core.c 219.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * This is because we need a ctx->lock serialized variable (ctx->is_active)
 * to reliably determine if a particular task/context is scheduled in. The
 * task_curr() use in task_function_call() is racy in that a remote context
 * switch is not a single atomic operation.
 *
 * As is, the situation is 'safe' because we set rq->curr before we do the
 * actual context switch. This means that task_curr() will fail early, but
 * we'll continue spinning on ctx->is_active until we've passed
 * perf_event_task_sched_out().
 *
 * Without this ctx->lock serialized variable we could have race where we find
 * the task (and hence the context) would not be active while in fact they are.
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;

	WARN_ON_ONCE(!irqs_disabled());

	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 *
	 * If ctx->task == current, we know things must remain valid because
	 * we have IRQs disabled so we cannot schedule.
	 */
	if (ctx->task) {
		if (ctx->task != current)
			return -EAGAIN;

		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	perf_ctx_lock(cpuctx, task_ctx);
	/*
	 * Now that we hold locks, double check state. Paranoia pays.
	 */
	if (task_ctx) {
		WARN_ON_ONCE(task_ctx->task != current);
		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
		WARN_ON_ONCE(cpuctx->task_ctx != task_ctx);
	}
	efs->func(event, cpuctx, ctx, efs->data);
	perf_ctx_unlock(cpuctx, task_ctx);

	return 0;
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
257 258 259
{
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task = ctx->task;
260 261 262 263 264
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
265

P
Peter Zijlstra 已提交
266 267 268 269 270 271 272 273 274
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}

275
	if (!task) {
276
		cpu_function_call(event->cpu, event_function, &efs);
277 278 279 280
		return;
	}

again:
281
	if (!task_function_call(task, event_function, &efs))
282 283 284 285 286 287 288 289 290 291 292 293
		return;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
294
	func(event, NULL, ctx, data);
295 296 297
	raw_spin_unlock_irq(&ctx->lock);
}

298 299 300 301 302 303 304
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
305 306
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
307 308
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
309

310 311 312 313 314 315 316
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

317 318 319 320 321 322
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
323 324 325 326
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
327
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
328
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
329
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
330

331 332 333
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
334
static atomic_t nr_freq_events __read_mostly;
335
static atomic_t nr_switch_events __read_mostly;
336

P
Peter Zijlstra 已提交
337 338 339 340
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

341
/*
342
 * perf event paranoia level:
343 344
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
345
 *   1 - disallow cpu events for unpriv
346
 *   2 - disallow kernel profiling for unpriv
347
 */
348
int sysctl_perf_event_paranoid __read_mostly = 1;
349

350 351
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
352 353

/*
354
 * max perf event sample rate
355
 */
356 357 358 359 360 361 362 363 364
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
365 366
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
367

368
static void update_perf_cpu_limits(void)
369 370 371 372
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
373
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
374
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
375
}
P
Peter Zijlstra 已提交
376

377 378
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
379 380 381 382
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
383
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
384 385 386 387 388

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
407 408 409

	return 0;
}
410

411 412 413 414 415 416 417
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
418
static DEFINE_PER_CPU(u64, running_sample_length);
419

420
static void perf_duration_warn(struct irq_work *w)
421
{
422
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
423
	u64 avg_local_sample_len;
424
	u64 local_samples_len;
425

426
	local_samples_len = __this_cpu_read(running_sample_length);
427 428 429 430 431
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
432
			avg_local_sample_len, allowed_ns >> 1,
433 434 435 436 437 438 439
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
440
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
441 442
	u64 avg_local_sample_len;
	u64 local_samples_len;
443

P
Peter Zijlstra 已提交
444
	if (allowed_ns == 0)
445 446 447
		return;

	/* decay the counter by 1 average sample */
448
	local_samples_len = __this_cpu_read(running_sample_length);
449 450
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
451
	__this_cpu_write(running_sample_length, local_samples_len);
452 453 454 455 456 457 458 459

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
460
	if (avg_local_sample_len <= allowed_ns)
461 462 463 464 465 466 467 468 469 470
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
471

472 473 474 475 476 477
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
478 479
}

480
static atomic64_t perf_event_id;
481

482 483 484 485
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
486 487 488 489 490
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
491

492
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
493

494
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
495
{
496
	return "pmu";
T
Thomas Gleixner 已提交
497 498
}

499 500 501 502 503
static inline u64 perf_clock(void)
{
	return local_clock();
}

504 505 506 507 508
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
509 510 511 512 513 514 515 516
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
533 534 535 536
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
537
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
576 577
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
578
	/*
579 580
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
581
	 */
582
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
583 584
		return;

585
	cgrp = perf_cgroup_from_task(current, event->ctx);
586 587 588 589 590
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
591 592 593
}

static inline void
594 595
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
596 597 598 599
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

600 601 602 603 604 605
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
606 607
		return;

608
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
609
	info = this_cpu_ptr(cgrp->info);
610
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
611 612 613 614 615 616 617 618 619 620 621
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
622
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
642 643
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
644 645 646 647 648 649 650 651 652

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
653 654
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
655 656 657 658 659 660 661 662 663 664 665

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
666
				WARN_ON_ONCE(cpuctx->cgrp);
667 668 669 670
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
671 672
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
673
				 */
674
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
675 676
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
677 678
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
679 680 681 682 683 684
		}
	}

	local_irq_restore(flags);
}

685 686
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
687
{
688 689 690
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

691
	rcu_read_lock();
692 693
	/*
	 * we come here when we know perf_cgroup_events > 0
694 695
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
696
	 */
697
	cgrp1 = perf_cgroup_from_task(task, NULL);
698
	cgrp2 = perf_cgroup_from_task(next, NULL);
699 700 701 702 703 704 705 706

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
707 708

	rcu_read_unlock();
S
Stephane Eranian 已提交
709 710
}

711 712
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
713
{
714 715 716
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

717
	rcu_read_lock();
718 719
	/*
	 * we come here when we know perf_cgroup_events > 0
720 721
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
722
	 */
723 724
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
725 726 727 728 729 730 731 732

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
733 734

	rcu_read_unlock();
S
Stephane Eranian 已提交
735 736 737 738 739 740 741 742
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
743 744
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
745

746
	if (!f.file)
S
Stephane Eranian 已提交
747 748
		return -EBADF;

A
Al Viro 已提交
749
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
750
					 &perf_event_cgrp_subsys);
751 752 753 754
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
768
out:
769
	fdput(f);
S
Stephane Eranian 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

843 844
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
845 846 847
{
}

848 849
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
850 851 852 853 854 855 856 857 858 859 860
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
861 862
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

893 894 895 896 897 898 899 900
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
901
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
902 903 904 905 906 907 908 909 910
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
911 912
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
913
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
914 915 916
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
917

P
Peter Zijlstra 已提交
918
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
919 920
}

921
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
922
{
923
	struct hrtimer *timer = &cpuctx->hrtimer;
924
	struct pmu *pmu = cpuctx->ctx.pmu;
925
	u64 interval;
926 927 928 929 930

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

931 932 933 934
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
935 936 937
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
938

939
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
940

P
Peter Zijlstra 已提交
941 942
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
943
	timer->function = perf_mux_hrtimer_handler;
944 945
}

946
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
947
{
948
	struct hrtimer *timer = &cpuctx->hrtimer;
949
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
950
	unsigned long flags;
951 952 953

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
954
		return 0;
955

P
Peter Zijlstra 已提交
956 957 958 959 960 961 962
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
963

964
	return 0;
965 966
}

P
Peter Zijlstra 已提交
967
void perf_pmu_disable(struct pmu *pmu)
968
{
P
Peter Zijlstra 已提交
969 970 971
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
972 973
}

P
Peter Zijlstra 已提交
974
void perf_pmu_enable(struct pmu *pmu)
975
{
P
Peter Zijlstra 已提交
976 977 978
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
979 980
}

981
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
982 983

/*
984 985 986 987
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
988
 */
989
static void perf_event_ctx_activate(struct perf_event_context *ctx)
990
{
991
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
992

993
	WARN_ON(!irqs_disabled());
994

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1007 1008
}

1009
static void get_ctx(struct perf_event_context *ctx)
1010
{
1011
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1012 1013
}

1014 1015 1016 1017 1018 1019 1020 1021 1022
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1023
static void put_ctx(struct perf_event_context *ctx)
1024
{
1025 1026 1027
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1028 1029
		if (ctx->task)
			put_task_struct(ctx->task);
1030
		call_rcu(&ctx->rcu_head, free_ctx);
1031
	}
1032 1033
}

P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1095 1096
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1109
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1119 1120 1121 1122 1123 1124
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1125 1126 1127 1128 1129 1130 1131
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1132 1133 1134 1135 1136 1137 1138
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1139
{
1140 1141 1142 1143 1144
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1145
		ctx->parent_ctx = NULL;
1146
	ctx->generation++;
1147 1148

	return parent_ctx;
1149 1150
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1173
/*
1174
 * If we inherit events we want to return the parent event id
1175 1176
 * to userspace.
 */
1177
static u64 primary_event_id(struct perf_event *event)
1178
{
1179
	u64 id = event->id;
1180

1181 1182
	if (event->parent)
		id = event->parent->id;
1183 1184 1185 1186

	return id;
}

1187
/*
1188
 * Get the perf_event_context for a task and lock it.
1189 1190 1191
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1192
static struct perf_event_context *
P
Peter Zijlstra 已提交
1193
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1194
{
1195
	struct perf_event_context *ctx;
1196

P
Peter Zijlstra 已提交
1197
retry:
1198 1199 1200
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1201
	 * part of the read side critical section was irqs-enabled -- see
1202 1203 1204
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1205
	 * side critical section has interrupts disabled.
1206
	 */
1207
	local_irq_save(*flags);
1208
	rcu_read_lock();
P
Peter Zijlstra 已提交
1209
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1210 1211 1212 1213
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1214
		 * perf_event_task_sched_out, though the
1215 1216 1217 1218 1219 1220
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1221
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1222
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1223
			raw_spin_unlock(&ctx->lock);
1224
			rcu_read_unlock();
1225
			local_irq_restore(*flags);
1226 1227
			goto retry;
		}
1228 1229

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1230
			raw_spin_unlock(&ctx->lock);
1231 1232
			ctx = NULL;
		}
1233 1234
	}
	rcu_read_unlock();
1235 1236
	if (!ctx)
		local_irq_restore(*flags);
1237 1238 1239 1240 1241 1242 1243 1244
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1245 1246
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1247
{
1248
	struct perf_event_context *ctx;
1249 1250
	unsigned long flags;

P
Peter Zijlstra 已提交
1251
	ctx = perf_lock_task_context(task, ctxn, &flags);
1252 1253
	if (ctx) {
		++ctx->pin_count;
1254
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1255 1256 1257 1258
	}
	return ctx;
}

1259
static void perf_unpin_context(struct perf_event_context *ctx)
1260 1261 1262
{
	unsigned long flags;

1263
	raw_spin_lock_irqsave(&ctx->lock, flags);
1264
	--ctx->pin_count;
1265
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1266 1267
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1279 1280 1281
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1282 1283 1284 1285

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1286 1287 1288
	return ctx ? ctx->time : 0;
}

1289 1290
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1291
 * The caller of this function needs to hold the ctx->lock.
1292 1293 1294 1295 1296 1297 1298 1299 1300
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1312
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1313 1314
	else if (ctx->is_active)
		run_end = ctx->time;
1315 1316 1317 1318
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1319 1320 1321 1322

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1323
		run_end = perf_event_time(event);
1324 1325

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1326

1327 1328
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1341 1342 1343 1344 1345 1346 1347 1348 1349
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1350
/*
1351
 * Add a event from the lists for its context.
1352 1353
 * Must be called with ctx->mutex and ctx->lock held.
 */
1354
static void
1355
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1356
{
P
Peter Zijlstra 已提交
1357 1358
	lockdep_assert_held(&ctx->lock);

1359 1360
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1361 1362

	/*
1363 1364 1365
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1366
	 */
1367
	if (event->group_leader == event) {
1368 1369
		struct list_head *list;

1370 1371 1372
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1373 1374
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1375
	}
P
Peter Zijlstra 已提交
1376

1377
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1378 1379
		ctx->nr_cgroups++;

1380 1381 1382
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1383
		ctx->nr_stat++;
1384 1385

	ctx->generation++;
1386 1387
}

J
Jiri Olsa 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1397
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1413
		nr += nr_siblings;
1414 1415 1416 1417 1418 1419 1420
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1421
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1422 1423 1424 1425 1426 1427 1428
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1429 1430 1431 1432 1433 1434
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1435 1436 1437
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1438 1439 1440
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1441 1442 1443
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1444 1445 1446
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1447 1448 1449
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1461 1462 1463 1464 1465 1466
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1467 1468 1469 1470 1471 1472
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1473 1474 1475
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1476 1477 1478 1479 1480 1481 1482 1483 1484
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1485
	event->id_header_size = size;
1486 1487
}

P
Peter Zijlstra 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1509 1510
static void perf_group_attach(struct perf_event *event)
{
1511
	struct perf_event *group_leader = event->group_leader, *pos;
1512

P
Peter Zijlstra 已提交
1513 1514 1515 1516 1517 1518
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1519 1520 1521 1522 1523
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1524 1525
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1526 1527 1528 1529 1530 1531
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1532 1533 1534 1535 1536

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1537 1538
}

1539
/*
1540
 * Remove a event from the lists for its context.
1541
 * Must be called with ctx->mutex and ctx->lock held.
1542
 */
1543
static void
1544
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1545
{
1546
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1547 1548 1549 1550

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1551 1552 1553 1554
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1555
		return;
1556 1557 1558

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1559
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1560
		ctx->nr_cgroups--;
1561 1562 1563 1564
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1565 1566
		cpuctx = __get_cpu_context(ctx);
		/*
1567 1568
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1569 1570 1571 1572
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1573

1574 1575
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1576
		ctx->nr_stat--;
1577

1578
	list_del_rcu(&event->event_entry);
1579

1580 1581
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1582

1583
	update_group_times(event);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1594 1595

	ctx->generation++;
1596 1597
}

1598
static void perf_group_detach(struct perf_event *event)
1599 1600
{
	struct perf_event *sibling, *tmp;
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1617
		goto out;
1618 1619 1620 1621
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1622

1623
	/*
1624 1625
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1626
	 * to whatever list we are on.
1627
	 */
1628
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1629 1630
		if (list)
			list_move_tail(&sibling->group_entry, list);
1631
		sibling->group_leader = sibling;
1632 1633 1634

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1635 1636

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1637
	}
1638 1639 1640 1641 1642 1643

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1644 1645
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1685 1686 1687 1688 1689 1690
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1691 1692 1693
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1694
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1695
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1696 1697
}

1698 1699
static void
event_sched_out(struct perf_event *event,
1700
		  struct perf_cpu_context *cpuctx,
1701
		  struct perf_event_context *ctx)
1702
{
1703
	u64 tstamp = perf_event_time(event);
1704
	u64 delta;
P
Peter Zijlstra 已提交
1705 1706 1707 1708

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1709 1710 1711 1712 1713 1714 1715 1716
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1717
		delta = tstamp - event->tstamp_stopped;
1718
		event->tstamp_running += delta;
1719
		event->tstamp_stopped = tstamp;
1720 1721
	}

