core.c 157.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
39

40 41
#include "internal.h"

42 43
#include <asm/irq_regs.h>

44
struct remote_function_call {
45 46 47 48
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
82 83 84 85
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
106 107 108 109
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
110 111 112 113 114 115 116
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
117 118 119 120
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

121 122 123 124 125 126
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
127 128 129 130
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
131
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
132 133
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

134 135 136
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
137

P
Peter Zijlstra 已提交
138 139 140 141
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

142
/*
143
 * perf event paranoia level:
144 145
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
146
 *   1 - disallow cpu events for unpriv
147
 *   2 - disallow kernel profiling for unpriv
148
 */
149
int sysctl_perf_event_paranoid __read_mostly = 1;
150

151 152
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153 154

/*
155
 * max perf event sample rate
156
 */
P
Peter Zijlstra 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
175

176
static atomic64_t perf_event_id;
177

178 179 180 181
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
182 183 184 185 186
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
187

188
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
189

190
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
191
{
192
	return "pmu";
T
Thomas Gleixner 已提交
193 194
}

195 196 197 198 199
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
200 201 202 203 204 205
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
222 223
#ifdef CONFIG_CGROUP_PERF

224 225 226 227 228
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
296 297
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
298
	/*
299 300
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
301
	 */
302
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
303 304
		return;

305 306 307 308 309 310
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
311 312 313
}

static inline void
314 315
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
316 317 318 319
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

320 321 322 323 324 325
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
326 327 328 329
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
330
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
372 373
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
374 375 376 377 378 379 380 381 382 383 384

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
385
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
386 387 388 389 390 391 392
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
393 394
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
395 396 397 398 399 400 401 402
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

403 404
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
405
{
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
428 429
}

430 431
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
432
{
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
467 468 469 470
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
471 472 473 474

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

475 476 477
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
478 479 480 481 482 483 484 485 486
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
487
out:
S
Stephane Eranian 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

562 563
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
564 565 566
{
}

567 568
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
569 570 571 572 573 574 575 576 577 578 579
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
580 581
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
612
void perf_pmu_disable(struct pmu *pmu)
613
{
P
Peter Zijlstra 已提交
614 615 616
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
617 618
}

P
Peter Zijlstra 已提交
619
void perf_pmu_enable(struct pmu *pmu)
620
{
P
Peter Zijlstra 已提交
621 622 623
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
624 625
}

626 627 628 629 630 631 632
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
633
static void perf_pmu_rotate_start(struct pmu *pmu)
634
{
P
Peter Zijlstra 已提交
635
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
636
	struct list_head *head = &__get_cpu_var(rotation_list);
637

638
	WARN_ON(!irqs_disabled());
639

640 641
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
642 643
}

644
static void get_ctx(struct perf_event_context *ctx)
645
{
646
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
647 648
}

649
static void put_ctx(struct perf_event_context *ctx)
650
{
651 652 653
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
654 655
		if (ctx->task)
			put_task_struct(ctx->task);
656
		kfree_rcu(ctx, rcu_head);
657
	}
658 659
}

660
static void unclone_ctx(struct perf_event_context *ctx)
661 662 663 664 665 666 667
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

690
/*
691
 * If we inherit events we want to return the parent event id
692 693
 * to userspace.
 */
694
static u64 primary_event_id(struct perf_event *event)
695
{
696
	u64 id = event->id;
697

698 699
	if (event->parent)
		id = event->parent->id;
700 701 702 703

	return id;
}

704
/*
705
 * Get the perf_event_context for a task and lock it.
706 707 708
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
709
static struct perf_event_context *
P
Peter Zijlstra 已提交
710
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
711
{
712
	struct perf_event_context *ctx;
713 714

	rcu_read_lock();
P
Peter Zijlstra 已提交
715
retry:
P
Peter Zijlstra 已提交
716
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
717 718 719 720
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
721
		 * perf_event_task_sched_out, though the
722 723 724 725 726 727
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
728
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
729
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
730
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
731 732
			goto retry;
		}
733 734

		if (!atomic_inc_not_zero(&ctx->refcount)) {
735
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
736 737
			ctx = NULL;
		}
738 739 740 741 742 743 744 745 746 747
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
748 749
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
750
{
751
	struct perf_event_context *ctx;
752 753
	unsigned long flags;

P
Peter Zijlstra 已提交
754
	ctx = perf_lock_task_context(task, ctxn, &flags);
755 756
	if (ctx) {
		++ctx->pin_count;
757
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
758 759 760 761
	}
	return ctx;
}

762
static void perf_unpin_context(struct perf_event_context *ctx)
763 764 765
{
	unsigned long flags;

766
	raw_spin_lock_irqsave(&ctx->lock, flags);
767
	--ctx->pin_count;
768
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
769 770
}

771 772 773 774 775 776 777 778 779 780 781
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

782 783 784
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
785 786 787 788

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

789 790 791
	return ctx ? ctx->time : 0;
}

792 793
/*
 * Update the total_time_enabled and total_time_running fields for a event.
794
 * The caller of this function needs to hold the ctx->lock.
795 796 797 798 799 800 801 802 803
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
804 805 806 807 808 809 810 811 812 813 814
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
815
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
816 817
	else if (ctx->is_active)
		run_end = ctx->time;
818 819 820 821
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
822 823 824 825

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
826
		run_end = perf_event_time(event);
827 828

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
829

830 831
}

832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

844 845 846 847 848 849 850 851 852
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

853
/*
854
 * Add a event from the lists for its context.
855 856
 * Must be called with ctx->mutex and ctx->lock held.
 */
857
static void
858
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
859
{
860 861
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
862 863

	/*
864 865 866
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
867
	 */
868
	if (event->group_leader == event) {
869 870
		struct list_head *list;

871 872 873
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

874 875
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
876
	}
P
Peter Zijlstra 已提交
877

878
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
879 880
		ctx->nr_cgroups++;

881
	list_add_rcu(&event->event_entry, &ctx->event_list);
882
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
883
		perf_pmu_rotate_start(ctx->pmu);
884 885
	ctx->nr_events++;
	if (event->attr.inherit_stat)
886
		ctx->nr_stat++;
887 888
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

961
	event->id_header_size = size;
962 963
}

964 965
static void perf_group_attach(struct perf_event *event)
{
966
	struct perf_event *group_leader = event->group_leader, *pos;
967

P
Peter Zijlstra 已提交
968 969 970 971 972 973
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

974 975 976 977 978 979 980 981 982 983 984
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
985 986 987 988 989

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
990 991
}

992
/*
993
 * Remove a event from the lists for its context.
994
 * Must be called with ctx->mutex and ctx->lock held.
995
 */
996
static void
997
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
998
{
999
	struct perf_cpu_context *cpuctx;
1000 1001 1002 1003
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1004
		return;
1005 1006 1007

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1008
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1009
		ctx->nr_cgroups--;
1010 1011 1012 1013 1014 1015 1016 1017 1018
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1019

1020 1021
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1022
		ctx->nr_stat--;
1023

1024
	list_del_rcu(&event->event_entry);
1025

1026 1027
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1028

1029
	update_group_times(event);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1040 1041
}

1042
static void perf_group_detach(struct perf_event *event)
1043 1044
{
	struct perf_event *sibling, *tmp;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1061
		goto out;
1062 1063 1064 1065
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1066

1067
	/*
1068 1069
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1070
	 * to whatever list we are on.
1071
	 */
1072
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1073 1074
		if (list)
			list_move_tail(&sibling->group_entry, list);
1075
		sibling->group_leader = sibling;
1076 1077 1078

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1079
	}
1080 1081 1082 1083 1084 1085

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1086 1087
}

1088 1089 1090
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1091 1092
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1093 1094
}

1095 1096
static void
event_sched_out(struct perf_event *event,
1097
		  struct perf_cpu_context *cpuctx,
1098
		  struct perf_event_context *ctx)
1099
{
1100
	u64 tstamp = perf_event_time(event);
1101 1102 1103 1104 1105 1106 1107 1108 1109
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1110
		delta = tstamp - event->tstamp_stopped;
1111
		event->tstamp_running += delta;
1112
		event->tstamp_stopped = tstamp;
1113 1114
	}

1115
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1116
		return;
1117

1118 1119 1120 1121
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1122
	}
1123
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1124
	event->pmu->del(event, 0);
1125
	event->oncpu = -1;
1126

1127
	if (!is_software_event(event))
1128 1129
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1130
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1131 1132 1133
		cpuctx->exclusive = 0;
}

1134
static void
1135
group_sched_out(struct perf_event *group_event,
1136
		struct perf_cpu_context *cpuctx,
1137
		struct perf_event_context *ctx)
1138
{
1139
	struct perf_event *event;
1140
	int state = group_event->state;
1141

1142
	event_sched_out(group_event, cpuctx, ctx);
1143 1144 1145 1146

	/*
	 * Schedule out siblings (if any):
	 */
1147 1148
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1149

1150
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1151 1152 1153
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1154
/*
1155
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1156
 *
1157
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1158 1159
 * remove it from the context list.
 */
1160
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1161
{
1162 1163
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1164
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1165

1166
	raw_spin_lock(&ctx->lock);
1167 1168
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1169 1170 1171 1172
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1173
	raw_spin_unlock(&ctx->lock);
1174 1175

	return 0;
T
Thomas Gleixner 已提交
1176 1177 1178 1179
}


/*
1180
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1181
 *
1182
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1183
 * call when the task is on a CPU.
1184
 *
1185 1186
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1187 1188
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1189
 * When called from perf_event_exit_task, it's OK because the
1190
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1191
 */
1192
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1193
{
1194
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1195 1196
	struct task_struct *task = ctx->task;

1197 1198
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1199 1200
	if (!task) {
		/*
1201
		 * Per cpu events are removed via an smp call and
1202
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1203
		 */
1204
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1205 1206 1207 1208
		return;
	}

retry:
1209 1210
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1211

1212
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1213
	/*
1214 1215
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1216
	 */
1217
	if (ctx->is_active) {
1218
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1219 1220 1221 1222
		goto retry;
	}

	/*
1223 1224
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1225
	 */
1226
	list_del_event(event, ctx);
1227
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1228 1229
}

1230
/*
1231
 * Cross CPU call to disable a performance event
1232
 */
1233
static int __perf_event_disable(void *info)
1234
{
1235 1236
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1237
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1238 1239

	/*
1240 1241
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1242 1243 1244
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1245
	 */
1246
	if (ctx->task && cpuctx->task_ctx != ctx)
1247
		return -EINVAL;
1248

1249
	raw_spin_lock(&ctx->lock);
1250 1251

	/*
1252
	 * If the event is on, turn it off.
1253 1254
	 * If it is in error state, leave it in error state.
	 */
1255
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1256
		update_context_time(ctx);
S
Stephane Eranian 已提交
1257
		update_cgrp_time_from_event(event);
1258 1259 1260
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1261
		else
1262 1263
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1264 1265
	}

1266
	raw_spin_unlock(&ctx->lock);
1267 1268

	return 0;
1269 1270 1271
}

/*
1272
 * Disable a event.
1273
 *
1274 1275
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1276
 * remains valid.  This condition is satisifed when called through
1277 1278 1279 1280
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1281
 * is the current context on this CPU and preemption is disabled,
1282
 * hence we can't get into perf_event_task_sched_out for this context.
1283
 */
1284
void perf_event_disable(struct perf_event *event)
1285
{
1286
	struct perf_event_context *ctx = event->ctx;
1287 1288 1289 1290
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1291
		 * Disable the event on the cpu that it's on
1292
		 */
1293
		cpu_function_call(event->cpu, __perf_event_disable, event);
1294 1295 1296
		return;
	}

P
Peter Zijlstra 已提交
1297
retry:
1298 1299
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1300

1301
	raw_spin_lock_irq(&ctx->lock);
1302
	/*
1303
	 * If the event is still active, we need to retry the cross-call.
1304
	 */
1305
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1306
		raw_spin_unlock_irq(&ctx->lock);
1307 1308 1309 1310 1311
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1312 1313 1314 1315 1316 1317 1318
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1319 1320 1321
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1322
	}
1323
	raw_spin_unlock_irq(&ctx->lock);
1324 1325
}

S
Stephane Eranian 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1361 1362 1363 1364
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1365
static int
1366
event_sched_in(struct perf_event *event,
1367
		 struct perf_cpu_context *cpuctx,
1368
		 struct perf_event_context *ctx)
1369
{
1370 1371
	u64 tstamp = perf_event_time(event);

1372
	if (event->state <= PERF_EVENT_STATE_OFF)
1373 1374
		return 0;

1375
	event->state = PERF_EVENT_STATE_ACTIVE;
1376
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1388 1389 1390 1391 1392
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1393
	if (event->pmu->add(event, PERF_EF_START)) {
1394 1395
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1396 1397 1398
		return -EAGAIN;
	}

