core.c 218.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static void event_function_call(struct perf_event *event,
				int (*active)(void *),
				void (*inactive)(void *),
				void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		cpu_function_call(event->cpu, active, data);
		return;
	}

again:
	if (!task_function_call(task, active, data))
		return;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	inactive(data);
	raw_spin_unlock_irq(&ctx->lock);
}

160 161 162 163 164 165 166
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
167 168
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
169 170
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
171

172 173 174 175 176 177 178
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

179 180 181 182 183 184
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
185 186 187 188
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
189
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
190
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
191
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
192

193 194 195
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
196
static atomic_t nr_freq_events __read_mostly;
197
static atomic_t nr_switch_events __read_mostly;
198

P
Peter Zijlstra 已提交
199 200 201 202
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

203
/*
204
 * perf event paranoia level:
205 206
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
207
 *   1 - disallow cpu events for unpriv
208
 *   2 - disallow kernel profiling for unpriv
209
 */
210
int sysctl_perf_event_paranoid __read_mostly = 1;
211

212 213
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
214 215

/*
216
 * max perf event sample rate
217
 */
218 219 220 221 222 223 224 225 226
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
227 228
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
229

230
static void update_perf_cpu_limits(void)
231 232 233 234
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
235
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
236
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
237
}
P
Peter Zijlstra 已提交
238

239 240
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
241 242 243 244
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
245
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
246 247 248 249 250

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
269 270 271

	return 0;
}
272

273 274 275 276 277 278 279
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
280
static DEFINE_PER_CPU(u64, running_sample_length);
281

282
static void perf_duration_warn(struct irq_work *w)
283
{
284
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
285
	u64 avg_local_sample_len;
286
	u64 local_samples_len;
287

288
	local_samples_len = __this_cpu_read(running_sample_length);
289 290 291 292 293
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
294
			avg_local_sample_len, allowed_ns >> 1,
295 296 297 298 299 300 301
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
302
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
303 304
	u64 avg_local_sample_len;
	u64 local_samples_len;
305

P
Peter Zijlstra 已提交
306
	if (allowed_ns == 0)
307 308 309
		return;

	/* decay the counter by 1 average sample */
310
	local_samples_len = __this_cpu_read(running_sample_length);
311 312
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
313
	__this_cpu_write(running_sample_length, local_samples_len);
314 315 316 317 318 319 320 321

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
322
	if (avg_local_sample_len <= allowed_ns)
323 324 325 326 327 328 329 330 331 332
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
333

334 335 336 337 338 339
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
340 341
}

342
static atomic64_t perf_event_id;
343

344 345 346 347
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
348 349 350 351 352
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
353

354
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
355

356
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
357
{
358
	return "pmu";
T
Thomas Gleixner 已提交
359 360
}

361 362 363 364 365
static inline u64 perf_clock(void)
{
	return local_clock();
}

366 367 368 369 370
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
371 372 373 374 375 376
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
393 394 395 396 397 398 399 400
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
417 418 419 420
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
421
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
460 461
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
462
	/*
463 464
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
465
	 */
466
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
467 468
		return;

469
	cgrp = perf_cgroup_from_task(current, event->ctx);
470 471 472 473 474
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
475 476 477
}

static inline void
478 479
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
480 481 482 483
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

484 485 486 487 488 489
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
490 491
		return;

492
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
493
	info = this_cpu_ptr(cgrp->info);
494
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
495 496 497 498 499 500 501 502 503 504 505
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
506
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
526 527
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
528 529 530 531 532 533 534 535 536

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
537 538
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
539 540 541 542 543 544 545 546 547 548 549

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
550
				WARN_ON_ONCE(cpuctx->cgrp);
551 552 553 554
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
555 556
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
557
				 */
558
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
559 560
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
561 562
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
563 564 565 566 567 568
		}
	}

	local_irq_restore(flags);
}

569 570
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
571
{
572 573 574
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

575
	rcu_read_lock();
576 577
	/*
	 * we come here when we know perf_cgroup_events > 0
578 579
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
580
	 */
581
	cgrp1 = perf_cgroup_from_task(task, NULL);
582
	cgrp2 = perf_cgroup_from_task(next, NULL);
583 584 585 586 587 588 589 590

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
591 592

	rcu_read_unlock();
S
Stephane Eranian 已提交
593 594
}

595 596
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
597
{
598 599 600
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

601
	rcu_read_lock();
602 603
	/*
	 * we come here when we know perf_cgroup_events > 0
604 605
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
606
	 */
607 608
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
609 610 611 612 613 614 615 616

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
617 618

	rcu_read_unlock();
S
Stephane Eranian 已提交
619 620 621 622 623 624 625 626
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
627 628
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
629

630
	if (!f.file)
S
Stephane Eranian 已提交
631 632
		return -EBADF;

A
Al Viro 已提交
633
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
634
					 &perf_event_cgrp_subsys);
635 636 637 638
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
652
out:
653
	fdput(f);
S
Stephane Eranian 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

727 728
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
729 730 731
{
}

732 733
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
734 735 736 737 738 739 740 741 742 743 744
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
745 746
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

777 778 779 780 781 782 783 784
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
785
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
786 787 788 789 790 791 792 793 794
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
795 796
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
797
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
798 799 800
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
801

P
Peter Zijlstra 已提交
802
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
803 804
}

805
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
806
{
807
	struct hrtimer *timer = &cpuctx->hrtimer;
808
	struct pmu *pmu = cpuctx->ctx.pmu;
809
	u64 interval;
810 811 812 813 814

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

815 816 817 818
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
819 820 821
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
822

823
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
824

P
Peter Zijlstra 已提交
825 826
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
827
	timer->function = perf_mux_hrtimer_handler;
828 829
}

830
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
831
{
832
	struct hrtimer *timer = &cpuctx->hrtimer;
833
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
834
	unsigned long flags;
835 836 837

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
838
		return 0;
839

P
Peter Zijlstra 已提交
840 841 842 843 844 845 846
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
847

848
	return 0;
849 850
}

P
Peter Zijlstra 已提交
851
void perf_pmu_disable(struct pmu *pmu)
852
{
P
Peter Zijlstra 已提交
853 854 855
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
856 857
}

P
Peter Zijlstra 已提交
858
void perf_pmu_enable(struct pmu *pmu)
859
{
P
Peter Zijlstra 已提交
860 861 862
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
863 864
}

865
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
866 867

/*
868 869 870 871
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
872
 */
873
static void perf_event_ctx_activate(struct perf_event_context *ctx)
874
{
875
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
876

877
	WARN_ON(!irqs_disabled());
878

879 880 881 882 883 884 885 886 887 888 889 890
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
891 892
}

893
static void get_ctx(struct perf_event_context *ctx)
894
{
895
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 897
}

898 899 900 901 902 903 904 905 906
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

907
static void put_ctx(struct perf_event_context *ctx)
908
{
909 910 911
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
912 913
		if (ctx->task)
			put_task_struct(ctx->task);
914
		call_rcu(&ctx->rcu_head, free_ctx);
915
	}
916 917
}

P
Peter Zijlstra 已提交
918 919 920 921 922 923 924
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
979 980
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
981 982 983 984 985 986 987 988 989 990 991 992
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
993
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001 1002
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1003 1004 1005 1006 1007 1008
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1009 1010 1011 1012 1013 1014 1015
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1016 1017 1018 1019 1020 1021 1022
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1023
{
1024 1025 1026 1027 1028
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1029
		ctx->parent_ctx = NULL;
1030
	ctx->generation++;
1031 1032

	return parent_ctx;
1033 1034
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1057
/*
1058
 * If we inherit events we want to return the parent event id
1059 1060
 * to userspace.
 */
1061
static u64 primary_event_id(struct perf_event *event)
1062
{
1063
	u64 id = event->id;
1064

1065 1066
	if (event->parent)
		id = event->parent->id;
1067 1068 1069 1070

	return id;
}

1071
/*
1072
 * Get the perf_event_context for a task and lock it.
1073 1074 1075
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1076
static struct perf_event_context *
P
Peter Zijlstra 已提交
1077
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1078
{
1079
	struct perf_event_context *ctx;
1080

P
Peter Zijlstra 已提交
1081
retry:
1082 1083 1084
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1085
	 * part of the read side critical section was irqs-enabled -- see
1086 1087 1088
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1089
	 * side critical section has interrupts disabled.
1090
	 */
1091
	local_irq_save(*flags);
1092
	rcu_read_lock();
P
Peter Zijlstra 已提交
1093
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1094 1095 1096 1097
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1098
		 * perf_event_task_sched_out, though the
1099 1100 1101 1102 1103 1104
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1105
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1106
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1107
			raw_spin_unlock(&ctx->lock);
1108
			rcu_read_unlock();
1109
			local_irq_restore(*flags);
1110 1111
			goto retry;
		}
1112 1113

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1114
			raw_spin_unlock(&ctx->lock);
1115 1116
			ctx = NULL;
		}
1117 1118
	}
	rcu_read_unlock();
1119 1120
	if (!ctx)
		local_irq_restore(*flags);
1121 1122 1123 1124 1125 1126 1127 1128
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1129 1130
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1131
{
1132
	struct perf_event_context *ctx;
1133 1134
	unsigned long flags;

P
Peter Zijlstra 已提交
1135
	ctx = perf_lock_task_context(task, ctxn, &flags);
1136 1137
	if (ctx) {
		++ctx->pin_count;
1138
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1139 1140 1141 1142
	}
	return ctx;
}

1143
static void perf_unpin_context(struct perf_event_context *ctx)
1144 1145 1146
{
	unsigned long flags;

1147
	raw_spin_lock_irqsave(&ctx->lock, flags);
1148
	--ctx->pin_count;
1149
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1163 1164 1165
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1166 1167 1168 1169

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1170 1171 1172
	return ctx ? ctx->time : 0;
}

1173 1174
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1175
 * The caller of this function needs to hold the ctx->lock.
1176 1177 1178 1179 1180 1181 1182 1183 1184
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1196
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1197 1198
	else if (ctx->is_active)
		run_end = ctx->time;
1199 1200 1201 1202
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1203 1204 1205 1206

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1207
		run_end = perf_event_time(event);
1208 1209

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1210

1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1225 1226 1227 1228 1229 1230 1231 1232 1233
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1234
/*
1235
 * Add a event from the lists for its context.
1236 1237
 * Must be called with ctx->mutex and ctx->lock held.
 */
1238
static void
1239
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1240
{
P
Peter Zijlstra 已提交
1241 1242
	lockdep_assert_held(&ctx->lock);

1243 1244
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1245 1246

	/*
1247 1248 1249
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1250
	 */
1251
	if (event->group_leader == event) {
1252 1253
		struct list_head *list;

1254 1255 1256
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1257 1258
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1259
	}
P
Peter Zijlstra 已提交
1260

1261
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1262 1263
		ctx->nr_cgroups++;

1264 1265 1266
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1267
		ctx->nr_stat++;
1268 1269

	ctx->generation++;
1270 1271
}

J
Jiri Olsa 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1281
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1297
		nr += nr_siblings;
1298 1299 1300 1301 1302 1303 1304
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1305
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1306 1307 1308 1309 1310 1311 1312
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1313 1314 1315 1316 1317 1318
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1319 1320 1321
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1322 1323 1324
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1325 1326 1327
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1328 1329 1330
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1331 1332 1333
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1345 1346 1347 1348 1349 1350
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1351 1352 1353 1354 1355 1356
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1357 1358 1359
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1360 1361 1362 1363 1364 1365 1366 1367 1368
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1369
	event->id_header_size = size;
1370 1371
}

P
Peter Zijlstra 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1393 1394
static void perf_group_attach(struct perf_event *event)
{
1395
	struct perf_event *group_leader = event->group_leader, *pos;
1396

P
Peter Zijlstra 已提交
1397 1398 1399 1400 1401 1402
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1403 1404 1405 1406 1407
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1408 1409
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1410 1411 1412 1413 1414 1415
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1416 1417 1418 1419 1420

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1421 1422
}

1423
/*
1424
 * Remove a event from the lists for its context.
1425
 * Must be called with ctx->mutex and ctx->lock held.
1426
 */
1427
static void
1428
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1429
{
1430
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1431 1432 1433 1434

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1435 1436 1437 1438
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1439
		return;
1440 1441 1442

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1443
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1444
		ctx->nr_cgroups--;
1445 1446 1447 1448
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1449 1450
		cpuctx = __get_cpu_context(ctx);
		/*
1451 1452
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1453 1454 1455 1456
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1457

1458 1459
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1460
		ctx->nr_stat--;
1461

1462
	list_del_rcu(&event->event_entry);
1463

1464 1465
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1466

1467
	update_group_times(event);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1478 1479

	ctx->generation++;
1480 1481
}

1482
static void perf_group_detach(struct perf_event *event)
1483 1484
{
	struct perf_event *sibling, *tmp;
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1501
		goto out;
1502 1503 1504 1505
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1506

1507
	/*
1508 1509
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1510
	 * to whatever list we are on.
1511
	 */
1512
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1513 1514
		if (list)
			list_move_tail(&sibling->group_entry, list);
1515
		sibling->group_leader = sibling;
1516 1517 1518

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1519 1520

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1521
	}
1522 1523 1524 1525 1526 1527

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1569 1570 1571 1572 1573 1574
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1575 1576 1577
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1578
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1579
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1580 1581
}

1582 1583
static void
event_sched_out(struct perf_event *event,
1584
		  struct perf_cpu_context *cpuctx,
1585
		  struct perf_event_context *ctx)
1586
{
1587
	u64 tstamp = perf_event_time(event);
1588
	u64 delta;
P
Peter Zijlstra 已提交
1589 1590 1591 1592

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1593 1594 1595 1596 1597 1598 1599 1600
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1601
		delta = tstamp - event->tstamp_stopped;
1602
		event->tstamp_running += delta;
1603
		event->tstamp_stopped = tstamp;
1604 1605
	}

1606
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1607
		return;
1608

1609 1610
	perf_pmu_disable(event->pmu);