1722
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1723
		return;
1724

1725 1726
	perf_pmu_disable(event->pmu);

1727 1728 1729 1730
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1731
	}
1732
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1733
	event->pmu->del(event, 0);
1734
	event->oncpu = -1;
1735

1736
	if (!is_software_event(event))
1737
		cpuctx->active_oncpu--;
1738 1739
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1740 1741
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1742
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1743
		cpuctx->exclusive = 0;
1744

1745 1746 1747
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1748
	perf_pmu_enable(event->pmu);
1749 1750
}

1751
static void
1752
group_sched_out(struct perf_event *group_event,
1753
		struct perf_cpu_context *cpuctx,
1754
		struct perf_event_context *ctx)
1755
{
1756
	struct perf_event *event;
1757
	int state = group_event->state;
1758

1759
	event_sched_out(group_event, cpuctx, ctx);
1760 1761 1762 1763

	/*
	 * Schedule out siblings (if any):
	 */
1764 1765
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1766

1767
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1768 1769 1770
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1771
/*
1772
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1773
 *
1774
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1775 1776
 * remove it from the context list.
 */
1777 1778 1779 1780 1781
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1782
{
1783
	bool detach_group = (unsigned long)info;
T
Thomas Gleixner 已提交
1784

1785
	event_sched_out(event, cpuctx, ctx);
1786
	if (detach_group)
1787
		perf_group_detach(event);
1788
	list_del_event(event, ctx);
1789 1790

	if (!ctx->nr_events && ctx->is_active) {
1791
		ctx->is_active = 0;
1792 1793 1794 1795
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1796
	}
T
Thomas Gleixner 已提交
1797 1798 1799
}

/*
1800
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1801
 *
1802 1803
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1804 1805
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1806
 * When called from perf_event_exit_task, it's OK because the
1807
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1808
 */
1809
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1810
{
1811
	lockdep_assert_held(&event->ctx->mutex);
1812

1813
	event_function_call(event, __perf_remove_from_context,
1814
			    (void *)(unsigned long)detach_group);
T
Thomas Gleixner 已提交
1815 1816
}

1817
/*
1818
 * Cross CPU call to disable a performance event
1819
 */
1820 1821 1822 1823
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1824
{
1825 1826
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1827

1828 1829 1830 1831 1832 1833 1834 1835
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1836 1837
}

1838
/*
1839
 * Disable a event.
1840
 *
1841 1842
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1843
 * remains valid.  This condition is satisifed when called through
1844 1845 1846 1847
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1848
 * is the current context on this CPU and preemption is disabled,
1849
 * hence we can't get into perf_event_task_sched_out for this context.
1850
 */
P
Peter Zijlstra 已提交
1851
static void _perf_event_disable(struct perf_event *event)
1852
{
1853
	struct perf_event_context *ctx = event->ctx;
1854

1855
	raw_spin_lock_irq(&ctx->lock);
1856
	if (event->state <= PERF_EVENT_STATE_OFF) {
1857
		raw_spin_unlock_irq(&ctx->lock);
1858
		return;
1859
	}
1860
	raw_spin_unlock_irq(&ctx->lock);
1861

1862 1863 1864 1865 1866 1867
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1868
}
P
Peter Zijlstra 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1882
EXPORT_SYMBOL_GPL(perf_event_disable);
1883

S
Stephane Eranian 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1919 1920 1921
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1922
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1923

1924
static int
1925
event_sched_in(struct perf_event *event,
1926
		 struct perf_cpu_context *cpuctx,
1927
		 struct perf_event_context *ctx)
1928
{
1929
	u64 tstamp = perf_event_time(event);
1930
	int ret = 0;
1931

1932 1933
	lockdep_assert_held(&ctx->lock);

1934
	if (event->state <= PERF_EVENT_STATE_OFF)
1935 1936
		return 0;

1937
	event->state = PERF_EVENT_STATE_ACTIVE;
1938
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1950 1951 1952 1953 1954
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1955 1956
	perf_pmu_disable(event->pmu);

1957 1958
	perf_set_shadow_time(event, ctx, tstamp);

1959 1960
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1961
	if (event->pmu->add(event, PERF_EF_START)) {
1962 1963
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1964 1965
		ret = -EAGAIN;
		goto out;
1966 1967
	}

1968 1969
	event->tstamp_running += tstamp - event->tstamp_stopped;

1970
	if (!is_software_event(event))
1971
		cpuctx->active_oncpu++;
1972 1973
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1974 1975
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1976

1977
	if (event->attr.exclusive)
1978 1979
		cpuctx->exclusive = 1;

1980 1981 1982
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1983 1984 1985 1986
out:
	perf_pmu_enable(event->pmu);

	return ret;
1987 1988
}

1989
static int
1990
group_sched_in(struct perf_event *group_event,
1991
	       struct perf_cpu_context *cpuctx,
1992
	       struct perf_event_context *ctx)
1993
{
1994
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1995
	struct pmu *pmu = ctx->pmu;
1996 1997
	u64 now = ctx->time;
	bool simulate = false;
1998

1999
	if (group_event->state == PERF_EVENT_STATE_OFF)
2000 2001
		return 0;

2002
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2003

2004
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2005
		pmu->cancel_txn(pmu);
2006
		perf_mux_hrtimer_restart(cpuctx);
2007
		return -EAGAIN;
2008
	}
2009 2010 2011 2012

	/*
	 * Schedule in siblings as one group (if any):
	 */
2013
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2014
		if (event_sched_in(event, cpuctx, ctx)) {
2015
			partial_group = event;
2016 2017 2018 2019
			goto group_error;
		}
	}

2020
	if (!pmu->commit_txn(pmu))
2021
		return 0;
2022

2023 2024 2025 2026
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2037
	 */
2038 2039
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2040 2041 2042 2043 2044 2045 2046 2047
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2048
	}
2049
	event_sched_out(group_event, cpuctx, ctx);
2050

P
Peter Zijlstra 已提交
2051
	pmu->cancel_txn(pmu);
2052

2053
	perf_mux_hrtimer_restart(cpuctx);
2054

2055 2056 2057
	return -EAGAIN;
}

2058
/*
2059
 * Work out whether we can put this event group on the CPU now.
2060
 */
2061
static int group_can_go_on(struct perf_event *event,
2062 2063 2064 2065
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2066
	 * Groups consisting entirely of software events can always go on.
2067
	 */
2068
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2069 2070 2071
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2072
	 * events can go on.
2073 2074 2075 2076 2077
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2078
	 * events on the CPU, it can't go on.
2079
	 */
2080
	if (event->attr.exclusive && cpuctx->active_oncpu)
2081 2082 2083 2084 2085 2086 2087 2088
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2089 2090
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2091
{
2092 2093
	u64 tstamp = perf_event_time(event);

2094
	list_add_event(event, ctx);
2095
	perf_group_attach(event);
2096 2097 2098
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2099 2100
}

2101 2102
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2103 2104 2105 2106 2107
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2108

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
{
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
}

T
Thomas Gleixner 已提交
2132
/*
2133
 * Cross CPU call to install and enable a performance event
2134 2135
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2136
 */
2137
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2138
{
2139
	struct perf_event_context *ctx = info;
P
Peter Zijlstra 已提交
2140
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2141 2142
	struct perf_event_context *task_ctx = cpuctx->task_ctx;

2143 2144 2145 2146 2147 2148 2149
	if (ctx->task) {
		/*
		 * If we hit the 'wrong' task, we've since scheduled and
		 * everything should be sorted, nothing to do!
		 */
		if (ctx->task != current)
			return 0;
2150

2151 2152 2153 2154
		/*
		 * If task_ctx is set, it had better be to us.
		 */
		WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2155 2156 2157
		task_ctx = ctx;
	}

2158 2159
	perf_ctx_lock(cpuctx, task_ctx);
	ctx_resched(cpuctx, task_ctx);
2160
	perf_ctx_unlock(cpuctx, task_ctx);
2161 2162

	return 0;
T
Thomas Gleixner 已提交
2163 2164 2165
}

/*
2166
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2167 2168
 */
static void
2169 2170
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2171 2172
			int cpu)
{
2173 2174
	struct task_struct *task = NULL;

2175 2176
	lockdep_assert_held(&ctx->mutex);

2177
	event->ctx = ctx;
2178 2179
	if (event->cpu != -1)
		event->cpu = cpu;
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 *
	 * So what we do is we add the event to the list here, which will allow
	 * a future context switch to DTRT and then send a racy IPI. If the IPI
	 * fails to hit the right task, this means a context switch must have
	 * happened and that will have taken care of business.
	 */
	raw_spin_lock_irq(&ctx->lock);
	update_context_time(ctx);
	/*
	 * Update cgrp time only if current cgrp matches event->cgrp.
	 * Must be done before calling add_event_to_ctx().
	 */
	update_cgrp_time_from_event(event);
	add_event_to_ctx(event, ctx);
	task = ctx->task;
	raw_spin_unlock_irq(&ctx->lock);

	if (task)
		task_function_call(task, __perf_install_in_context, ctx);
	else
		cpu_function_call(cpu, __perf_install_in_context, ctx);
T
Thomas Gleixner 已提交
2205 2206
}

2207
/*
2208
 * Put a event into inactive state and update time fields.
2209 2210 2211 2212 2213 2214
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2215
static void __perf_event_mark_enabled(struct perf_event *event)
2216
{
2217
	struct perf_event *sub;
2218
	u64 tstamp = perf_event_time(event);
2219

2220
	event->state = PERF_EVENT_STATE_INACTIVE;
2221
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2222
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2223 2224
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2225
	}
2226 2227
}

2228
/*
2229
 * Cross CPU call to enable a performance event
2230
 */
2231 2232 2233 2234
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2235
{
2236
	struct perf_event *leader = event->group_leader;
2237
	struct perf_event_context *task_ctx;
2238

2239
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2240
		return;
S
Stephane Eranian 已提交
2241

2242
	update_context_time(ctx);
2243
	__perf_event_mark_enabled(event);
2244

2245 2246 2247
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2248
	if (!event_filter_match(event)) {
2249 2250
		if (is_cgroup_event(event)) {
			perf_cgroup_set_timestamp(current, ctx); // XXX ?
S
Stephane Eranian 已提交
2251
			perf_cgroup_defer_enabled(event);
2252 2253
		}
		return;
S
Stephane Eranian 已提交
2254
	}
2255

2256
	/*
2257
	 * If the event is in a group and isn't the group leader,
2258
	 * then don't put it on unless the group is on.
2259
	 */
2260
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2261
		return;
2262

2263 2264 2265
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2266

2267
	ctx_resched(cpuctx, task_ctx);
2268 2269
}

2270
/*
2271
 * Enable a event.
2272
 *
2273 2274
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2275
 * remains valid.  This condition is satisfied when called through
2276 2277
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2278
 */
P
Peter Zijlstra 已提交
2279
static void _perf_event_enable(struct perf_event *event)
2280
{
2281
	struct perf_event_context *ctx = event->ctx;
2282

2283 2284 2285
	raw_spin_lock_irq(&ctx->lock);
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
		raw_spin_unlock_irq(&ctx->lock);
2286 2287 2288 2289
		return;
	}

	/*
2290
	 * If the event is in error state, clear that first.
2291 2292 2293 2294
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2295
	 */
2296 2297
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2298
	raw_spin_unlock_irq(&ctx->lock);
2299

2300
	event_function_call(event, __perf_event_enable, NULL);
2301
}
P
Peter Zijlstra 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2314
EXPORT_SYMBOL_GPL(perf_event_enable);
2315

P
Peter Zijlstra 已提交
2316
static int _perf_event_refresh(struct perf_event *event, int refresh)
2317
{
2318
	/*
2319
	 * not supported on inherited events
2320
	 */
2321
	if (event->attr.inherit || !is_sampling_event(event))
2322 2323
		return -EINVAL;

2324
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2325
	_perf_event_enable(event);
2326 2327

	return 0;
2328
}
P
Peter Zijlstra 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2344
EXPORT_SYMBOL_GPL(perf_event_refresh);
2345

2346 2347 2348
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2349
{
2350
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2351 2352 2353
	struct perf_event *event;

	lockdep_assert_held(&ctx->lock);
2354

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
		return;
	}

2365
	ctx->is_active &= ~event_type;
2366 2367 2368 2369 2370 2371
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}

2372
	update_context_time(ctx);
S
Stephane Eranian 已提交
2373
	update_cgrp_time_from_cpuctx(cpuctx);
2374
	if (!ctx->nr_active)
2375
		return;
2376

P
Peter Zijlstra 已提交
2377
	perf_pmu_disable(ctx->pmu);
2378
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2379 2380
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2381
	}
2382

2383
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2384
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2385
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2386
	}
P
Peter Zijlstra 已提交
2387
	perf_pmu_enable(ctx->pmu);
2388 2389
}

2390
/*
2391 2392 2393 2394 2395 2396
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2397
 */
2398 2399
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2400
{
2401 2402 2403
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2426 2427
}

2428 2429
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2430 2431 2432
{
	u64 value;

2433
	if (!event->attr.inherit_stat)
2434 2435 2436
		return;

	/*
2437
	 * Update the event value, we cannot use perf_event_read()
2438 2439
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2440
	 * we know the event must be on the current CPU, therefore we
2441 2442
	 * don't need to use it.
	 */
2443 2444
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2445 2446
		event->pmu->read(event);
		/* fall-through */
2447

2448 2449
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2450 2451 2452 2453 2454 2455 2456
		break;

	default:
		break;
	}

	/*
2457
	 * In order to keep per-task stats reliable we need to flip the event
2458 2459
	 * values when we flip the contexts.
	 */
2460 2461 2462
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2463

2464 2465
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2466

2467
	/*
2468
	 * Since we swizzled the values, update the user visible data too.
2469
	 */
2470 2471
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2472 2473
}

2474 2475
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2476
{
2477
	struct perf_event *event, *next_event;
2478 2479 2480 2481

	if (!ctx->nr_stat)
		return;

2482 2483
	update_context_time(ctx);

2484 2485
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2486

2487 2488
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2489

2490 2491
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2492

2493
		__perf_event_sync_stat(event, next_event);
2494

2495 2496
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2497 2498 2499
	}
}

2500 2501
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2502
{
P
Peter Zijlstra 已提交
2503
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2504
	struct perf_event_context *next_ctx;
2505
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2506
	struct perf_cpu_context *cpuctx;
2507
	int do_switch = 1;
T
Thomas Gleixner 已提交
2508

P
Peter Zijlstra 已提交
2509 2510
	if (likely(!ctx))
		return;
2511

P
Peter Zijlstra 已提交
2512 2513
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2514 2515
		return;

2516
	rcu_read_lock();
P
Peter Zijlstra 已提交
2517
	next_ctx = next->perf_event_ctxp[ctxn];
2518 2519 2520 2521 2522 2523 2524
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2525
	if (!parent && !next_parent)
2526 2527 2528
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2529 2530 2531 2532 2533 2534 2535 2536 2537
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2538 2539
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2540
		if (context_equiv(ctx, next_ctx)) {
2541 2542
			/*
			 * XXX do we need a memory barrier of sorts
2543
			 * wrt to rcu_dereference() of perf_event_ctxp
2544
			 */
P
Peter Zijlstra 已提交
2545 2546
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2547 2548
			ctx->task = next;
			next_ctx->task = task;
2549 2550 2551