1399
	event->tstamp_running += tstamp - event->tstamp_stopped;
1400

S
Stephane Eranian 已提交
1401
	perf_set_shadow_time(event, ctx, tstamp);
1402

1403
	if (!is_software_event(event))
1404
		cpuctx->active_oncpu++;
1405 1406
	ctx->nr_active++;

1407
	if (event->attr.exclusive)
1408 1409
		cpuctx->exclusive = 1;

1410 1411 1412
	return 0;
}

1413
static int
1414
group_sched_in(struct perf_event *group_event,
1415
	       struct perf_cpu_context *cpuctx,
1416
	       struct perf_event_context *ctx)
1417
{
1418
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1419
	struct pmu *pmu = group_event->pmu;
1420 1421
	u64 now = ctx->time;
	bool simulate = false;
1422

1423
	if (group_event->state == PERF_EVENT_STATE_OFF)
1424 1425
		return 0;

P
Peter Zijlstra 已提交
1426
	pmu->start_txn(pmu);
1427

1428
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1429
		pmu->cancel_txn(pmu);
1430
		return -EAGAIN;
1431
	}
1432 1433 1434 1435

	/*
	 * Schedule in siblings as one group (if any):
	 */
1436
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1437
		if (event_sched_in(event, cpuctx, ctx)) {
1438
			partial_group = event;
1439 1440 1441 1442
			goto group_error;
		}
	}

1443
	if (!pmu->commit_txn(pmu))
1444
		return 0;
1445

1446 1447 1448 1449
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1460
	 */
1461 1462
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1463 1464 1465 1466 1467 1468 1469 1470
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1471
	}
1472
	event_sched_out(group_event, cpuctx, ctx);
1473

P
Peter Zijlstra 已提交
1474
	pmu->cancel_txn(pmu);
1475

1476 1477 1478
	return -EAGAIN;
}

1479
/*
1480
 * Work out whether we can put this event group on the CPU now.
1481
 */
1482
static int group_can_go_on(struct perf_event *event,
1483 1484 1485 1486
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1487
	 * Groups consisting entirely of software events can always go on.
1488
	 */
1489
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1490 1491 1492
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1493
	 * events can go on.
1494 1495 1496 1497 1498
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1499
	 * events on the CPU, it can't go on.
1500
	 */
1501
	if (event->attr.exclusive && cpuctx->active_oncpu)
1502 1503 1504 1505 1506 1507 1508 1509
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1510 1511
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1512
{
1513 1514
	u64 tstamp = perf_event_time(event);

1515
	list_add_event(event, ctx);
1516
	perf_group_attach(event);
1517 1518 1519
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1520 1521
}

1522 1523 1524 1525 1526 1527
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1541
/*
1542
 * Cross CPU call to install and enable a performance event
1543 1544
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1545
 */
1546
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1547
{
1548 1549
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1550
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1551 1552 1553
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1554
	perf_ctx_lock(cpuctx, task_ctx);
1555
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1556 1557

	/*
1558
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1559
	 */
1560
	if (task_ctx)
1561
		task_ctx_sched_out(task_ctx);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1576 1577
		task = task_ctx->task;
	}
1578

1579
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1580

1581
	update_context_time(ctx);
S
Stephane Eranian 已提交
1582 1583 1584 1585 1586 1587
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1588

1589
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1590

1591
	/*
1592
	 * Schedule everything back in
1593
	 */
1594
	perf_event_sched_in(cpuctx, task_ctx, task);
1595 1596 1597

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1598 1599

	return 0;
T
Thomas Gleixner 已提交
1600 1601 1602
}

/*
1603
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1604
 *
1605 1606
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1607
 *
1608
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1609 1610 1611 1612
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1613 1614
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1615 1616 1617 1618
			int cpu)
{
	struct task_struct *task = ctx->task;

1619 1620
	lockdep_assert_held(&ctx->mutex);

1621 1622
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1623 1624
	if (!task) {
		/*
1625
		 * Per cpu events are installed via an smp call and
1626
		 * the install is always successful.
T
Thomas Gleixner 已提交
1627
		 */
1628
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1629 1630 1631 1632
		return;
	}

retry:
1633 1634
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1635

1636
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1637
	/*
1638 1639
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1640
	 */
1641
	if (ctx->is_active) {
1642
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1643 1644 1645 1646
		goto retry;
	}

	/*
1647 1648
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1649
	 */
1650
	add_event_to_ctx(event, ctx);
1651
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1652 1653
}

1654
/*
1655
 * Put a event into inactive state and update time fields.
1656 1657 1658 1659 1660 1661
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1662 1663
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1664
{
1665
	struct perf_event *sub;
1666
	u64 tstamp = perf_event_time(event);
1667

1668
	event->state = PERF_EVENT_STATE_INACTIVE;
1669
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1670
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1671 1672
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1673
	}
1674 1675
}

1676
/*
1677
 * Cross CPU call to enable a performance event
1678
 */
1679
static int __perf_event_enable(void *info)
1680
{
1681 1682 1683
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1684
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1685
	int err;
1686

1687 1688
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1689

1690
	raw_spin_lock(&ctx->lock);
1691
	update_context_time(ctx);
1692

1693
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1694
		goto unlock;
S
Stephane Eranian 已提交
1695 1696 1697 1698

	/*
	 * set current task's cgroup time reference point
	 */
1699
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1700

1701
	__perf_event_mark_enabled(event, ctx);
1702

S
Stephane Eranian 已提交
1703 1704 1705
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1706
		goto unlock;
S
Stephane Eranian 已提交
1707
	}
1708

1709
	/*
1710
	 * If the event is in a group and isn't the group leader,
1711
	 * then don't put it on unless the group is on.
1712
	 */
1713
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1714
		goto unlock;
1715

1716
	if (!group_can_go_on(event, cpuctx, 1)) {
1717
		err = -EEXIST;
1718
	} else {
1719
		if (event == leader)
1720
			err = group_sched_in(event, cpuctx, ctx);
1721
		else
1722
			err = event_sched_in(event, cpuctx, ctx);
1723
	}
1724 1725 1726

	if (err) {
		/*
1727
		 * If this event can't go on and it's part of a
1728 1729
		 * group, then the whole group has to come off.
		 */
1730
		if (leader != event)
1731
			group_sched_out(leader, cpuctx, ctx);
1732
		if (leader->attr.pinned) {
1733
			update_group_times(leader);
1734
			leader->state = PERF_EVENT_STATE_ERROR;
1735
		}
1736 1737
	}

P
Peter Zijlstra 已提交
1738
unlock:
1739
	raw_spin_unlock(&ctx->lock);
1740 1741

	return 0;
1742 1743 1744
}

/*
1745
 * Enable a event.
1746
 *
1747 1748
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1749
 * remains valid.  This condition is satisfied when called through
1750 1751
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1752
 */
1753
void perf_event_enable(struct perf_event *event)
1754
{
1755
	struct perf_event_context *ctx = event->ctx;
1756 1757 1758 1759
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1760
		 * Enable the event on the cpu that it's on
1761
		 */
1762
		cpu_function_call(event->cpu, __perf_event_enable, event);
1763 1764 1765
		return;
	}

1766
	raw_spin_lock_irq(&ctx->lock);
1767
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1768 1769 1770
		goto out;

	/*
1771 1772
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1773 1774 1775 1776
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1777 1778
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1779

P
Peter Zijlstra 已提交
1780
retry:
1781 1782 1783 1784 1785
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1786
	raw_spin_unlock_irq(&ctx->lock);
1787 1788 1789

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1790

1791
	raw_spin_lock_irq(&ctx->lock);
1792 1793

	/*
1794
	 * If the context is active and the event is still off,
1795 1796
	 * we need to retry the cross-call.
	 */
1797 1798 1799 1800 1801 1802
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1803
		goto retry;
1804
	}
1805

P
Peter Zijlstra 已提交
1806
out:
1807
	raw_spin_unlock_irq(&ctx->lock);
1808 1809
}

1810
int perf_event_refresh(struct perf_event *event, int refresh)
1811
{
1812
	/*
1813
	 * not supported on inherited events
1814
	 */
1815
	if (event->attr.inherit || !is_sampling_event(event))
1816 1817
		return -EINVAL;

1818 1819
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1820 1821

	return 0;
1822
}
1823
EXPORT_SYMBOL_GPL(perf_event_refresh);
1824

1825 1826 1827
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1828
{
1829
	struct perf_event *event;
1830
	int is_active = ctx->is_active;
1831

1832
	ctx->is_active &= ~event_type;
1833
	if (likely(!ctx->nr_events))
1834 1835
		return;

1836
	update_context_time(ctx);
S
Stephane Eranian 已提交
1837
	update_cgrp_time_from_cpuctx(cpuctx);
1838
	if (!ctx->nr_active)
1839
		return;
1840

P
Peter Zijlstra 已提交
1841
	perf_pmu_disable(ctx->pmu);
1842
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1843 1844
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1845
	}
1846

1847
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1848
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1849
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1850
	}
P
Peter Zijlstra 已提交
1851
	perf_pmu_enable(ctx->pmu);
1852 1853
}

1854 1855 1856
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1857 1858 1859 1860
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1861
 * in them directly with an fd; we can only enable/disable all
1862
 * events via prctl, or enable/disable all events in a family
1863 1864
 * via ioctl, which will have the same effect on both contexts.
 */
1865 1866
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1867 1868
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1869
		&& ctx1->parent_gen == ctx2->parent_gen
1870
		&& !ctx1->pin_count && !ctx2->pin_count;
1871 1872
}

1873 1874
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1875 1876 1877
{
	u64 value;

1878
	if (!event->attr.inherit_stat)
1879 1880 1881
		return;

	/*
1882
	 * Update the event value, we cannot use perf_event_read()
1883 1884
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1885
	 * we know the event must be on the current CPU, therefore we
1886 1887
	 * don't need to use it.
	 */
1888 1889
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1890 1891
		event->pmu->read(event);
		/* fall-through */
1892

1893 1894
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1895 1896 1897 1898 1899 1900 1901
		break;

	default:
		break;
	}

	/*
1902
	 * In order to keep per-task stats reliable we need to flip the event
1903 1904
	 * values when we flip the contexts.
	 */
1905 1906 1907
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1908

1909 1910
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1911

1912
	/*
1913
	 * Since we swizzled the values, update the user visible data too.
1914
	 */
1915 1916
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1917 1918 1919 1920 1921
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1922 1923
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1924
{
1925
	struct perf_event *event, *next_event;
1926 1927 1928 1929

	if (!ctx->nr_stat)
		return;

1930 1931
	update_context_time(ctx);

1932 1933
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1934

1935 1936
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1937

1938 1939
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1940

1941
		__perf_event_sync_stat(event, next_event);
1942

1943 1944
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1945 1946 1947
	}
}

1948 1949
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1950
{
P
Peter Zijlstra 已提交
1951
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1952 1953
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1954
	struct perf_cpu_context *cpuctx;
1955
	int do_switch = 1;
T
Thomas Gleixner 已提交
1956

P
Peter Zijlstra 已提交
1957 1958
	if (likely(!ctx))
		return;
1959

P
Peter Zijlstra 已提交
1960 1961
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1962 1963
		return;

1964 1965
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1966
	next_ctx = next->perf_event_ctxp[ctxn];
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1978 1979
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1980
		if (context_equiv(ctx, next_ctx)) {
1981 1982
			/*
			 * XXX do we need a memory barrier of sorts
1983
			 * wrt to rcu_dereference() of perf_event_ctxp
1984
			 */
P
Peter Zijlstra 已提交
1985 1986
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1987 1988 1989
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1990

1991
			perf_event_sync_stat(ctx, next_ctx);
1992
		}
1993 1994
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1995
	}
1996
	rcu_read_unlock();
1997

1998
	if (do_switch) {
1999
		raw_spin_lock(&ctx->lock);
2000
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2001
		cpuctx->task_ctx = NULL;
2002
		raw_spin_unlock(&ctx->lock);
2003
	}
T
Thomas Gleixner 已提交
2004 2005
}

P
Peter Zijlstra 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2020 2021
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2022 2023 2024 2025 2026
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2027 2028 2029 2030 2031 2032 2033

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2034
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2035 2036
}

2037
static void task_ctx_sched_out(struct perf_event_context *ctx)
2038
{
P
Peter Zijlstra 已提交
2039
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2040

2041 2042
	if (!cpuctx->task_ctx)
		return;
2043 2044 2045 2046

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2047
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2048 2049 2050
	cpuctx->task_ctx = NULL;
}

2051 2052 2053 2054 2055 2056 2057
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2058 2059
}