1611 1612 1613 1614
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1615
	}
1616
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1617
	event->pmu->del(event, 0);
1618
	event->oncpu = -1;
1619

1620
	if (!is_software_event(event))
1621
		cpuctx->active_oncpu--;
1622 1623
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1624 1625
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1626
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1627
		cpuctx->exclusive = 0;
1628

1629 1630 1631
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1632
	perf_pmu_enable(event->pmu);
1633 1634
}

1635
static void
1636
group_sched_out(struct perf_event *group_event,
1637
		struct perf_cpu_context *cpuctx,
1638
		struct perf_event_context *ctx)
1639
{
1640
	struct perf_event *event;
1641
	int state = group_event->state;
1642

1643
	event_sched_out(group_event, cpuctx, ctx);
1644 1645 1646 1647

	/*
	 * Schedule out siblings (if any):
	 */
1648 1649
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1650

1651
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1652 1653 1654
		cpuctx->exclusive = 0;
}

1655 1656 1657 1658 1659
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
static void ___perf_remove_from_context(void *info)
{
	struct remove_event *re = info;
	struct perf_event *event = re->event;
	struct perf_event_context *ctx = event->ctx;

	if (re->detach_group)
		perf_group_detach(event);
	list_del_event(event, ctx);
}

T
Thomas Gleixner 已提交
1671
/*
1672
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1673
 *
1674
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1675 1676
 * remove it from the context list.
 */
1677
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1678
{
1679 1680
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1681
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1682
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1683

1684
	raw_spin_lock(&ctx->lock);
1685
	event_sched_out(event, cpuctx, ctx);
1686 1687
	if (re->detach_group)
		perf_group_detach(event);
1688
	list_del_event(event, ctx);
1689 1690 1691 1692
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1693
	raw_spin_unlock(&ctx->lock);
1694 1695

	return 0;
T
Thomas Gleixner 已提交
1696 1697 1698
}

/*
1699
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1700
 *
1701
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1702
 * call when the task is on a CPU.
1703
 *
1704 1705
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1706 1707
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1708
 * When called from perf_event_exit_task, it's OK because the
1709
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1710
 */
1711
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1712
{
1713
	struct perf_event_context *ctx = event->ctx;
1714 1715 1716 1717
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1718

1719 1720
	lockdep_assert_held(&ctx->mutex);

1721 1722
	event_function_call(event, __perf_remove_from_context,
			    ___perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1723 1724
}

1725
/*
1726
 * Cross CPU call to disable a performance event
1727
 */
1728
int __perf_event_disable(void *info)
1729
{
1730 1731
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1732
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1733 1734

	/*
1735 1736
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1737 1738 1739
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1740
	 */
1741
	if (ctx->task && cpuctx->task_ctx != ctx)
1742
		return -EINVAL;
1743

1744
	raw_spin_lock(&ctx->lock);
1745 1746

	/*
1747
	 * If the event is on, turn it off.
1748 1749
	 * If it is in error state, leave it in error state.
	 */
1750
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1751
		update_context_time(ctx);
S
Stephane Eranian 已提交
1752
		update_cgrp_time_from_event(event);
1753 1754 1755
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1756
		else
1757 1758
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1759 1760
	}

1761
	raw_spin_unlock(&ctx->lock);
1762 1763

	return 0;
1764 1765
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
void ___perf_event_disable(void *info)
{
	struct perf_event *event = info;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
	}
}

1780
/*
1781
 * Disable a event.
1782
 *
1783 1784
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1785
 * remains valid.  This condition is satisifed when called through
1786 1787 1788 1789
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1790
 * is the current context on this CPU and preemption is disabled,
1791
 * hence we can't get into perf_event_task_sched_out for this context.
1792
 */
P
Peter Zijlstra 已提交
1793
static void _perf_event_disable(struct perf_event *event)
1794
{
1795
	struct perf_event_context *ctx = event->ctx;
1796

1797
	raw_spin_lock_irq(&ctx->lock);
1798
	if (event->state <= PERF_EVENT_STATE_OFF) {
1799
		raw_spin_unlock_irq(&ctx->lock);
1800
		return;
1801
	}
1802
	raw_spin_unlock_irq(&ctx->lock);
1803 1804 1805

	event_function_call(event, __perf_event_disable,
			    ___perf_event_disable, event);
1806
}
P
Peter Zijlstra 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1820
EXPORT_SYMBOL_GPL(perf_event_disable);
1821

S
Stephane Eranian 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1857 1858 1859
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1860
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1861

1862
static int
1863
event_sched_in(struct perf_event *event,
1864
		 struct perf_cpu_context *cpuctx,
1865
		 struct perf_event_context *ctx)
1866
{
1867
	u64 tstamp = perf_event_time(event);
1868
	int ret = 0;
1869

1870 1871
	lockdep_assert_held(&ctx->lock);

1872
	if (event->state <= PERF_EVENT_STATE_OFF)
1873 1874
		return 0;

1875
	event->state = PERF_EVENT_STATE_ACTIVE;
1876
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1888 1889 1890 1891 1892
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1893 1894
	perf_pmu_disable(event->pmu);

1895 1896
	perf_set_shadow_time(event, ctx, tstamp);

1897 1898
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1899
	if (event->pmu->add(event, PERF_EF_START)) {
1900 1901
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1902 1903
		ret = -EAGAIN;
		goto out;
1904 1905
	}

1906 1907
	event->tstamp_running += tstamp - event->tstamp_stopped;

1908
	if (!is_software_event(event))
1909
		cpuctx->active_oncpu++;
1910 1911
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1912 1913
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1914

1915
	if (event->attr.exclusive)
1916 1917
		cpuctx->exclusive = 1;

1918 1919 1920
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1921 1922 1923 1924
out:
	perf_pmu_enable(event->pmu);

	return ret;
1925 1926
}

1927
static int
1928
group_sched_in(struct perf_event *group_event,
1929
	       struct perf_cpu_context *cpuctx,
1930
	       struct perf_event_context *ctx)
1931
{
1932
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1933
	struct pmu *pmu = ctx->pmu;
1934 1935
	u64 now = ctx->time;
	bool simulate = false;
1936

1937
	if (group_event->state == PERF_EVENT_STATE_OFF)
1938 1939
		return 0;

1940
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1941

1942
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1943
		pmu->cancel_txn(pmu);
1944
		perf_mux_hrtimer_restart(cpuctx);
1945
		return -EAGAIN;
1946
	}
1947 1948 1949 1950

	/*
	 * Schedule in siblings as one group (if any):
	 */
1951
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1952
		if (event_sched_in(event, cpuctx, ctx)) {
1953
			partial_group = event;
1954 1955 1956 1957
			goto group_error;
		}
	}

1958
	if (!pmu->commit_txn(pmu))
1959
		return 0;
1960

1961 1962 1963 1964
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1975
	 */
1976 1977
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1978 1979 1980 1981 1982 1983 1984 1985
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1986
	}
1987
	event_sched_out(group_event, cpuctx, ctx);
1988

P
Peter Zijlstra 已提交
1989
	pmu->cancel_txn(pmu);
1990

1991
	perf_mux_hrtimer_restart(cpuctx);
1992

1993 1994 1995
	return -EAGAIN;
}

1996
/*
1997
 * Work out whether we can put this event group on the CPU now.
1998
 */
1999
static int group_can_go_on(struct perf_event *event,
2000 2001 2002 2003
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2004
	 * Groups consisting entirely of software events can always go on.
2005
	 */
2006
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2007 2008 2009
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2010
	 * events can go on.
2011 2012 2013 2014 2015
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2016
	 * events on the CPU, it can't go on.
2017
	 */
2018
	if (event->attr.exclusive && cpuctx->active_oncpu)
2019 2020 2021 2022 2023 2024 2025 2026
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2027 2028
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2029
{
2030 2031
	u64 tstamp = perf_event_time(event);

2032
	list_add_event(event, ctx);
2033
	perf_group_attach(event);
2034 2035 2036
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2037 2038
}

2039 2040
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2041 2042 2043 2044 2045
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2046

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
static void ___perf_install_in_context(void *info)
{
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;

	/*
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
	 */
	add_event_to_ctx(event, ctx);
}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
{
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
}

T
Thomas Gleixner 已提交
2082
/*
2083
 * Cross CPU call to install and enable a performance event
2084 2085
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2086
 */
2087
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2088
{
2089 2090
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2091
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2092 2093 2094
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2095
	perf_ctx_lock(cpuctx, task_ctx);
2096
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2097 2098

	/*
2099
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2100
	 */
2101
	if (task_ctx)
2102
		task_ctx_sched_out(cpuctx, task_ctx);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2117 2118
		task = task_ctx->task;
	}
2119

2120
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2121

2122
	update_context_time(ctx);
S
Stephane Eranian 已提交
2123 2124 2125 2126 2127 2128
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2129

2130
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2131

2132
	/*
2133
	 * Schedule everything back in
2134
	 */
2135
	perf_event_sched_in(cpuctx, task_ctx, task);
2136 2137 2138

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2139 2140

	return 0;
T
Thomas Gleixner 已提交
2141 2142 2143
}

/*
2144
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2145 2146
 */
static void
2147 2148
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2149 2150
			int cpu)
{
2151 2152
	lockdep_assert_held(&ctx->mutex);

2153
	event->ctx = ctx;
2154 2155
	if (event->cpu != -1)
		event->cpu = cpu;
2156

2157 2158
	event_function_call(event, __perf_install_in_context,
			    ___perf_install_in_context, event);
T
Thomas Gleixner 已提交
2159 2160
}

2161
/*
2162
 * Put a event into inactive state and update time fields.
2163 2164 2165 2166 2167 2168
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2169
static void __perf_event_mark_enabled(struct perf_event *event)
2170
{
2171
	struct perf_event *sub;
2172
	u64 tstamp = perf_event_time(event);
2173

2174
	event->state = PERF_EVENT_STATE_INACTIVE;
2175
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2176
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2177 2178
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2179
	}
2180 2181
}

2182
/*
2183
 * Cross CPU call to enable a performance event
2184
 */
2185
static int __perf_event_enable(void *info)
2186
{
2187 2188 2189
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2190
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2191
	int err;
2192

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2203
		return -EINVAL;
2204

2205
	raw_spin_lock(&ctx->lock);
2206
	update_context_time(ctx);
2207

2208
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2209
		goto unlock;
S
Stephane Eranian 已提交
2210 2211 2212 2213

	/*
	 * set current task's cgroup time reference point
	 */
2214
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2215

2216
	__perf_event_mark_enabled(event);
2217

S
Stephane Eranian 已提交
2218 2219 2220
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2221
		goto unlock;
S
Stephane Eranian 已提交
2222
	}
2223

2224
	/*
2225
	 * If the event is in a group and isn't the group leader,
2226
	 * then don't put it on unless the group is on.
2227
	 */
2228
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2229
		goto unlock;
2230

2231
	if (!group_can_go_on(event, cpuctx, 1)) {
2232
		err = -EEXIST;
2233
	} else {
2234
		if (event == leader)
2235
			err = group_sched_in(event, cpuctx, ctx);
2236
		else
2237
			err = event_sched_in(event, cpuctx, ctx);
2238
	}
2239 2240 2241

	if (err) {
		/*
2242
		 * If this event can't go on and it's part of a
2243 2244
		 * group, then the whole group has to come off.
		 */
2245
		if (leader != event) {
2246
			group_sched_out(leader, cpuctx, ctx);
2247
			perf_mux_hrtimer_restart(cpuctx);
2248
		}
2249
		if (leader->attr.pinned) {
2250
			update_group_times(leader);
2251
			leader->state = PERF_EVENT_STATE_ERROR;
2252
		}
2253 2254
	}

P
Peter Zijlstra 已提交
2255
unlock:
2256
	raw_spin_unlock(&ctx->lock);
2257 2258

	return 0;
2259 2260
}

2261 2262 2263 2264 2265
void ___perf_event_enable(void *info)
{
	__perf_event_mark_enabled((struct perf_event *)info);
}

2266
/*
2267
 * Enable a event.
2268
 *
2269 2270
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2271
 * remains valid.  This condition is satisfied when called through
2272 2273
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2274
 */
P
Peter Zijlstra 已提交
2275
static void _perf_event_enable(struct perf_event *event)
2276
{
2277
	struct perf_event_context *ctx = event->ctx;
2278

2279 2280 2281
	raw_spin_lock_irq(&ctx->lock);
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
		raw_spin_unlock_irq(&ctx->lock);
2282 2283 2284 2285
		return;
	}

	/*
2286
	 * If the event is in error state, clear that first.
2287 2288 2289 2290
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2291
	 */
2292 2293
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2294
	raw_spin_unlock_irq(&ctx->lock);
2295

2296 2297
	event_function_call(event, __perf_event_enable,
			    ___perf_event_enable, event);
2298
}
P
Peter Zijlstra 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2311
EXPORT_SYMBOL_GPL(perf_event_enable);
2312

P
Peter Zijlstra 已提交
2313
static int _perf_event_refresh(struct perf_event *event, int refresh)
2314
{
2315
	/*
2316
	 * not supported on inherited events
2317
	 */
2318
	if (event->attr.inherit || !is_sampling_event(event))
2319 2320
		return -EINVAL;

2321
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2322
	_perf_event_enable(event);
2323 2324

	return 0;
2325
}
P
Peter Zijlstra 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2341
EXPORT_SYMBOL_GPL(perf_event_refresh);
2342

2343 2344 2345
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2346
{
2347
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2348 2349 2350
	struct perf_event *event;

	lockdep_assert_held(&ctx->lock);
2351

2352
	ctx->is_active &= ~event_type;
2353
	if (likely(!ctx->nr_events))
2354 2355
		return;

2356
	update_context_time(ctx);
S
Stephane Eranian 已提交
2357
	update_cgrp_time_from_cpuctx(cpuctx);
2358
	if (!ctx->nr_active)
2359
		return;
2360

