perf_install_in_context(ctx, event, cpu);
8252
	perf_unpin_context(ctx);
8253 8254 8255 8256
	mutex_unlock(&ctx->mutex);

	return event;

8257 8258 8259
err_free:
	free_event(event);
err:
8260
	return ERR_PTR(err);
8261
}
8262
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8263

8264 8265 8266 8267 8268 8269 8270 8271 8272 8273
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8274 8275 8276 8277 8278
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8279 8280
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8281
		perf_remove_from_context(event, false);
8282
		unaccount_event_cpu(event, src_cpu);
8283
		put_ctx(src_ctx);
8284
		list_add(&event->migrate_entry, &events);
8285 8286
	}

8287 8288 8289
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8290 8291
	synchronize_rcu();

8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8316 8317
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8318 8319
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8320
		account_event_cpu(event, dst_cpu);
8321 8322 8323 8324
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8325
	mutex_unlock(&src_ctx->mutex);
8326 8327 8328
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8329
static void sync_child_event(struct perf_event *child_event,
8330
			       struct task_struct *child)
8331
{
8332
	struct perf_event *parent_event = child_event->parent;
8333
	u64 child_val;
8334

8335 8336
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8337

P
Peter Zijlstra 已提交
8338
	child_val = perf_event_count(child_event);
8339 8340 8341 8342

	/*
	 * Add back the child's count to the parent's count:
	 */
8343
	atomic64_add(child_val, &parent_event->child_count);
8344 8345 8346 8347
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8348 8349

	/*
8350
	 * Remove this event from the parent's list
8351
	 */
8352 8353 8354 8355
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8356

8357 8358 8359 8360 8361 8362
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8363
	/*
8364
	 * Release the parent event, if this was the last
8365 8366
	 * reference to it.
	 */
8367
	put_event(parent_event);
8368 8369
}

8370
static void
8371 8372
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8373
			 struct task_struct *child)
8374
{
8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8388

8389
	/*
8390
	 * It can happen that the parent exits first, and has events
8391
	 * that are still around due to the child reference. These
8392
	 * events need to be zapped.
8393
	 */
8394
	if (child_event->parent) {
8395 8396
		sync_child_event(child_event, child);
		free_event(child_event);
8397 8398 8399
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8400
	}
8401 8402
}

P
Peter Zijlstra 已提交
8403
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8404
{
8405
	struct perf_event *child_event, *next;
8406
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8407
	unsigned long flags;
8408

P
Peter Zijlstra 已提交
8409
	if (likely(!child->perf_event_ctxp[ctxn])) {
8410
		perf_event_task(child, NULL, 0);
8411
		return;
P
Peter Zijlstra 已提交
8412
	}
8413

8414
	local_irq_save(flags);
8415 8416 8417 8418 8419 8420
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8421
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8422 8423 8424

	/*
	 * Take the context lock here so that if find_get_context is
8425
	 * reading child->perf_event_ctxp, we wait until it has
8426 8427
	 * incremented the context's refcount before we do put_ctx below.
	 */
8428
	raw_spin_lock(&child_ctx->lock);
8429
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8430
	child->perf_event_ctxp[ctxn] = NULL;
8431

8432 8433 8434
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8435
	 * the events from it.
8436
	 */
8437
	clone_ctx = unclone_ctx(child_ctx);
8438
	update_context_time(child_ctx);
8439
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8440

8441 8442
	if (clone_ctx)
		put_ctx(clone_ctx);
8443

P
Peter Zijlstra 已提交
8444
	/*
8445 8446 8447
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8448
	 */
8449
	perf_event_task(child, child_ctx, 0);
8450

8451 8452 8453
	/*
	 * We can recurse on the same lock type through:
	 *
8454 8455
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8456 8457
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8458 8459 8460
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8461
	mutex_lock(&child_ctx->mutex);
8462

8463
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8464
		__perf_event_exit_task(child_event, child_ctx, child);
8465

8466 8467 8468
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8469 8470
}

P
Peter Zijlstra 已提交
8471 8472 8473 8474 8475
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8476
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8477 8478
	int ctxn;