2060
static void
2061
ctx_pinned_sched_in(struct perf_event_context *ctx,
2062
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2063
{
2064
	struct perf_event *event;
T
Thomas Gleixner 已提交
2065

2066 2067
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2068
			continue;
2069
		if (!event_filter_match(event))
2070 2071
			continue;

S
Stephane Eranian 已提交
2072 2073 2074 2075
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2076
		if (group_can_go_on(event, cpuctx, 1))
2077
			group_sched_in(event, cpuctx, ctx);
2078 2079 2080 2081 2082

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2083 2084 2085
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2086
		}
2087
	}
2088 2089 2090 2091
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2092
		      struct perf_cpu_context *cpuctx)
2093 2094 2095
{
	struct perf_event *event;
	int can_add_hw = 1;
2096

2097 2098 2099
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2100
			continue;
2101 2102
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2103
		 * of events:
2104
		 */
2105
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2106 2107
			continue;

S
Stephane Eranian 已提交
2108 2109 2110 2111
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2112
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2113
			if (group_sched_in(event, cpuctx, ctx))
2114
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2115
		}
T
Thomas Gleixner 已提交
2116
	}
2117 2118 2119 2120 2121
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2122 2123
	     enum event_type_t event_type,
	     struct task_struct *task)
2124
{
S
Stephane Eranian 已提交
2125
	u64 now;
2126
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2127

2128
	ctx->is_active |= event_type;
2129
	if (likely(!ctx->nr_events))
2130
		return;
2131

S
Stephane Eranian 已提交
2132 2133
	now = perf_clock();
	ctx->timestamp = now;
2134
	perf_cgroup_set_timestamp(task, ctx);
2135 2136 2137 2138
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2139
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2140
		ctx_pinned_sched_in(ctx, cpuctx);
2141 2142

	/* Then walk through the lower prio flexible groups */
2143
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2144
		ctx_flexible_sched_in(ctx, cpuctx);
2145 2146
}

2147
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2148 2149
			     enum event_type_t event_type,
			     struct task_struct *task)
2150 2151 2152
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2153
	ctx_sched_in(ctx, cpuctx, event_type, task);
2154 2155
}

S
Stephane Eranian 已提交
2156 2157
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2158
{
P
Peter Zijlstra 已提交
2159
	struct perf_cpu_context *cpuctx;
2160

P
Peter Zijlstra 已提交
2161
	cpuctx = __get_cpu_context(ctx);
2162 2163 2164
	if (cpuctx->task_ctx == ctx)
		return;

2165
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2166
	perf_pmu_disable(ctx->pmu);
2167 2168 2169 2170 2171 2172 2173
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2174
	perf_event_sched_in(cpuctx, ctx, task);
2175 2176

	cpuctx->task_ctx = ctx;
2177

2178 2179 2180
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2181 2182 2183 2184
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2185
	perf_pmu_rotate_start(ctx->pmu);
2186 2187
}

P
Peter Zijlstra 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2199 2200
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2210
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2211
	}
S
Stephane Eranian 已提交
2212 2213 2214 2215 2216 2217
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2218
		perf_cgroup_sched_in(prev, task);
2219 2220
}

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2248
#define REDUCE_FLS(a, b)		\
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2288 2289 2290
	if (!divisor)
		return dividend;

2291 2292 2293 2294
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2295
{
2296
	struct hw_perf_event *hwc = &event->hw;
2297
	s64 period, sample_period;
2298 2299
	s64 delta;

2300
	period = perf_calculate_period(event, nsec, count);
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2311

2312
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2313
		event->pmu->stop(event, PERF_EF_UPDATE);
2314
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2315
		event->pmu->start(event, PERF_EF_RELOAD);
2316
	}
2317 2318
}

2319
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2320
{
2321 2322
	struct perf_event *event;
	struct hw_perf_event *hwc;
2323 2324
	u64 interrupts, now;
	s64 delta;
2325

2326
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2327
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2328 2329
			continue;

2330
		if (!event_filter_match(event))
2331 2332
			continue;

2333
		hwc = &event->hw;
2334 2335 2336

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2337

2338
		/*
2339
		 * unthrottle events on the tick
2340
		 */
2341
		if (interrupts == MAX_INTERRUPTS) {
2342
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2343
			event->pmu->start(event, 0);
2344 2345
		}

2346
		if (!event->attr.freq || !event->attr.sample_freq)
2347 2348
			continue;

2349
		event->pmu->read(event);
2350
		now = local64_read(&event->count);
2351 2352
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2353

2354
		if (delta > 0)
2355
			perf_adjust_period(event, period, delta);
2356 2357 2358
	}
}

2359
/*
2360
 * Round-robin a context's events:
2361
 */
2362
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2363
{
2364 2365 2366 2367 2368 2369
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2370 2371
}

2372
/*
2373 2374 2375
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2376
 */
2377
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2378
{
2379
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2380
	struct perf_event_context *ctx = NULL;
2381
	int rotate = 0, remove = 1;
2382

2383
	if (cpuctx->ctx.nr_events) {
2384
		remove = 0;
2385 2386 2387
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2388

P
Peter Zijlstra 已提交
2389
	ctx = cpuctx->task_ctx;
2390
	if (ctx && ctx->nr_events) {
2391
		remove = 0;
2392 2393 2394
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2395

2396
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2397
	perf_pmu_disable(cpuctx->ctx.pmu);
2398
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2399
	if (ctx)
2400
		perf_ctx_adjust_freq(ctx, interval);
2401

2402
	if (!rotate)
2403
		goto done;
2404

2405
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2406
	if (ctx)
2407
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2408

2409
	rotate_ctx(&cpuctx->ctx);
2410 2411
	if (ctx)
		rotate_ctx(ctx);
2412

2413
	perf_event_sched_in(cpuctx, ctx, current);
2414 2415

done:
2416 2417 2418
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2419
	perf_pmu_enable(cpuctx->ctx.pmu);
2420
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2421 2422 2423 2424 2425 2426
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2427

2428 2429 2430 2431 2432 2433 2434
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2435 2436
}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2452
/*
2453
 * Enable all of a task's events that have been marked enable-on-exec.
2454 2455
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2456
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2457
{
2458
	struct perf_event *event;
2459 2460
	unsigned long flags;
	int enabled = 0;
2461
	int ret;
2462 2463

	local_irq_save(flags);
2464
	if (!ctx || !ctx->nr_events)
2465 2466
		goto out;

2467 2468 2469 2470 2471 2472 2473
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2474
	perf_cgroup_sched_out(current, NULL);
2475

2476
	raw_spin_lock(&ctx->lock);
2477
	task_ctx_sched_out(ctx);
2478

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2489 2490 2491
	}

	/*
2492
	 * Unclone this context if we enabled any event.
2493
	 */
2494 2495
	if (enabled)
		unclone_ctx(ctx);
2496

2497
	raw_spin_unlock(&ctx->lock);
2498

2499 2500 2501
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2502
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2503
out:
2504 2505 2506
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2507
/*
2508
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2509
 */
2510
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2511
{
2512 2513
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2514
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2515

2516 2517 2518 2519
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2520 2521
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2522 2523 2524 2525
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2526
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2527
	if (ctx->is_active) {
2528
		update_context_time(ctx);
S
Stephane Eranian 已提交
2529 2530
		update_cgrp_time_from_event(event);
	}
2531
	update_event_times(event);
2532 2533
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2534
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2535 2536
}

P
Peter Zijlstra 已提交
2537 2538
static inline u64 perf_event_count(struct perf_event *event)
{
2539
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2540 2541
}

2542
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2543 2544
{
	/*
2545 2546
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2547
	 */
2548 2549 2550 2551
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2552 2553 2554
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2555
		raw_spin_lock_irqsave(&ctx->lock, flags);
2556 2557 2558 2559 2560
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2561
		if (ctx->is_active) {
2562
			update_context_time(ctx);
S
Stephane Eranian 已提交
2563 2564
			update_cgrp_time_from_event(event);
		}
2565
		update_event_times(event);
2566
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2567 2568
	}

P
Peter Zijlstra 已提交
2569
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2570 2571
}

2572
/*
2573
 * Initialize the perf_event context in a task_struct:
2574
 */
2575
static void __perf_event_init_context(struct perf_event_context *ctx)
2576
{
2577
	raw_spin_lock_init(&ctx->lock);
2578
	mutex_init(&ctx->mutex);
2579 2580
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2581 2582
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2598
	}
2599 2600 2601
	ctx->pmu = pmu;

	return ctx;
2602 2603
}

2604 2605 2606 2607 2608
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2609 2610

	rcu_read_lock();
2611
	if (!vpid)
T
Thomas Gleixner 已提交
2612 2613
		task = current;
	else
2614
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2615 2616 2617 2618 2619 2620 2621 2622
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2623 2624 2625 2626
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2627 2628 2629 2630 2631 2632 2633
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2634 2635 2636
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2637
static struct perf_event_context *
M
Matt Helsley 已提交
2638
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2639
{
2640
	struct perf_event_context *ctx;
2641
	struct perf_cpu_context *cpuctx;
2642
	unsigned long flags;
P
Peter Zijlstra 已提交
2643
	int ctxn, err;
T
Thomas Gleixner 已提交
2644

2645
	if (!task) {
2646
		/* Must be root to operate on a CPU event: */
2647
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2648 2649 2650
			return ERR_PTR(-EACCES);

		/*
2651
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2652 2653 2654
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2655
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2656 2657
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2658
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2659
		ctx = &cpuctx->ctx;
2660
		get_ctx(ctx);
2661
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2662 2663 2664 2665

		return ctx;
	}

P
Peter Zijlstra 已提交
2666 2667 2668 2669 2670
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2671
retry:
P
Peter Zijlstra 已提交
2672
	ctx = perf_lock_task_context(task, ctxn, &flags);
2673
	if (ctx) {
2674
		unclone_ctx(ctx);
2675
		++ctx->pin_count;
2676
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2677
	} else {
2678
		ctx = alloc_perf_context(pmu, task);
2679 2680 2681
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2682

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2693
		else {
2694
			get_ctx(ctx);
2695
			++ctx->pin_count;
2696
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2697
		}
2698 2699 2700
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2701
			put_ctx(ctx);
2702 2703 2704 2705

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2706 2707 2708
		}
	}

T
Thomas Gleixner 已提交
2709
	return ctx;
2710

P
Peter Zijlstra 已提交
2711
errout:
2712
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2713 2714
}

L
Li Zefan 已提交
2715 2716
static void perf_event_free_filter(struct perf_event *event);

2717
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2718
{
2719
	struct perf_event *event;
P
Peter Zijlstra 已提交
2720

2721 2722 2723
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2724
	perf_event_free_filter(event);
2725
	kfree(event);
P
Peter Zijlstra 已提交
2726 2727
}

2728
static void ring_buffer_put(struct ring_buffer *rb);
2729

2730
static void free_event(struct perf_event *event)
2731
{
2732
	irq_work_sync(&event->pending);
2733

2734
	if (!event->parent) {
2735
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2736
			jump_label_dec(&perf_sched_events);
2737
		if (event->attr.mmap || event->attr.mmap_data)
2738 2739 2740 2741 2742
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2743 2744
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2745 2746 2747 2748
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2749
	}
2750

2751 2752 2753
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2754 2755
	}

S
Stephane Eranian 已提交
2756 2757 2758
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2759 2760
	if (event->destroy)
		event->destroy(event);
2761

P
Peter Zijlstra 已提交
2762 2763 2764
	if (event->ctx)
		put_ctx(event->ctx);

2765
	call_rcu(&event->rcu_head, free_event_rcu);
2766 2767
}

2768
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2769
{
2770
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2771

2772
	WARN_ON_ONCE(ctx->parent_ctx);
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2786
	raw_spin_lock_irq(&ctx->lock);
2787
	perf_group_detach(event);
2788
	raw_spin_unlock_irq(&ctx->lock);
2789
	perf_remove_from_context(event);
2790
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2791

2792
	free_event(event);
T
Thomas Gleixner 已提交
2793 2794 2795

	return 0;
}
2796
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2797

2798 2799 2800 2801
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2802
{
2803
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2804
	struct task_struct *owner;
2805

2806
	file->private_data = NULL;
2807

P
Peter Zijlstra 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2841
	return perf_event_release_kernel(event);
2842 2843
}

2844
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2845
{
2846
	struct perf_event *child;
2847 2848
	u64 total = 0;

2849 2850 2851
	*enabled = 0;
	*running = 0;

2852
	mutex_lock(&event->child_mutex);
2853
	total += perf_event_read(event);
2854 2855 2856 2857 2858 2859
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2860
		total += perf_event_read(child);
2861 2862 2863
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2864
	mutex_unlock(&event->child_mutex);
2865 2866 2867

	return total;
}
2868
EXPORT_SYMBOL_GPL(perf_event_read_value);
2869

2870
static int perf_event_read_group(struct perf_event *event,
2871 2872
				   u64 read_format, char __user *buf)
{
2873
	struct perf_event *leader = event->group_leader, *sub;
2874 2875
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2876
	u64 values[5];
2877
	u64 count, enabled, running;
2878