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2552
			do_switch = 0;
2553

2554
			perf_event_sync_stat(ctx, next_ctx);
2555
		}
2556 2557
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2558
	}
2559
unlock:
2560
	rcu_read_unlock();
2561

2562
	if (do_switch) {
2563
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2564
		task_ctx_sched_out(cpuctx, ctx);
2565
		raw_spin_unlock(&ctx->lock);
2566
	}
T
Thomas Gleixner 已提交
2567 2568
}

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2619 2620 2621
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2636 2637
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2638 2639 2640
{
	int ctxn;

2641 2642 2643
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2644 2645 2646
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2647 2648
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2649 2650 2651 2652 2653 2654

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2655
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2656
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2657 2658
}

2659 2660
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2661
{
2662 2663
	if (!cpuctx->task_ctx)
		return;
2664 2665 2666 2667

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2668
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2669 2670
}

2671 2672 2673 2674 2675 2676 2677
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2678 2679
}

2680
static void
2681
ctx_pinned_sched_in(struct perf_event_context *ctx,
2682
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2683
{
2684
	struct perf_event *event;
T
Thomas Gleixner 已提交
2685

2686 2687
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2688
			continue;
2689
		if (!event_filter_match(event))
2690 2691
			continue;

S
Stephane Eranian 已提交
2692 2693 2694 2695
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2696
		if (group_can_go_on(event, cpuctx, 1))
2697
			group_sched_in(event, cpuctx, ctx);
2698 2699 2700 2701 2702

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2703 2704 2705
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2706
		}
2707
	}
2708 2709 2710 2711
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2712
		      struct perf_cpu_context *cpuctx)
2713 2714 2715
{
	struct perf_event *event;
	int can_add_hw = 1;
2716

2717 2718 2719
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2720
			continue;
2721 2722
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2723
		 * of events:
2724
		 */
2725
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2726 2727
			continue;

S
Stephane Eranian 已提交
2728 2729 2730 2731
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2732
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2733
			if (group_sched_in(event, cpuctx, ctx))
2734
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2735
		}
T
Thomas Gleixner 已提交
2736
	}
2737 2738 2739 2740 2741
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2742 2743
	     enum event_type_t event_type,
	     struct task_struct *task)
2744
{
2745
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2746 2747 2748
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2749

2750 2751 2752
	if (likely(!ctx->nr_events))
		return;

2753
	ctx->is_active |= event_type;
2754 2755 2756 2757 2758 2759 2760
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

S
Stephane Eranian 已提交
2761 2762
	now = perf_clock();
	ctx->timestamp = now;
2763
	perf_cgroup_set_timestamp(task, ctx);
2764 2765 2766 2767
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2768
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2769
		ctx_pinned_sched_in(ctx, cpuctx);
2770 2771

	/* Then walk through the lower prio flexible groups */
2772
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2773
		ctx_flexible_sched_in(ctx, cpuctx);
2774 2775
}

2776
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2777 2778
			     enum event_type_t event_type,
			     struct task_struct *task)
2779 2780 2781
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2782
	ctx_sched_in(ctx, cpuctx, event_type, task);
2783 2784
}

S
Stephane Eranian 已提交
2785 2786
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2787
{
P
Peter Zijlstra 已提交
2788
	struct perf_cpu_context *cpuctx;
2789

P
Peter Zijlstra 已提交
2790
	cpuctx = __get_cpu_context(ctx);
2791 2792 2793
	if (cpuctx->task_ctx == ctx)
		return;

2794
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2795
	perf_pmu_disable(ctx->pmu);
2796 2797 2798 2799 2800 2801
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2802
	perf_event_sched_in(cpuctx, ctx, task);
2803 2804
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2805 2806
}

P
Peter Zijlstra 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2818 2819
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2820 2821 2822 2823
{
	struct perf_event_context *ctx;
	int ctxn;

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2834 2835 2836 2837 2838
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2839
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2840
	}
2841

2842 2843 2844
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2845 2846
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2847 2848
}

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2876
#define REDUCE_FLS(a, b)		\
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2916 2917 2918
	if (!divisor)
		return dividend;

2919 2920 2921
	return div64_u64(dividend, divisor);
}

2922 2923 2924
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2925
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2926
{
2927
	struct hw_perf_event *hwc = &event->hw;
2928
	s64 period, sample_period;
2929 2930
	s64 delta;

2931
	period = perf_calculate_period(event, nsec, count);
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2942

2943
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2944 2945 2946
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2947
		local64_set(&hwc->period_left, 0);
2948 2949 2950

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2951
	}
2952 2953
}

2954 2955 2956 2957 2958 2959 2960
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2961
{
2962 2963
	struct perf_event *event;
	struct hw_perf_event *hwc;
2964
	u64 now, period = TICK_NSEC;
2965
	s64 delta;
2966

2967 2968 2969 2970 2971 2972
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2973 2974
		return;

2975
	raw_spin_lock(&ctx->lock);
2976
	perf_pmu_disable(ctx->pmu);
2977

2978
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2979
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2980 2981
			continue;

2982
		if (!event_filter_match(event))
2983 2984
			continue;

2985 2986
		perf_pmu_disable(event->pmu);

2987
		hwc = &event->hw;
2988

2989
		if (hwc->interrupts == MAX_INTERRUPTS) {
2990
			hwc->interrupts = 0;
2991
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2992
			event->pmu->start(event, 0);
2993 2994
		}

2995
		if (!event->attr.freq || !event->attr.sample_freq)
2996
			goto next;
2997

2998 2999 3000 3001 3002
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3003
		now = local64_read(&event->count);
3004 3005
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3006

3007 3008 3009
		/*
		 * restart the event
		 * reload only if value has changed
3010 3011 3012
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3013
		 */
3014
		if (delta > 0)
3015
			perf_adjust_period(event, period, delta, false);
3016 3017

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3018 3019
	next:
		perf_pmu_enable(event->pmu);
3020
	}
3021

3022
	perf_pmu_enable(ctx->pmu);
3023
	raw_spin_unlock(&ctx->lock);
3024 3025
}

3026
/*
3027
 * Round-robin a context's events:
3028
 */
3029
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3030
{
3031 3032 3033 3034 3035 3036
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3037 3038
}

3039
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3040
{
P
Peter Zijlstra 已提交
3041
	struct perf_event_context *ctx = NULL;
3042
	int rotate = 0;
3043

3044 3045 3046 3047
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3048

P
Peter Zijlstra 已提交
3049
	ctx = cpuctx->task_ctx;
3050 3051 3052 3053
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3054

3055
	if (!rotate)
3056 3057
		goto done;

3058
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3059
	perf_pmu_disable(cpuctx->ctx.pmu);
3060

3061 3062 3063
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3064

3065 3066 3067
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3068

3069
	perf_event_sched_in(cpuctx, ctx, current);
3070

3071 3072
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3073
done:
3074 3075

	return rotate;
3076 3077
}

3078 3079 3080
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3081
	if (atomic_read(&nr_freq_events) ||
3082
	    __this_cpu_read(perf_throttled_count))
3083
		return false;
3084 3085
	else
		return true;
3086 3087 3088
}
#endif

3089 3090
void perf_event_task_tick(void)
{
3091 3092
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3093
	int throttled;
3094

3095 3096
	WARN_ON(!irqs_disabled());

3097 3098 3099
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3100
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3101
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3102 3103
}

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3114
	__perf_event_mark_enabled(event);
3115 3116 3117 3118

	return 1;
}

3119
/*
3120
 * Enable all of a task's events that have been marked enable-on-exec.
3121 3122
 * This expects task == current.
 */
3123
static void perf_event_enable_on_exec(int ctxn)
3124
{
3125
	struct perf_event_context *ctx, *clone_ctx = NULL;
3126
	struct perf_cpu_context *cpuctx;
3127
	struct perf_event *event;
3128 3129 3130 3131
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3132
	ctx = current->perf_event_ctxp[ctxn];
3133
	if (!ctx || !ctx->nr_events)
3134 3135
		goto out;

3136 3137 3138 3139
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3140 3141

	/*
3142
	 * Unclone and reschedule this context if we enabled any event.
3143
	 */
3144
	if (enabled) {
3145
		clone_ctx = unclone_ctx(ctx);
3146 3147 3148
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3149

P
Peter Zijlstra 已提交
3150
out:
3151
	local_irq_restore(flags);
3152 3153 3154

	if (clone_ctx)
		put_ctx(clone_ctx);
3155 3156
}

3157 3158 3159 3160 3161
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3162 3163
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3164 3165 3166
	rcu_read_unlock();
}

3167 3168 3169
struct perf_read_data {
	struct perf_event *event;
	bool group;
3170
	int ret;
3171 3172
};

T
Thomas Gleixner 已提交
3173
/*
3174
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3175
 */
3176
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3177
{
3178 3179
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3180
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3181
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3182
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3183

3184 3185 3186 3187
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3188 3189
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3190 3191 3192 3193
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3194
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3195
	if (ctx->is_active) {
3196
		update_context_time(ctx);
S
Stephane Eranian 已提交
3197 3198
		update_cgrp_time_from_event(event);
	}
3199

3200
	update_event_times(event);
3201 3202
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3203

3204 3205 3206
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3207
		goto unlock;
3208 3209 3210 3211 3212
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3213 3214 3215

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3216 3217 3218 3219 3220
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3221
			sub->pmu->read(sub);
3222
		}
3223
	}
3224 3225

	data->ret = pmu->commit_txn(pmu);
3226 3227

unlock:
3228
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3229 3230
}

P
Peter Zijlstra 已提交
3231 3232
static inline u64 perf_event_count(struct perf_event *event)
{
3233 3234 3235 3236
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3237 3238
}

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3292
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3293
{
3294 3295
	int ret = 0;

T
Thomas Gleixner 已提交
3296
	/*
3297 3298
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3299
	 */
3300
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3301 3302 3303
		struct perf_read_data data = {
			.event = event,
			.group = group,
3304
			.ret = 0,
3305
		};
3306
		smp_call_function_single(event->oncpu,
3307
					 __perf_event_read, &data, 1);
3308
		ret = data.ret;
3309
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3310 3311 3312
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3313
		raw_spin_lock_irqsave(&ctx->lock, flags);
3314 3315 3316 3317 3318
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3319
		if (ctx->is_active) {
3320
			update_context_time(ctx);
S
Stephane Eranian 已提交
3321 3322
			update_cgrp_time_from_event(event);
		}
3323 3324 3325 3326
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3327
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3328
	}
3329 3330

	return ret;
T
Thomas Gleixner 已提交
3331 3332
}

3333
/*
3334
 * Initialize the perf_event context in a task_struct:
3335
 */
3336
static void __perf_event_init_context(struct perf_event_context *ctx)
3337
{
3338
	raw_spin_lock_init(&ctx->lock);
3339
	mutex_init(&ctx->mutex);
3340
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3341 3342
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3343 3344
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3345
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3361
	}
3362 3363 3364
	ctx->pmu = pmu;

	return ctx;
3365 3366
}

3367 3368 3369 3370 3371
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3372 3373

	rcu_read_lock();
3374
	if (!vpid)
T
Thomas Gleixner 已提交
3375 3376
		task = current;
	else
3377
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3378 3379 3380 3381 3382 3383 3384 3385
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3386 3387 3388 3389
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3390 3391 3392 3393 3394 3395 3396
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3397 3398 3399
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3400
static struct perf_event_context *
3401 3402
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3403
{
3404
	struct perf_event_context *ctx, *clone_ctx = NULL;
3405
	struct perf_cpu_context *cpuctx;
3406
	void *task_ctx_data = NULL;
3407
	unsigned long flags;
P
Peter Zijlstra 已提交
3408
	int ctxn, err;
3409
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3410

3411
	if (!task) {
3412
		/* Must be root to operate on a CPU event: */
3413
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3414 3415 3416
			return ERR_PTR(-EACCES);

		/*
3417
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3418 3419 3420
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3421
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3422 3423
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3424
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3425
		ctx = &cpuctx->ctx;
3426
		get_ctx(ctx);
3427
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3428 3429 3430 3431

		return ctx;
	}

P
Peter Zijlstra 已提交
3432 3433 3434 3435 3436
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3437 3438 3439 3440 3441 3442 3443 3444
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3445
retry:
P
Peter Zijlstra 已提交
3446
	ctx = perf_lock_task_context(task, ctxn, &flags);
3447
	if (ctx) {
3448
		clone_ctx = unclone_ctx(ctx);
3449
		++ctx->pin_count;
3450 3451 3452 3453 3454

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3455
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3456 3457 3458

		if (clone_ctx)
			put_ctx(clone_ctx);
3459
	} else {
3460
		ctx = alloc_perf_context(pmu, task);
3461 3462 3463
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3464

3465 3466 3467 3468 3469
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3480
		else {
3481
			get_ctx(ctx);
3482
			++ctx->pin_count;
3483
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3484
		}
3485 3486 3487
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3488
			put_ctx(ctx);
3489 3490 3491 3492

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3493 3494 3495
		}
	}

3496
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3497
	return ctx;
3498

P
Peter Zijlstra 已提交
3499
errout:
3500
	kfree(task_ctx_data);
3501
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3502 3503
}

L
Li Zefan 已提交
3504
static void perf_event_free_filter(struct perf_event *event);
3505
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3506

3507
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3508
{
3509
	struct perf_event *event;
P
Peter Zijlstra 已提交
3510

3511 3512 3513
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3514
	perf_event_free_filter(event);
3515
	kfree(event);
P
Peter Zijlstra 已提交
3516 3517
}

3518 3519
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3520

3521
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3522
{
3523 3524 3525 3526 3527 3528
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3529

3530 3531
static void unaccount_event(struct perf_event *event)
{
3532 3533
	bool dec = false;

3534 3535 3536 3537
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3538
		dec = true;
3539 3540 3541 3542 3543 3544
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3545 3546
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3547
	if (event->attr.context_switch) {
3548
		dec = true;
3549 3550
		atomic_dec(&nr_switch_events);
	}
3551
	if (is_cgroup_event(event))
3552
		dec = true;
3553
	if (has_branch_stack(event))
3554 3555 3556
		dec = true;

	if (dec)
3557 3558 3559 3560
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3561

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3647 3648
static void __free_event(struct perf_event *event)
{
3649
	if (!event->parent) {
3650 3651
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3652
	}
3653

3654 3655
	perf_event_free_bpf_prog(event);

3656 3657 3658 3659 3660 3661
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3662 3663
	if (event->pmu) {
		exclusive_event_destroy(event);
3664
		module_put(event->pmu->module);
3665
	}
3666

3667 3668
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3669 3670

static void _free_event(struct perf_event *event)
3671
{
3672
	irq_work_sync(&event->pending);
3673

3674
	unaccount_event(event);
3675

3676
	if (event->rb) {
3677 3678 3679 3680 3681 3682 3683
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3684
		ring_buffer_attach(event, NULL);
3685
		mutex_unlock(&event->mmap_mutex);
3686 3687
	}

S
Stephane Eranian 已提交
3688 3689 3690
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3691
	__free_event(event);
3692 3693
}