P
Peter Zijlstra 已提交
2361
	perf_pmu_disable(ctx->pmu);
2362
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2363 2364
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2365
	}
2366

2367
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2368
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2369
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2370
	}
P
Peter Zijlstra 已提交
2371
	perf_pmu_enable(ctx->pmu);
2372 2373
}

2374
/*
2375 2376 2377 2378 2379 2380
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2381
 */
2382 2383
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2384
{
2385 2386 2387
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2410 2411
}

2412 2413
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2414 2415 2416
{
	u64 value;

2417
	if (!event->attr.inherit_stat)
2418 2419 2420
		return;

	/*
2421
	 * Update the event value, we cannot use perf_event_read()
2422 2423
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2424
	 * we know the event must be on the current CPU, therefore we
2425 2426
	 * don't need to use it.
	 */
2427 2428
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2429 2430
		event->pmu->read(event);
		/* fall-through */
2431

2432 2433
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2434 2435 2436 2437 2438 2439 2440
		break;

	default:
		break;
	}

	/*
2441
	 * In order to keep per-task stats reliable we need to flip the event
2442 2443
	 * values when we flip the contexts.
	 */
2444 2445 2446
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2447

2448 2449
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2450

2451
	/*
2452
	 * Since we swizzled the values, update the user visible data too.
2453
	 */
2454 2455
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2456 2457
}

2458 2459
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2460
{
2461
	struct perf_event *event, *next_event;
2462 2463 2464 2465

	if (!ctx->nr_stat)
		return;

2466 2467
	update_context_time(ctx);

2468 2469
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2470

2471 2472
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2473

2474 2475
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2476

2477
		__perf_event_sync_stat(event, next_event);
2478

2479 2480
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2481 2482 2483
	}
}

2484 2485
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2486
{
P
Peter Zijlstra 已提交
2487
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2488
	struct perf_event_context *next_ctx;
2489
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2490
	struct perf_cpu_context *cpuctx;
2491
	int do_switch = 1;
T
Thomas Gleixner 已提交
2492

P
Peter Zijlstra 已提交
2493 2494
	if (likely(!ctx))
		return;
2495

P
Peter Zijlstra 已提交
2496 2497
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2498 2499
		return;

2500
	rcu_read_lock();
P
Peter Zijlstra 已提交
2501
	next_ctx = next->perf_event_ctxp[ctxn];
2502 2503 2504 2505 2506 2507 2508
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2509
	if (!parent && !next_parent)
2510 2511 2512
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2513 2514 2515 2516 2517 2518 2519 2520 2521
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2522 2523
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2524
		if (context_equiv(ctx, next_ctx)) {
2525 2526
			/*
			 * XXX do we need a memory barrier of sorts
2527
			 * wrt to rcu_dereference() of perf_event_ctxp
2528
			 */
P
Peter Zijlstra 已提交
2529 2530
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2531 2532
			ctx->task = next;
			next_ctx->task = task;
2533 2534 2535

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2536
			do_switch = 0;
2537

2538
			perf_event_sync_stat(ctx, next_ctx);
2539
		}
2540 2541
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2542
	}
2543
unlock:
2544
	rcu_read_unlock();
2545

2546
	if (do_switch) {
2547
		raw_spin_lock(&ctx->lock);
2548
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2549
		cpuctx->task_ctx = NULL;
2550
		raw_spin_unlock(&ctx->lock);
2551
	}
T
Thomas Gleixner 已提交
2552 2553
}

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2604 2605 2606
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2621 2622
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2623 2624 2625
{
	int ctxn;

2626 2627 2628
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2629 2630 2631
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2632 2633
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2634 2635 2636 2637 2638 2639

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2640
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2641
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2642 2643
}

2644 2645
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2646
{
2647 2648
	if (!cpuctx->task_ctx)
		return;
2649 2650 2651 2652

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2653
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2654 2655 2656
	cpuctx->task_ctx = NULL;
}

2657 2658 2659 2660 2661 2662 2663
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2664 2665
}

2666
static void
2667
ctx_pinned_sched_in(struct perf_event_context *ctx,
2668
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2669
{
2670
	struct perf_event *event;
T
Thomas Gleixner 已提交
2671

2672 2673
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2674
			continue;
2675
		if (!event_filter_match(event))
2676 2677
			continue;

S
Stephane Eranian 已提交
2678 2679 2680 2681
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2682
		if (group_can_go_on(event, cpuctx, 1))
2683
			group_sched_in(event, cpuctx, ctx);
2684 2685 2686 2687 2688

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2689 2690 2691
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2692
		}
2693
	}
2694 2695 2696 2697
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2698
		      struct perf_cpu_context *cpuctx)
2699 2700 2701
{
	struct perf_event *event;
	int can_add_hw = 1;
2702

2703 2704 2705
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2706
			continue;
2707 2708
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2709
		 * of events:
2710
		 */
2711
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2712 2713
			continue;

S
Stephane Eranian 已提交
2714 2715 2716 2717
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2718
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2719
			if (group_sched_in(event, cpuctx, ctx))
2720
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2721
		}
T
Thomas Gleixner 已提交
2722
	}
2723 2724 2725 2726 2727
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2728 2729
	     enum event_type_t event_type,
	     struct task_struct *task)
2730
{
2731
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2732 2733 2734
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2735

2736
	ctx->is_active |= event_type;
2737
	if (likely(!ctx->nr_events))
2738
		return;
2739

S
Stephane Eranian 已提交
2740 2741
	now = perf_clock();
	ctx->timestamp = now;
2742
	perf_cgroup_set_timestamp(task, ctx);
2743 2744 2745 2746
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2747
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2748
		ctx_pinned_sched_in(ctx, cpuctx);
2749 2750

	/* Then walk through the lower prio flexible groups */
2751
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2752
		ctx_flexible_sched_in(ctx, cpuctx);
2753 2754
}

2755
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2756 2757
			     enum event_type_t event_type,
			     struct task_struct *task)
2758 2759 2760
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2761
	ctx_sched_in(ctx, cpuctx, event_type, task);
2762 2763
}

S
Stephane Eranian 已提交
2764 2765
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2766
{
P
Peter Zijlstra 已提交
2767
	struct perf_cpu_context *cpuctx;
2768

P
Peter Zijlstra 已提交
2769
	cpuctx = __get_cpu_context(ctx);
2770 2771 2772
	if (cpuctx->task_ctx == ctx)
		return;

2773
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2774
	perf_pmu_disable(ctx->pmu);
2775 2776 2777 2778 2779 2780 2781
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2782 2783
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2784

2785 2786
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2787 2788
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2789 2790
}

P
Peter Zijlstra 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2802 2803
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2804 2805 2806 2807
{
	struct perf_event_context *ctx;
	int ctxn;

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2818 2819 2820 2821 2822
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2823
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2824
	}
2825

2826 2827 2828
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2829 2830
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2831 2832
}

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2860
#define REDUCE_FLS(a, b)		\
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2900 2901 2902
	if (!divisor)
		return dividend;

2903 2904 2905
	return div64_u64(dividend, divisor);
}

2906 2907 2908
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2909
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2910
{
2911
	struct hw_perf_event *hwc = &event->hw;
2912
	s64 period, sample_period;
2913 2914
	s64 delta;

2915
	period = perf_calculate_period(event, nsec, count);
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2926

2927
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2928 2929 2930
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2931
		local64_set(&hwc->period_left, 0);
2932 2933 2934

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2935
	}
2936 2937
}

2938 2939 2940 2941 2942 2943 2944
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2945
{
2946 2947
	struct perf_event *event;
	struct hw_perf_event *hwc;
2948
	u64 now, period = TICK_NSEC;
2949
	s64 delta;
2950

2951 2952 2953 2954 2955 2956
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2957 2958
		return;

2959
	raw_spin_lock(&ctx->lock);
2960
	perf_pmu_disable(ctx->pmu);
2961

2962
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2963
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2964 2965
			continue;

2966
		if (!event_filter_match(event))
2967 2968
			continue;

2969 2970
		perf_pmu_disable(event->pmu);

2971
		hwc = &event->hw;
2972

2973
		if (hwc->interrupts == MAX_INTERRUPTS) {
2974
			hwc->interrupts = 0;
2975
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2976
			event->pmu->start(event, 0);
2977 2978
		}

2979
		if (!event->attr.freq || !event->attr.sample_freq)
2980
			goto next;
2981

2982 2983 2984 2985 2986
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2987
		now = local64_read(&event->count);
2988 2989
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2990

2991 2992 2993
		/*
		 * restart the event
		 * reload only if value has changed
2994 2995 2996
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2997
		 */
2998
		if (delta > 0)
2999
			perf_adjust_period(event, period, delta, false);
3000 3001

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3002 3003
	next:
		perf_pmu_enable(event->pmu);
3004
	}
3005

3006
	perf_pmu_enable(ctx->pmu);
3007
	raw_spin_unlock(&ctx->lock);
3008 3009
}

3010
/*
3011
 * Round-robin a context's events:
3012
 */
3013
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3014
{
3015 3016 3017 3018 3019 3020
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3021 3022
}

3023
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3024
{
P
Peter Zijlstra 已提交
3025
	struct perf_event_context *ctx = NULL;
3026
	int rotate = 0;
3027

3028 3029 3030 3031
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3032

P
Peter Zijlstra 已提交
3033
	ctx = cpuctx->task_ctx;
3034 3035 3036 3037
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3038

3039
	if (!rotate)
3040 3041
		goto done;

3042
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3043
	perf_pmu_disable(cpuctx->ctx.pmu);
3044

3045 3046 3047
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3048

3049 3050 3051
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3052

3053
	perf_event_sched_in(cpuctx, ctx, current);
3054

3055 3056
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3057
done:
3058 3059

	return rotate;
3060 3061
}

3062 3063 3064
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3065
	if (atomic_read(&nr_freq_events) ||
3066
	    __this_cpu_read(perf_throttled_count))
3067
		return false;
3068 3069
	else
		return true;
3070 3071 3072
}
#endif

3073 3074
void perf_event_task_tick(void)
{
3075 3076
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3077
	int throttled;
3078

3079 3080
	WARN_ON(!irqs_disabled());

3081 3082 3083
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3084
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3085
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3086 3087
}

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3098
	__perf_event_mark_enabled(event);
3099 3100 3101 3102

	return 1;
}

3103
/*
3104
 * Enable all of a task's events that have been marked enable-on-exec.
3105 3106
 * This expects task == current.
 */
3107
static void perf_event_enable_on_exec(int ctxn)
3108
{
3109
	struct perf_event_context *ctx, *clone_ctx = NULL;
3110
	struct perf_cpu_context *cpuctx;
3111
	struct perf_event *event;
3112 3113 3114 3115
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3116
	ctx = current->perf_event_ctxp[ctxn];
3117
	if (!ctx || !ctx->nr_events)
3118 3119
		goto out;

3120 3121 3122 3123
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3124 3125

	/*
3126
	 * Unclone and reschedule this context if we enabled any event.
3127
	 */
3128
	if (enabled) {
3129
		clone_ctx = unclone_ctx(ctx);
3130 3131 3132
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3133

P
Peter Zijlstra 已提交
3134
out:
3135
	local_irq_restore(flags);
3136 3137 3138

	if (clone_ctx)
		put_ctx(clone_ctx);
3139 3140
}

3141 3142 3143 3144 3145
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3146 3147
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3148 3149 3150
	rcu_read_unlock();
}

3151 3152 3153
struct perf_read_data {
	struct perf_event *event;
	bool group;
3154
	int ret;
3155 3156
};

T
Thomas Gleixner 已提交
3157
/*
3158
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3159
 */
3160
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3161
{
3162 3163
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3164
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3165
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3166
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3167

3168 3169 3170 3171
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3172 3173
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3174 3175 3176 3177
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3178
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3179
	if (ctx->is_active) {
3180
		update_context_time(ctx);
S
Stephane Eranian 已提交
3181 3182
		update_cgrp_time_from_event(event);
	}
3183

3184
	update_event_times(event);
3185 3186
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3187

3188 3189 3190
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3191
		goto unlock;
3192 3193 3194 3195 3196
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3197 3198 3199

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3200 3201 3202 3203 3204
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3205
			sub->pmu->read(sub);
3206
		}
3207
	}
3208 3209

	data->ret = pmu->commit_txn(pmu);
3210 3211

unlock:
3212
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3213 3214
}

P
Peter Zijlstra 已提交
3215 3216
static inline u64 perf_event_count(struct perf_event *event)
{
3217 3218 3219 3220
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3221 3222
}

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3276
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3277
{
3278 3279
	int ret = 0;

T
Thomas Gleixner 已提交
3280
	/*
3281 3282
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3283
	 */
3284
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3285 3286 3287
		struct perf_read_data data = {
			.event = event,
			.group = group,
3288
			.ret = 0,
3289
		};
3290
		smp_call_function_single(event->oncpu,
3291
					 __perf_event_read, &data, 1);
3292
		ret = data.ret;
3293
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3294 3295 3296
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3297
		raw_spin_lock_irqsave(&ctx->lock, flags);
3298 3299 3300 3301 3302
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3303
		if (ctx->is_active) {
3304
			update_context_time(ctx);
S
Stephane Eranian 已提交
3305 3306
			update_cgrp_time_from_event(event);
		}
3307 3308 3309 3310
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3311
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3312
	}
3313 3314

	return ret;
T
Thomas Gleixner 已提交
3315 3316
}

3317
/*
3318
 * Initialize the perf_event context in a task_struct:
3319
 */
3320
static void __perf_event_init_context(struct perf_event_context *ctx)
3321
{
3322
	raw_spin_lock_init(&ctx->lock);
3323
	mutex_init(&ctx->mutex);
3324
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3325 3326
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3327 3328
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3329
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3345
	}
3346 3347 3348
	ctx->pmu = pmu;

	return ctx;
3349 3350
}

3351 3352 3353 3354 3355
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3356 3357

	rcu_read_lock();
3358
	if (!vpid)
T
Thomas Gleixner 已提交
3359 3360
		task = current;
	else
3361
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3362 3363 3364 3365 3366 3367 3368 3369
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3370 3371 3372 3373
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3374 3375 3376 3377 3378 3379 3380
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3381 3382 3383
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3384
static struct perf_event_context *
3385 3386
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3387
{
3388
	struct perf_event_context *ctx, *clone_ctx = NULL;
3389
	struct perf_cpu_context *cpuctx;
3390
	void *task_ctx_data = NULL;
3391
	unsigned long flags;
P
Peter Zijlstra 已提交
3392
	int ctxn, err;
3393
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3394