P
Peter Zijlstra 已提交
8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8494 8495 8496 8497
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8510
	put_event(parent);
8511

P
Peter Zijlstra 已提交
8512
	raw_spin_lock_irq(&ctx->lock);
8513
	perf_group_detach(event);
8514
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8515
	raw_spin_unlock_irq(&ctx->lock);
8516 8517 8518
	free_event(event);
}

8519
/*
P
Peter Zijlstra 已提交
8520
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8521
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8522 8523 8524
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8525
 */
8526
void perf_event_free_task(struct task_struct *task)
8527
{
P
Peter Zijlstra 已提交
8528
	struct perf_event_context *ctx;
8529
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8530
	int ctxn;
8531

P
Peter Zijlstra 已提交
8532 8533 8534 8535
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8536

P
Peter Zijlstra 已提交
8537
		mutex_lock(&ctx->mutex);
8538
again:
P
Peter Zijlstra 已提交
8539 8540 8541
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8542

P
Peter Zijlstra 已提交
8543 8544 8545
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8546

P
Peter Zijlstra 已提交
8547 8548 8549
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8550

P
Peter Zijlstra 已提交
8551
		mutex_unlock(&ctx->mutex);
8552

P
Peter Zijlstra 已提交
8553 8554
		put_ctx(ctx);
	}
8555 8556
}

8557 8558 8559 8560 8561 8562 8563 8564
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8576
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8577
	struct perf_event *child_event;
8578
	unsigned long flags;
P
Peter Zijlstra 已提交
8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8591
					   child,
P
Peter Zijlstra 已提交
8592
					   group_leader, parent_event,
8593
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8594 8595
	if (IS_ERR(child_event))
		return child_event;
8596

8597 8598
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8599 8600 8601 8602
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8603 8604 8605 8606 8607 8608 8609
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8610
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8627 8628
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8629

8630 8631 8632 8633
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8634
	perf_event__id_header_size(child_event);
8635

P
Peter Zijlstra 已提交
8636 8637 8638
	/*
	 * Link it up in the child's context:
	 */
8639
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8640
	add_event_to_ctx(child_event, child_ctx);
8641
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8675 8676 8677 8678 8679
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8680
		   struct task_struct *child, int ctxn,
8681 8682 8683
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8684
	struct perf_event_context *child_ctx;
8685 8686 8687 8688

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8689 8690
	}

8691
	child_ctx = child->perf_event_ctxp[ctxn];
8692 8693 8694 8695 8696 8697 8698
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8699

8700
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8701 8702
		if (!child_ctx)
			return -ENOMEM;
8703

P
Peter Zijlstra 已提交
8704
		child->perf_event_ctxp[ctxn] = child_ctx;
8705 8706 8707 8708 8709 8710 8711 8712 8713
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8714 8715
}

8716
/*
8717
 * Initialize the perf_event context in task_struct
8718
 */
8719
static int perf_event_init_context(struct task_struct *child, int ctxn)
8720
{
8721
	struct perf_event_context *child_ctx, *parent_ctx;
8722 8723
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8724
	struct task_struct *parent = current;
8725
	int inherited_all = 1;
8726
	unsigned long flags;
8727
	int ret = 0;
8728

P
Peter Zijlstra 已提交
8729
	if (likely(!parent->perf_event_ctxp[ctxn]))
8730 8731
		return 0;

8732
	/*
8733 8734
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8735
	 */
P
Peter Zijlstra 已提交
8736
	parent_ctx = perf_pin_task_context(parent, ctxn);
8737 8738
	if (!parent_ctx)
		return 0;
8739

8740 8741 8742 8743 8744 8745 8746
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8747 8748 8749 8750
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8751
	mutex_lock(&parent_ctx->mutex);
8752 8753 8754 8755 8756

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8757
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8758 8759
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8760 8761 8762
		if (ret)
			break;
	}
8763

8764 8765 8766 8767 8768 8769 8770 8771 8772
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8773
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8774 8775
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8776
		if (ret)
8777
			break;
8778 8779
	}

8780 8781 8782
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8783
	child_ctx = child->perf_event_ctxp[ctxn];
8784