P
Peter Zijlstra 已提交
3694 3695 3696 3697 3698
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3699
{
P
Peter Zijlstra 已提交
3700 3701 3702 3703 3704 3705
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3706

P
Peter Zijlstra 已提交
3707
	_free_event(event);
T
Thomas Gleixner 已提交
3708 3709
}

3710
/*
3711
 * Remove user event from the owner task.
3712
 */
3713
static void perf_remove_from_owner(struct perf_event *event)
3714
{
P
Peter Zijlstra 已提交
3715
	struct task_struct *owner;
3716

P
Peter Zijlstra 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3758 3759 3760 3761
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3762
	struct perf_event_context *ctx;
3763 3764 3765 3766 3767 3768

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3769

P
Peter Zijlstra 已提交
3770 3771 3772 3773 3774 3775 3776
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3777
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3778 3779 3780 3781
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3782 3783
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3784
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3785
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3786 3787

	_free_event(event);
3788 3789
}

P
Peter Zijlstra 已提交
3790 3791 3792 3793 3794 3795 3796
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3797 3798 3799
/*
 * Called when the last reference to the file is gone.
 */
3800 3801 3802 3803
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3804 3805
}

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3842
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3843
{
3844
	struct perf_event *child;
3845 3846
	u64 total = 0;

3847 3848 3849
	*enabled = 0;
	*running = 0;

3850
	mutex_lock(&event->child_mutex);
3851

3852
	(void)perf_event_read(event, false);
3853 3854
	total += perf_event_count(event);

3855 3856 3857 3858 3859 3860
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3861
		(void)perf_event_read(child, false);
3862
		total += perf_event_count(child);
3863 3864 3865
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3866
	mutex_unlock(&event->child_mutex);
3867 3868 3869

	return total;
}
3870
EXPORT_SYMBOL_GPL(perf_event_read_value);
3871

3872
static int __perf_read_group_add(struct perf_event *leader,
3873
					u64 read_format, u64 *values)
3874
{
3875 3876
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3877
	int ret;
P
Peter Zijlstra 已提交
3878

3879 3880 3881
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3882

3883 3884 3885 3886 3887 3888 3889 3890 3891
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3892

3893 3894 3895 3896 3897 3898 3899 3900 3901
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3902 3903
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3904

3905 3906 3907 3908 3909
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3910 3911

	return 0;
3912
}
3913

3914 3915 3916 3917 3918
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3919
	int ret;
3920
	u64 *values;
3921

3922
	lockdep_assert_held(&ctx->mutex);
3923

3924 3925 3926
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3927

3928 3929 3930 3931 3932 3933 3934
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3935

3936 3937 3938 3939 3940 3941 3942 3943 3944
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3945

3946
	mutex_unlock(&leader->child_mutex);
3947

3948
	ret = event->read_size;
3949 3950
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3951
	goto out;
3952

3953 3954 3955
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3956
	kfree(values);
3957
	return ret;
3958 3959
}

3960
static int perf_read_one(struct perf_event *event,
3961 3962
				 u64 read_format, char __user *buf)
{
3963
	u64 enabled, running;
3964 3965 3966
	u64 values[4];
	int n = 0;

3967 3968 3969 3970 3971
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3972
	if (read_format & PERF_FORMAT_ID)
3973
		values[n++] = primary_event_id(event);
3974 3975 3976 3977 3978 3979 3980

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3994
/*
3995
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3996 3997
 */
static ssize_t
3998
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3999
{
4000
	u64 read_format = event->attr.read_format;
4001
	int ret;
T
Thomas Gleixner 已提交
4002

4003
	/*
4004
	 * Return end-of-file for a read on a event that is in
4005 4006 4007
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4008
	if (event->state == PERF_EVENT_STATE_ERROR)
4009 4010
		return 0;

4011
	if (count < event->read_size)
4012 4013
		return -ENOSPC;

4014
	WARN_ON_ONCE(event->ctx->parent_ctx);
4015
	if (read_format & PERF_FORMAT_GROUP)
4016
		ret = perf_read_group(event, read_format, buf);
4017
	else
4018
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4019

4020
	return ret;
T
Thomas Gleixner 已提交
4021 4022 4023 4024 4025
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4026
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4027 4028
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4029

P
Peter Zijlstra 已提交
4030
	ctx = perf_event_ctx_lock(event);
4031
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4032 4033 4034
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4035 4036 4037 4038
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4039
	struct perf_event *event = file->private_data;
4040
	struct ring_buffer *rb;
4041
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4042

4043
	poll_wait(file, &event->waitq, wait);
4044

4045
	if (is_event_hup(event))
4046
		return events;
P
Peter Zijlstra 已提交
4047

4048
	/*
4049 4050
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4051 4052
	 */
	mutex_lock(&event->mmap_mutex);
4053 4054
	rb = event->rb;
	if (rb)
4055
		events = atomic_xchg(&rb->poll, 0);
4056
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4057 4058 4059
	return events;
}

P
Peter Zijlstra 已提交
4060
static void _perf_event_reset(struct perf_event *event)
4061
{
4062
	(void)perf_event_read(event, false);
4063
	local64_set(&event->count, 0);
4064
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4065 4066
}

4067
/*
4068 4069 4070 4071
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4072
 */
4073 4074
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4075
{
4076
	struct perf_event *child;
P
Peter Zijlstra 已提交
4077

4078
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4079

4080 4081 4082
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4083
		func(child);
4084
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4085 4086
}

4087 4088
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4089
{
4090 4091
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4092

P
Peter Zijlstra 已提交
4093 4094
	lockdep_assert_held(&ctx->mutex);

4095
	event = event->group_leader;
4096

4097 4098
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4099
		perf_event_for_each_child(sibling, func);
4100 4101
}

4102 4103 4104 4105
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4106
{
4107
	u64 value = *((u64 *)info);
4108
	bool active;
4109

4110 4111
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4112
	} else {
4113 4114
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4115
	}
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4147
	event_function_call(event, __perf_event_period, &value);
4148

4149
	return 0;
4150 4151
}

4152 4153
static const struct file_operations perf_fops;

4154
static inline int perf_fget_light(int fd, struct fd *p)
4155
{
4156 4157 4158
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4159

4160 4161 4162
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4163
	}
4164 4165
	*p = f;
	return 0;
4166 4167 4168 4169
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4170
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4171
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4172

P
Peter Zijlstra 已提交
4173
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4174
{
4175
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4176
	u32 flags = arg;
4177 4178

	switch (cmd) {
4179
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4180
		func = _perf_event_enable;
4181
		break;
4182
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4183
		func = _perf_event_disable;
4184
		break;
4185
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4186
		func = _perf_event_reset;
4187
		break;
P
Peter Zijlstra 已提交
4188

4189
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4190
		return _perf_event_refresh(event, arg);
4191

4192 4193
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4194

4195 4196 4197 4198 4199 4200 4201 4202 4203
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4204
	case PERF_EVENT_IOC_SET_OUTPUT:
4205 4206 4207
	{
		int ret;
		if (arg != -1) {
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4218 4219 4220
		}
		return ret;
	}
4221

L
Li Zefan 已提交
4222 4223 4224
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4225 4226 4227
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4228
	default:
P
Peter Zijlstra 已提交
4229
		return -ENOTTY;
4230
	}
P
Peter Zijlstra 已提交
4231 4232

	if (flags & PERF_IOC_FLAG_GROUP)
4233
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4234
	else
4235
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4236 4237

	return 0;
4238 4239
}

P
Peter Zijlstra 已提交
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4273
int perf_event_task_enable(void)
4274
{
P
Peter Zijlstra 已提交
4275
	struct perf_event_context *ctx;
4276
	struct perf_event *event;
4277

4278
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4279 4280 4281 4282 4283
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4284
	mutex_unlock(&current->perf_event_mutex);
4285 4286 4287 4288

	return 0;
}

4289
int perf_event_task_disable(void)
4290
{
P
Peter Zijlstra 已提交
4291
	struct perf_event_context *ctx;
4292
	struct perf_event *event;
4293

4294
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4295 4296 4297 4298 4299
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4300
	mutex_unlock(&current->perf_event_mutex);
4301 4302 4303 4304

	return 0;
}

4305
static int perf_event_index(struct perf_event *event)
4306
{
P
Peter Zijlstra 已提交
4307 4308 4309
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4310
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4311 4312
		return 0;

4313
	return event->pmu->event_idx(event);
4314 4315
}

4316
static void calc_timer_values(struct perf_event *event,
4317
				u64 *now,
4318 4319
				u64 *enabled,
				u64 *running)
4320
{
4321
	u64 ctx_time;
4322

4323 4324
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4325 4326 4327 4328
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4344 4345
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4346 4347 4348 4349 4350

unlock:
	rcu_read_unlock();
}

4351 4352
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4353 4354 4355
{
}

4356 4357 4358 4359 4360
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4361
void perf_event_update_userpage(struct perf_event *event)
4362
{
4363
	struct perf_event_mmap_page *userpg;
4364
	struct ring_buffer *rb;
4365
	u64 enabled, running, now;
4366 4367

	rcu_read_lock();
4368 4369 4370 4371
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4372 4373 4374 4375 4376 4377 4378 4379 4380
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4381
	calc_timer_values(event, &now, &enabled, &running);
4382

4383
	userpg = rb->user_page;
4384 4385 4386 4387 4388
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4389
	++userpg->lock;
4390
	barrier();
4391
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4392
	userpg->offset = perf_event_count(event);
4393
	if (userpg->index)
4394
		userpg->offset -= local64_read(&event->hw.prev_count);
4395

4396
	userpg->time_enabled = enabled +
4397
			atomic64_read(&event->child_total_time_enabled);
4398

4399
	userpg->time_running = running +
4400
			atomic64_read(&event->child_total_time_running);
4401

4402
	arch_perf_update_userpage(event, userpg, now);
4403

4404
	barrier();
4405
	++userpg->lock;
4406
	preempt_enable();
4407
unlock:
4408
	rcu_read_unlock();
4409 4410
}

4411 4412 4413
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4414
	struct ring_buffer *rb;
4415 4416 4417 4418 4419 4420 4421 4422 4423
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4424 4425
	rb = rcu_dereference(event->rb);
	if (!rb)
4426 4427 4428 4429 4430
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4431
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4446 4447 4448
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4449
	struct ring_buffer *old_rb = NULL;
4450 4451
	unsigned long flags;

4452 4453 4454 4455 4456 4457
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4458

4459 4460 4461 4462
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4463

4464 4465
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4466
	}
4467

4468
	if (rb) {
4469 4470 4471 4472 4473
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4490 4491 4492 4493 4494 4495 4496 4497
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4498 4499 4500 4501
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4502 4503 4504
	rcu_read_unlock();
}

4505
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4506
{
4507
	struct ring_buffer *rb;
4508

4509
	rcu_read_lock();
4510 4511 4512 4513
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4514 4515 4516
	}
	rcu_read_unlock();

4517
	return rb;
4518 4519
}

4520
void ring_buffer_put(struct ring_buffer *rb)
4521
{
4522
	if (!atomic_dec_and_test(&rb->refcount))
4523
		return;
4524

4525
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4526

4527
	call_rcu(&rb->rcu_head, rb_free_rcu);
4528 4529 4530 4531
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4532
	struct perf_event *event = vma->vm_file->private_data;
4533

4534
	atomic_inc(&event->mmap_count);
4535
	atomic_inc(&event->rb->mmap_count);
4536

4537 4538 4539
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4540 4541
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4542 4543
}

4544 4545 4546 4547 4548 4549 4550 4551
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4552 4553
static void perf_mmap_close(struct vm_area_struct *vma)
{
4554
	struct perf_event *event = vma->vm_file->private_data;
4555

4556
	struct ring_buffer *rb = ring_buffer_get(event);
4557 4558 4559
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4560

4561 4562 4563
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4578 4579 4580
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4581
		goto out_put;
4582

4583
	ring_buffer_attach(event, NULL);
4584 4585 4586
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4587 4588
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4589

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4606

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4618 4619 4620
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4621
		mutex_unlock(&event->mmap_mutex);
4622
		put_event(event);
4623

4624 4625 4626 4627 4628
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4629
	}
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4645
out_put:
4646
	ring_buffer_put(rb); /* could be last */
4647 4648
}

4649
static const struct vm_operations_struct perf_mmap_vmops = {
4650
	.open		= perf_mmap_open,
4651
	.close		= perf_mmap_close, /* non mergable */
4652 4653
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4654 4655 4656 4657
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4658
	struct perf_event *event = file->private_data;
4659
	unsigned long user_locked, user_lock_limit;
4660
	struct user_struct *user = current_user();
4661
	unsigned long locked, lock_limit;
4662
	struct ring_buffer *rb = NULL;
4663 4664
	unsigned long vma_size;
	unsigned long nr_pages;
4665
	long user_extra = 0, extra = 0;
4666
	int ret = 0, flags = 0;
4667

4668 4669 4670
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4671
	 * same rb.
4672 4673 4674 4675
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4676
	if (!(vma->vm_flags & VM_SHARED))
4677
		return -EINVAL;
4678 4679

	vma_size = vma->vm_end - vma->vm_start;
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4740

4741
	/*
4742
	 * If we have rb pages ensure they're a power-of-two number, so we
4743 4744
	 * can do bitmasks instead of modulo.
	 */
4745
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4746 4747
		return -EINVAL;

4748
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4749 4750
		return -EINVAL;

4751
	WARN_ON_ONCE(event->ctx->parent_ctx);
4752
again:
4753
	mutex_lock(&event->mmap_mutex);
4754
	if (event->rb) {
4755
		if (event->rb->nr_pages != nr_pages) {
4756
			ret = -EINVAL;
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4770 4771 4772
		goto unlock;
	}

4773
	user_extra = nr_pages + 1;
4774 4775

accounting:
4776
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4777 4778 4779 4780 4781 4782

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4783
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4784

4785 4786
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4787

4788
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4789
	lock_limit >>= PAGE_SHIFT;
4790
	locked = vma->vm_mm->pinned_vm + extra;
4791

4792 4793
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4794 4795 4796
		ret = -EPERM;
		goto unlock;
	}
4797

4798
	WARN_ON(!rb && event->rb);
4799

4800
	if (vma->vm_flags & VM_WRITE)
4801
		flags |= RING_BUFFER_WRITABLE;
4802

4803
	if (!rb) {
4804 4805 4806
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4807

4808 4809 4810 4811
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4812

4813 4814 4815
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4816

4817
		ring_buffer_attach(event, rb);
4818

4819 4820 4821
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4822 4823
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4824 4825 4826
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4827

4828
unlock:
4829 4830 4831 4832
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4833
		atomic_inc(&event->mmap_count);
4834 4835 4836 4837
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4838
	mutex_unlock(&event->mmap_mutex);
4839

4840 4841 4842 4843
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4844
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4845
	vma->vm_ops = &perf_mmap_vmops;
4846

4847 4848 4849
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4850
	return ret;
4851 4852
}