3395
	if (!task) {
3396
		/* Must be root to operate on a CPU event: */
3397
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3398 3399 3400
			return ERR_PTR(-EACCES);

		/*
3401
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3402 3403 3404
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3405
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3406 3407
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3408
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3409
		ctx = &cpuctx->ctx;
3410
		get_ctx(ctx);
3411
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3412 3413 3414 3415

		return ctx;
	}

P
Peter Zijlstra 已提交
3416 3417 3418 3419 3420
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3421 3422 3423 3424 3425 3426 3427 3428
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3429
retry:
P
Peter Zijlstra 已提交
3430
	ctx = perf_lock_task_context(task, ctxn, &flags);
3431
	if (ctx) {
3432
		clone_ctx = unclone_ctx(ctx);
3433
		++ctx->pin_count;
3434 3435 3436 3437 3438

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3439
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3440 3441 3442

		if (clone_ctx)
			put_ctx(clone_ctx);
3443
	} else {
3444
		ctx = alloc_perf_context(pmu, task);
3445 3446 3447
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3448

3449 3450 3451 3452 3453
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3464
		else {
3465
			get_ctx(ctx);
3466
			++ctx->pin_count;
3467
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3468
		}
3469 3470 3471
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3472
			put_ctx(ctx);
3473 3474 3475 3476

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3477 3478 3479
		}
	}

3480
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3481
	return ctx;
3482

P
Peter Zijlstra 已提交
3483
errout:
3484
	kfree(task_ctx_data);
3485
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3486 3487
}

L
Li Zefan 已提交
3488
static void perf_event_free_filter(struct perf_event *event);
3489
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3490

3491
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3492
{
3493
	struct perf_event *event;
P
Peter Zijlstra 已提交
3494

3495 3496 3497
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3498
	perf_event_free_filter(event);
3499
	kfree(event);
P
Peter Zijlstra 已提交
3500 3501
}

3502 3503
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3504

3505
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3506
{
3507 3508 3509 3510 3511 3512
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3513

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3527 3528
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3529 3530 3531 3532
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3533 3534 3535 3536 3537 3538 3539
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3540

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3626 3627
static void __free_event(struct perf_event *event)
{
3628
	if (!event->parent) {
3629 3630
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3631
	}
3632

3633 3634
	perf_event_free_bpf_prog(event);

3635 3636 3637 3638 3639 3640
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3641 3642
	if (event->pmu) {
		exclusive_event_destroy(event);
3643
		module_put(event->pmu->module);
3644
	}
3645

3646 3647
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3648 3649

static void _free_event(struct perf_event *event)
3650
{
3651
	irq_work_sync(&event->pending);
3652

3653
	unaccount_event(event);
3654

3655
	if (event->rb) {
3656 3657 3658 3659 3660 3661 3662
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3663
		ring_buffer_attach(event, NULL);
3664
		mutex_unlock(&event->mmap_mutex);
3665 3666
	}

S
Stephane Eranian 已提交
3667 3668 3669
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3670
	__free_event(event);
3671 3672
}

P
Peter Zijlstra 已提交
3673 3674 3675 3676 3677
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3678
{
P
Peter Zijlstra 已提交
3679 3680 3681 3682 3683 3684
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3685

P
Peter Zijlstra 已提交
3686
	_free_event(event);
T
Thomas Gleixner 已提交
3687 3688
}

3689
/*
3690
 * Remove user event from the owner task.
3691
 */
3692
static void perf_remove_from_owner(struct perf_event *event)
3693
{
P
Peter Zijlstra 已提交
3694
	struct task_struct *owner;
3695

P
Peter Zijlstra 已提交
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3737 3738 3739 3740
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3741
	struct perf_event_context *ctx;
3742 3743 3744 3745 3746 3747

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3748

P
Peter Zijlstra 已提交
3749 3750 3751 3752 3753 3754 3755
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3756
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3757 3758 3759 3760
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3761 3762
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3763
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3764
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3765 3766

	_free_event(event);
3767 3768
}

P
Peter Zijlstra 已提交
3769 3770 3771 3772 3773 3774 3775
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3776 3777 3778
/*
 * Called when the last reference to the file is gone.
 */
3779 3780 3781 3782
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3783 3784
}

3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3821
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3822
{
3823
	struct perf_event *child;
3824 3825
	u64 total = 0;

3826 3827 3828
	*enabled = 0;
	*running = 0;

3829
	mutex_lock(&event->child_mutex);
3830

3831
	(void)perf_event_read(event, false);
3832 3833
	total += perf_event_count(event);

3834 3835 3836 3837 3838 3839
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3840
		(void)perf_event_read(child, false);
3841
		total += perf_event_count(child);
3842 3843 3844
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3845
	mutex_unlock(&event->child_mutex);
3846 3847 3848

	return total;
}
3849
EXPORT_SYMBOL_GPL(perf_event_read_value);
3850

3851
static int __perf_read_group_add(struct perf_event *leader,
3852
					u64 read_format, u64 *values)
3853
{
3854 3855
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3856
	int ret;
P
Peter Zijlstra 已提交
3857

3858 3859 3860
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3861

3862 3863 3864 3865 3866 3867 3868 3869 3870
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3871

3872 3873 3874 3875 3876 3877 3878 3879 3880
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3881 3882
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3883

3884 3885 3886 3887 3888
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3889 3890

	return 0;
3891
}
3892

3893 3894 3895 3896 3897
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3898
	int ret;
3899
	u64 *values;
3900

3901
	lockdep_assert_held(&ctx->mutex);
3902

3903 3904 3905
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3906

3907 3908 3909 3910 3911 3912 3913
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3914

3915 3916 3917 3918 3919 3920 3921 3922 3923
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3924

3925
	mutex_unlock(&leader->child_mutex);
3926

3927
	ret = event->read_size;
3928 3929
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3930
	goto out;
3931

3932 3933 3934
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3935
	kfree(values);
3936
	return ret;
3937 3938
}

3939
static int perf_read_one(struct perf_event *event,
3940 3941
				 u64 read_format, char __user *buf)
{
3942
	u64 enabled, running;
3943 3944 3945
	u64 values[4];
	int n = 0;

3946 3947 3948 3949 3950
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3951
	if (read_format & PERF_FORMAT_ID)
3952
		values[n++] = primary_event_id(event);
3953 3954 3955 3956 3957 3958 3959

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3973
/*
3974
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3975 3976
 */
static ssize_t
3977
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3978
{
3979
	u64 read_format = event->attr.read_format;
3980
	int ret;
T
Thomas Gleixner 已提交
3981

3982
	/*
3983
	 * Return end-of-file for a read on a event that is in
3984 3985 3986
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3987
	if (event->state == PERF_EVENT_STATE_ERROR)
3988 3989
		return 0;

3990
	if (count < event->read_size)
3991 3992
		return -ENOSPC;

3993
	WARN_ON_ONCE(event->ctx->parent_ctx);
3994
	if (read_format & PERF_FORMAT_GROUP)
3995
		ret = perf_read_group(event, read_format, buf);
3996
	else
3997
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3998

3999
	return ret;
T
Thomas Gleixner 已提交
4000 4001 4002 4003 4004
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4005
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4006 4007
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4008

P
Peter Zijlstra 已提交
4009
	ctx = perf_event_ctx_lock(event);
4010
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4011 4012 4013
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4014 4015 4016 4017
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4018
	struct perf_event *event = file->private_data;
4019
	struct ring_buffer *rb;
4020
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4021

4022
	poll_wait(file, &event->waitq, wait);
4023

4024
	if (is_event_hup(event))
4025
		return events;
P
Peter Zijlstra 已提交
4026

4027
	/*
4028 4029
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4030 4031
	 */
	mutex_lock(&event->mmap_mutex);
4032 4033
	rb = event->rb;
	if (rb)
4034
		events = atomic_xchg(&rb->poll, 0);
4035
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4036 4037 4038
	return events;
}

P
Peter Zijlstra 已提交
4039
static void _perf_event_reset(struct perf_event *event)
4040
{
4041
	(void)perf_event_read(event, false);
4042
	local64_set(&event->count, 0);
4043
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4044 4045
}

4046
/*
4047 4048 4049 4050
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4051
 */
4052 4053
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4054
{
4055
	struct perf_event *child;
P
Peter Zijlstra 已提交
4056

4057
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4058

4059 4060 4061
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4062
		func(child);
4063
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4064 4065
}

4066 4067
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4068
{
4069 4070
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4071

P
Peter Zijlstra 已提交
4072 4073
	lockdep_assert_held(&ctx->mutex);

4074
	event = event->group_leader;
4075

4076 4077
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4078
		perf_event_for_each_child(sibling, func);
4079 4080
}

4081 4082
struct period_event {
	struct perf_event *event;
4083
	u64 value;
4084
};
4085

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
static void ___perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	u64 value = pe->value;

	if (event->attr.freq) {
		event->attr.sample_freq = value;
	} else {
		event->attr.sample_period = value;
		event->hw.sample_period = value;
	}

	local64_set(&event->hw.period_left, 0);
}

4102 4103 4104 4105 4106 4107 4108
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4109

4110
	raw_spin_lock(&ctx->lock);
4111 4112
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4113
	} else {
4114 4115
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4116
	}
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4130
	raw_spin_unlock(&ctx->lock);
4131

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	pe.value = value;

4154 4155
	event_function_call(event, __perf_event_period,
			    ___perf_event_period, &pe);
4156

4157
	return 0;
4158 4159
}

4160 4161
static const struct file_operations perf_fops;

4162
static inline int perf_fget_light(int fd, struct fd *p)
4163
{
4164 4165 4166
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4167

4168 4169 4170
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4171
	}
4172 4173
	*p = f;
	return 0;
4174 4175 4176 4177
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4178
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4179
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4180

P
Peter Zijlstra 已提交
4181
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4182
{
4183
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4184
	u32 flags = arg;
4185 4186

	switch (cmd) {
4187
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4188
		func = _perf_event_enable;
4189
		break;
4190
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4191
		func = _perf_event_disable;
4192
		break;
4193
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4194
		func = _perf_event_reset;
4195
		break;
P
Peter Zijlstra 已提交
4196

4197
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4198
		return _perf_event_refresh(event, arg);
4199

4200 4201
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4202

4203 4204 4205 4206 4207 4208 4209 4210 4211
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4212
	case PERF_EVENT_IOC_SET_OUTPUT:
4213 4214 4215
	{
		int ret;
		if (arg != -1) {
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4226 4227 4228
		}
		return ret;
	}
4229

L
Li Zefan 已提交
4230 4231 4232
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4233 4234 4235
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4236
	default:
P
Peter Zijlstra 已提交
4237
		return -ENOTTY;
4238
	}
P
Peter Zijlstra 已提交
4239 4240

	if (flags & PERF_IOC_FLAG_GROUP)
4241
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4242
	else
4243
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4244 4245

	return 0;
4246 4247
}

P
Peter Zijlstra 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4281
int perf_event_task_enable(void)
4282
{
P
Peter Zijlstra 已提交
4283
	struct perf_event_context *ctx;
4284
	struct perf_event *event;
4285

4286
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4287 4288 4289 4290 4291
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4292
	mutex_unlock(&current->perf_event_mutex);
4293 4294 4295 4296

	return 0;
}

4297
int perf_event_task_disable(void)
4298
{
P
Peter Zijlstra 已提交
4299
	struct perf_event_context *ctx;
4300
	struct perf_event *event;
4301

4302
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4303 4304 4305 4306 4307
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4308
	mutex_unlock(&current->perf_event_mutex);
4309 4310 4311 4312

	return 0;
}

4313
static int perf_event_index(struct perf_event *event)
4314
{
P
Peter Zijlstra 已提交
4315 4316 4317
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4318
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4319 4320
		return 0;

4321
	return event->pmu->event_idx(event);
4322 4323
}

4324
static void calc_timer_values(struct perf_event *event,
4325
				u64 *now,
4326 4327
				u64 *enabled,
				u64 *running)
4328
{
4329
	u64 ctx_time;
4330

4331 4332
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4333 4334 4335 4336
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4352 4353
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4354 4355 4356 4357 4358

unlock:
	rcu_read_unlock();
}

4359 4360
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4361 4362 4363
{
}

4364 4365 4366 4367 4368
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4369
void perf_event_update_userpage(struct perf_event *event)
4370
{
4371
	struct perf_event_mmap_page *userpg;
4372
	struct ring_buffer *rb;
4373
	u64 enabled, running, now;
4374 4375

	rcu_read_lock();
4376 4377 4378 4379
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4380 4381 4382 4383 4384 4385 4386 4387 4388
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4389
	calc_timer_values(event, &now, &enabled, &running);
4390

4391
	userpg = rb->user_page;
4392 4393 4394 4395 4396
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4397
	++userpg->lock;
4398
	barrier();
4399
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4400
	userpg->offset = perf_event_count(event);
4401
	if (userpg->index)
4402
		userpg->offset -= local64_read(&event->hw.prev_count);
4403

4404
	userpg->time_enabled = enabled +
4405
			atomic64_read(&event->child_total_time_enabled);
4406

4407
	userpg->time_running = running +
4408
			atomic64_read(&event->child_total_time_running);
4409

4410
	arch_perf_update_userpage(event, userpg, now);
4411

4412
	barrier();
4413
	++userpg->lock;
4414
	preempt_enable();
4415
unlock:
4416
	rcu_read_unlock();
4417 4418
}