2879
	mutex_lock(&ctx->mutex);
2880
	count = perf_event_read_value(leader, &enabled, &running);
2881 2882

	values[n++] = 1 + leader->nr_siblings;
2883 2884 2885 2886
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2887 2888 2889
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2890 2891 2892 2893

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2894
		goto unlock;
2895

2896
	ret = size;
2897

2898
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2899
		n = 0;
2900

2901
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2902 2903 2904 2905 2906
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2907
		if (copy_to_user(buf + ret, values, size)) {
2908 2909 2910
			ret = -EFAULT;
			goto unlock;
		}
2911 2912

		ret += size;
2913
	}
2914 2915
unlock:
	mutex_unlock(&ctx->mutex);
2916

2917
	return ret;
2918 2919
}

2920
static int perf_event_read_one(struct perf_event *event,
2921 2922
				 u64 read_format, char __user *buf)
{
2923
	u64 enabled, running;
2924 2925 2926
	u64 values[4];
	int n = 0;

2927 2928 2929 2930 2931
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2932
	if (read_format & PERF_FORMAT_ID)
2933
		values[n++] = primary_event_id(event);
2934 2935 2936 2937 2938 2939 2940

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2941
/*
2942
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2943 2944
 */
static ssize_t
2945
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2946
{
2947
	u64 read_format = event->attr.read_format;
2948
	int ret;
T
Thomas Gleixner 已提交
2949

2950
	/*
2951
	 * Return end-of-file for a read on a event that is in
2952 2953 2954
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2955
	if (event->state == PERF_EVENT_STATE_ERROR)
2956 2957
		return 0;

2958
	if (count < event->read_size)
2959 2960
		return -ENOSPC;

2961
	WARN_ON_ONCE(event->ctx->parent_ctx);
2962
	if (read_format & PERF_FORMAT_GROUP)
2963
		ret = perf_event_read_group(event, read_format, buf);
2964
	else
2965
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2966

2967
	return ret;
T
Thomas Gleixner 已提交
2968 2969 2970 2971 2972
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2973
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2974

2975
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2976 2977 2978 2979
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2980
	struct perf_event *event = file->private_data;
2981
	struct ring_buffer *rb;
2982
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2983 2984

	rcu_read_lock();
2985 2986 2987
	rb = rcu_dereference(event->rb);
	if (rb)
		events = atomic_xchg(&rb->poll, 0);
P
Peter Zijlstra 已提交
2988
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2989

2990
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2991 2992 2993 2994

	return events;
}

2995
static void perf_event_reset(struct perf_event *event)
2996
{
2997
	(void)perf_event_read(event);
2998
	local64_set(&event->count, 0);
2999
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3000 3001
}

3002
/*
3003 3004 3005 3006
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3007
 */
3008 3009
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3010
{
3011
	struct perf_event *child;
P
Peter Zijlstra 已提交
3012

3013 3014 3015 3016
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3017
		func(child);
3018
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3019 3020
}

3021 3022
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3023
{
3024 3025
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3026

3027 3028
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3029
	event = event->group_leader;
3030

3031 3032 3033 3034
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3035
	mutex_unlock(&ctx->mutex);
3036 3037
}

3038
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3039
{
3040
	struct perf_event_context *ctx = event->ctx;
3041 3042 3043
	int ret = 0;
	u64 value;

3044
	if (!is_sampling_event(event))
3045 3046
		return -EINVAL;

3047
	if (copy_from_user(&value, arg, sizeof(value)))
3048 3049 3050 3051 3052
		return -EFAULT;

	if (!value)
		return -EINVAL;

3053
	raw_spin_lock_irq(&ctx->lock);
3054 3055
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3056 3057 3058 3059
			ret = -EINVAL;
			goto unlock;
		}

3060
		event->attr.sample_freq = value;
3061
	} else {
3062 3063
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3064 3065
	}
unlock:
3066
	raw_spin_unlock_irq(&ctx->lock);
3067 3068 3069 3070

	return ret;
}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3092
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3093

3094 3095
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3096 3097
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3098
	u32 flags = arg;
3099 3100

	switch (cmd) {
3101 3102
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3103
		break;
3104 3105
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3106
		break;
3107 3108
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3109
		break;
P
Peter Zijlstra 已提交
3110

3111 3112
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3113

3114 3115
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3116

3117
	case PERF_EVENT_IOC_SET_OUTPUT:
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3135

L
Li Zefan 已提交
3136 3137 3138
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3139
	default:
P
Peter Zijlstra 已提交
3140
		return -ENOTTY;
3141
	}
P
Peter Zijlstra 已提交
3142 3143

	if (flags & PERF_IOC_FLAG_GROUP)
3144
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3145
	else
3146
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3147 3148

	return 0;
3149 3150
}

3151
int perf_event_task_enable(void)
3152
{
3153
	struct perf_event *event;
3154

3155 3156 3157 3158
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3159 3160 3161 3162

	return 0;
}

3163
int perf_event_task_disable(void)
3164
{
3165
	struct perf_event *event;
3166

3167 3168 3169 3170
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3171 3172 3173 3174

	return 0;
}

3175 3176
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3177 3178
#endif

3179
static int perf_event_index(struct perf_event *event)
3180
{
P
Peter Zijlstra 已提交
3181 3182 3183
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3184
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3185 3186
		return 0;

3187
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3188 3189
}

3190
static void calc_timer_values(struct perf_event *event,
3191 3192
				u64 *enabled,
				u64 *running)
3193 3194 3195 3196 3197 3198 3199 3200 3201
{
	u64 now, ctx_time;

	now = perf_clock();
	ctx_time = event->shadow_ctx_time + now;
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3202 3203 3204 3205 3206
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3207
void perf_event_update_userpage(struct perf_event *event)
3208
{
3209
	struct perf_event_mmap_page *userpg;
3210
	struct ring_buffer *rb;
3211
	u64 enabled, running;
3212 3213

	rcu_read_lock();
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
	calc_timer_values(event, &enabled, &running);
3224 3225
	rb = rcu_dereference(event->rb);
	if (!rb)
3226 3227
		goto unlock;

3228
	userpg = rb->user_page;
3229

3230 3231 3232 3233 3234
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3235
	++userpg->lock;
3236
	barrier();
3237
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3238
	userpg->offset = perf_event_count(event);
3239
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3240
		userpg->offset -= local64_read(&event->hw.prev_count);
3241

3242
	userpg->time_enabled = enabled +
3243
			atomic64_read(&event->child_total_time_enabled);
3244

3245
	userpg->time_running = running +
3246
			atomic64_read(&event->child_total_time_running);
3247

3248
	barrier();
3249
	++userpg->lock;
3250
	preempt_enable();
3251
unlock:
3252
	rcu_read_unlock();
3253 3254
}

3255 3256 3257
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3258
	struct ring_buffer *rb;
3259 3260 3261 3262 3263 3264 3265 3266 3267
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3268 3269
	rb = rcu_dereference(event->rb);
	if (!rb)
3270 3271 3272 3273 3274
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3275
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3290
static void rb_free_rcu(struct rcu_head *rcu_head)
3291
{
3292
	struct ring_buffer *rb;
3293

3294 3295
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3296 3297
}

3298
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3299
{
3300
	struct ring_buffer *rb;
3301

3302
	rcu_read_lock();
3303 3304 3305 3306
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3307 3308 3309
	}
	rcu_read_unlock();

3310
	return rb;
3311 3312
}

3313
static void ring_buffer_put(struct ring_buffer *rb)
3314
{
3315
	if (!atomic_dec_and_test(&rb->refcount))
3316
		return;
3317

3318
	call_rcu(&rb->rcu_head, rb_free_rcu);
3319 3320 3321 3322
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3323
	struct perf_event *event = vma->vm_file->private_data;
3324

3325
	atomic_inc(&event->mmap_count);
3326 3327 3328 3329
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3330
	struct perf_event *event = vma->vm_file->private_data;
3331

3332
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3333
		unsigned long size = perf_data_size(event->rb);
3334
		struct user_struct *user = event->mmap_user;
3335
		struct ring_buffer *rb = event->rb;
3336

3337
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3338
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3339
		rcu_assign_pointer(event->rb, NULL);
3340
		mutex_unlock(&event->mmap_mutex);
3341

3342
		ring_buffer_put(rb);
3343
		free_uid(user);
3344
	}
3345 3346
}

3347
static const struct vm_operations_struct perf_mmap_vmops = {
3348 3349 3350 3351
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3352 3353 3354 3355
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3356
	struct perf_event *event = file->private_data;
3357
	unsigned long user_locked, user_lock_limit;
3358
	struct user_struct *user = current_user();
3359
	unsigned long locked, lock_limit;
3360
	struct ring_buffer *rb;
3361 3362
	unsigned long vma_size;
	unsigned long nr_pages;
3363
	long user_extra, extra;
3364
	int ret = 0, flags = 0;
3365

3366 3367 3368
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3369
	 * same rb.
3370 3371 3372 3373
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3374
	if (!(vma->vm_flags & VM_SHARED))
3375
		return -EINVAL;
3376 3377 3378 3379

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3380
	/*
3381
	 * If we have rb pages ensure they're a power-of-two number, so we
3382 3383 3384
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3385 3386
		return -EINVAL;

3387
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3388 3389
		return -EINVAL;

3390 3391
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3392

3393 3394
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3395 3396 3397
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3398
		else
3399 3400 3401 3402
			ret = -EINVAL;
		goto unlock;
	}

3403
	user_extra = nr_pages + 1;
3404
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3405 3406 3407 3408 3409 3410

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3411
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3412

3413 3414 3415
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3416

3417
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3418
	lock_limit >>= PAGE_SHIFT;
3419
	locked = vma->vm_mm->pinned_vm + extra;
3420

3421 3422
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3423 3424 3425
		ret = -EPERM;
		goto unlock;
	}
3426

3427
	WARN_ON(event->rb);
3428

3429
	if (vma->vm_flags & VM_WRITE)
3430
		flags |= RING_BUFFER_WRITABLE;
3431

3432 3433 3434 3435
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3436
	if (!rb) {
3437
		ret = -ENOMEM;
3438
		goto unlock;
3439
	}
3440
	rcu_assign_pointer(event->rb, rb);
3441

3442 3443 3444
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3445
	vma->vm_mm->pinned_vm += event->mmap_locked;
3446

3447
unlock:
3448 3449
	if (!ret)
		atomic_inc(&event->mmap_count);
3450
	mutex_unlock(&event->mmap_mutex);
3451 3452 3453

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3454 3455

	return ret;
3456 3457
}

P
Peter Zijlstra 已提交
3458 3459 3460
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3461
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3462 3463 3464
	int retval;

	mutex_lock(&inode->i_mutex);
3465
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3466 3467 3468 3469 3470 3471 3472 3473
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3474
static const struct file_operations perf_fops = {
3475
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3476 3477 3478
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3479 3480
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3481
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3482
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3483 3484
};

3485
/*
3486
 * Perf event wakeup
3487 3488 3489 3490 3491
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3492
void perf_event_wakeup(struct perf_event *event)
3493
{
3494
	wake_up_all(&event->waitq);
3495

3496 3497 3498
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3499
	}
3500 3501
}

3502
static void perf_pending_event(struct irq_work *entry)
3503
{
3504 3505
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3506

3507 3508 3509
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3510 3511
	}

3512 3513 3514
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3515 3516 3517
	}
}

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3539 3540 3541
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3569 3570 3571
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3598 3599 3600
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3601 3602 3603 3604 3605
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3606
static void perf_output_read_one(struct perf_output_handle *handle,
3607 3608
				 struct perf_event *event,
				 u64 enabled, u64 running)
3609
{
3610
	u64 read_format = event->attr.read_format;
3611 3612 3613
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3614
	values[n++] = perf_event_count(event);
3615
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3616
		values[n++] = enabled +
3617
			atomic64_read(&event->child_total_time_enabled);
3618 3619
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3620
		values[n++] = running +
3621
			atomic64_read(&event->child_total_time_running);
3622 3623
	}
	if (read_format & PERF_FORMAT_ID)
3624
		values[n++] = primary_event_id(event);
3625

3626
	__output_copy(handle, values, n * sizeof(u64));
3627 3628 3629
}

/*
3630
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3631 3632
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3633 3634
			    struct perf_event *event,
			    u64 enabled, u64 running)
3635
{
3636 3637
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3638 3639 3640 3641 3642 3643
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3644
		values[n++] = enabled;
3645 3646