P
Peter Zijlstra 已提交
4853 4854
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4855
	struct inode *inode = file_inode(filp);
4856
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4857 4858 4859
	int retval;

	mutex_lock(&inode->i_mutex);
4860
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4861 4862 4863 4864 4865 4866 4867 4868
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4869
static const struct file_operations perf_fops = {
4870
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4871 4872 4873
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4874
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4875
	.compat_ioctl		= perf_compat_ioctl,
4876
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4877
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4878 4879
};

4880
/*
4881
 * Perf event wakeup
4882 4883 4884 4885 4886
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4887 4888 4889 4890 4891 4892 4893 4894
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4895
void perf_event_wakeup(struct perf_event *event)
4896
{
4897
	ring_buffer_wakeup(event);
4898

4899
	if (event->pending_kill) {
4900
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4901
		event->pending_kill = 0;
4902
	}
4903 4904
}

4905
static void perf_pending_event(struct irq_work *entry)
4906
{
4907 4908
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4909 4910 4911 4912 4913 4914 4915
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4916

4917 4918
	if (event->pending_disable) {
		event->pending_disable = 0;
4919
		perf_event_disable_local(event);
4920 4921
	}

4922 4923 4924
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4925
	}
4926 4927 4928

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4929 4930
}

4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4967
static void perf_sample_regs_user(struct perf_regs *regs_user,
4968 4969
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4970
{
4971 4972
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4973
		regs_user->regs = regs;
4974 4975
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4976 4977 4978
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4979 4980 4981
	}
}

4982 4983 4984 4985 4986 4987 4988 4989
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5085 5086 5087
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5101
		data->time = perf_event_clock(event);
5102

5103
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5115 5116 5117
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5142 5143 5144

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5145 5146
}

5147 5148 5149
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5150 5151 5152 5153 5154
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5155
static void perf_output_read_one(struct perf_output_handle *handle,
5156 5157
				 struct perf_event *event,
				 u64 enabled, u64 running)
5158
{
5159
	u64 read_format = event->attr.read_format;
5160 5161 5162
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5163
	values[n++] = perf_event_count(event);
5164
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5165
		values[n++] = enabled +
5166
			atomic64_read(&event->child_total_time_enabled);
5167 5168
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5169
		values[n++] = running +
5170
			atomic64_read(&event->child_total_time_running);
5171 5172
	}
	if (read_format & PERF_FORMAT_ID)
5173
		values[n++] = primary_event_id(event);
5174

5175
	__output_copy(handle, values, n * sizeof(u64));
5176 5177 5178
}

/*
5179
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5180 5181
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5182 5183
			    struct perf_event *event,
			    u64 enabled, u64 running)
5184
{
5185 5186
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5187 5188 5189 5190 5191 5192
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5193
		values[n++] = enabled;
5194 5195

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5196
		values[n++] = running;
5197

5198
	if (leader != event)
5199 5200
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5201
	values[n++] = perf_event_count(leader);
5202
	if (read_format & PERF_FORMAT_ID)
5203
		values[n++] = primary_event_id(leader);
5204

5205
	__output_copy(handle, values, n * sizeof(u64));
5206

5207
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5208 5209
		n = 0;

5210 5211
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5212 5213
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5214
		values[n++] = perf_event_count(sub);
5215
		if (read_format & PERF_FORMAT_ID)
5216
			values[n++] = primary_event_id(sub);
5217

5218
		__output_copy(handle, values, n * sizeof(u64));
5219 5220 5221
	}
}

5222 5223 5224
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5225
static void perf_output_read(struct perf_output_handle *handle,
5226
			     struct perf_event *event)
5227
{
5228
	u64 enabled = 0, running = 0, now;
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5240
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5241
		calc_timer_values(event, &now, &enabled, &running);
5242

5243
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5244
		perf_output_read_group(handle, event, enabled, running);
5245
	else
5246
		perf_output_read_one(handle, event, enabled, running);
5247 5248
}

5249 5250 5251
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5252
			struct perf_event *event)
5253 5254 5255 5256 5257
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5258 5259 5260
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5286
		perf_output_read(handle, event);
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5297
			__output_copy(handle, data->callchain, size);
5298 5299 5300 5301 5302 5303 5304 5305
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5306 5307 5308 5309 5310 5311 5312 5313 5314
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5326

5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5361

5362
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5363 5364 5365
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5366
	}
A
Andi Kleen 已提交
5367 5368 5369

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5370 5371 5372

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5373

A
Andi Kleen 已提交
5374 5375 5376
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5407 5408 5409 5410
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5411
			 struct perf_event *event,
5412
			 struct pt_regs *regs)
5413
{
5414
	u64 sample_type = event->attr.sample_type;
5415

5416
	header->type = PERF_RECORD_SAMPLE;
5417
	header->size = sizeof(*header) + event->header_size;
5418 5419 5420

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5421

5422
	__perf_event_header__init_id(header, data, event);
5423

5424
	if (sample_type & PERF_SAMPLE_IP)
5425 5426
		data->ip = perf_instruction_pointer(regs);

5427
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5428
		int size = 1;
5429

5430
		data->callchain = perf_callchain(event, regs);
5431 5432 5433 5434 5435

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5436 5437
	}

5438
	if (sample_type & PERF_SAMPLE_RAW) {
5439 5440 5441 5442 5443 5444 5445
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5446
		header->size += round_up(size, sizeof(u64));
5447
	}
5448 5449 5450 5451 5452 5453 5454 5455 5456

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5457

5458
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5459 5460
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5461

5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5485
						     data->regs_user.regs);
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5513
}
5514

5515 5516 5517
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5518 5519 5520
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5521

5522 5523 5524
	/* protect the callchain buffers */
	rcu_read_lock();

5525
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5526

5527
	if (perf_output_begin(&handle, event, header.size))
5528
		goto exit;
5529

5530
	perf_output_sample(&handle, &header, data, event);
5531

5532
	perf_output_end(&handle);
5533 5534 5535

exit:
	rcu_read_unlock();
5536 5537
}

5538
/*
5539
 * read event_id
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5550
perf_event_read_event(struct perf_event *event,
5551 5552 5553
			struct task_struct *task)
{
	struct perf_output_handle handle;
5554
	struct perf_sample_data sample;
5555
	struct perf_read_event read_event = {
5556
		.header = {
5557
			.type = PERF_RECORD_READ,
5558
			.misc = 0,
5559
			.size = sizeof(read_event) + event->read_size,
5560
		},
5561 5562
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5563
	};
5564
	int ret;
5565

5566
	perf_event_header__init_id(&read_event.header, &sample, event);
5567
	ret = perf_output_begin(&handle, event, read_event.header.size);
5568 5569 5570
	if (ret)
		return;

5571
	perf_output_put(&handle, read_event);
5572
	perf_output_read(&handle, event);
5573
	perf_event__output_id_sample(event, &handle, &sample);
5574

5575 5576 5577
	perf_output_end(&handle);
}

5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5592
		output(event, data);
5593 5594 5595
	}
}

J
Jiri Olsa 已提交
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5607
static void
5608
perf_event_aux(perf_event_aux_output_cb output, void *data,
5609 5610 5611 5612 5613 5614 5615
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5627 5628 5629 5630 5631
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5632
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5633 5634 5635 5636 5637
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5638
			perf_event_aux_ctx(ctx, output, data);
5639 5640 5641 5642 5643 5644
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5645
/*
P
Peter Zijlstra 已提交
5646 5647
 * task tracking -- fork/exit
 *
5648
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5649 5650
 */

P
Peter Zijlstra 已提交
5651
struct perf_task_event {
5652
	struct task_struct		*task;
5653
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5654 5655 5656 5657 5658 5659

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5660 5661
		u32				tid;
		u32				ptid;
5662
		u64				time;
5663
	} event_id;
P
Peter Zijlstra 已提交
5664 5665
};

5666 5667
static int perf_event_task_match(struct perf_event *event)
{
5668 5669 5670
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5671 5672
}

5673
static void perf_event_task_output(struct perf_event *event,
5674
				   void *data)
P
Peter Zijlstra 已提交
5675
{
5676
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5677
	struct perf_output_handle handle;
5678
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5679
	struct task_struct *task = task_event->task;
5680
	int ret, size = task_event->event_id.header.size;
5681

5682 5683 5684
	if (!perf_event_task_match(event))
		return;

5685
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5686

5687
	ret = perf_output_begin(&handle, event,
5688
				task_event->event_id.header.size);
5689
	if (ret)
5690
		goto out;
P
Peter Zijlstra 已提交
5691

5692 5693
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5694

5695 5696
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5697

5698 5699
	task_event->event_id.time = perf_event_clock(event);

5700
	perf_output_put(&handle, task_event->event_id);
5701

5702 5703
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5704
	perf_output_end(&handle);
5705 5706
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5707 5708
}

5709 5710
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5711
			      int new)
P
Peter Zijlstra 已提交
5712
{
P
Peter Zijlstra 已提交
5713
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5714

5715 5716 5717
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5718 5719
		return;

P
Peter Zijlstra 已提交
5720
	task_event = (struct perf_task_event){
5721 5722
		.task	  = task,
		.task_ctx = task_ctx,
5723
		.event_id    = {
P
Peter Zijlstra 已提交
5724
			.header = {
5725
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5726
				.misc = 0,
5727
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5728
			},
5729 5730
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5731 5732
			/* .tid  */
			/* .ptid */
5733
			/* .time */
P
Peter Zijlstra 已提交
5734 5735 5736
		},
	};

5737
	perf_event_aux(perf_event_task_output,
5738 5739
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5740 5741
}

5742
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5743
{
5744
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5745 5746
}

5747 5748 5749 5750 5751
/*
 * comm tracking
 */

struct perf_comm_event {
5752 5753
	struct task_struct	*task;
	char			*comm;
5754 5755 5756 5757 5758 5759 5760
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5761
	} event_id;
5762 5763
};

5764 5765 5766 5767 5768
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5769
static void perf_event_comm_output(struct perf_event *event,
5770
				   void *data)
5771
{
5772
	struct perf_comm_event *comm_event = data;
5773
	struct perf_output_handle handle;
5774
	struct perf_sample_data sample;
5775
	int size = comm_event->event_id.header.size;
5776 5777
	int ret;

5778 5779 5780
	if (!perf_event_comm_match(event))
		return;

5781 5782
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5783
				comm_event->event_id.header.size);
5784 5785

	if (ret)
5786
		goto out;
5787

5788 5789
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5790

5791
	perf_output_put(&handle, comm_event->event_id);
5792
	__output_copy(&handle, comm_event->comm,
5793
				   comm_event->comm_size);
5794 5795 5796

	perf_event__output_id_sample(event, &handle, &sample);

5797
	perf_output_end(&handle);
5798 5799
out:
	comm_event->event_id.header.size = size;
5800 5801
}

5802
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5803
{
5804
	char comm[TASK_COMM_LEN];
5805 5806
	unsigned int size;

5807
	memset(comm, 0, sizeof(comm));
5808
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5809
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5810 5811 5812 5813

	comm_event->comm = comm;
	comm_event->comm_size = size;

5814
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5815

5816
	perf_event_aux(perf_event_comm_output,
5817 5818
		       comm_event,
		       NULL);
5819 5820
}

5821
void perf_event_comm(struct task_struct *task, bool exec)
5822
{
5823 5824
	struct perf_comm_event comm_event;

5825
	if (!atomic_read(&nr_comm_events))
5826
		return;
5827

5828
	comm_event = (struct perf_comm_event){
5829
		.task	= task,
5830 5831
		/* .comm      */
		/* .comm_size */
5832
		.event_id  = {
5833
			.header = {
5834
				.type = PERF_RECORD_COMM,
5835
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5836 5837 5838 5839
				/* .size */
			},
			/* .pid */
			/* .tid */
5840 5841 5842
		},
	};

5843
	perf_event_comm_event(&comm_event);
5844 5845
}

5846 5847 5848 5849 5850
/*
 * mmap tracking
 */

struct perf_mmap_event {
5851 5852 5853 5854
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5855 5856 5857
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5858
	u32			prot, flags;
5859 5860 5861 5862 5863 5864 5865 5866 5867

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5868
	} event_id;
5869 5870
};

5871 5872 5873 5874 5875 5876 5877 5878
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5879
	       (executable && (event->attr.mmap || event->attr.mmap2));
5880 5881
}

5882
static void perf_event_mmap_output(struct perf_event *event,
5883
				   void *data)
5884
{
5885
	struct perf_mmap_event *mmap_event = data;
5886
	struct perf_output_handle handle;
5887
	struct perf_sample_data sample;
5888
	int size = mmap_event->event_id.header.size;
5889
	int ret;
5890

5891 5892 5893
	if (!perf_event_mmap_match(event, data))
		return;

5894 5895 5896 5897 5898
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5899
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5900 5901
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5902 5903
	}

5904 5905
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5906
				mmap_event->event_id.header.size);
5907
	if (ret)
5908
		goto out;
5909

5910 5911
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5912

5913
	perf_output_put(&handle, mmap_event->event_id);
5914 5915 5916 5917 5918 5919

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5920 5921
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5922 5923
	}

5924
	__output_copy(&handle, mmap_event->file_name,
5925
				   mmap_event->file_size);
5926 5927 5928

	perf_event__output_id_sample(event, &handle, &sample);

5929
	perf_output_end(&handle);
5930 5931
out:
	mmap_event->event_id.header.size = size;
5932 5933
}

5934
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5935
{
5936 5937
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5938 5939
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5940
	u32 prot = 0, flags = 0;
5941 5942 5943
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5944
	char *name;
5945

5946
	if (file) {
5947 5948
		struct inode *inode;
		dev_t dev;
5949

5950
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5951
		if (!buf) {
5952 5953
			name = "//enomem";
			goto cpy_name;
5954
		}
5955
		/*
5956
		 * d_path() works from the end of the rb backwards, so we
5957 5958 5959
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5960
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5961
		if (IS_ERR(name)) {
5962 5963
			name = "//toolong";
			goto cpy_name;
5964
		}
5965 5966 5967 5968 5969 5970
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5993
		goto got_name;
5994
	} else {
5995 5996 5997 5998 5999 6000
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6001
		name = (char *)arch_vma_name(vma);
6002 6003
		if (name)
			goto cpy_name;
6004

6005
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6006
				vma->vm_end >= vma->vm_mm->brk) {
6007 6008
			name = "[heap]";
			goto cpy_name;
6009 6010
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6011
				vma->vm_end >= vma->vm_mm->start_stack) {
6012 6013
			name = "[stack]";
			goto cpy_name;
6014 6015
		}

6016 6017
		name = "//anon";
		goto cpy_name;
6018 6019
	}

6020 6021 6022
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6023
got_name:
6024 6025 6026 6027 6028 6029 6030 6031
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6032 6033 6034

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6035 6036 6037 6038
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6039 6040
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6041

6042 6043 6044
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6045
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6046

6047
	perf_event_aux(perf_event_mmap_output,
6048 6049
		       mmap_event,
		       NULL);
6050

6051 6052 6053
	kfree(buf);
}

6054
void perf_event_mmap(struct vm_area_struct *vma)
6055
{
6056 6057
	struct perf_mmap_event mmap_event;