4419 4420 4421
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4422
	struct ring_buffer *rb;
4423 4424 4425 4426 4427 4428 4429 4430 4431
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4432 4433
	rb = rcu_dereference(event->rb);
	if (!rb)
4434 4435 4436 4437 4438
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4439
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4454 4455 4456
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4457
	struct ring_buffer *old_rb = NULL;
4458 4459
	unsigned long flags;

4460 4461 4462 4463 4464 4465
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4466

4467 4468 4469 4470
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4471

4472 4473
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4474
	}
4475

4476
	if (rb) {
4477 4478 4479 4480 4481
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4498 4499 4500 4501 4502 4503 4504 4505
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4506 4507 4508 4509
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4510 4511 4512
	rcu_read_unlock();
}

4513
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4514
{
4515
	struct ring_buffer *rb;
4516

4517
	rcu_read_lock();
4518 4519 4520 4521
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4522 4523 4524
	}
	rcu_read_unlock();

4525
	return rb;
4526 4527
}

4528
void ring_buffer_put(struct ring_buffer *rb)
4529
{
4530
	if (!atomic_dec_and_test(&rb->refcount))
4531
		return;
4532

4533
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4534

4535
	call_rcu(&rb->rcu_head, rb_free_rcu);
4536 4537 4538 4539
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4540
	struct perf_event *event = vma->vm_file->private_data;
4541

4542
	atomic_inc(&event->mmap_count);
4543
	atomic_inc(&event->rb->mmap_count);
4544

4545 4546 4547
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4548 4549
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4550 4551
}

4552 4553 4554 4555 4556 4557 4558 4559
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4560 4561
static void perf_mmap_close(struct vm_area_struct *vma)
{
4562
	struct perf_event *event = vma->vm_file->private_data;
4563

4564
	struct ring_buffer *rb = ring_buffer_get(event);
4565 4566 4567
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4568

4569 4570 4571
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4586 4587 4588
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4589
		goto out_put;
4590

4591
	ring_buffer_attach(event, NULL);
4592 4593 4594
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4595 4596
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4597

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4614

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4626 4627 4628
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4629
		mutex_unlock(&event->mmap_mutex);
4630
		put_event(event);
4631

4632 4633 4634 4635 4636
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4637
	}
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4653
out_put:
4654
	ring_buffer_put(rb); /* could be last */
4655 4656
}

4657
static const struct vm_operations_struct perf_mmap_vmops = {
4658
	.open		= perf_mmap_open,
4659
	.close		= perf_mmap_close, /* non mergable */
4660 4661
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4662 4663 4664 4665
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4666
	struct perf_event *event = file->private_data;
4667
	unsigned long user_locked, user_lock_limit;
4668
	struct user_struct *user = current_user();
4669
	unsigned long locked, lock_limit;
4670
	struct ring_buffer *rb = NULL;
4671 4672
	unsigned long vma_size;
	unsigned long nr_pages;
4673
	long user_extra = 0, extra = 0;
4674
	int ret = 0, flags = 0;
4675

4676 4677 4678
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4679
	 * same rb.
4680 4681 4682 4683
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4684
	if (!(vma->vm_flags & VM_SHARED))
4685
		return -EINVAL;
4686 4687

	vma_size = vma->vm_end - vma->vm_start;
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4748

4749
	/*
4750
	 * If we have rb pages ensure they're a power-of-two number, so we
4751 4752
	 * can do bitmasks instead of modulo.
	 */
4753
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4754 4755
		return -EINVAL;

4756
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4757 4758
		return -EINVAL;

4759
	WARN_ON_ONCE(event->ctx->parent_ctx);
4760
again:
4761
	mutex_lock(&event->mmap_mutex);
4762
	if (event->rb) {
4763
		if (event->rb->nr_pages != nr_pages) {
4764
			ret = -EINVAL;
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4778 4779 4780
		goto unlock;
	}

4781
	user_extra = nr_pages + 1;
4782 4783

accounting:
4784
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4785 4786 4787 4788 4789 4790

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4791
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4792

4793 4794
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4795

4796
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4797
	lock_limit >>= PAGE_SHIFT;
4798
	locked = vma->vm_mm->pinned_vm + extra;
4799

4800 4801
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4802 4803 4804
		ret = -EPERM;
		goto unlock;
	}
4805

4806
	WARN_ON(!rb && event->rb);
4807

4808
	if (vma->vm_flags & VM_WRITE)
4809
		flags |= RING_BUFFER_WRITABLE;
4810

4811
	if (!rb) {
4812 4813 4814
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4815

4816 4817 4818 4819
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4820

4821 4822 4823
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4824

4825
		ring_buffer_attach(event, rb);
4826

4827 4828 4829
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4830 4831
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4832 4833 4834
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4835

4836
unlock:
4837 4838 4839 4840
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4841
		atomic_inc(&event->mmap_count);
4842 4843 4844 4845
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4846
	mutex_unlock(&event->mmap_mutex);
4847

4848 4849 4850 4851
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4852
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4853
	vma->vm_ops = &perf_mmap_vmops;
4854

4855 4856 4857
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4858
	return ret;
4859 4860
}

P
Peter Zijlstra 已提交
4861 4862
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4863
	struct inode *inode = file_inode(filp);
4864
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4865 4866 4867
	int retval;

	mutex_lock(&inode->i_mutex);
4868
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4869 4870 4871 4872 4873 4874 4875 4876
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4877
static const struct file_operations perf_fops = {
4878
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4879 4880 4881
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4882
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4883
	.compat_ioctl		= perf_compat_ioctl,
4884
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4885
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4886 4887
};

4888
/*
4889
 * Perf event wakeup
4890 4891 4892 4893 4894
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4895 4896 4897 4898 4899 4900 4901 4902
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4903
void perf_event_wakeup(struct perf_event *event)
4904
{
4905
	ring_buffer_wakeup(event);
4906

4907
	if (event->pending_kill) {
4908
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4909
		event->pending_kill = 0;
4910
	}
4911 4912
}

4913
static void perf_pending_event(struct irq_work *entry)
4914
{
4915 4916
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4917 4918 4919 4920 4921 4922 4923
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4924

4925 4926 4927
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4928 4929
	}

4930 4931 4932
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4933
	}
4934 4935 4936

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4937 4938
}

4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4975
static void perf_sample_regs_user(struct perf_regs *regs_user,
4976 4977
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4978
{
4979 4980
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4981
		regs_user->regs = regs;
4982 4983
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4984 4985 4986
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4987 4988 4989
	}
}

4990 4991 4992 4993 4994 4995 4996 4997
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5093 5094 5095
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5109
		data->time = perf_event_clock(event);
5110

5111
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5123 5124 5125
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5150 5151 5152

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5153 5154
}

5155 5156 5157
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5158 5159 5160 5161 5162
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5163
static void perf_output_read_one(struct perf_output_handle *handle,
5164 5165
				 struct perf_event *event,
				 u64 enabled, u64 running)
5166
{
5167
	u64 read_format = event->attr.read_format;
5168 5169 5170
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5171
	values[n++] = perf_event_count(event);
5172
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5173
		values[n++] = enabled +
5174
			atomic64_read(&event->child_total_time_enabled);
5175 5176
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5177
		values[n++] = running +
5178
			atomic64_read(&event->child_total_time_running);
5179 5180
	}
	if (read_format & PERF_FORMAT_ID)
5181
		values[n++] = primary_event_id(event);
5182

5183
	__output_copy(handle, values, n * sizeof(u64));
5184 5185 5186
}

/*
5187
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5188 5189
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5190 5191
			    struct perf_event *event,
			    u64 enabled, u64 running)
5192
{
5193 5194
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5195 5196 5197 5198 5199 5200
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5201
		values[n++] = enabled;
5202 5203

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5204
		values[n++] = running;
5205

5206
	if (leader != event)
5207 5208
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5209
	values[n++] = perf_event_count(leader);
5210
	if (read_format & PERF_FORMAT_ID)
5211
		values[n++] = primary_event_id(leader);
5212

5213
	__output_copy(handle, values, n * sizeof(u64));
5214

5215
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5216 5217
		n = 0;

5218 5219
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5220 5221
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5222
		values[n++] = perf_event_count(sub);
5223
		if (read_format & PERF_FORMAT_ID)
5224
			values[n++] = primary_event_id(sub);
5225

5226
		__output_copy(handle, values, n * sizeof(u64));
5227 5228 5229
	}
}

5230 5231 5232
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5233
static void perf_output_read(struct perf_output_handle *handle,
5234
			     struct perf_event *event)
5235
{
5236
	u64 enabled = 0, running = 0, now;
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5248
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5249
		calc_timer_values(event, &now, &enabled, &running);
5250

5251
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5252
		perf_output_read_group(handle, event, enabled, running);
5253
	else
5254
		perf_output_read_one(handle, event, enabled, running);
5255 5256
}

5257 5258 5259
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5260
			struct perf_event *event)
5261 5262 5263 5264 5265
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5266 5267 5268
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5294
		perf_output_read(handle, event);
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5305
			__output_copy(handle, data->callchain, size);
5306 5307 5308 5309 5310 5311 5312 5313
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5314 5315 5316 5317 5318 5319 5320 5321 5322
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5334

5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5369

5370
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5371 5372 5373
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5374
	}
A
Andi Kleen 已提交
5375 5376 5377

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5378 5379 5380

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5381

A
Andi Kleen 已提交
5382 5383 5384
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5415 5416 5417 5418
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5419
			 struct perf_event *event,
5420
			 struct pt_regs *regs)
5421
{
5422
	u64 sample_type = event->attr.sample_type;
5423

5424
	header->type = PERF_RECORD_SAMPLE;
5425
	header->size = sizeof(*header) + event->header_size;
5426 5427 5428

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5429

5430
	__perf_event_header__init_id(header, data, event);
5431

5432
	if (sample_type & PERF_SAMPLE_IP)
5433 5434
		data->ip = perf_instruction_pointer(regs);

5435
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5436
		int size = 1;
5437

5438
		data->callchain = perf_callchain(event, regs);
5439 5440 5441 5442 5443

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5444 5445
	}

5446
	if (sample_type & PERF_SAMPLE_RAW) {
5447 5448 5449 5450 5451 5452 5453
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5454
		header->size += round_up(size, sizeof(u64));
5455
	}
5456 5457 5458 5459 5460 5461 5462 5463 5464

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5465

5466
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5467 5468
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5469

5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5493
						     data->regs_user.regs);
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5521
}
5522

5523 5524 5525
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5526 5527 5528
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5529

5530 5531 5532
	/* protect the callchain buffers */
	rcu_read_lock();

5533
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5534

5535
	if (perf_output_begin(&handle, event, header.size))
5536
		goto exit;
5537

5538
	perf_output_sample(&handle, &header, data, event);
5539

5540
	perf_output_end(&handle);
5541 5542 5543

exit:
	rcu_read_unlock();
5544 5545
}

5546
/*
5547
 * read event_id
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5558
perf_event_read_event(struct perf_event *event,
5559 5560 5561
			struct task_struct *task)
{
	struct perf_output_handle handle;
5562
	struct perf_sample_data sample;
5563
	struct perf_read_event read_event = {
5564
		.header = {
5565
			.type = PERF_RECORD_READ,
5566
			.misc = 0,
5567
			.size = sizeof(read_event) + event->read_size,
5568
		},
5569 5570
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5571
	};
5572
	int ret;
5573

5574
	perf_event_header__init_id(&read_event.header, &sample, event);
5575
	ret = perf_output_begin(&handle, event, read_event.header.size);
5576 5577 5578
	if (ret)
		return;

5579
	perf_output_put(&handle, read_event);
5580
	perf_output_read(&handle, event);
5581
	perf_event__output_id_sample(event, &handle, &sample);
5582

5583 5584 5585
	perf_output_end(&handle);
}

5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5600
		output(event, data);
5601 5602 5603
	}
}

J
Jiri Olsa 已提交
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5615
static void
5616
perf_event_aux(perf_event_aux_output_cb output, void *data,
5617 5618 5619 5620 5621 5622 5623
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5635 5636 5637 5638 5639
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5640
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5641 5642 5643 5644 5645
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5646
			perf_event_aux_ctx(ctx, output, data);
5647 5648 5649 5650 5651 5652
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5653
/*
P
Peter Zijlstra 已提交
5654 5655
 * task tracking -- fork/exit
 *
5656
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5657 5658
 */

P
Peter Zijlstra 已提交
5659
struct perf_task_event {
5660
	struct task_struct		*task;
5661
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5662 5663 5664 5665 5666 5667

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5668 5669
		u32				tid;
		u32				ptid;
5670
		u64				time;
5671
	} event_id;
P
Peter Zijlstra 已提交
5672 5673
};

5674 5675
static int perf_event_task_match(struct perf_event *event)
{
5676 5677 5678
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5679 5680
}

5681
static void perf_event_task_output(struct perf_event *event,
5682
				   void *data)
P
Peter Zijlstra 已提交
5683
{
5684
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5685
	struct perf_output_handle handle;
5686
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5687
	struct task_struct *task = task_event->task;
5688
	int ret, size = task_event->event_id.header.size;
5689

5690 5691 5692
	if (!perf_event_task_match(event))
		return;

5693
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5694

5695
	ret = perf_output_begin(&handle, event,
5696
				task_event->event_id.header.size);
5697
	if (ret)
5698
		goto out;
P
Peter Zijlstra 已提交
5699

5700 5701
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5702

5703 5704
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5705

5706 5707
	task_event->event_id.time = perf_event_clock(event);

5708
	perf_output_put(&handle, task_event->event_id);
5709

5710 5711
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5712
	perf_output_end(&handle);
5713 5714
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5715 5716
}

5717 5718
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5719
			      int new)
P
Peter Zijlstra 已提交
5720
{
P
Peter Zijlstra 已提交
5721
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5722

5723 5724 5725
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5726 5727
		return;