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3647
		values[n++] = running;
3648

3649
	if (leader != event)
3650 3651
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3652
	values[n++] = perf_event_count(leader);
3653
	if (read_format & PERF_FORMAT_ID)
3654
		values[n++] = primary_event_id(leader);
3655

3656
	__output_copy(handle, values, n * sizeof(u64));
3657

3658
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3659 3660
		n = 0;

3661
		if (sub != event)
3662 3663
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3664
		values[n++] = perf_event_count(sub);
3665
		if (read_format & PERF_FORMAT_ID)
3666
			values[n++] = primary_event_id(sub);
3667

3668
		__output_copy(handle, values, n * sizeof(u64));
3669 3670 3671
	}
}

3672 3673 3674
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3675
static void perf_output_read(struct perf_output_handle *handle,
3676
			     struct perf_event *event)
3677
{
3678
	u64 enabled = 0, running = 0;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
3690 3691
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
		calc_timer_values(event, &enabled, &running);
3692

3693
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3694
		perf_output_read_group(handle, event, enabled, running);
3695
	else
3696
		perf_output_read_one(handle, event, enabled, running);
3697 3698
}

3699 3700 3701
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3702
			struct perf_event *event)
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3733
		perf_output_read(handle, event);
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

3744
			__output_copy(handle, data->callchain, size);
3745 3746 3747 3748 3749 3750 3751 3752 3753
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
3754 3755
			__output_copy(handle, data->raw->data,
					   data->raw->size);
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
3781 3782 3783 3784
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3785
			 struct perf_event *event,
3786
			 struct pt_regs *regs)
3787
{
3788
	u64 sample_type = event->attr.sample_type;
3789

3790
	header->type = PERF_RECORD_SAMPLE;
3791
	header->size = sizeof(*header) + event->header_size;
3792 3793 3794

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3795

3796
	__perf_event_header__init_id(header, data, event);
3797

3798
	if (sample_type & PERF_SAMPLE_IP)
3799 3800
		data->ip = perf_instruction_pointer(regs);

3801
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3802
		int size = 1;
3803

3804 3805 3806 3807 3808 3809
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3810 3811
	}

3812
	if (sample_type & PERF_SAMPLE_RAW) {
3813 3814 3815 3816 3817 3818 3819 3820
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3821
		header->size += size;
3822
	}
3823
}
3824

3825
static void perf_event_output(struct perf_event *event,
3826 3827 3828 3829 3830
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3831

3832 3833 3834
	/* protect the callchain buffers */
	rcu_read_lock();

3835
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3836

3837
	if (perf_output_begin(&handle, event, header.size))
3838
		goto exit;
3839

3840
	perf_output_sample(&handle, &header, data, event);
3841

3842
	perf_output_end(&handle);
3843 3844 3845

exit:
	rcu_read_unlock();
3846 3847
}

3848
/*
3849
 * read event_id
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3860
perf_event_read_event(struct perf_event *event,
3861 3862 3863
			struct task_struct *task)
{
	struct perf_output_handle handle;
3864
	struct perf_sample_data sample;
3865
	struct perf_read_event read_event = {
3866
		.header = {
3867
			.type = PERF_RECORD_READ,
3868
			.misc = 0,
3869
			.size = sizeof(read_event) + event->read_size,
3870
		},
3871 3872
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3873
	};
3874
	int ret;
3875

3876
	perf_event_header__init_id(&read_event.header, &sample, event);
3877
	ret = perf_output_begin(&handle, event, read_event.header.size);
3878 3879 3880
	if (ret)
		return;

3881
	perf_output_put(&handle, read_event);
3882
	perf_output_read(&handle, event);
3883
	perf_event__output_id_sample(event, &handle, &sample);
3884

3885 3886 3887
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3888
/*
P
Peter Zijlstra 已提交
3889 3890
 * task tracking -- fork/exit
 *
3891
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3892 3893
 */

P
Peter Zijlstra 已提交
3894
struct perf_task_event {
3895
	struct task_struct		*task;
3896
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3897 3898 3899 3900 3901 3902

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3903 3904
		u32				tid;
		u32				ptid;
3905
		u64				time;
3906
	} event_id;
P
Peter Zijlstra 已提交
3907 3908
};

3909
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3910
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3911 3912
{
	struct perf_output_handle handle;
3913
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
3914
	struct task_struct *task = task_event->task;
3915
	int ret, size = task_event->event_id.header.size;
3916

3917
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
3918

3919
	ret = perf_output_begin(&handle, event,
3920
				task_event->event_id.header.size);
3921
	if (ret)
3922
		goto out;
P
Peter Zijlstra 已提交
3923

3924 3925
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3926

3927 3928
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3929

3930
	perf_output_put(&handle, task_event->event_id);
3931

3932 3933
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
3934
	perf_output_end(&handle);
3935 3936
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
3937 3938
}

3939
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3940
{
P
Peter Zijlstra 已提交
3941
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3942 3943
		return 0;

3944
	if (!event_filter_match(event))
3945 3946
		return 0;

3947 3948
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3949 3950 3951 3952 3953
		return 1;

	return 0;
}

3954
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3955
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3956
{
3957
	struct perf_event *event;
P
Peter Zijlstra 已提交
3958

3959 3960 3961
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3962 3963 3964
	}
}

3965
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3966 3967
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
3968
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3969
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3970
	int ctxn;
P
Peter Zijlstra 已提交
3971

3972
	rcu_read_lock();
P
Peter Zijlstra 已提交
3973
	list_for_each_entry_rcu(pmu, &pmus, entry) {
3974
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3975 3976
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
3977
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3978 3979 3980 3981 3982

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
3983
				goto next;
P
Peter Zijlstra 已提交
3984 3985 3986 3987
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
3988 3989
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3990
	}
P
Peter Zijlstra 已提交
3991 3992 3993
	rcu_read_unlock();
}

3994 3995
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3996
			      int new)
P
Peter Zijlstra 已提交
3997
{
P
Peter Zijlstra 已提交
3998
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3999

4000 4001 4002
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4003 4004
		return;

P
Peter Zijlstra 已提交
4005
	task_event = (struct perf_task_event){
4006 4007
		.task	  = task,
		.task_ctx = task_ctx,
4008
		.event_id    = {
P
Peter Zijlstra 已提交
4009
			.header = {
4010
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4011
				.misc = 0,
4012
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4013
			},
4014 4015
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4016 4017
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4018
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4019 4020 4021
		},
	};

4022
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4023 4024
}

4025
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4026
{
4027
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4028 4029
}

4030 4031 4032 4033 4034
/*
 * comm tracking
 */

struct perf_comm_event {
4035 4036
	struct task_struct	*task;
	char			*comm;
4037 4038 4039 4040 4041 4042 4043
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4044
	} event_id;
4045 4046
};

4047
static void perf_event_comm_output(struct perf_event *event,
4048 4049 4050
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4051
	struct perf_sample_data sample;
4052
	int size = comm_event->event_id.header.size;
4053 4054 4055 4056
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4057
				comm_event->event_id.header.size);
4058 4059

	if (ret)
4060
		goto out;
4061

4062 4063
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4064

4065
	perf_output_put(&handle, comm_event->event_id);
4066
	__output_copy(&handle, comm_event->comm,
4067
				   comm_event->comm_size);
4068 4069 4070

	perf_event__output_id_sample(event, &handle, &sample);

4071
	perf_output_end(&handle);
4072 4073
out:
	comm_event->event_id.header.size = size;
4074 4075
}

4076
static int perf_event_comm_match(struct perf_event *event)
4077
{
P
Peter Zijlstra 已提交
4078
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4079 4080
		return 0;

4081
	if (!event_filter_match(event))
4082 4083
		return 0;

4084
	if (event->attr.comm)
4085 4086 4087 4088 4089
		return 1;

	return 0;
}

4090
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4091 4092
				  struct perf_comm_event *comm_event)
{
4093
	struct perf_event *event;
4094

4095 4096 4097
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4098 4099 4100
	}
}

4101
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4102 4103
{
	struct perf_cpu_context *cpuctx;
4104
	struct perf_event_context *ctx;
4105
	char comm[TASK_COMM_LEN];
4106
	unsigned int size;
P
Peter Zijlstra 已提交
4107
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4108
	int ctxn;
4109

4110
	memset(comm, 0, sizeof(comm));
4111
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4112
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4113 4114 4115 4116

	comm_event->comm = comm;
	comm_event->comm_size = size;

4117
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4118
	rcu_read_lock();
P
Peter Zijlstra 已提交
4119
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4120
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4121 4122
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4123
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4124 4125 4126

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4127
			goto next;
P
Peter Zijlstra 已提交
4128 4129 4130 4131

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4132 4133
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4134
	}
4135
	rcu_read_unlock();
4136 4137
}

4138
void perf_event_comm(struct task_struct *task)
4139
{
4140
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4141 4142
	struct perf_event_context *ctx;
	int ctxn;
4143

P
Peter Zijlstra 已提交
4144 4145 4146 4147
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4148

P
Peter Zijlstra 已提交
4149 4150
		perf_event_enable_on_exec(ctx);
	}
4151

4152
	if (!atomic_read(&nr_comm_events))
4153
		return;
4154

4155
	comm_event = (struct perf_comm_event){
4156
		.task	= task,
4157 4158
		/* .comm      */
		/* .comm_size */
4159
		.event_id  = {
4160
			.header = {
4161
				.type = PERF_RECORD_COMM,
4162 4163 4164 4165 4166
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4167 4168 4169
		},
	};

4170
	perf_event_comm_event(&comm_event);
4171 4172
}

4173 4174 4175 4176 4177
/*
 * mmap tracking
 */

struct perf_mmap_event {
4178 4179 4180 4181
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4182 4183 4184 4185 4186 4187 4188 4189 4190

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4191
	} event_id;
4192 4193
};

4194
static void perf_event_mmap_output(struct perf_event *event,
4195 4196 4197
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4198
	struct perf_sample_data sample;
4199
	int size = mmap_event->event_id.header.size;
4200
	int ret;
4201

4202 4203
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4204
				mmap_event->event_id.header.size);
4205
	if (ret)
4206
		goto out;
4207

4208 4209
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4210

4211
	perf_output_put(&handle, mmap_event->event_id);
4212
	__output_copy(&handle, mmap_event->file_name,
4213
				   mmap_event->file_size);
4214 4215 4216

	perf_event__output_id_sample(event, &handle, &sample);

4217
	perf_output_end(&handle);
4218 4219
out:
	mmap_event->event_id.header.size = size;
4220 4221
}

4222
static int perf_event_mmap_match(struct perf_event *event,
4223 4224
				   struct perf_mmap_event *mmap_event,
				   int executable)
4225
{
P
Peter Zijlstra 已提交
4226
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4227 4228
		return 0;

4229
	if (!event_filter_match(event))
4230 4231
		return 0;

4232 4233
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4234 4235 4236 4237 4238
		return 1;

	return 0;
}

4239
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4240 4241
				  struct perf_mmap_event *mmap_event,
				  int executable)
4242
{
4243
	struct perf_event *event;
4244

4245
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4246
		if (perf_event_mmap_match(event, mmap_event, executable))
4247
			perf_event_mmap_output(event, mmap_event);
4248 4249 4250
	}
}

4251
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4252 4253
{
	struct perf_cpu_context *cpuctx;
4254
	struct perf_event_context *ctx;
4255 4256
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4257 4258 4259
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4260
	const char *name;
P
Peter Zijlstra 已提交
4261
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4262
	int ctxn;
4263

4264 4265
	memset(tmp, 0, sizeof(tmp));

4266
	if (file) {
4267
		/*
4268
		 * d_path works from the end of the rb backwards, so we
4269 4270 4271 4272
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4273 4274 4275 4276
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4277
		name = d_path(&file->f_path, buf, PATH_MAX);
4278 4279 4280 4281 4282
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4283 4284 4285
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4286
			goto got_name;
4287
		}
4288 4289 4290 4291

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4292 4293 4294 4295 4296 4297 4298 4299
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4300 4301
		}

4302 4303 4304 4305 4306
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4307
	size = ALIGN(strlen(name)+1, sizeof(u64));
4308 4309 4310 4311

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4312
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4313

4314
	rcu_read_lock();
P
Peter Zijlstra 已提交
4315
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4316
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4317 4318
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4319 4320
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4321 4322 4323

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4324
			goto next;
P
Peter Zijlstra 已提交
4325 4326 4327 4328 4329 4330

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4331 4332
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4333
	}
4334 4335
	rcu_read_unlock();

4336 4337 4338
	kfree(buf);
}

4339
void perf_event_mmap(struct vm_area_struct *vma)
4340
{
4341 4342
	struct perf_mmap_event mmap_event;