6058
	if (!atomic_read(&nr_mmap_events))
6059 6060 6061
		return;

	mmap_event = (struct perf_mmap_event){
6062
		.vma	= vma,
6063 6064
		/* .file_name */
		/* .file_size */
6065
		.event_id  = {
6066
			.header = {
6067
				.type = PERF_RECORD_MMAP,
6068
				.misc = PERF_RECORD_MISC_USER,
6069 6070 6071 6072
				/* .size */
			},
			/* .pid */
			/* .tid */
6073 6074
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6075
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6076
		},
6077 6078 6079 6080
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6081 6082
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6083 6084
	};

6085
	perf_event_mmap_event(&mmap_event);
6086 6087
}

A
Alexander Shishkin 已提交
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6240 6241 6242 6243
/*
 * IRQ throttle logging
 */

6244
static void perf_log_throttle(struct perf_event *event, int enable)
6245 6246
{
	struct perf_output_handle handle;
6247
	struct perf_sample_data sample;
6248 6249 6250 6251 6252
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6253
		u64				id;
6254
		u64				stream_id;
6255 6256
	} throttle_event = {
		.header = {
6257
			.type = PERF_RECORD_THROTTLE,
6258 6259 6260
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6261
		.time		= perf_event_clock(event),
6262 6263
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6264 6265
	};

6266
	if (enable)
6267
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6268

6269 6270 6271
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6272
				throttle_event.header.size);
6273 6274 6275 6276
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6277
	perf_event__output_id_sample(event, &handle, &sample);
6278 6279 6280
	perf_output_end(&handle);
}

6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6317
/*
6318
 * Generic event overflow handling, sampling.
6319 6320
 */

6321
static int __perf_event_overflow(struct perf_event *event,
6322 6323
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6324
{
6325 6326
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6327
	u64 seq;
6328 6329
	int ret = 0;

6330 6331 6332 6333 6334 6335 6336
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6337 6338 6339 6340 6341 6342 6343 6344 6345
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6346 6347
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6348
			tick_nohz_full_kick();
6349 6350
			ret = 1;
		}
6351
	}
6352

6353
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6354
		u64 now = perf_clock();
6355
		s64 delta = now - hwc->freq_time_stamp;
6356

6357
		hwc->freq_time_stamp = now;
6358

6359
		if (delta > 0 && delta < 2*TICK_NSEC)
6360
			perf_adjust_period(event, delta, hwc->last_period, true);
6361 6362
	}

6363 6364
	/*
	 * XXX event_limit might not quite work as expected on inherited
6365
	 * events
6366 6367
	 */

6368 6369
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6370
		ret = 1;
6371
		event->pending_kill = POLL_HUP;
6372 6373
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6374 6375
	}

6376
	if (event->overflow_handler)
6377
		event->overflow_handler(event, data, regs);
6378
	else
6379
		perf_event_output(event, data, regs);
6380

6381
	if (*perf_event_fasync(event) && event->pending_kill) {
6382 6383
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6384 6385
	}

6386
	return ret;
6387 6388
}

6389
int perf_event_overflow(struct perf_event *event,
6390 6391
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6392
{
6393
	return __perf_event_overflow(event, 1, data, regs);
6394 6395
}

6396
/*
6397
 * Generic software event infrastructure
6398 6399
 */

6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6411
/*
6412 6413
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6414 6415 6416 6417
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6418
u64 perf_swevent_set_period(struct perf_event *event)
6419
{
6420
	struct hw_perf_event *hwc = &event->hw;
6421 6422 6423 6424 6425
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6426 6427

again:
6428
	old = val = local64_read(&hwc->period_left);
6429 6430
	if (val < 0)
		return 0;
6431

6432 6433 6434
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6435
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6436
		goto again;
6437

6438
	return nr;
6439 6440
}

6441
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6442
				    struct perf_sample_data *data,
6443
				    struct pt_regs *regs)
6444
{
6445
	struct hw_perf_event *hwc = &event->hw;
6446
	int throttle = 0;
6447

6448 6449
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6450

6451 6452
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6453

6454
	for (; overflow; overflow--) {
6455
		if (__perf_event_overflow(event, throttle,
6456
					    data, regs)) {
6457 6458 6459 6460 6461 6462
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6463
		throttle = 1;
6464
	}
6465 6466
}

P
Peter Zijlstra 已提交
6467
static void perf_swevent_event(struct perf_event *event, u64 nr,
6468
			       struct perf_sample_data *data,
6469
			       struct pt_regs *regs)
6470
{
6471
	struct hw_perf_event *hwc = &event->hw;
6472

6473
	local64_add(nr, &event->count);
6474

6475 6476 6477
	if (!regs)
		return;

6478
	if (!is_sampling_event(event))
6479
		return;
6480

6481 6482 6483 6484 6485 6486
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6487
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6488
		return perf_swevent_overflow(event, 1, data, regs);
6489

6490
	if (local64_add_negative(nr, &hwc->period_left))
6491
		return;
6492

6493
	perf_swevent_overflow(event, 0, data, regs);
6494 6495
}

6496 6497 6498
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6499
	if (event->hw.state & PERF_HES_STOPPED)
6500
		return 1;
P
Peter Zijlstra 已提交
6501

6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6513
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6514
				enum perf_type_id type,
L
Li Zefan 已提交
6515 6516 6517
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6518
{
6519
	if (event->attr.type != type)
6520
		return 0;
6521

6522
	if (event->attr.config != event_id)
6523 6524
		return 0;

6525 6526
	if (perf_exclude_event(event, regs))
		return 0;
6527 6528 6529 6530

	return 1;
}

6531 6532 6533 6534 6535 6536 6537
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6538 6539
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6540
{
6541 6542 6543 6544
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6545

6546 6547
/* For the read side: events when they trigger */
static inline struct hlist_head *
6548
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6549 6550
{
	struct swevent_hlist *hlist;
6551

6552
	hlist = rcu_dereference(swhash->swevent_hlist);
6553 6554 6555
	if (!hlist)
		return NULL;

6556 6557 6558 6559 6560
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6561
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6572
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6573 6574 6575 6576 6577
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6578 6579 6580
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6581
				    u64 nr,
6582 6583
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6584
{
6585
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6586
	struct perf_event *event;
6587
	struct hlist_head *head;
6588

6589
	rcu_read_lock();
6590
	head = find_swevent_head_rcu(swhash, type, event_id);
6591 6592 6593
	if (!head)
		goto end;

6594
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6595
		if (perf_swevent_match(event, type, event_id, data, regs))
6596
			perf_swevent_event(event, nr, data, regs);
6597
	}
6598 6599
end:
	rcu_read_unlock();
6600 6601
}

6602 6603
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6604
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6605
{
6606
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6607

6608
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6609
}
I
Ingo Molnar 已提交
6610
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6611

6612
inline void perf_swevent_put_recursion_context(int rctx)
6613
{
6614
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6615

6616
	put_recursion_context(swhash->recursion, rctx);
6617
}
6618

6619
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6620
{
6621
	struct perf_sample_data data;
6622

6623
	if (WARN_ON_ONCE(!regs))
6624
		return;
6625

6626
	perf_sample_data_init(&data, addr, 0);
6627
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6640 6641

	perf_swevent_put_recursion_context(rctx);
6642
fail:
6643
	preempt_enable_notrace();
6644 6645
}

6646
static void perf_swevent_read(struct perf_event *event)
6647 6648 6649
{
}

P
Peter Zijlstra 已提交
6650
static int perf_swevent_add(struct perf_event *event, int flags)
6651
{
6652
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6653
	struct hw_perf_event *hwc = &event->hw;
6654 6655
	struct hlist_head *head;

6656
	if (is_sampling_event(event)) {
6657
		hwc->last_period = hwc->sample_period;
6658
		perf_swevent_set_period(event);
6659
	}
6660

P
Peter Zijlstra 已提交
6661 6662
	hwc->state = !(flags & PERF_EF_START);

6663
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6664
	if (WARN_ON_ONCE(!head))
6665 6666 6667
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6668
	perf_event_update_userpage(event);
6669

6670 6671 6672
	return 0;
}

P
Peter Zijlstra 已提交
6673
static void perf_swevent_del(struct perf_event *event, int flags)
6674
{
6675
	hlist_del_rcu(&event->hlist_entry);
6676 6677
}

P
Peter Zijlstra 已提交
6678
static void perf_swevent_start(struct perf_event *event, int flags)
6679
{
P
Peter Zijlstra 已提交
6680
	event->hw.state = 0;
6681
}
I
Ingo Molnar 已提交
6682

P
Peter Zijlstra 已提交
6683
static void perf_swevent_stop(struct perf_event *event, int flags)
6684
{
P
Peter Zijlstra 已提交
6685
	event->hw.state = PERF_HES_STOPPED;
6686 6687
}

6688 6689
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6690
swevent_hlist_deref(struct swevent_htable *swhash)
6691
{
6692 6693
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6694 6695
}

6696
static void swevent_hlist_release(struct swevent_htable *swhash)
6697
{
6698
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6699

6700
	if (!hlist)
6701 6702
		return;

6703
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6704
	kfree_rcu(hlist, rcu_head);
6705 6706 6707 6708
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6709
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6710

6711
	mutex_lock(&swhash->hlist_mutex);
6712

6713 6714
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6715

6716
	mutex_unlock(&swhash->hlist_mutex);
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6729
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6730 6731
	int err = 0;

6732 6733
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6734 6735 6736 6737 6738 6739 6740
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6741
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6742
	}
6743
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6744
exit:
6745
	mutex_unlock(&swhash->hlist_mutex);
6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6766
fail:
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6777
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6778

6779 6780 6781
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6782

6783 6784
	WARN_ON(event->parent);

6785
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6786 6787 6788 6789 6790
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6791
	u64 event_id = event->attr.config;
6792 6793 6794 6795

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6796 6797 6798 6799 6800 6801
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6802 6803 6804 6805 6806 6807 6808 6809 6810
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6811
	if (event_id >= PERF_COUNT_SW_MAX)
6812 6813 6814 6815 6816 6817 6818 6819 6820
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6821
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6822 6823 6824 6825 6826 6827 6828
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6829
	.task_ctx_nr	= perf_sw_context,
6830

6831 6832
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6833
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6834 6835 6836 6837
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6838 6839 6840
	.read		= perf_swevent_read,
};

6841 6842
#ifdef CONFIG_EVENT_TRACING

6843 6844 6845 6846 6847
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6848 6849 6850 6851
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6852 6853 6854 6855 6856 6857 6858 6859 6860
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6861 6862
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6863 6864 6865 6866
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6867 6868 6869 6870 6871 6872 6873 6874 6875
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6876 6877
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6878 6879
{
	struct perf_sample_data data;
6880 6881
	struct perf_event *event;

6882 6883 6884 6885 6886
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6887
	perf_sample_data_init(&data, addr, 0);
6888 6889
	data.raw = &raw;

6890
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6891
		if (perf_tp_event_match(event, &data, regs))
6892
			perf_swevent_event(event, count, &data, regs);
6893
	}
6894

6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6920
	perf_swevent_put_recursion_context(rctx);
6921 6922 6923
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6924
static void tp_perf_event_destroy(struct perf_event *event)
6925
{
6926
	perf_trace_destroy(event);
6927 6928
}

6929
static int perf_tp_event_init(struct perf_event *event)
6930
{
6931 6932
	int err;

6933 6934 6935
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6936 6937 6938 6939 6940 6941
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6942 6943
	err = perf_trace_init(event);
	if (err)
6944
		return err;
6945

6946
	event->destroy = tp_perf_event_destroy;
6947

6948 6949 6950 6951
	return 0;
}

static struct pmu perf_tracepoint = {
6952 6953
	.task_ctx_nr	= perf_sw_context,

6954
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6955 6956 6957 6958
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6959 6960 6961 6962 6963
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6964
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6965
}
L
Li Zefan 已提交
6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7000 7001
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7002 7003 7004 7005 7006 7007
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7008
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7033
#else
L
Li Zefan 已提交
7034

7035
static inline void perf_tp_register(void)
7036 7037
{
}
L
Li Zefan 已提交
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7048 7049 7050 7051 7052 7053 7054 7055
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7056
#endif /* CONFIG_EVENT_TRACING */
7057

7058
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7059
void perf_bp_event(struct perf_event *bp, void *data)
7060
{
7061 7062 7063
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7064
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7065

P
Peter Zijlstra 已提交
7066
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7067
		perf_swevent_event(bp, 1, &sample, regs);
7068 7069 7070
}
#endif

7071 7072 7073
/*
 * hrtimer based swevent callback
 */
7074

7075
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7076
{
7077 7078 7079 7080 7081
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7082

7083
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7084 7085 7086 7087

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7088
	event->pmu->read(event);
7089

7090
	perf_sample_data_init(&data, 0, event->hw.last_period);
7091 7092 7093
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7094
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7095
			if (__perf_event_overflow(event, 1, &data, regs))
7096 7097
				ret = HRTIMER_NORESTART;
	}
7098

7099 7100
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7101

7102
	return ret;
7103 7104
}

7105
static void perf_swevent_start_hrtimer(struct perf_event *event)
7106
{
7107
	struct hw_perf_event *hwc = &event->hw;
7108 7109 7110 7111
	s64 period;

	if (!is_sampling_event(event))
		return;
7112

7113 7114 7115 7116
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7117

7118 7119 7120 7121
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7122 7123
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7124
}
7125 7126

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7127
{
7128 7129
	struct hw_perf_event *hwc = &event->hw;

7130
	if (is_sampling_event(event)) {
7131
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7132
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7133 7134 7135

		hrtimer_cancel(&hwc->hrtimer);
	}
7136 7137
}

P
Peter Zijlstra 已提交
7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7158
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7159 7160 7161 7162
		event->attr.freq = 0;
	}
}

7163 7164 7165 7166 7167
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7168
{
7169 7170 7171
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7172
	now = local_clock();
7173 7174
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7175 7176
}

P
Peter Zijlstra 已提交
7177
static void cpu_clock_event_start(struct perf_event *event, int flags)
7178
{
P
Peter Zijlstra 已提交
7179
	local64_set(&event->hw.prev_count, local_clock());
7180 7181 7182
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7183
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7184
{
7185 7186 7187
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7188

P
Peter Zijlstra 已提交
7189 7190 7191 7192
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7193
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7194 7195 7196 7197 7198 7199 7200 7201 7202

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7203 7204 7205 7206
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7207

7208 7209 7210 7211 7212 7213 7214 7215
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7216 7217 7218 7219 7220 7221
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7222 7223
	perf_swevent_init_hrtimer(event);

7224
	return 0;
7225 7226
}

7227
static struct pmu perf_cpu_clock = {
7228 7229
	.task_ctx_nr	= perf_sw_context,

7230 7231
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7232
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7233 7234 7235 7236
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7237 7238 7239 7240 7241 7242 7243 7244
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7245
{
7246 7247
	u64 prev;
	s64 delta;
7248

7249 7250 7251 7252
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7253

P
Peter Zijlstra 已提交
7254
static void task_clock_event_start(struct perf_event *event, int flags)
7255
{
P
Peter Zijlstra 已提交
7256
	local64_set(&event->hw.prev_count, event->ctx->time);
7257 7258 7259
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7260
static void task_clock_event_stop(struct perf_event *event, int flags)
7261 7262 7263
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7264 7265 7266 7267 7268 7269
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7270
	perf_event_update_userpage(event);
7271