P
Peter Zijlstra 已提交
5728
	task_event = (struct perf_task_event){
5729 5730
		.task	  = task,
		.task_ctx = task_ctx,
5731
		.event_id    = {
P
Peter Zijlstra 已提交
5732
			.header = {
5733
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5734
				.misc = 0,
5735
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5736
			},
5737 5738
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5739 5740
			/* .tid  */
			/* .ptid */
5741
			/* .time */
P
Peter Zijlstra 已提交
5742 5743 5744
		},
	};

5745
	perf_event_aux(perf_event_task_output,
5746 5747
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5748 5749
}

5750
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5751
{
5752
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5753 5754
}

5755 5756 5757 5758 5759
/*
 * comm tracking
 */

struct perf_comm_event {
5760 5761
	struct task_struct	*task;
	char			*comm;
5762 5763 5764 5765 5766 5767 5768
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5769
	} event_id;
5770 5771
};

5772 5773 5774 5775 5776
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5777
static void perf_event_comm_output(struct perf_event *event,
5778
				   void *data)
5779
{
5780
	struct perf_comm_event *comm_event = data;
5781
	struct perf_output_handle handle;
5782
	struct perf_sample_data sample;
5783
	int size = comm_event->event_id.header.size;
5784 5785
	int ret;

5786 5787 5788
	if (!perf_event_comm_match(event))
		return;

5789 5790
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5791
				comm_event->event_id.header.size);
5792 5793

	if (ret)
5794
		goto out;
5795

5796 5797
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5798

5799
	perf_output_put(&handle, comm_event->event_id);
5800
	__output_copy(&handle, comm_event->comm,
5801
				   comm_event->comm_size);
5802 5803 5804

	perf_event__output_id_sample(event, &handle, &sample);

5805
	perf_output_end(&handle);
5806 5807
out:
	comm_event->event_id.header.size = size;
5808 5809
}

5810
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5811
{
5812
	char comm[TASK_COMM_LEN];
5813 5814
	unsigned int size;

5815
	memset(comm, 0, sizeof(comm));
5816
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5817
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5818 5819 5820 5821

	comm_event->comm = comm;
	comm_event->comm_size = size;

5822
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5823

5824
	perf_event_aux(perf_event_comm_output,
5825 5826
		       comm_event,
		       NULL);
5827 5828
}

5829
void perf_event_comm(struct task_struct *task, bool exec)
5830
{
5831 5832
	struct perf_comm_event comm_event;

5833
	if (!atomic_read(&nr_comm_events))
5834
		return;
5835

5836
	comm_event = (struct perf_comm_event){
5837
		.task	= task,
5838 5839
		/* .comm      */
		/* .comm_size */
5840
		.event_id  = {
5841
			.header = {
5842
				.type = PERF_RECORD_COMM,
5843
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5844 5845 5846 5847
				/* .size */
			},
			/* .pid */
			/* .tid */
5848 5849 5850
		},
	};

5851
	perf_event_comm_event(&comm_event);
5852 5853
}

5854 5855 5856 5857 5858
/*
 * mmap tracking
 */

struct perf_mmap_event {
5859 5860 5861 5862
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5863 5864 5865
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5866
	u32			prot, flags;
5867 5868 5869 5870 5871 5872 5873 5874 5875

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5876
	} event_id;
5877 5878
};

5879 5880 5881 5882 5883 5884 5885 5886
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5887
	       (executable && (event->attr.mmap || event->attr.mmap2));
5888 5889
}

5890
static void perf_event_mmap_output(struct perf_event *event,
5891
				   void *data)
5892
{
5893
	struct perf_mmap_event *mmap_event = data;
5894
	struct perf_output_handle handle;
5895
	struct perf_sample_data sample;
5896
	int size = mmap_event->event_id.header.size;
5897
	int ret;
5898

5899 5900 5901
	if (!perf_event_mmap_match(event, data))
		return;

5902 5903 5904 5905 5906
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5907
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5908 5909
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5910 5911
	}

5912 5913
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5914
				mmap_event->event_id.header.size);
5915
	if (ret)
5916
		goto out;
5917

5918 5919
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5920

5921
	perf_output_put(&handle, mmap_event->event_id);
5922 5923 5924 5925 5926 5927

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5928 5929
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5930 5931
	}

5932
	__output_copy(&handle, mmap_event->file_name,
5933
				   mmap_event->file_size);
5934 5935 5936

	perf_event__output_id_sample(event, &handle, &sample);

5937
	perf_output_end(&handle);
5938 5939
out:
	mmap_event->event_id.header.size = size;
5940 5941
}

5942
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5943
{
5944 5945
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5946 5947
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5948
	u32 prot = 0, flags = 0;
5949 5950 5951
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5952
	char *name;
5953

5954
	if (file) {
5955 5956
		struct inode *inode;
		dev_t dev;
5957

5958
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5959
		if (!buf) {
5960 5961
			name = "//enomem";
			goto cpy_name;
5962
		}
5963
		/*
5964
		 * d_path() works from the end of the rb backwards, so we
5965 5966 5967
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5968
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5969
		if (IS_ERR(name)) {
5970 5971
			name = "//toolong";
			goto cpy_name;
5972
		}
5973 5974 5975 5976 5977 5978
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6001
		goto got_name;
6002
	} else {
6003 6004 6005 6006 6007 6008
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6009
		name = (char *)arch_vma_name(vma);
6010 6011
		if (name)
			goto cpy_name;
6012

6013
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6014
				vma->vm_end >= vma->vm_mm->brk) {
6015 6016
			name = "[heap]";
			goto cpy_name;
6017 6018
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6019
				vma->vm_end >= vma->vm_mm->start_stack) {
6020 6021
			name = "[stack]";
			goto cpy_name;
6022 6023
		}

6024 6025
		name = "//anon";
		goto cpy_name;
6026 6027
	}

6028 6029 6030
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6031
got_name:
6032 6033 6034 6035 6036 6037 6038 6039
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6040 6041 6042

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6043 6044 6045 6046
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6047 6048
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6049

6050 6051 6052
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6053
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6054

6055
	perf_event_aux(perf_event_mmap_output,
6056 6057
		       mmap_event,
		       NULL);
6058

6059 6060 6061
	kfree(buf);
}

6062
void perf_event_mmap(struct vm_area_struct *vma)
6063
{
6064 6065
	struct perf_mmap_event mmap_event;

6066
	if (!atomic_read(&nr_mmap_events))
6067 6068 6069
		return;

	mmap_event = (struct perf_mmap_event){
6070
		.vma	= vma,
6071 6072
		/* .file_name */
		/* .file_size */
6073
		.event_id  = {
6074
			.header = {
6075
				.type = PERF_RECORD_MMAP,
6076
				.misc = PERF_RECORD_MISC_USER,
6077 6078 6079 6080
				/* .size */
			},
			/* .pid */
			/* .tid */
6081 6082
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6083
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6084
		},
6085 6086 6087 6088
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6089 6090
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6091 6092
	};

6093
	perf_event_mmap_event(&mmap_event);
6094 6095
}

A
Alexander Shishkin 已提交
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6248 6249 6250 6251
/*
 * IRQ throttle logging
 */

6252
static void perf_log_throttle(struct perf_event *event, int enable)
6253 6254
{
	struct perf_output_handle handle;
6255
	struct perf_sample_data sample;
6256 6257 6258 6259 6260
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6261
		u64				id;
6262
		u64				stream_id;
6263 6264
	} throttle_event = {
		.header = {
6265
			.type = PERF_RECORD_THROTTLE,
6266 6267 6268
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6269
		.time		= perf_event_clock(event),
6270 6271
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6272 6273
	};

6274
	if (enable)
6275
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6276

6277 6278 6279
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6280
				throttle_event.header.size);
6281 6282 6283 6284
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6285
	perf_event__output_id_sample(event, &handle, &sample);
6286 6287 6288
	perf_output_end(&handle);
}

6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6325
/*
6326
 * Generic event overflow handling, sampling.
6327 6328
 */

6329
static int __perf_event_overflow(struct perf_event *event,
6330 6331
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6332
{
6333 6334
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6335
	u64 seq;
6336 6337
	int ret = 0;

6338 6339 6340 6341 6342 6343 6344
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6345 6346 6347 6348 6349 6350 6351 6352 6353
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6354 6355
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6356
			tick_nohz_full_kick();
6357 6358
			ret = 1;
		}
6359
	}
6360

6361
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6362
		u64 now = perf_clock();
6363
		s64 delta = now - hwc->freq_time_stamp;
6364

6365
		hwc->freq_time_stamp = now;
6366

6367
		if (delta > 0 && delta < 2*TICK_NSEC)
6368
			perf_adjust_period(event, delta, hwc->last_period, true);
6369 6370
	}

6371 6372
	/*
	 * XXX event_limit might not quite work as expected on inherited
6373
	 * events
6374 6375
	 */

6376 6377
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6378
		ret = 1;
6379
		event->pending_kill = POLL_HUP;
6380 6381
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6382 6383
	}

6384
	if (event->overflow_handler)
6385
		event->overflow_handler(event, data, regs);
6386
	else
6387
		perf_event_output(event, data, regs);
6388

6389
	if (*perf_event_fasync(event) && event->pending_kill) {
6390 6391
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6392 6393
	}

6394
	return ret;
6395 6396
}

6397
int perf_event_overflow(struct perf_event *event,
6398 6399
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6400
{
6401
	return __perf_event_overflow(event, 1, data, regs);
6402 6403
}

6404
/*
6405
 * Generic software event infrastructure
6406 6407
 */

6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6419
/*
6420 6421
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6422 6423 6424 6425
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6426
u64 perf_swevent_set_period(struct perf_event *event)
6427
{
6428
	struct hw_perf_event *hwc = &event->hw;
6429 6430 6431 6432 6433
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6434 6435

again:
6436
	old = val = local64_read(&hwc->period_left);
6437 6438
	if (val < 0)
		return 0;
6439

6440 6441 6442
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6443
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6444
		goto again;
6445

6446
	return nr;
6447 6448
}

6449
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6450
				    struct perf_sample_data *data,
6451
				    struct pt_regs *regs)
6452
{
6453
	struct hw_perf_event *hwc = &event->hw;
6454
	int throttle = 0;
6455

6456 6457
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6458

6459 6460
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6461

6462
	for (; overflow; overflow--) {
6463
		if (__perf_event_overflow(event, throttle,
6464
					    data, regs)) {
6465 6466 6467 6468 6469 6470
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6471
		throttle = 1;
6472
	}
6473 6474
}

P
Peter Zijlstra 已提交
6475
static void perf_swevent_event(struct perf_event *event, u64 nr,
6476
			       struct perf_sample_data *data,
6477
			       struct pt_regs *regs)
6478
{
6479
	struct hw_perf_event *hwc = &event->hw;
6480

6481
	local64_add(nr, &event->count);
6482

6483 6484 6485
	if (!regs)
		return;

6486
	if (!is_sampling_event(event))
6487
		return;
6488

6489 6490 6491 6492 6493 6494
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6495
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6496
		return perf_swevent_overflow(event, 1, data, regs);
6497

6498
	if (local64_add_negative(nr, &hwc->period_left))
6499
		return;
6500

6501
	perf_swevent_overflow(event, 0, data, regs);
6502 6503
}

6504 6505 6506
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6507
	if (event->hw.state & PERF_HES_STOPPED)
6508
		return 1;
P
Peter Zijlstra 已提交
6509

6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6521
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6522
				enum perf_type_id type,
L
Li Zefan 已提交
6523 6524 6525
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6526
{
6527
	if (event->attr.type != type)
6528
		return 0;
6529

6530
	if (event->attr.config != event_id)
6531 6532
		return 0;

6533 6534
	if (perf_exclude_event(event, regs))
		return 0;
6535 6536 6537 6538

	return 1;
}

6539 6540 6541 6542 6543 6544 6545
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6546 6547
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6548
{
6549 6550 6551 6552
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6553

6554 6555
/* For the read side: events when they trigger */
static inline struct hlist_head *
6556
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6557 6558
{
	struct swevent_hlist *hlist;
6559

6560
	hlist = rcu_dereference(swhash->swevent_hlist);
6561 6562 6563
	if (!hlist)
		return NULL;

6564 6565 6566 6567 6568
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6569
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6580
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6581 6582 6583 6584 6585
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6586 6587 6588
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6589
				    u64 nr,
6590 6591
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6592
{
6593
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6594
	struct perf_event *event;
6595
	struct hlist_head *head;
6596

6597
	rcu_read_lock();
6598
	head = find_swevent_head_rcu(swhash, type, event_id);
6599 6600 6601
	if (!head)
		goto end;

6602
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6603
		if (perf_swevent_match(event, type, event_id, data, regs))
6604
			perf_swevent_event(event, nr, data, regs);
6605
	}
6606 6607
end:
	rcu_read_unlock();
6608 6609
}

6610 6611
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6612
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6613
{
6614
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6615

6616
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6617
}
I
Ingo Molnar 已提交
6618
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6619

6620
inline void perf_swevent_put_recursion_context(int rctx)
6621
{
6622
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6623

6624
	put_recursion_context(swhash->recursion, rctx);
6625
}
6626

6627
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6628
{
6629
	struct perf_sample_data data;
6630

6631
	if (WARN_ON_ONCE(!regs))
6632
		return;
6633

6634
	perf_sample_data_init(&data, addr, 0);
6635
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6648 6649

	perf_swevent_put_recursion_context(rctx);
6650
fail:
6651
	preempt_enable_notrace();
6652 6653
}

6654
static void perf_swevent_read(struct perf_event *event)
6655 6656 6657
{
}

P
Peter Zijlstra 已提交
6658
static int perf_swevent_add(struct perf_event *event, int flags)
6659
{
6660
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6661
	struct hw_perf_event *hwc = &event->hw;
6662 6663
	struct hlist_head *head;

6664
	if (is_sampling_event(event)) {
6665
		hwc->last_period = hwc->sample_period;
6666
		perf_swevent_set_period(event);
6667
	}
6668