4343
	if (!atomic_read(&nr_mmap_events))
4344 4345 4346
		return;

	mmap_event = (struct perf_mmap_event){
4347
		.vma	= vma,
4348 4349
		/* .file_name */
		/* .file_size */
4350
		.event_id  = {
4351
			.header = {
4352
				.type = PERF_RECORD_MMAP,
4353
				.misc = PERF_RECORD_MISC_USER,
4354 4355 4356 4357
				/* .size */
			},
			/* .pid */
			/* .tid */
4358 4359
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4360
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4361 4362 4363
		},
	};

4364
	perf_event_mmap_event(&mmap_event);
4365 4366
}

4367 4368 4369 4370
/*
 * IRQ throttle logging
 */

4371
static void perf_log_throttle(struct perf_event *event, int enable)
4372 4373
{
	struct perf_output_handle handle;
4374
	struct perf_sample_data sample;
4375 4376 4377 4378 4379
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4380
		u64				id;
4381
		u64				stream_id;
4382 4383
	} throttle_event = {
		.header = {
4384
			.type = PERF_RECORD_THROTTLE,
4385 4386 4387
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4388
		.time		= perf_clock(),
4389 4390
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4391 4392
	};

4393
	if (enable)
4394
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4395

4396 4397 4398
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4399
				throttle_event.header.size);
4400 4401 4402 4403
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4404
	perf_event__output_id_sample(event, &handle, &sample);
4405 4406 4407
	perf_output_end(&handle);
}

4408
/*
4409
 * Generic event overflow handling, sampling.
4410 4411
 */

4412
static int __perf_event_overflow(struct perf_event *event,
4413 4414
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4415
{
4416 4417
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4418 4419
	int ret = 0;

4420 4421 4422 4423 4424 4425 4426
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4427 4428 4429 4430
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4431 4432
			ret = 1;
		}
P
Peter Zijlstra 已提交
4433 4434
	} else
		hwc->interrupts++;
4435

4436
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4437
		u64 now = perf_clock();
4438
		s64 delta = now - hwc->freq_time_stamp;
4439

4440
		hwc->freq_time_stamp = now;
4441

4442 4443
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4444 4445
	}

4446 4447
	/*
	 * XXX event_limit might not quite work as expected on inherited
4448
	 * events
4449 4450
	 */

4451 4452
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4453
		ret = 1;
4454
		event->pending_kill = POLL_HUP;
4455 4456
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4457 4458
	}

4459
	if (event->overflow_handler)
4460
		event->overflow_handler(event, data, regs);
4461
	else
4462
		perf_event_output(event, data, regs);
4463

P
Peter Zijlstra 已提交
4464
	if (event->fasync && event->pending_kill) {
4465 4466
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4467 4468
	}

4469
	return ret;
4470 4471
}

4472
int perf_event_overflow(struct perf_event *event,
4473 4474
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4475
{
4476
	return __perf_event_overflow(event, 1, data, regs);
4477 4478
}

4479
/*
4480
 * Generic software event infrastructure
4481 4482
 */

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4494
/*
4495 4496
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4497 4498 4499 4500
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4501
static u64 perf_swevent_set_period(struct perf_event *event)
4502
{
4503
	struct hw_perf_event *hwc = &event->hw;
4504 4505 4506 4507 4508
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4509 4510

again:
4511
	old = val = local64_read(&hwc->period_left);
4512 4513
	if (val < 0)
		return 0;
4514

4515 4516 4517
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4518
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4519
		goto again;
4520

4521
	return nr;
4522 4523
}

4524
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4525
				    struct perf_sample_data *data,
4526
				    struct pt_regs *regs)
4527
{
4528
	struct hw_perf_event *hwc = &event->hw;
4529
	int throttle = 0;
4530

4531
	data->period = event->hw.last_period;
4532 4533
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4534

4535 4536
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4537

4538
	for (; overflow; overflow--) {
4539
		if (__perf_event_overflow(event, throttle,
4540
					    data, regs)) {
4541 4542 4543 4544 4545 4546
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4547
		throttle = 1;
4548
	}
4549 4550
}

P
Peter Zijlstra 已提交
4551
static void perf_swevent_event(struct perf_event *event, u64 nr,
4552
			       struct perf_sample_data *data,
4553
			       struct pt_regs *regs)
4554
{
4555
	struct hw_perf_event *hwc = &event->hw;
4556

4557
	local64_add(nr, &event->count);
4558

4559 4560 4561
	if (!regs)
		return;

4562
	if (!is_sampling_event(event))
4563
		return;
4564

4565
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4566
		return perf_swevent_overflow(event, 1, data, regs);
4567

4568
	if (local64_add_negative(nr, &hwc->period_left))
4569
		return;
4570

4571
	perf_swevent_overflow(event, 0, data, regs);
4572 4573
}

4574 4575 4576
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4577
	if (event->hw.state & PERF_HES_STOPPED)
4578
		return 1;
P
Peter Zijlstra 已提交
4579

4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4591
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4592
				enum perf_type_id type,
L
Li Zefan 已提交
4593 4594 4595
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4596
{
4597
	if (event->attr.type != type)
4598
		return 0;
4599

4600
	if (event->attr.config != event_id)
4601 4602
		return 0;

4603 4604
	if (perf_exclude_event(event, regs))
		return 0;
4605 4606 4607 4608

	return 1;
}

4609 4610 4611 4612 4613 4614 4615
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4616 4617
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4618
{
4619 4620 4621 4622
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4623

4624 4625
/* For the read side: events when they trigger */
static inline struct hlist_head *
4626
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4627 4628
{
	struct swevent_hlist *hlist;
4629

4630
	hlist = rcu_dereference(swhash->swevent_hlist);
4631 4632 4633
	if (!hlist)
		return NULL;

4634 4635 4636 4637 4638
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4639
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4650
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4651 4652 4653 4654 4655
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4656 4657 4658
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4659
				    u64 nr,
4660 4661
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4662
{
4663
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4664
	struct perf_event *event;
4665 4666
	struct hlist_node *node;
	struct hlist_head *head;
4667

4668
	rcu_read_lock();
4669
	head = find_swevent_head_rcu(swhash, type, event_id);
4670 4671 4672 4673
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4674
		if (perf_swevent_match(event, type, event_id, data, regs))
4675
			perf_swevent_event(event, nr, data, regs);
4676
	}
4677 4678
end:
	rcu_read_unlock();
4679 4680
}

4681
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4682
{
4683
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4684

4685
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4686
}
I
Ingo Molnar 已提交
4687
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4688

4689
inline void perf_swevent_put_recursion_context(int rctx)
4690
{
4691
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4692

4693
	put_recursion_context(swhash->recursion, rctx);
4694
}
4695

4696
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4697
{
4698
	struct perf_sample_data data;
4699 4700
	int rctx;

4701
	preempt_disable_notrace();
4702 4703 4704
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4705

4706
	perf_sample_data_init(&data, addr);
4707

4708
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4709 4710

	perf_swevent_put_recursion_context(rctx);
4711
	preempt_enable_notrace();
4712 4713
}

4714
static void perf_swevent_read(struct perf_event *event)
4715 4716 4717
{
}

P
Peter Zijlstra 已提交
4718
static int perf_swevent_add(struct perf_event *event, int flags)
4719
{
4720
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4721
	struct hw_perf_event *hwc = &event->hw;
4722 4723
	struct hlist_head *head;

4724
	if (is_sampling_event(event)) {
4725
		hwc->last_period = hwc->sample_period;
4726
		perf_swevent_set_period(event);
4727
	}
4728

P
Peter Zijlstra 已提交
4729 4730
	hwc->state = !(flags & PERF_EF_START);

4731
	head = find_swevent_head(swhash, event);
4732 4733 4734 4735 4736
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4737 4738 4739
	return 0;
}

P
Peter Zijlstra 已提交
4740
static void perf_swevent_del(struct perf_event *event, int flags)
4741
{
4742
	hlist_del_rcu(&event->hlist_entry);
4743 4744
}

P
Peter Zijlstra 已提交
4745
static void perf_swevent_start(struct perf_event *event, int flags)
4746
{
P
Peter Zijlstra 已提交
4747
	event->hw.state = 0;
4748
}
I
Ingo Molnar 已提交
4749

P
Peter Zijlstra 已提交
4750
static void perf_swevent_stop(struct perf_event *event, int flags)
4751
{
P
Peter Zijlstra 已提交
4752
	event->hw.state = PERF_HES_STOPPED;
4753 4754
}

4755 4756
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4757
swevent_hlist_deref(struct swevent_htable *swhash)
4758
{
4759 4760
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4761 4762
}

4763
static void swevent_hlist_release(struct swevent_htable *swhash)
4764
{
4765
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4766

4767
	if (!hlist)
4768 4769
		return;

4770
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4771
	kfree_rcu(hlist, rcu_head);
4772 4773 4774 4775
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4776
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4777

4778
	mutex_lock(&swhash->hlist_mutex);
4779

4780 4781
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4782

4783
	mutex_unlock(&swhash->hlist_mutex);
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4801
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4802 4803
	int err = 0;

4804
	mutex_lock(&swhash->hlist_mutex);
4805

4806
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4807 4808 4809 4810 4811 4812 4813
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4814
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4815
	}
4816
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4817
exit:
4818
	mutex_unlock(&swhash->hlist_mutex);
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4842
fail:
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4853
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4854

4855 4856 4857
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
4858

4859 4860
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
4861
	jump_label_dec(&perf_swevent_enabled[event_id]);
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

4881
	if (event_id >= PERF_COUNT_SW_MAX)
4882 4883 4884 4885 4886 4887 4888 4889 4890
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
4891
		jump_label_inc(&perf_swevent_enabled[event_id]);
4892 4893 4894 4895 4896 4897 4898
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
4899
	.task_ctx_nr	= perf_sw_context,
4900

4901
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4902 4903 4904 4905
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4906 4907 4908
	.read		= perf_swevent_read,
};

4909 4910
#ifdef CONFIG_EVENT_TRACING

4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4925 4926
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
4927 4928 4929 4930
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4931 4932 4933 4934 4935 4936 4937 4938 4939
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4940
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4941 4942
{
	struct perf_sample_data data;
4943 4944 4945
	struct perf_event *event;
	struct hlist_node *node;

4946 4947 4948 4949 4950 4951 4952 4953
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4954 4955
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
4956
			perf_swevent_event(event, count, &data, regs);
4957
	}
4958 4959

	perf_swevent_put_recursion_context(rctx);
4960 4961 4962
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4963
static void tp_perf_event_destroy(struct perf_event *event)
4964
{
4965
	perf_trace_destroy(event);
4966 4967
}

4968
static int perf_tp_event_init(struct perf_event *event)
4969
{
4970 4971
	int err;

4972 4973 4974
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4975 4976
	err = perf_trace_init(event);
	if (err)
4977
		return err;
4978

4979
	event->destroy = tp_perf_event_destroy;
4980

4981 4982 4983 4984
	return 0;
}

static struct pmu perf_tracepoint = {
4985 4986
	.task_ctx_nr	= perf_sw_context,

4987
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4988 4989 4990 4991
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4992 4993 4994 4995 4996
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
4997
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
4998
}
L
Li Zefan 已提交
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5023
#else
L
Li Zefan 已提交
5024

5025
static inline void perf_tp_register(void)
5026 5027
{
}
L
Li Zefan 已提交
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5038
#endif /* CONFIG_EVENT_TRACING */
5039

5040
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5041
void perf_bp_event(struct perf_event *bp, void *data)
5042
{
5043 5044 5045
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5046
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5047

P
Peter Zijlstra 已提交
5048
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5049
		perf_swevent_event(bp, 1, &sample, regs);
5050 5051 5052
}
#endif

5053 5054 5055
/*
 * hrtimer based swevent callback
 */
5056

5057
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5058
{
5059 5060 5061 5062 5063
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5064

5065
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5066 5067 5068 5069

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5070
	event->pmu->read(event);
5071

5072 5073 5074 5075 5076 5077
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
5078
			if (perf_event_overflow(event, &data, regs))
5079 5080
				ret = HRTIMER_NORESTART;
	}
5081

5082 5083
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5084

5085
	return ret;
5086 5087
}

5088
static void perf_swevent_start_hrtimer(struct perf_event *event)
5089
{
5090
	struct hw_perf_event *hwc = &event->hw;
5091 5092 5093 5094
	s64 period;

	if (!is_sampling_event(event))
		return;
5095

5096 5097 5098 5099
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5100

5101 5102 5103 5104 5105
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5106
				ns_to_ktime(period), 0,
5107
				HRTIMER_MODE_REL_PINNED, 0);
5108
}
5109 5110

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5111
{
5112 5113
	struct hw_perf_event *hwc = &event->hw;