P
Peter Zijlstra 已提交
7272 7273 7274 7275 7276 7277
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7278 7279 7280 7281
}

static void task_clock_event_read(struct perf_event *event)
{
7282 7283 7284
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7285 7286 7287 7288 7289

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7290
{
7291 7292 7293 7294 7295 7296
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7297 7298 7299 7300 7301 7302
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7303 7304
	perf_swevent_init_hrtimer(event);

7305
	return 0;
L
Li Zefan 已提交
7306 7307
}

7308
static struct pmu perf_task_clock = {
7309 7310
	.task_ctx_nr	= perf_sw_context,

7311 7312
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7313
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7314 7315 7316 7317
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7318 7319
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7320

P
Peter Zijlstra 已提交
7321
static void perf_pmu_nop_void(struct pmu *pmu)
7322 7323
{
}
L
Li Zefan 已提交
7324

7325 7326 7327 7328
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7329
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7330
{
P
Peter Zijlstra 已提交
7331
	return 0;
L
Li Zefan 已提交
7332 7333
}

7334
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7335 7336

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7337
{
7338 7339 7340 7341 7342
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7343
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7344 7345
}

P
Peter Zijlstra 已提交
7346 7347
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7348 7349 7350 7351 7352 7353 7354
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7355 7356 7357
	perf_pmu_enable(pmu);
	return 0;
}
7358

P
Peter Zijlstra 已提交
7359
static void perf_pmu_cancel_txn(struct pmu *pmu)
7360
{
7361 7362 7363 7364 7365 7366 7367
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7368
	perf_pmu_enable(pmu);
7369 7370
}

7371 7372
static int perf_event_idx_default(struct perf_event *event)
{
7373
	return 0;
7374 7375
}

P
Peter Zijlstra 已提交
7376 7377 7378 7379
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7380
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7381
{
P
Peter Zijlstra 已提交
7382
	struct pmu *pmu;
7383

P
Peter Zijlstra 已提交
7384 7385
	if (ctxn < 0)
		return NULL;
7386

P
Peter Zijlstra 已提交
7387 7388 7389 7390
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7391

P
Peter Zijlstra 已提交
7392
	return NULL;
7393 7394
}

7395
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7396
{
7397 7398 7399 7400 7401 7402 7403
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7404 7405
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7406 7407 7408 7409 7410 7411
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7412

P
Peter Zijlstra 已提交
7413
	mutex_lock(&pmus_lock);
7414
	/*
P
Peter Zijlstra 已提交
7415
	 * Like a real lame refcount.
7416
	 */
7417 7418 7419
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7420
			goto out;
7421
		}
P
Peter Zijlstra 已提交
7422
	}
7423

7424
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7425 7426
out:
	mutex_unlock(&pmus_lock);
7427
}
P
Peter Zijlstra 已提交
7428
static struct idr pmu_idr;
7429

P
Peter Zijlstra 已提交
7430 7431 7432 7433 7434 7435 7436
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7437
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7438

7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7449 7450
static DEFINE_MUTEX(mux_interval_mutex);

7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7470
	mutex_lock(&mux_interval_mutex);
7471 7472 7473
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7474 7475
	get_online_cpus();
	for_each_online_cpu(cpu) {
7476 7477 7478 7479
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7480 7481
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7482
	}
7483 7484
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7485 7486 7487

	return count;
}
7488
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7489

7490 7491 7492 7493
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7494
};
7495
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7496 7497 7498 7499

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7500
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7516
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7537
static struct lock_class_key cpuctx_mutex;
7538
static struct lock_class_key cpuctx_lock;
7539

7540
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7541
{
P
Peter Zijlstra 已提交
7542
	int cpu, ret;
7543

7544
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7545 7546 7547 7548
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7549

P
Peter Zijlstra 已提交
7550 7551 7552 7553 7554 7555
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7556 7557 7558
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7559 7560 7561 7562 7563
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7564 7565 7566 7567 7568 7569
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7570
skip_type:
P
Peter Zijlstra 已提交
7571 7572 7573
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7574

W
Wei Yongjun 已提交
7575
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7576 7577
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7578
		goto free_dev;
7579

P
Peter Zijlstra 已提交
7580 7581 7582 7583
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7584
		__perf_event_init_context(&cpuctx->ctx);
7585
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7586
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7587
		cpuctx->ctx.pmu = pmu;
7588

7589
		__perf_mux_hrtimer_init(cpuctx, cpu);
7590

7591
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7592
	}
7593

P
Peter Zijlstra 已提交
7594
got_cpu_context:
P
Peter Zijlstra 已提交
7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7606
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7607 7608
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7609
		}
7610
	}
7611

P
Peter Zijlstra 已提交
7612 7613 7614 7615 7616
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7617 7618 7619
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7620
	list_add_rcu(&pmu->entry, &pmus);
7621
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7622 7623
	ret = 0;
unlock:
7624 7625
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7626
	return ret;
P
Peter Zijlstra 已提交
7627

P
Peter Zijlstra 已提交
7628 7629 7630 7631
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7632 7633 7634 7635
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7636 7637 7638
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7639
}
7640
EXPORT_SYMBOL_GPL(perf_pmu_register);
7641

7642
void perf_pmu_unregister(struct pmu *pmu)
7643
{
7644 7645 7646
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7647

7648
	/*
P
Peter Zijlstra 已提交
7649 7650
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7651
	 */
7652
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7653
	synchronize_rcu();
7654

P
Peter Zijlstra 已提交
7655
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7656 7657
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7658 7659
	device_del(pmu->dev);
	put_device(pmu->dev);
7660
	free_pmu_context(pmu);
7661
}
7662
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7663

7664 7665
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7666
	struct perf_event_context *ctx = NULL;
7667 7668 7669 7670
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7671 7672

	if (event->group_leader != event) {
7673 7674 7675 7676 7677 7678
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7679 7680 7681
		BUG_ON(!ctx);
	}

7682 7683
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7684 7685 7686 7687

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7688 7689 7690 7691 7692 7693
	if (ret)
		module_put(pmu->module);

	return ret;
}

7694
static struct pmu *perf_init_event(struct perf_event *event)
7695 7696 7697
{
	struct pmu *pmu = NULL;
	int idx;
7698
	int ret;
7699 7700

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7701 7702 7703 7704

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7705
	if (pmu) {
7706
		ret = perf_try_init_event(pmu, event);
7707 7708
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7709
		goto unlock;
7710
	}
P
Peter Zijlstra 已提交
7711

7712
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7713
		ret = perf_try_init_event(pmu, event);
7714
		if (!ret)
P
Peter Zijlstra 已提交
7715
			goto unlock;
7716

7717 7718
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7719
			goto unlock;
7720
		}
7721
	}
P
Peter Zijlstra 已提交
7722 7723
	pmu = ERR_PTR(-ENOENT);
unlock:
7724
	srcu_read_unlock(&pmus_srcu, idx);
7725

7726
	return pmu;
7727 7728
}

7729 7730 7731 7732 7733 7734 7735 7736 7737
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7738 7739
static void account_event(struct perf_event *event)
{
7740 7741
	bool inc = false;

7742 7743 7744
	if (event->parent)
		return;

7745
	if (event->attach_state & PERF_ATTACH_TASK)
7746
		inc = true;
7747 7748 7749 7750 7751 7752
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7753 7754 7755 7756
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7757 7758
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7759
		inc = true;
7760
	}
7761
	if (has_branch_stack(event))
7762
		inc = true;
7763
	if (is_cgroup_event(event))
7764 7765 7766
		inc = true;

	if (inc)
7767
		static_key_slow_inc(&perf_sched_events.key);
7768 7769

	account_event_cpu(event, event->cpu);
7770 7771
}

T
Thomas Gleixner 已提交
7772
/*
7773
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7774
 */
7775
static struct perf_event *
7776
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7777 7778 7779
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7780
		 perf_overflow_handler_t overflow_handler,
7781
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7782
{
P
Peter Zijlstra 已提交
7783
	struct pmu *pmu;
7784 7785
	struct perf_event *event;
	struct hw_perf_event *hwc;
7786
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7787

7788 7789 7790 7791 7792
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7793
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7794
	if (!event)
7795
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7796

7797
	/*
7798
	 * Single events are their own group leaders, with an
7799 7800 7801
	 * empty sibling list:
	 */
	if (!group_leader)
7802
		group_leader = event;
7803

7804 7805
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7806

7807 7808 7809
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7810
	INIT_LIST_HEAD(&event->rb_entry);
7811
	INIT_LIST_HEAD(&event->active_entry);
7812 7813
	INIT_HLIST_NODE(&event->hlist_entry);

7814

7815
	init_waitqueue_head(&event->waitq);
7816
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7817

7818
	mutex_init(&event->mmap_mutex);
7819

7820
	atomic_long_set(&event->refcount, 1);
7821 7822 7823 7824 7825
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7826

7827
	event->parent		= parent_event;
7828

7829
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7830
	event->id		= atomic64_inc_return(&perf_event_id);
7831

7832
	event->state		= PERF_EVENT_STATE_INACTIVE;
7833

7834 7835 7836
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7837 7838 7839
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7840
		 */
7841
		event->hw.target = task;
7842 7843
	}

7844 7845 7846 7847
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7848
	if (!overflow_handler && parent_event) {
7849
		overflow_handler = parent_event->overflow_handler;
7850 7851
		context = parent_event->overflow_handler_context;
	}
7852

7853
	event->overflow_handler	= overflow_handler;
7854
	event->overflow_handler_context = context;
7855

J
Jiri Olsa 已提交
7856
	perf_event__state_init(event);
7857

7858
	pmu = NULL;
7859

7860
	hwc = &event->hw;
7861
	hwc->sample_period = attr->sample_period;
7862
	if (attr->freq && attr->sample_freq)
7863
		hwc->sample_period = 1;
7864
	hwc->last_period = hwc->sample_period;
7865

7866
	local64_set(&hwc->period_left, hwc->sample_period);
7867

7868
	/*
7869
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7870
	 */
7871
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7872
		goto err_ns;
7873 7874 7875

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7876

7877 7878 7879 7880 7881 7882
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7883
	pmu = perf_init_event(event);
7884
	if (!pmu)
7885 7886
		goto err_ns;
	else if (IS_ERR(pmu)) {
7887
		err = PTR_ERR(pmu);
7888
		goto err_ns;
I
Ingo Molnar 已提交
7889
	}
7890

7891 7892 7893 7894
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7895
	if (!event->parent) {
7896 7897
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7898
			if (err)
7899
				goto err_per_task;
7900
		}
7901
	}
7902

7903
	return event;
7904

7905 7906 7907
err_per_task:
	exclusive_event_destroy(event);

7908 7909 7910
err_pmu:
	if (event->destroy)
		event->destroy(event);
7911
	module_put(pmu->module);
7912
err_ns:
7913 7914
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7915 7916 7917 7918 7919
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7920 7921
}

7922 7923
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7924 7925
{
	u32 size;
7926
	int ret;
7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7951 7952 7953
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7954 7955
	 */
	if (size > sizeof(*attr)) {
7956 7957 7958
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7959

7960 7961
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7962

7963
		for (; addr < end; addr++) {
7964 7965 7966 7967 7968 7969
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7970
		size = sizeof(*attr);
7971 7972 7973 7974 7975 7976
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7977
	if (attr->__reserved_1)
7978 7979 7980 7981 7982 7983 7984 7985
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8014 8015
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8016 8017
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8018
	}
8019

8020
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8021
		ret = perf_reg_validate(attr->sample_regs_user);
8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8040

8041 8042
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8043 8044 8045 8046 8047 8048 8049 8050 8051
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8052 8053
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8054
{
8055
	struct ring_buffer *rb = NULL;
8056 8057
	int ret = -EINVAL;

8058
	if (!output_event)
8059 8060
		goto set;

8061 8062
	/* don't allow circular references */
	if (event == output_event)
8063 8064
		goto out;

8065 8066 8067 8068 8069 8070 8071
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8072
	 * If its not a per-cpu rb, it must be the same task.
8073 8074 8075 8076
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8077 8078 8079 8080 8081 8082
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8083 8084 8085 8086 8087 8088 8089
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8090
set:
8091
	mutex_lock(&event->mmap_mutex);
8092 8093 8094
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8095

8096
	if (output_event) {
8097 8098 8099
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8100
			goto unlock;
8101 8102
	}

8103
	ring_buffer_attach(event, rb);
8104

8105
	ret = 0;
8106 8107 8108
unlock:
	mutex_unlock(&event->mmap_mutex);

8109 8110 8111 8112
out:
	return ret;
}

P
Peter Zijlstra 已提交
8113 8114 8115 8116 8117 8118 8119 8120 8121
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8159
/**
8160
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8161
 *
8162
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8163
 * @pid:		target pid
I
Ingo Molnar 已提交
8164
 * @cpu:		target cpu
8165
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8166
 */
8167 8168
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8169
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8170
{
8171 8172
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8173
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8174
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8175
	struct file *event_file = NULL;
8176
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8177
	struct task_struct *task = NULL;
8178
	struct pmu *pmu;
8179
	int event_fd;
8180
	int move_group = 0;
8181
	int err;
8182
	int f_flags = O_RDWR;
8183
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8184

8185
	/* for future expandability... */
S
Stephane Eranian 已提交
8186
	if (flags & ~PERF_FLAG_ALL)
8187 8188
		return -EINVAL;

8189 8190 8191
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8192

8193 8194 8195 8196 8197
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8198
	if (attr.freq) {
8199
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8200
			return -EINVAL;
8201 8202 8203
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8204 8205
	}

S
Stephane Eranian 已提交
8206 8207 8208 8209 8210 8211 8212 8213 8214
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8215 8216 8217 8218
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8219 8220 8221
	if (event_fd < 0)
		return event_fd;

8222
	if (group_fd != -1) {
8223 8224
		err = perf_fget_light(group_fd, &group);
		if (err)
8225
			goto err_fd;
8226
		group_leader = group.file->private_data;
8227 8228 8229 8230 8231 8232
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8233
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8234 8235 8236 8237 8238 8239 8240
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8241 8242 8243 8244 8245 8246
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8247 8248
	get_online_cpus();

8249 8250 8251
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8252
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8253
				 NULL, NULL, cgroup_fd);
8254 8255
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8256
		goto err_cpus;
8257 8258
	}

8259 8260 8261 8262 8263 8264 8265
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8266 8267
	account_event(event);

8268 8269 8270 8271 8272
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8273

8274 8275 8276 8277 8278 8279
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8302 8303 8304 8305

	/*
	 * Get the target context (task or percpu):
	 */
8306
	ctx = find_get_context(pmu, task, event);
8307 8308
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8309
		goto err_alloc;
8310 8311
	}

8312 8313 8314 8315 8316
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8317 8318 8319 8320 8321
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8322
	/*
8323
	 * Look up the group leader (we will attach this event to it):
8324
	 */
8325
	if (group_leader) {
8326
		err = -EINVAL;
8327 8328

		/*
I
Ingo Molnar 已提交
8329 8330 8331 8332
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8333
			goto err_context;
8334 8335 8336 8337 8338

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8339 8340 8341
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8342
		 */
8343
		if (move_group) {
8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8357 8358 8359 8360 8361 8362
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8363 8364 8365
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8366
		if (attr.exclusive || attr.pinned)
8367
			goto err_context;
8368 8369 8370 8371 8372
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8373
			goto err_context;
8374
	}
T
Thomas Gleixner 已提交
8375