P
Peter Zijlstra 已提交
6669 6670
	hwc->state = !(flags & PERF_EF_START);

6671
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6672
	if (WARN_ON_ONCE(!head))
6673 6674 6675
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6676
	perf_event_update_userpage(event);
6677

6678 6679 6680
	return 0;
}

P
Peter Zijlstra 已提交
6681
static void perf_swevent_del(struct perf_event *event, int flags)
6682
{
6683
	hlist_del_rcu(&event->hlist_entry);
6684 6685
}

P
Peter Zijlstra 已提交
6686
static void perf_swevent_start(struct perf_event *event, int flags)
6687
{
P
Peter Zijlstra 已提交
6688
	event->hw.state = 0;
6689
}
I
Ingo Molnar 已提交
6690

P
Peter Zijlstra 已提交
6691
static void perf_swevent_stop(struct perf_event *event, int flags)
6692
{
P
Peter Zijlstra 已提交
6693
	event->hw.state = PERF_HES_STOPPED;
6694 6695
}

6696 6697
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6698
swevent_hlist_deref(struct swevent_htable *swhash)
6699
{
6700 6701
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6702 6703
}

6704
static void swevent_hlist_release(struct swevent_htable *swhash)
6705
{
6706
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6707

6708
	if (!hlist)
6709 6710
		return;

6711
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6712
	kfree_rcu(hlist, rcu_head);
6713 6714 6715 6716
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6717
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6718

6719
	mutex_lock(&swhash->hlist_mutex);
6720

6721 6722
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6723

6724
	mutex_unlock(&swhash->hlist_mutex);
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6737
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6738 6739
	int err = 0;

6740 6741
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6742 6743 6744 6745 6746 6747 6748
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6749
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6750
	}
6751
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6752
exit:
6753
	mutex_unlock(&swhash->hlist_mutex);
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6774
fail:
6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6785
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6786

6787 6788 6789
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6790

6791 6792
	WARN_ON(event->parent);

6793
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6794 6795 6796 6797 6798
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6799
	u64 event_id = event->attr.config;
6800 6801 6802 6803

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6804 6805 6806 6807 6808 6809
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6810 6811 6812 6813 6814 6815 6816 6817 6818
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6819
	if (event_id >= PERF_COUNT_SW_MAX)
6820 6821 6822 6823 6824 6825 6826 6827 6828
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6829
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6830 6831 6832 6833 6834 6835 6836
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6837
	.task_ctx_nr	= perf_sw_context,
6838

6839 6840
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6841
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6842 6843 6844 6845
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6846 6847 6848
	.read		= perf_swevent_read,
};

6849 6850
#ifdef CONFIG_EVENT_TRACING

6851 6852 6853 6854 6855
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6856 6857 6858 6859
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6860 6861 6862 6863 6864 6865 6866 6867 6868
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6869 6870
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6871 6872 6873 6874
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6875 6876 6877 6878 6879 6880 6881 6882 6883
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6884 6885
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6886 6887
{
	struct perf_sample_data data;
6888 6889
	struct perf_event *event;

6890 6891 6892 6893 6894
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6895
	perf_sample_data_init(&data, addr, 0);
6896 6897
	data.raw = &raw;

6898
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6899
		if (perf_tp_event_match(event, &data, regs))
6900
			perf_swevent_event(event, count, &data, regs);
6901
	}
6902

6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6928
	perf_swevent_put_recursion_context(rctx);
6929 6930 6931
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6932
static void tp_perf_event_destroy(struct perf_event *event)
6933
{
6934
	perf_trace_destroy(event);
6935 6936
}

6937
static int perf_tp_event_init(struct perf_event *event)
6938
{
6939 6940
	int err;

6941 6942 6943
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6944 6945 6946 6947 6948 6949
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6950 6951
	err = perf_trace_init(event);
	if (err)
6952
		return err;
6953

6954
	event->destroy = tp_perf_event_destroy;
6955

6956 6957 6958 6959
	return 0;
}

static struct pmu perf_tracepoint = {
6960 6961
	.task_ctx_nr	= perf_sw_context,

6962
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6963 6964 6965 6966
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6967 6968 6969 6970 6971
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6972
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6973
}
L
Li Zefan 已提交
6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7008 7009
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7010 7011 7012 7013 7014 7015
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7016
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7041
#else
L
Li Zefan 已提交
7042

7043
static inline void perf_tp_register(void)
7044 7045
{
}
L
Li Zefan 已提交
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7056 7057 7058 7059 7060 7061 7062 7063
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7064
#endif /* CONFIG_EVENT_TRACING */
7065

7066
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7067
void perf_bp_event(struct perf_event *bp, void *data)
7068
{
7069 7070 7071
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7072
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7073

P
Peter Zijlstra 已提交
7074
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7075
		perf_swevent_event(bp, 1, &sample, regs);
7076 7077 7078
}
#endif

7079 7080 7081
/*
 * hrtimer based swevent callback
 */
7082

7083
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7084
{
7085 7086 7087 7088 7089
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7090

7091
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7092 7093 7094 7095

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7096
	event->pmu->read(event);
7097

7098
	perf_sample_data_init(&data, 0, event->hw.last_period);
7099 7100 7101
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7102
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7103
			if (__perf_event_overflow(event, 1, &data, regs))
7104 7105
				ret = HRTIMER_NORESTART;
	}
7106

7107 7108
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7109

7110
	return ret;
7111 7112
}

7113
static void perf_swevent_start_hrtimer(struct perf_event *event)
7114
{
7115
	struct hw_perf_event *hwc = &event->hw;
7116 7117 7118 7119
	s64 period;

	if (!is_sampling_event(event))
		return;
7120

7121 7122 7123 7124
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7125

7126 7127 7128 7129
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7130 7131
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7132
}
7133 7134

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7135
{
7136 7137
	struct hw_perf_event *hwc = &event->hw;

7138
	if (is_sampling_event(event)) {
7139
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7140
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7141 7142 7143

		hrtimer_cancel(&hwc->hrtimer);
	}
7144 7145
}

P
Peter Zijlstra 已提交
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7166
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7167 7168 7169 7170
		event->attr.freq = 0;
	}
}

7171 7172 7173 7174 7175
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7176
{
7177 7178 7179
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7180
	now = local_clock();
7181 7182
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7183 7184
}

P
Peter Zijlstra 已提交
7185
static void cpu_clock_event_start(struct perf_event *event, int flags)
7186
{
P
Peter Zijlstra 已提交
7187
	local64_set(&event->hw.prev_count, local_clock());
7188 7189 7190
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7191
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7192
{
7193 7194 7195
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7196

P
Peter Zijlstra 已提交
7197 7198 7199 7200
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7201
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7202 7203 7204 7205 7206 7207 7208 7209 7210

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7211 7212 7213 7214
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7215

7216 7217 7218 7219 7220 7221 7222 7223
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7224 7225 7226 7227 7228 7229
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7230 7231
	perf_swevent_init_hrtimer(event);

7232
	return 0;
7233 7234
}

7235
static struct pmu perf_cpu_clock = {
7236 7237
	.task_ctx_nr	= perf_sw_context,

7238 7239
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7240
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7241 7242 7243 7244
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7245 7246 7247 7248 7249 7250 7251 7252
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7253
{
7254 7255
	u64 prev;
	s64 delta;
7256

7257 7258 7259 7260
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7261

P
Peter Zijlstra 已提交
7262
static void task_clock_event_start(struct perf_event *event, int flags)
7263
{
P
Peter Zijlstra 已提交
7264
	local64_set(&event->hw.prev_count, event->ctx->time);
7265 7266 7267
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7268
static void task_clock_event_stop(struct perf_event *event, int flags)
7269 7270 7271
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7272 7273 7274 7275 7276 7277
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7278
	perf_event_update_userpage(event);
7279

P
Peter Zijlstra 已提交
7280 7281 7282 7283 7284 7285
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7286 7287 7288 7289
}

static void task_clock_event_read(struct perf_event *event)
{
7290 7291 7292
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7293 7294 7295 7296 7297

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7298
{
7299 7300 7301 7302 7303 7304
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7305 7306 7307 7308 7309 7310
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7311 7312
	perf_swevent_init_hrtimer(event);

7313
	return 0;
L
Li Zefan 已提交
7314 7315
}

7316
static struct pmu perf_task_clock = {
7317 7318
	.task_ctx_nr	= perf_sw_context,

7319 7320
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7321
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7322 7323 7324 7325
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7326 7327
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7328

P
Peter Zijlstra 已提交
7329
static void perf_pmu_nop_void(struct pmu *pmu)
7330 7331
{
}
L
Li Zefan 已提交
7332

7333 7334 7335 7336
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7337
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7338
{
P
Peter Zijlstra 已提交
7339
	return 0;
L
Li Zefan 已提交
7340 7341
}

7342
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7343 7344

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7345
{
7346 7347 7348 7349 7350
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7351
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7352 7353
}

P
Peter Zijlstra 已提交
7354 7355
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7356 7357 7358 7359 7360 7361 7362
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7363 7364 7365
	perf_pmu_enable(pmu);
	return 0;
}
7366

P
Peter Zijlstra 已提交
7367
static void perf_pmu_cancel_txn(struct pmu *pmu)
7368
{
7369 7370 7371 7372 7373 7374 7375
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7376
	perf_pmu_enable(pmu);
7377 7378
}

7379 7380
static int perf_event_idx_default(struct perf_event *event)
{
7381
	return 0;
7382 7383
}

P
Peter Zijlstra 已提交
7384 7385 7386 7387
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7388
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7389
{
P
Peter Zijlstra 已提交
7390
	struct pmu *pmu;
7391

P
Peter Zijlstra 已提交
7392 7393
	if (ctxn < 0)
		return NULL;
7394

P
Peter Zijlstra 已提交
7395 7396 7397 7398
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7399

P
Peter Zijlstra 已提交
7400
	return NULL;
7401 7402
}

7403
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7404
{
7405 7406 7407 7408 7409 7410 7411
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7412 7413
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7414 7415 7416 7417 7418 7419
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7420

P
Peter Zijlstra 已提交
7421
	mutex_lock(&pmus_lock);
7422
	/*
P
Peter Zijlstra 已提交
7423
	 * Like a real lame refcount.
7424
	 */
7425 7426 7427
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7428
			goto out;
7429
		}
P
Peter Zijlstra 已提交
7430
	}
7431

7432
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7433 7434
out:
	mutex_unlock(&pmus_lock);
7435
}
P
Peter Zijlstra 已提交
7436
static struct idr pmu_idr;
7437

P
Peter Zijlstra 已提交
7438 7439 7440 7441 7442 7443 7444
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7445
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7446

7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7457 7458
static DEFINE_MUTEX(mux_interval_mutex);

7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7478
	mutex_lock(&mux_interval_mutex);
7479 7480 7481
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7482 7483
	get_online_cpus();
	for_each_online_cpu(cpu) {
7484 7485 7486 7487
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7488 7489
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7490
	}
7491 7492
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7493 7494 7495

	return count;
}
7496
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7497

7498 7499 7500 7501
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7502
};
7503
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7504 7505 7506 7507

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7508
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7524
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7545
static struct lock_class_key cpuctx_mutex;
7546
static struct lock_class_key cpuctx_lock;
7547

7548
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7549
{
P
Peter Zijlstra 已提交
7550
	int cpu, ret;
7551

7552
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7553 7554 7555 7556
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7557

P
Peter Zijlstra 已提交
7558 7559 7560 7561 7562 7563
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7564 7565 7566
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7567 7568 7569 7570 7571
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7572 7573 7574 7575 7576 7577
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7578
skip_type:
P
Peter Zijlstra 已提交
7579 7580 7581
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7582

W
Wei Yongjun 已提交
7583
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7584 7585
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7586
		goto free_dev;
7587

P
Peter Zijlstra 已提交
7588 7589 7590 7591
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7592
		__perf_event_init_context(&cpuctx->ctx);
7593
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7594
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7595
		cpuctx->ctx.pmu = pmu;
7596

7597
		__perf_mux_hrtimer_init(cpuctx, cpu);
7598

7599
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7600
	}
7601

P
Peter Zijlstra 已提交
7602
got_cpu_context:
P
Peter Zijlstra 已提交
7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7614
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7615 7616
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7617
		}
7618
	}
7619

P
Peter Zijlstra 已提交
7620 7621 7622 7623 7624
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7625 7626 7627
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7628
	list_add_rcu(&pmu->entry, &pmus);
7629
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7630 7631
	ret = 0;
unlock:
7632 7633
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7634
	return ret;
P
Peter Zijlstra 已提交
7635

P
Peter Zijlstra 已提交
7636 7637 7638 7639
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7640 7641 7642 7643
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7644 7645 7646
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7647
}
7648
EXPORT_SYMBOL_GPL(perf_pmu_register);
7649

7650
void perf_pmu_unregister(struct pmu *pmu)
7651
{
7652 7653 7654
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7655

7656
	/*
P
Peter Zijlstra 已提交
7657 7658
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7659
	 */
7660
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7661
	synchronize_rcu();
7662

P
Peter Zijlstra 已提交
7663
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7664 7665
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7666 7667
	device_del(pmu->dev);
	put_device(pmu->dev);
7668
	free_pmu_context(pmu);
7669
}
7670
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7671

7672 7673
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7674
	struct perf_event_context *ctx = NULL;
7675 7676 7677 7678
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7679 7680

	if (event->group_leader != event) {
7681 7682 7683 7684 7685 7686
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7687 7688 7689
		BUG_ON(!ctx);
	}

7690 7691
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7692 7693 7694 7695

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7696 7697 7698 7699 7700 7701
	if (ret)
		module_put(pmu->module);

	return ret;
}

7702
static struct pmu *perf_init_event(struct perf_event *event)
7703 7704 7705
{
	struct pmu *pmu = NULL;
	int idx;
7706
	int ret;
7707 7708

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7709 7710 7711 7712

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7713
	if (pmu) {
7714
		ret = perf_try_init_event(pmu, event);
7715 7716
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7717
		goto unlock;
7718
	}
P
Peter Zijlstra 已提交
7719