5114
	if (is_sampling_event(event)) {
5115
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5116
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5117 5118 5119

		hrtimer_cancel(&hwc->hrtimer);
	}
5120 5121
}

P
Peter Zijlstra 已提交
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5146 5147 5148 5149 5150
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5151
{
5152 5153 5154
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5155
	now = local_clock();
5156 5157
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5158 5159
}

P
Peter Zijlstra 已提交
5160
static void cpu_clock_event_start(struct perf_event *event, int flags)
5161
{
P
Peter Zijlstra 已提交
5162
	local64_set(&event->hw.prev_count, local_clock());
5163 5164 5165
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5166
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5167
{
5168 5169 5170
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5171

P
Peter Zijlstra 已提交
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5185 5186 5187 5188
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5189

5190 5191 5192 5193 5194 5195 5196 5197
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5198 5199
	perf_swevent_init_hrtimer(event);

5200
	return 0;
5201 5202
}

5203
static struct pmu perf_cpu_clock = {
5204 5205
	.task_ctx_nr	= perf_sw_context,

5206
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5207 5208 5209 5210
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5211 5212 5213 5214 5215 5216 5217 5218
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5219
{
5220 5221
	u64 prev;
	s64 delta;
5222

5223 5224 5225 5226
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5227

P
Peter Zijlstra 已提交
5228
static void task_clock_event_start(struct perf_event *event, int flags)
5229
{
P
Peter Zijlstra 已提交
5230
	local64_set(&event->hw.prev_count, event->ctx->time);
5231 5232 5233
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5234
static void task_clock_event_stop(struct perf_event *event, int flags)
5235 5236 5237
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5238 5239 5240 5241 5242 5243
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5244

P
Peter Zijlstra 已提交
5245 5246 5247 5248 5249 5250
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5251 5252 5253 5254
}

static void task_clock_event_read(struct perf_event *event)
{
5255 5256 5257
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5258 5259 5260 5261 5262

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5263
{
5264 5265 5266 5267 5268 5269
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5270 5271
	perf_swevent_init_hrtimer(event);

5272
	return 0;
L
Li Zefan 已提交
5273 5274
}

5275
static struct pmu perf_task_clock = {
5276 5277
	.task_ctx_nr	= perf_sw_context,

5278
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5279 5280 5281 5282
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5283 5284
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5285

P
Peter Zijlstra 已提交
5286
static void perf_pmu_nop_void(struct pmu *pmu)
5287 5288
{
}
L
Li Zefan 已提交
5289

P
Peter Zijlstra 已提交
5290
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5291
{
P
Peter Zijlstra 已提交
5292
	return 0;
L
Li Zefan 已提交
5293 5294
}

P
Peter Zijlstra 已提交
5295
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5296
{
P
Peter Zijlstra 已提交
5297
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5298 5299
}

P
Peter Zijlstra 已提交
5300 5301 5302 5303 5304
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5305

P
Peter Zijlstra 已提交
5306
static void perf_pmu_cancel_txn(struct pmu *pmu)
5307
{
P
Peter Zijlstra 已提交
5308
	perf_pmu_enable(pmu);
5309 5310
}

P
Peter Zijlstra 已提交
5311 5312 5313 5314 5315
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5316
{
P
Peter Zijlstra 已提交
5317
	struct pmu *pmu;
5318

P
Peter Zijlstra 已提交
5319 5320
	if (ctxn < 0)
		return NULL;
5321

P
Peter Zijlstra 已提交
5322 5323 5324 5325
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5326

P
Peter Zijlstra 已提交
5327
	return NULL;
5328 5329
}

5330
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5331
{
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5347

P
Peter Zijlstra 已提交
5348
	mutex_lock(&pmus_lock);
5349
	/*
P
Peter Zijlstra 已提交
5350
	 * Like a real lame refcount.
5351
	 */
5352 5353 5354
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5355
			goto out;
5356
		}
P
Peter Zijlstra 已提交
5357
	}
5358

5359
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5360 5361
out:
	mutex_unlock(&pmus_lock);
5362
}
P
Peter Zijlstra 已提交
5363
static struct idr pmu_idr;
5364

P
Peter Zijlstra 已提交
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5417
static struct lock_class_key cpuctx_mutex;
5418
static struct lock_class_key cpuctx_lock;
5419

P
Peter Zijlstra 已提交
5420
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5421
{
P
Peter Zijlstra 已提交
5422
	int cpu, ret;
5423

5424
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5425 5426 5427 5428
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5429

P
Peter Zijlstra 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5448 5449 5450 5451 5452 5453
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5454
skip_type:
P
Peter Zijlstra 已提交
5455 5456 5457
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5458

P
Peter Zijlstra 已提交
5459 5460
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5461
		goto free_dev;
5462

P
Peter Zijlstra 已提交
5463 5464 5465 5466
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5467
		__perf_event_init_context(&cpuctx->ctx);
5468
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5469
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5470
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5471
		cpuctx->ctx.pmu = pmu;
5472 5473
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5474
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5475
	}
5476

P
Peter Zijlstra 已提交
5477
got_cpu_context:
P
Peter Zijlstra 已提交
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5492
		}
5493
	}
5494

P
Peter Zijlstra 已提交
5495 5496 5497 5498 5499
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5500
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5501 5502
	ret = 0;
unlock:
5503 5504
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5505
	return ret;
P
Peter Zijlstra 已提交
5506

P
Peter Zijlstra 已提交
5507 5508 5509 5510
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5511 5512 5513 5514
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5515 5516 5517
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5518 5519
}

5520
void perf_pmu_unregister(struct pmu *pmu)
5521
{
5522 5523 5524
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5525

5526
	/*
P
Peter Zijlstra 已提交
5527 5528
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5529
	 */
5530
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5531
	synchronize_rcu();
5532

P
Peter Zijlstra 已提交
5533
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5534 5535
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5536 5537
	device_del(pmu->dev);
	put_device(pmu->dev);
5538
	free_pmu_context(pmu);
5539
}
5540

5541 5542 5543 5544
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5545
	int ret;
5546 5547

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5548 5549 5550 5551

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5552
	if (pmu) {
5553
		event->pmu = pmu;
5554 5555 5556
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5557
		goto unlock;
5558
	}
P
Peter Zijlstra 已提交
5559

5560
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5561
		event->pmu = pmu;
5562
		ret = pmu->event_init(event);
5563
		if (!ret)
P
Peter Zijlstra 已提交
5564
			goto unlock;
5565

5566 5567
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5568
			goto unlock;
5569
		}
5570
	}
P
Peter Zijlstra 已提交
5571 5572
	pmu = ERR_PTR(-ENOENT);
unlock:
5573
	srcu_read_unlock(&pmus_srcu, idx);
5574

5575
	return pmu;
5576 5577
}

T
Thomas Gleixner 已提交
5578
/*
5579
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5580
 */
5581
static struct perf_event *
5582
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5583 5584 5585
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
5586 5587
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
5588
{
P
Peter Zijlstra 已提交
5589
	struct pmu *pmu;
5590 5591
	struct perf_event *event;
	struct hw_perf_event *hwc;
5592
	long err;
T
Thomas Gleixner 已提交
5593

5594 5595 5596 5597 5598
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5599
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5600
	if (!event)
5601
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5602

5603
	/*
5604
	 * Single events are their own group leaders, with an
5605 5606 5607
	 * empty sibling list:
	 */
	if (!group_leader)
5608
		group_leader = event;
5609

5610 5611
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5612

5613 5614 5615 5616
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
5617
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5618

5619
	mutex_init(&event->mmap_mutex);
5620

5621 5622 5623 5624 5625
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5626

5627
	event->parent		= parent_event;
5628

5629 5630
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5631

5632
	event->state		= PERF_EVENT_STATE_INACTIVE;
5633

5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5645
	if (!overflow_handler && parent_event) {
5646
		overflow_handler = parent_event->overflow_handler;
5647 5648
		context = parent_event->overflow_handler_context;
	}
5649

5650
	event->overflow_handler	= overflow_handler;
5651
	event->overflow_handler_context = context;
5652

5653
	if (attr->disabled)
5654
		event->state = PERF_EVENT_STATE_OFF;
5655

5656
	pmu = NULL;
5657

5658
	hwc = &event->hw;
5659
	hwc->sample_period = attr->sample_period;
5660
	if (attr->freq && attr->sample_freq)
5661
		hwc->sample_period = 1;
5662
	hwc->last_period = hwc->sample_period;
5663

5664
	local64_set(&hwc->period_left, hwc->sample_period);
5665

5666
	/*
5667
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5668
	 */
5669
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5670 5671
		goto done;

5672
	pmu = perf_init_event(event);
5673

5674 5675
done:
	err = 0;
5676
	if (!pmu)
5677
		err = -EINVAL;
5678 5679
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5680

5681
	if (err) {
5682 5683 5684
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5685
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5686
	}
5687

5688
	if (!event->parent) {
5689
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
5690
			jump_label_inc(&perf_sched_events);
5691
		if (event->attr.mmap || event->attr.mmap_data)
5692 5693 5694 5695 5696
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5697 5698 5699 5700 5701 5702 5703
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5704
	}
5705

5706
	return event;
T
Thomas Gleixner 已提交
5707 5708
}

5709 5710
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5711 5712
{
	u32 size;
5713
	int ret;
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5738 5739 5740
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5741 5742
	 */
	if (size > sizeof(*attr)) {
5743 5744 5745
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5746

5747 5748
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5749

5750
		for (; addr < end; addr++) {
5751 5752 5753 5754 5755 5756
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5757
		size = sizeof(*attr);
5758 5759 5760 5761 5762 5763
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

5764
	if (attr->__reserved_1)
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5782 5783
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5784
{
5785
	struct ring_buffer *rb = NULL, *old_rb = NULL;
5786 5787
	int ret = -EINVAL;

5788
	if (!output_event)
5789 5790
		goto set;

5791 5792
	/* don't allow circular references */
	if (event == output_event)
5793 5794
		goto out;

5795 5796 5797 5798 5799 5800 5801
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
5802
	 * If its not a per-cpu rb, it must be the same task.
5803 5804 5805 5806
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5807
set:
5808
	mutex_lock(&event->mmap_mutex);
5809 5810 5811
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5812

5813
	if (output_event) {
5814 5815 5816
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
5817
			goto unlock;
5818 5819
	}

5820 5821
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
5822
	ret = 0;
5823 5824 5825
unlock:
	mutex_unlock(&event->mmap_mutex);

5826 5827
	if (old_rb)
		ring_buffer_put(old_rb);
5828 5829 5830 5831
out:
	return ret;
}

T
Thomas Gleixner 已提交
5832
/**
5833
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5834
 *
5835
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5836
 * @pid:		target pid
I
Ingo Molnar 已提交
5837
 * @cpu:		target cpu
5838
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5839
 */
5840 5841
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5842
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5843
{
5844 5845
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
5846 5847 5848
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5849
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5850
	struct task_struct *task = NULL;
5851
	struct pmu *pmu;
5852
	int event_fd;
5853
	int move_group = 0;
5854
	int fput_needed = 0;
5855
	int err;
T
Thomas Gleixner 已提交
5856

5857
	/* for future expandability... */
S
Stephane Eranian 已提交
5858
	if (flags & ~PERF_FLAG_ALL)
5859 5860
		return -EINVAL;

5861 5862 5863
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5864

5865 5866 5867 5868 5869
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5870
	if (attr.freq) {
5871
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5872 5873 5874
			return -EINVAL;
	}

S
Stephane Eranian 已提交
5875 5876 5877 5878 5879 5880 5881 5882 5883
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

5884 5885 5886 5887
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5888 5889 5890 5891
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5892
			goto err_fd;
5893 5894 5895 5896 5897 5898 5899 5900
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
5901
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
5902 5903 5904 5905 5906 5907 5908
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

5909 5910
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
5911 5912
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5913
		goto err_task;
5914 5915
	}

S
Stephane Eranian 已提交
5916 5917 5918 5919
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
5920 5921 5922 5923 5924 5925 5926
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
5927 5928
	}

5929 5930 5931 5932 5933
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
5957 5958 5959 5960

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
5961
	ctx = find_get_context(pmu, task, cpu);
5962 5963
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5964
		goto err_alloc;
5965 5966
	}

5967 5968 5969 5970 5971
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
5972
	/*
5973
	 * Look up the group leader (we will attach this event to it):
5974
	 */
5975
	if (group_leader) {
5976
		err = -EINVAL;
5977 5978

		/*
I
Ingo Molnar 已提交
5979 5980 5981 5982
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5983
			goto err_context;
I
Ingo Molnar 已提交
5984 5985 5986
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5987
		 */
5988 5989 5990 5991 5992 5993 5994 5995
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

5996 5997 5998
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5999
		if (attr.exclusive || attr.pinned)
6000
			goto err_context;
6001 6002 6003 6004 6005
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6006
			goto err_context;
6007
	}
T
Thomas Gleixner 已提交
6008