8376 8377
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8378 8379
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8380
		goto err_context;
8381
	}
8382

8383
	if (move_group) {
P
Peter Zijlstra 已提交
8384
		gctx = group_leader->ctx;
8385 8386 8387 8388 8389
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8390 8391 8392 8393 8394
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8395 8396 8397 8398 8399 8400 8401
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8402

8403 8404 8405
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8406

8407 8408 8409
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8410 8411 8412 8413
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8414
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8415

8416 8417
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8418
			perf_remove_from_context(sibling, false);
8419 8420 8421
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8422 8423 8424 8425
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8426
		synchronize_rcu();
P
Peter Zijlstra 已提交
8427

8428 8429 8430 8431 8432 8433 8434 8435 8436 8437
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8438 8439
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8440
			perf_event__state_init(sibling);
8441
			perf_install_in_context(ctx, sibling, sibling->cpu);
8442 8443
			get_ctx(ctx);
		}
8444 8445 8446 8447 8448 8449 8450 8451 8452

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8453

8454 8455 8456 8457 8458 8459
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8460 8461
	}

8462 8463 8464 8465 8466 8467 8468 8469 8470
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8471
	perf_install_in_context(ctx, event, event->cpu);
8472
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8473

8474
	if (move_group)
P
Peter Zijlstra 已提交
8475
		mutex_unlock(&gctx->mutex);
8476
	mutex_unlock(&ctx->mutex);
8477

8478 8479
	put_online_cpus();

8480
	event->owner = current;
P
Peter Zijlstra 已提交
8481

8482 8483 8484
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8485

8486 8487 8488 8489 8490 8491
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8492
	fdput(group);
8493 8494
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8495

8496 8497 8498 8499 8500 8501
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8502
err_context:
8503
	perf_unpin_context(ctx);
8504
	put_ctx(ctx);
8505
err_alloc:
8506
	free_event(event);
8507
err_cpus:
8508
	put_online_cpus();
8509
err_task:
P
Peter Zijlstra 已提交
8510 8511
	if (task)
		put_task_struct(task);
8512
err_group_fd:
8513
	fdput(group);
8514 8515
err_fd:
	put_unused_fd(event_fd);
8516
	return err;
T
Thomas Gleixner 已提交
8517 8518
}

8519 8520 8521 8522 8523
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8524
 * @task: task to profile (NULL for percpu)
8525 8526 8527
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8528
				 struct task_struct *task,
8529 8530
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8531 8532
{
	struct perf_event_context *ctx;
8533
	struct perf_event *event;
8534
	int err;
8535

8536 8537 8538
	/*
	 * Get the target context (task or percpu):
	 */
8539

8540
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8541
				 overflow_handler, context, -1);
8542 8543 8544 8545
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8546

8547 8548 8549
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8550 8551
	account_event(event);

8552
	ctx = find_get_context(event->pmu, task, event);
8553 8554
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8555
		goto err_free;
8556
	}
8557 8558 8559

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8560 8561 8562 8563 8564 8565 8566 8567
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8568
	perf_install_in_context(ctx, event, cpu);
8569
	perf_unpin_context(ctx);
8570 8571 8572 8573
	mutex_unlock(&ctx->mutex);

	return event;

8574 8575 8576
err_free:
	free_event(event);
err:
8577
	return ERR_PTR(err);
8578
}
8579
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8580

8581 8582 8583 8584 8585 8586 8587 8588 8589 8590
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8591 8592 8593 8594 8595
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8596 8597
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8598
		perf_remove_from_context(event, false);
8599
		unaccount_event_cpu(event, src_cpu);
8600
		put_ctx(src_ctx);
8601
		list_add(&event->migrate_entry, &events);
8602 8603
	}

8604 8605 8606
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8607 8608
	synchronize_rcu();

8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8633 8634
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8635 8636
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8637
		account_event_cpu(event, dst_cpu);
8638 8639 8640 8641
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8642
	mutex_unlock(&src_ctx->mutex);
8643 8644 8645
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8646
static void sync_child_event(struct perf_event *child_event,
8647
			       struct task_struct *child)
8648
{
8649
	struct perf_event *parent_event = child_event->parent;
8650
	u64 child_val;
8651

8652 8653
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8654

P
Peter Zijlstra 已提交
8655
	child_val = perf_event_count(child_event);
8656 8657 8658 8659

	/*
	 * Add back the child's count to the parent's count:
	 */
8660
	atomic64_add(child_val, &parent_event->child_count);
8661 8662 8663 8664
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8665 8666

	/*
8667
	 * Remove this event from the parent's list
8668
	 */
8669 8670 8671 8672
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8673

8674 8675 8676 8677 8678 8679
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8680
	/*
8681
	 * Release the parent event, if this was the last
8682 8683
	 * reference to it.
	 */
8684
	put_event(parent_event);
8685 8686
}

8687
static void
8688 8689
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8690
			 struct task_struct *child)
8691
{
8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8704 8705 8706 8707 8708 8709 8710
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

	if (!!child_event->parent)
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
	raw_spin_unlock_irq(&child_ctx->lock);
8711

8712
	/*
8713
	 * It can happen that the parent exits first, and has events
8714
	 * that are still around due to the child reference. These
8715
	 * events need to be zapped.
8716
	 */
8717
	if (child_event->parent) {
8718 8719
		sync_child_event(child_event, child);
		free_event(child_event);
8720 8721 8722
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8723
	}
8724 8725
}

P
Peter Zijlstra 已提交
8726
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8727
{
8728
	struct perf_event *child_event, *next;
8729
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8730

J
Jiri Olsa 已提交
8731
	if (likely(!child->perf_event_ctxp[ctxn]))
8732 8733
		return;

8734 8735
	local_irq_disable();
	WARN_ON_ONCE(child != current);
8736 8737
	/*
	 * We can't reschedule here because interrupts are disabled,
8738
	 * and child must be current.
8739
	 */
8740
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8741 8742 8743

	/*
	 * Take the context lock here so that if find_get_context is
8744
	 * reading child->perf_event_ctxp, we wait until it has
8745 8746
	 * incremented the context's refcount before we do put_ctx below.
	 */
8747
	raw_spin_lock(&child_ctx->lock);
8748
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
P
Peter Zijlstra 已提交
8749
	child->perf_event_ctxp[ctxn] = NULL;
8750

8751 8752 8753
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8754
	 * the events from it.
8755
	 */
8756
	clone_ctx = unclone_ctx(child_ctx);
8757
	update_context_time(child_ctx);
8758
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8759

8760 8761
	if (clone_ctx)
		put_ctx(clone_ctx);
8762

P
Peter Zijlstra 已提交
8763
	/*
8764 8765 8766
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8767
	 */
8768
	perf_event_task(child, child_ctx, 0);
8769

8770 8771 8772
	/*
	 * We can recurse on the same lock type through:
	 *
8773 8774
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8775 8776
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8777 8778 8779
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8780
	mutex_lock(&child_ctx->mutex);
8781

8782
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8783
		__perf_event_exit_task(child_event, child_ctx, child);
8784

8785 8786 8787
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8788 8789
}

P
Peter Zijlstra 已提交
8790 8791 8792 8793 8794
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8795
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8796 8797
	int ctxn;

P
Peter Zijlstra 已提交
8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8813 8814
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8815 8816 8817 8818 8819 8820 8821 8822

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8823 8824
}

8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8837
	put_event(parent);
8838

P
Peter Zijlstra 已提交
8839
	raw_spin_lock_irq(&ctx->lock);
8840
	perf_group_detach(event);
8841
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8842
	raw_spin_unlock_irq(&ctx->lock);
8843 8844 8845
	free_event(event);
}

8846
/*
P
Peter Zijlstra 已提交
8847
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8848
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8849 8850 8851
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8852
 */
8853
void perf_event_free_task(struct task_struct *task)
8854
{
P
Peter Zijlstra 已提交
8855
	struct perf_event_context *ctx;
8856
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8857
	int ctxn;
8858

P
Peter Zijlstra 已提交
8859 8860 8861 8862
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8863

P
Peter Zijlstra 已提交
8864
		mutex_lock(&ctx->mutex);
8865
again:
P
Peter Zijlstra 已提交
8866 8867 8868
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8869

P
Peter Zijlstra 已提交
8870 8871 8872
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8873

P
Peter Zijlstra 已提交
8874 8875 8876
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8877

P
Peter Zijlstra 已提交
8878
		mutex_unlock(&ctx->mutex);
8879

P
Peter Zijlstra 已提交
8880 8881
		put_ctx(ctx);
	}
8882 8883
}

8884 8885 8886 8887 8888 8889 8890 8891
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8928
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8929
	struct perf_event *child_event;
8930
	unsigned long flags;
P
Peter Zijlstra 已提交
8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8943
					   child,
P
Peter Zijlstra 已提交
8944
					   group_leader, parent_event,
8945
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8946 8947
	if (IS_ERR(child_event))
		return child_event;
8948

8949 8950
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8951 8952 8953 8954
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8955 8956 8957 8958 8959 8960 8961
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8962
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8979 8980
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8981

8982 8983 8984 8985
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8986
	perf_event__id_header_size(child_event);
8987

P
Peter Zijlstra 已提交
8988 8989 8990
	/*
	 * Link it up in the child's context:
	 */
8991
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8992
	add_event_to_ctx(child_event, child_ctx);
8993
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9027 9028 9029 9030 9031
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9032
		   struct task_struct *child, int ctxn,
9033 9034 9035
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9036
	struct perf_event_context *child_ctx;
9037 9038 9039 9040

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9041 9042
	}

9043
	child_ctx = child->perf_event_ctxp[ctxn];
9044 9045 9046 9047 9048 9049 9050
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9051

9052
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9053 9054
		if (!child_ctx)
			return -ENOMEM;
9055

P
Peter Zijlstra 已提交
9056
		child->perf_event_ctxp[ctxn] = child_ctx;
9057 9058 9059 9060 9061 9062 9063 9064 9065
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9066 9067
}

9068
/*
9069
 * Initialize the perf_event context in task_struct
9070
 */
9071
static int perf_event_init_context(struct task_struct *child, int ctxn)
9072
{
9073
	struct perf_event_context *child_ctx, *parent_ctx;
9074 9075
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9076
	struct task_struct *parent = current;
9077
	int inherited_all = 1;
9078
	unsigned long flags;
9079
	int ret = 0;
9080

P
Peter Zijlstra 已提交
9081
	if (likely(!parent->perf_event_ctxp[ctxn]))
9082 9083
		return 0;

9084
	/*
9085 9086
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9087
	 */
P
Peter Zijlstra 已提交
9088
	parent_ctx = perf_pin_task_context(parent, ctxn);
9089 9090
	if (!parent_ctx)
		return 0;
9091

9092 9093 9094 9095 9096 9097 9098
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9099 9100 9101 9102
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9103
	mutex_lock(&parent_ctx->mutex);
9104 9105 9106 9107 9108

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9109
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9110 9111
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9112 9113 9114
		if (ret)
			break;
	}
9115

9116 9117 9118 9119 9120 9121 9122 9123 9124
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9125
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9126 9127
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9128
		if (ret)
9129
			break;
9130 9131
	}

9132 9133 9134
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9135
	child_ctx = child->perf_event_ctxp[ctxn];
9136

9137
	if (child_ctx && inherited_all) {
9138 9139 9140
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9141 9142 9143
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9144
		 */
P
Peter Zijlstra 已提交
9145
		cloned_ctx = parent_ctx->parent_ctx;
9146 9147
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9148
			child_ctx->parent_gen = parent_ctx->parent_gen;
9149 9150 9151 9152 9153
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9154 9155
	}

P
Peter Zijlstra 已提交
9156
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9157
	mutex_unlock(&parent_ctx->mutex);
9158

9159
	perf_unpin_context(parent_ctx);
9160
	put_ctx(parent_ctx);
9161

9162
	return ret;
9163 9164
}

P
Peter Zijlstra 已提交
9165 9166 9167 9168 9169 9170 9171
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9172 9173 9174 9175
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9176 9177
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9178 9179
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9180
			return ret;
P
Peter Zijlstra 已提交
9181
		}
P
Peter Zijlstra 已提交
9182 9183 9184 9185 9186
	}

	return 0;
}

9187 9188
static void __init perf_event_init_all_cpus(void)
{
9189
	struct swevent_htable *swhash;
9190 9191 9192
	int cpu;

	for_each_possible_cpu(cpu) {
9193 9194
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9195
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9196 9197 9198
	}
}

9199
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9200
{
P
Peter Zijlstra 已提交
9201
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9202

9203
	mutex_lock(&swhash->hlist_mutex);
9204
	if (swhash->hlist_refcount > 0) {
9205 9206
		struct swevent_hlist *hlist;

9207 9208 9209
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9210
	}
9211
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9212 9213
}

9214
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9215
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9216
{
P
Peter Zijlstra 已提交
9217
	struct perf_event_context *ctx = __info;
9218 9219
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9220

9221 9222 9223 9224
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		__perf_remove_from_context(event, cpuctx, ctx, (void *)(unsigned long)true);
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9225
}
P
Peter Zijlstra 已提交
9226 9227 9228 9229 9230 9231 9232 9233 9234

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9235
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9236 9237 9238 9239 9240 9241 9242 9243

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9244
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9245
{
P
Peter Zijlstra 已提交
9246
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9247 9248
}
#else
9249
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9250 9251
#endif

P
Peter Zijlstra 已提交
9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9272
static int
T
Thomas Gleixner 已提交
9273 9274 9275 9276
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9277
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9278 9279

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9280
	case CPU_DOWN_FAILED:
9281
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9282 9283
		break;

P
Peter Zijlstra 已提交
9284
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9285
	case CPU_DOWN_PREPARE:
9286
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9287 9288 9289 9290 9291 9292 9293 9294
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9295
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9296
{
9297 9298
	int ret;

P
Peter Zijlstra 已提交
9299 9300
	idr_init(&pmu_idr);

9301
	perf_event_init_all_cpus();
9302
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9303 9304 9305
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9306 9307
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9308
	register_reboot_notifier(&perf_reboot_notifier);
9309 9310 9311

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9312 9313 9314

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9315 9316 9317 9318 9319 9320 9321

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9322
}
P
Peter Zijlstra 已提交
9323

9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9363 9364

#ifdef CONFIG_CGROUP_PERF
9365 9366
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9367 9368 9369
{
	struct perf_cgroup *jc;

9370
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9383
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9384
{
9385 9386
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9387 9388 9389 9390 9391 9392 9393
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9394
	rcu_read_lock();
S
Stephane Eranian 已提交
9395
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9396
	rcu_read_unlock();
S
Stephane Eranian 已提交
9397 9398 9399
	return 0;
}

9400
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9401
{
9402
	struct task_struct *task;
9403
	struct cgroup_subsys_state *css;
9404

9405
	cgroup_taskset_for_each(task, css, tset)
9406
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9407 9408
}

9409
struct cgroup_subsys perf_event_cgrp_subsys = {
9410 9411
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9412
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9413 9414
};
#endif /* CONFIG_CGROUP_PERF */