8785
	if (child_ctx && inherited_all) {
8786 8787 8788
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8789 8790 8791
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8792
		 */
P
Peter Zijlstra 已提交
8793
		cloned_ctx = parent_ctx->parent_ctx;
8794 8795
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8796
			child_ctx->parent_gen = parent_ctx->parent_gen;
8797 8798 8799 8800 8801
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8802 8803
	}

P
Peter Zijlstra 已提交
8804
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8805
	mutex_unlock(&parent_ctx->mutex);
8806

8807
	perf_unpin_context(parent_ctx);
8808
	put_ctx(parent_ctx);
8809

8810
	return ret;
8811 8812
}

P
Peter Zijlstra 已提交
8813 8814 8815 8816 8817 8818 8819
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8820 8821 8822 8823
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8824 8825
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8826 8827
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8828
			return ret;
P
Peter Zijlstra 已提交
8829
		}
P
Peter Zijlstra 已提交
8830 8831 8832 8833 8834
	}

	return 0;
}

8835 8836
static void __init perf_event_init_all_cpus(void)
{
8837
	struct swevent_htable *swhash;
8838 8839 8840
	int cpu;

	for_each_possible_cpu(cpu) {
8841 8842
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8843
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8844 8845 8846
	}
}

8847
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8848
{
P
Peter Zijlstra 已提交
8849
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8850

8851
	mutex_lock(&swhash->hlist_mutex);
8852
	swhash->online = true;
8853
	if (swhash->hlist_refcount > 0) {
8854 8855
		struct swevent_hlist *hlist;

8856 8857 8858
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8859
	}
8860
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8861 8862
}

P
Peter Zijlstra 已提交
8863
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
P
Peter Zijlstra 已提交
8864
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8865
{
8866
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8867
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8868

P
Peter Zijlstra 已提交
8869
	rcu_read_lock();
8870 8871
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8872
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8873
}
P
Peter Zijlstra 已提交
8874 8875 8876 8877 8878 8879 8880 8881 8882

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8883
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8884 8885 8886 8887 8888 8889 8890 8891

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8892
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8893
{
8894
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8895

P
Peter Zijlstra 已提交
8896 8897
	perf_event_exit_cpu_context(cpu);

8898
	mutex_lock(&swhash->hlist_mutex);
8899
	swhash->online = false;
8900 8901
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8902 8903
}
#else
8904
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8905 8906
#endif

P
Peter Zijlstra 已提交
8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8927
static int
T
Thomas Gleixner 已提交
8928 8929 8930 8931
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8932
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8933 8934

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8935
	case CPU_DOWN_FAILED:
8936
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8937 8938
		break;

P
Peter Zijlstra 已提交
8939
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8940
	case CPU_DOWN_PREPARE:
8941
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8942 8943 8944 8945 8946 8947 8948 8949
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8950
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8951
{
8952 8953
	int ret;

P
Peter Zijlstra 已提交
8954 8955
	idr_init(&pmu_idr);

8956
	perf_event_init_all_cpus();
8957
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8958 8959 8960
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8961 8962
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8963
	register_reboot_notifier(&perf_reboot_notifier);
8964 8965 8966

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8967 8968 8969

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8970 8971 8972 8973 8974 8975 8976

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8977
}
P
Peter Zijlstra 已提交
8978

8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9018 9019

#ifdef CONFIG_CGROUP_PERF
9020 9021
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9022 9023 9024
{
	struct perf_cgroup *jc;

9025
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9038
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9039
{
9040 9041
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

9053 9054
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9055
{
9056 9057
	struct task_struct *task;

9058
	cgroup_taskset_for_each(task, tset)
9059
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9060 9061
}

9062 9063
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
9064
			     struct task_struct *task)
S
Stephane Eranian 已提交
9065 9066 9067 9068 9069 9070 9071 9072 9073
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

9074
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9075 9076
}

9077
struct cgroup_subsys perf_event_cgrp_subsys = {
9078 9079
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9080
	.exit		= perf_cgroup_exit,
9081
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9082 9083
};
#endif /* CONFIG_CGROUP_PERF */