6009 6010 6011
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6012
		goto err_context;
6013
	}
6014

6015 6016 6017 6018
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6019
		perf_remove_from_context(group_leader);
6020 6021
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6022
			perf_remove_from_context(sibling);
6023 6024 6025 6026
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6027
	}
6028

6029
	event->filp = event_file;
6030
	WARN_ON_ONCE(ctx->parent_ctx);
6031
	mutex_lock(&ctx->mutex);
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6043
	perf_install_in_context(ctx, event, cpu);
6044
	++ctx->generation;
6045
	perf_unpin_context(ctx);
6046
	mutex_unlock(&ctx->mutex);
6047

6048
	event->owner = current;
P
Peter Zijlstra 已提交
6049

6050 6051 6052
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6053

6054 6055 6056 6057
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6058
	perf_event__id_header_size(event);
6059

6060 6061 6062 6063 6064 6065
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6066 6067 6068
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6069

6070
err_context:
6071
	perf_unpin_context(ctx);
6072
	put_ctx(ctx);
6073
err_alloc:
6074
	free_event(event);
P
Peter Zijlstra 已提交
6075 6076 6077
err_task:
	if (task)
		put_task_struct(task);
6078
err_group_fd:
6079
	fput_light(group_file, fput_needed);
6080 6081
err_fd:
	put_unused_fd(event_fd);
6082
	return err;
T
Thomas Gleixner 已提交
6083 6084
}

6085 6086 6087 6088 6089
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6090
 * @task: task to profile (NULL for percpu)
6091 6092 6093
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6094
				 struct task_struct *task,
6095 6096
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6097 6098
{
	struct perf_event_context *ctx;
6099
	struct perf_event *event;
6100
	int err;
6101

6102 6103 6104
	/*
	 * Get the target context (task or percpu):
	 */
6105

6106 6107
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6108 6109 6110 6111
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6112

M
Matt Helsley 已提交
6113
	ctx = find_get_context(event->pmu, task, cpu);
6114 6115
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6116
		goto err_free;
6117
	}
6118 6119 6120 6121 6122 6123

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6124
	perf_unpin_context(ctx);
6125 6126 6127 6128
	mutex_unlock(&ctx->mutex);

	return event;

6129 6130 6131
err_free:
	free_event(event);
err:
6132
	return ERR_PTR(err);
6133
}
6134
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6135

6136
static void sync_child_event(struct perf_event *child_event,
6137
			       struct task_struct *child)
6138
{
6139
	struct perf_event *parent_event = child_event->parent;
6140
	u64 child_val;
6141

6142 6143
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6144

P
Peter Zijlstra 已提交
6145
	child_val = perf_event_count(child_event);
6146 6147 6148 6149

	/*
	 * Add back the child's count to the parent's count:
	 */
6150
	atomic64_add(child_val, &parent_event->child_count);
6151 6152 6153 6154
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6155 6156

	/*
6157
	 * Remove this event from the parent's list
6158
	 */
6159 6160 6161 6162
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6163 6164

	/*
6165
	 * Release the parent event, if this was the last
6166 6167
	 * reference to it.
	 */
6168
	fput(parent_event->filp);
6169 6170
}

6171
static void
6172 6173
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6174
			 struct task_struct *child)
6175
{
6176 6177 6178 6179 6180
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6181

6182
	perf_remove_from_context(child_event);
6183

6184
	/*
6185
	 * It can happen that the parent exits first, and has events
6186
	 * that are still around due to the child reference. These
6187
	 * events need to be zapped.
6188
	 */
6189
	if (child_event->parent) {
6190 6191
		sync_child_event(child_event, child);
		free_event(child_event);
6192
	}
6193 6194
}

P
Peter Zijlstra 已提交
6195
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6196
{
6197 6198
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6199
	unsigned long flags;
6200

P
Peter Zijlstra 已提交
6201
	if (likely(!child->perf_event_ctxp[ctxn])) {
6202
		perf_event_task(child, NULL, 0);
6203
		return;
P
Peter Zijlstra 已提交
6204
	}
6205

6206
	local_irq_save(flags);
6207 6208 6209 6210 6211 6212
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6213
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6214 6215 6216

	/*
	 * Take the context lock here so that if find_get_context is
6217
	 * reading child->perf_event_ctxp, we wait until it has
6218 6219
	 * incremented the context's refcount before we do put_ctx below.
	 */
6220
	raw_spin_lock(&child_ctx->lock);
6221
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6222
	child->perf_event_ctxp[ctxn] = NULL;
6223 6224 6225
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6226
	 * the events from it.
6227 6228
	 */
	unclone_ctx(child_ctx);
6229
	update_context_time(child_ctx);
6230
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6231 6232

	/*
6233 6234 6235
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6236
	 */
6237
	perf_event_task(child, child_ctx, 0);
6238

6239 6240 6241
	/*
	 * We can recurse on the same lock type through:
	 *
6242 6243 6244
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6245 6246 6247 6248 6249
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6250
	mutex_lock(&child_ctx->mutex);
6251

6252
again:
6253 6254 6255 6256 6257
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6258
				 group_entry)
6259
		__perf_event_exit_task(child_event, child_ctx, child);
6260 6261

	/*
6262
	 * If the last event was a group event, it will have appended all
6263 6264 6265
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6266 6267
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6268
		goto again;
6269 6270 6271 6272

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6273 6274
}

P
Peter Zijlstra 已提交
6275 6276 6277 6278 6279
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6280
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6281 6282
	int ctxn;

P
Peter Zijlstra 已提交
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6298 6299 6300 6301
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6316
	perf_group_detach(event);
6317 6318 6319 6320
	list_del_event(event, ctx);
	free_event(event);
}

6321 6322
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6323
 * perf_event_init_task below, used by fork() in case of fail.
6324
 */
6325
void perf_event_free_task(struct task_struct *task)
6326
{
P
Peter Zijlstra 已提交
6327
	struct perf_event_context *ctx;
6328
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6329
	int ctxn;
6330

P
Peter Zijlstra 已提交
6331 6332 6333 6334
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6335

P
Peter Zijlstra 已提交
6336
		mutex_lock(&ctx->mutex);
6337
again:
P
Peter Zijlstra 已提交
6338 6339 6340
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6341

P
Peter Zijlstra 已提交
6342 6343 6344
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6345

P
Peter Zijlstra 已提交
6346 6347 6348
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6349

P
Peter Zijlstra 已提交
6350
		mutex_unlock(&ctx->mutex);
6351

P
Peter Zijlstra 已提交
6352 6353
		put_ctx(ctx);
	}
6354 6355
}

6356 6357 6358 6359 6360 6361 6362 6363
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6376
	unsigned long flags;
P
Peter Zijlstra 已提交
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6389
					   child,
P
Peter Zijlstra 已提交
6390
					   group_leader, parent_event,
6391
				           NULL, NULL);
P
Peter Zijlstra 已提交
6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
6418 6419
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
6420

6421 6422 6423 6424
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6425
	perf_event__id_header_size(child_event);
6426

P
Peter Zijlstra 已提交
6427 6428 6429
	/*
	 * Link it up in the child's context:
	 */
6430
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6431
	add_event_to_ctx(child_event, child_ctx);
6432
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6474 6475 6476 6477 6478
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6479
		   struct task_struct *child, int ctxn,
6480 6481 6482
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6483
	struct perf_event_context *child_ctx;
6484 6485 6486 6487

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6488 6489
	}

6490
	child_ctx = child->perf_event_ctxp[ctxn];
6491 6492 6493 6494 6495 6496 6497
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6498

6499
		child_ctx = alloc_perf_context(event->pmu, child);
6500 6501
		if (!child_ctx)
			return -ENOMEM;
6502

P
Peter Zijlstra 已提交
6503
		child->perf_event_ctxp[ctxn] = child_ctx;
6504 6505 6506 6507 6508 6509 6510 6511 6512
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6513 6514
}

6515
/*
6516
 * Initialize the perf_event context in task_struct
6517
 */
P
Peter Zijlstra 已提交
6518
int perf_event_init_context(struct task_struct *child, int ctxn)
6519
{
6520
	struct perf_event_context *child_ctx, *parent_ctx;
6521 6522
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6523
	struct task_struct *parent = current;
6524
	int inherited_all = 1;
6525
	unsigned long flags;
6526
	int ret = 0;
6527

P
Peter Zijlstra 已提交
6528
	if (likely(!parent->perf_event_ctxp[ctxn]))
6529 6530
		return 0;

6531
	/*
6532 6533
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6534
	 */
P
Peter Zijlstra 已提交
6535
	parent_ctx = perf_pin_task_context(parent, ctxn);
6536

6537 6538 6539 6540 6541 6542 6543
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6544 6545 6546 6547
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6548
	mutex_lock(&parent_ctx->mutex);
6549 6550 6551 6552 6553

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6554
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6555 6556
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6557 6558 6559
		if (ret)
			break;
	}
6560

6561 6562 6563 6564 6565 6566 6567 6568 6569
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6570
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6571 6572
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6573
		if (ret)
6574
			break;
6575 6576
	}

6577 6578 6579
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6580
	child_ctx = child->perf_event_ctxp[ctxn];
6581

6582
	if (child_ctx && inherited_all) {
6583 6584 6585
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6586 6587 6588
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6589
		 */
P
Peter Zijlstra 已提交
6590
		cloned_ctx = parent_ctx->parent_ctx;
6591 6592
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6593
			child_ctx->parent_gen = parent_ctx->parent_gen;
6594 6595 6596 6597 6598
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6599 6600
	}

P
Peter Zijlstra 已提交
6601
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6602
	mutex_unlock(&parent_ctx->mutex);
6603

6604
	perf_unpin_context(parent_ctx);
6605
	put_ctx(parent_ctx);
6606

6607
	return ret;
6608 6609
}

P
Peter Zijlstra 已提交
6610 6611 6612 6613 6614 6615 6616
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6617 6618 6619 6620
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6621 6622 6623 6624 6625 6626 6627 6628 6629
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6630 6631
static void __init perf_event_init_all_cpus(void)
{
6632
	struct swevent_htable *swhash;
6633 6634 6635
	int cpu;

	for_each_possible_cpu(cpu) {
6636 6637
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6638
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6639 6640 6641
	}
}

6642
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6643
{
P
Peter Zijlstra 已提交
6644
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6645

6646
	mutex_lock(&swhash->hlist_mutex);
6647
	if (swhash->hlist_refcount > 0) {
6648 6649
		struct swevent_hlist *hlist;

6650 6651 6652
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6653
	}
6654
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6655 6656
}

P
Peter Zijlstra 已提交
6657
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6658
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6659
{
6660 6661 6662 6663 6664 6665 6666
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6667
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6668
{
P
Peter Zijlstra 已提交
6669
	struct perf_event_context *ctx = __info;
6670
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6671

P
Peter Zijlstra 已提交
6672
	perf_pmu_rotate_stop(ctx->pmu);
6673

6674
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6675
		__perf_remove_from_context(event);
6676
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6677
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
6678
}
P
Peter Zijlstra 已提交
6679 6680 6681 6682 6683 6684 6685 6686 6687

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6688
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6689 6690 6691 6692 6693 6694 6695 6696

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6697
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6698
{
6699
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6700

6701 6702 6703
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6704

P
Peter Zijlstra 已提交
6705
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6706 6707
}
#else
6708
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6709 6710
#endif

P
Peter Zijlstra 已提交
6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
6731 6732 6733 6734 6735
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

6736
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6737 6738

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6739
	case CPU_DOWN_FAILED:
6740
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6741 6742
		break;

P
Peter Zijlstra 已提交
6743
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6744
	case CPU_DOWN_PREPARE:
6745
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6746 6747 6748 6749 6750 6751 6752 6753 6754
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6755
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6756
{
6757 6758
	int ret;

P
Peter Zijlstra 已提交
6759 6760
	idr_init(&pmu_idr);

6761
	perf_event_init_all_cpus();
6762
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
6763 6764 6765
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
6766 6767
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
6768
	register_reboot_notifier(&perf_reboot_notifier);
6769 6770 6771

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
6772
}
P
Peter Zijlstra 已提交
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
6801 6802 6803 6804 6805 6806 6807

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

6808
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

6838 6839
static void
perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
S
Stephane Eranian 已提交
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

6855
	perf_cgroup_attach_task(cgrp, task);
S
Stephane Eranian 已提交
6856 6857 6858
}

struct cgroup_subsys perf_subsys = {
6859 6860 6861 6862 6863
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
6864
	.attach_task	= perf_cgroup_attach_task,
S
Stephane Eranian 已提交
6865 6866
};
#endif /* CONFIG_CGROUP_PERF */