7720
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7721
		ret = perf_try_init_event(pmu, event);
7722
		if (!ret)
P
Peter Zijlstra 已提交
7723
			goto unlock;
7724

7725 7726
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7727
			goto unlock;
7728
		}
7729
	}
P
Peter Zijlstra 已提交
7730 7731
	pmu = ERR_PTR(-ENOENT);
unlock:
7732
	srcu_read_unlock(&pmus_srcu, idx);
7733

7734
	return pmu;
7735 7736
}

7737 7738 7739 7740 7741 7742 7743 7744 7745
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7746 7747
static void account_event(struct perf_event *event)
{
7748 7749 7750
	if (event->parent)
		return;

7751 7752 7753 7754 7755 7756 7757 7758
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7759 7760 7761 7762
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7763 7764 7765 7766
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7767
	if (has_branch_stack(event))
7768
		static_key_slow_inc(&perf_sched_events.key);
7769
	if (is_cgroup_event(event))
7770
		static_key_slow_inc(&perf_sched_events.key);
7771 7772

	account_event_cpu(event, event->cpu);
7773 7774
}

T
Thomas Gleixner 已提交
7775
/*
7776
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7777
 */
7778
static struct perf_event *
7779
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7780 7781 7782
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7783
		 perf_overflow_handler_t overflow_handler,
7784
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7785
{
P
Peter Zijlstra 已提交
7786
	struct pmu *pmu;
7787 7788
	struct perf_event *event;
	struct hw_perf_event *hwc;
7789
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7790

7791 7792 7793 7794 7795
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7796
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7797
	if (!event)
7798
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7799

7800
	/*
7801
	 * Single events are their own group leaders, with an
7802 7803 7804
	 * empty sibling list:
	 */
	if (!group_leader)
7805
		group_leader = event;
7806

7807 7808
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7809

7810 7811 7812
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7813
	INIT_LIST_HEAD(&event->rb_entry);
7814
	INIT_LIST_HEAD(&event->active_entry);
7815 7816
	INIT_HLIST_NODE(&event->hlist_entry);

7817

7818
	init_waitqueue_head(&event->waitq);
7819
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7820

7821
	mutex_init(&event->mmap_mutex);
7822

7823
	atomic_long_set(&event->refcount, 1);
7824 7825 7826 7827 7828
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7829

7830
	event->parent		= parent_event;
7831

7832
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7833
	event->id		= atomic64_inc_return(&perf_event_id);
7834

7835
	event->state		= PERF_EVENT_STATE_INACTIVE;
7836

7837 7838 7839
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7840 7841 7842
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7843
		 */
7844
		event->hw.target = task;
7845 7846
	}

7847 7848 7849 7850
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7851
	if (!overflow_handler && parent_event) {
7852
		overflow_handler = parent_event->overflow_handler;
7853 7854
		context = parent_event->overflow_handler_context;
	}
7855

7856
	event->overflow_handler	= overflow_handler;
7857
	event->overflow_handler_context = context;
7858

J
Jiri Olsa 已提交
7859
	perf_event__state_init(event);
7860

7861
	pmu = NULL;
7862

7863
	hwc = &event->hw;
7864
	hwc->sample_period = attr->sample_period;
7865
	if (attr->freq && attr->sample_freq)
7866
		hwc->sample_period = 1;
7867
	hwc->last_period = hwc->sample_period;
7868

7869
	local64_set(&hwc->period_left, hwc->sample_period);
7870

7871
	/*
7872
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7873
	 */
7874
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7875
		goto err_ns;
7876 7877 7878

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7879

7880 7881 7882 7883 7884 7885
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7886
	pmu = perf_init_event(event);
7887
	if (!pmu)
7888 7889
		goto err_ns;
	else if (IS_ERR(pmu)) {
7890
		err = PTR_ERR(pmu);
7891
		goto err_ns;
I
Ingo Molnar 已提交
7892
	}
7893

7894 7895 7896 7897
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7898
	if (!event->parent) {
7899 7900
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7901
			if (err)
7902
				goto err_per_task;
7903
		}
7904
	}
7905

7906
	return event;
7907

7908 7909 7910
err_per_task:
	exclusive_event_destroy(event);

7911 7912 7913
err_pmu:
	if (event->destroy)
		event->destroy(event);
7914
	module_put(pmu->module);
7915
err_ns:
7916 7917
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7918 7919 7920 7921 7922
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7923 7924
}

7925 7926
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7927 7928
{
	u32 size;
7929
	int ret;
7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7954 7955 7956
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7957 7958
	 */
	if (size > sizeof(*attr)) {
7959 7960 7961
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7962

7963 7964
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7965

7966
		for (; addr < end; addr++) {
7967 7968 7969 7970 7971 7972
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7973
		size = sizeof(*attr);
7974 7975 7976 7977 7978 7979
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7980
	if (attr->__reserved_1)
7981 7982 7983 7984 7985 7986 7987 7988
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8017 8018
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8019 8020
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8021
	}
8022

8023
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8024
		ret = perf_reg_validate(attr->sample_regs_user);
8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8043

8044 8045
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8046 8047 8048 8049 8050 8051 8052 8053 8054
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8055 8056
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8057
{
8058
	struct ring_buffer *rb = NULL;
8059 8060
	int ret = -EINVAL;

8061
	if (!output_event)
8062 8063
		goto set;

8064 8065
	/* don't allow circular references */
	if (event == output_event)
8066 8067
		goto out;

8068 8069 8070 8071 8072 8073 8074
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8075
	 * If its not a per-cpu rb, it must be the same task.
8076 8077 8078 8079
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8080 8081 8082 8083 8084 8085
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8086 8087 8088 8089 8090 8091 8092
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8093
set:
8094
	mutex_lock(&event->mmap_mutex);
8095 8096 8097
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8098

8099
	if (output_event) {
8100 8101 8102
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8103
			goto unlock;
8104 8105
	}

8106
	ring_buffer_attach(event, rb);
8107

8108
	ret = 0;
8109 8110 8111
unlock:
	mutex_unlock(&event->mmap_mutex);

8112 8113 8114 8115
out:
	return ret;
}

P
Peter Zijlstra 已提交
8116 8117 8118 8119 8120 8121 8122 8123 8124
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8162
/**
8163
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8164
 *
8165
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8166
 * @pid:		target pid
I
Ingo Molnar 已提交
8167
 * @cpu:		target cpu
8168
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8169
 */
8170 8171
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8172
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8173
{
8174 8175
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8176
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8177
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8178
	struct file *event_file = NULL;
8179
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8180
	struct task_struct *task = NULL;
8181
	struct pmu *pmu;
8182
	int event_fd;
8183
	int move_group = 0;
8184
	int err;
8185
	int f_flags = O_RDWR;
8186
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8187

8188
	/* for future expandability... */
S
Stephane Eranian 已提交
8189
	if (flags & ~PERF_FLAG_ALL)
8190 8191
		return -EINVAL;

8192 8193 8194
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8195

8196 8197 8198 8199 8200
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8201
	if (attr.freq) {
8202
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8203
			return -EINVAL;
8204 8205 8206
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8207 8208
	}

S
Stephane Eranian 已提交
8209 8210 8211 8212 8213 8214 8215 8216 8217
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8218 8219 8220 8221
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8222 8223 8224
	if (event_fd < 0)
		return event_fd;

8225
	if (group_fd != -1) {
8226 8227
		err = perf_fget_light(group_fd, &group);
		if (err)
8228
			goto err_fd;
8229
		group_leader = group.file->private_data;
8230 8231 8232 8233 8234 8235
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8236
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8237 8238 8239 8240 8241 8242 8243
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8244 8245 8246 8247 8248 8249
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8250 8251
	get_online_cpus();

8252 8253 8254
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8255
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8256
				 NULL, NULL, cgroup_fd);
8257 8258
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8259
		goto err_cpus;
8260 8261
	}

8262 8263 8264 8265 8266 8267 8268
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8269 8270
	account_event(event);

8271 8272 8273 8274 8275
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8276

8277 8278 8279 8280 8281 8282
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8305 8306 8307 8308

	/*
	 * Get the target context (task or percpu):
	 */
8309
	ctx = find_get_context(pmu, task, event);
8310 8311
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8312
		goto err_alloc;
8313 8314
	}

8315 8316 8317 8318 8319
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8320 8321 8322 8323 8324
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8325
	/*
8326
	 * Look up the group leader (we will attach this event to it):
8327
	 */
8328
	if (group_leader) {
8329
		err = -EINVAL;
8330 8331

		/*
I
Ingo Molnar 已提交
8332 8333 8334 8335
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8336
			goto err_context;
8337 8338 8339 8340 8341

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8342 8343 8344
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8345
		 */
8346
		if (move_group) {
8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8360 8361 8362 8363 8364 8365
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8366 8367 8368
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8369
		if (attr.exclusive || attr.pinned)
8370
			goto err_context;
8371 8372 8373 8374 8375
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8376
			goto err_context;
8377
	}
T
Thomas Gleixner 已提交
8378

8379 8380
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8381 8382
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8383
		goto err_context;
8384
	}
8385

8386
	if (move_group) {
P
Peter Zijlstra 已提交
8387
		gctx = group_leader->ctx;
8388 8389 8390 8391 8392
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8393 8394 8395 8396 8397
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8398 8399 8400 8401 8402 8403 8404
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8405

8406 8407 8408
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8409

8410 8411 8412
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8413 8414 8415 8416
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8417
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8418

8419 8420
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8421
			perf_remove_from_context(sibling, false);
8422 8423 8424
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8425 8426 8427 8428
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8429
		synchronize_rcu();
P
Peter Zijlstra 已提交
8430

8431 8432 8433 8434 8435 8436 8437 8438 8439 8440
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8441 8442
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8443
			perf_event__state_init(sibling);
8444
			perf_install_in_context(ctx, sibling, sibling->cpu);
8445 8446
			get_ctx(ctx);
		}
8447 8448 8449 8450 8451 8452 8453 8454 8455

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8456

8457 8458 8459 8460 8461 8462
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8463 8464
	}

8465 8466 8467 8468 8469 8470 8471 8472 8473
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8474
	perf_install_in_context(ctx, event, event->cpu);
8475
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8476

8477
	if (move_group)
P
Peter Zijlstra 已提交
8478
		mutex_unlock(&gctx->mutex);
8479
	mutex_unlock(&ctx->mutex);
8480

8481 8482
	put_online_cpus();

8483
	event->owner = current;
P
Peter Zijlstra 已提交
8484

8485 8486 8487
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8488

8489 8490 8491 8492 8493 8494
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8495
	fdput(group);
8496 8497
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8498

8499 8500 8501 8502 8503 8504
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8505
err_context:
8506
	perf_unpin_context(ctx);
8507
	put_ctx(ctx);
8508
err_alloc:
8509
	free_event(event);
8510
err_cpus:
8511
	put_online_cpus();
8512
err_task:
P
Peter Zijlstra 已提交
8513 8514
	if (task)
		put_task_struct(task);
8515
err_group_fd:
8516
	fdput(group);
8517 8518
err_fd:
	put_unused_fd(event_fd);
8519
	return err;
T
Thomas Gleixner 已提交
8520 8521
}

8522 8523 8524 8525 8526
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8527
 * @task: task to profile (NULL for percpu)
8528 8529 8530
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8531
				 struct task_struct *task,
8532 8533
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8534 8535
{
	struct perf_event_context *ctx;
8536
	struct perf_event *event;
8537
	int err;
8538

8539 8540 8541
	/*
	 * Get the target context (task or percpu):
	 */
8542

8543
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8544
				 overflow_handler, context, -1);
8545 8546 8547 8548
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8549

8550 8551 8552
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8553 8554
	account_event(event);

8555
	ctx = find_get_context(event->pmu, task, event);
8556 8557
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8558
		goto err_free;
8559
	}
8560 8561 8562

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8563 8564 8565 8566 8567 8568 8569 8570
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8571
	perf_install_in_context(ctx, event, cpu);
8572
	perf_unpin_context(ctx);
8573 8574 8575 8576
	mutex_unlock(&ctx->mutex);

	return event;

8577 8578 8579
err_free:
	free_event(event);
err:
8580
	return ERR_PTR(err);
8581
}
8582
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8583

8584 8585 8586 8587 8588 8589 8590 8591 8592 8593
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8594 8595 8596 8597 8598
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8599 8600
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8601
		perf_remove_from_context(event, false);
8602
		unaccount_event_cpu(event, src_cpu);
8603
		put_ctx(src_ctx);
8604
		list_add(&event->migrate_entry, &events);
8605 8606
	}

8607 8608 8609
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8610 8611
	synchronize_rcu();

8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8636 8637
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8638 8639
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8640
		account_event_cpu(event, dst_cpu);
8641 8642 8643 8644
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8645
	mutex_unlock(&src_ctx->mutex);
8646 8647 8648
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8649
static void sync_child_event(struct perf_event *child_event,
8650
			       struct task_struct *child)
8651
{
8652
	struct perf_event *parent_event = child_event->parent;
8653
	u64 child_val;
8654

8655 8656
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8657

P
Peter Zijlstra 已提交
8658
	child_val = perf_event_count(child_event);
8659 8660 8661 8662

	/*
	 * Add back the child's count to the parent's count:
	 */
8663
	atomic64_add(child_val, &parent_event->child_count);
8664 8665 8666 8667
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8668 8669

	/*
8670
	 * Remove this event from the parent's list
8671
	 */
8672 8673 8674 8675
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8676

8677 8678 8679 8680 8681 8682
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8683
	/*
8684
	 * Release the parent event, if this was the last
8685 8686
	 * reference to it.
	 */
8687
	put_event(parent_event);
8688 8689
}

8690
static void
8691 8692
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8693
			 struct task_struct *child)
8694
{
8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8708

8709
	/*
8710
	 * It can happen that the parent exits first, and has events
8711
	 * that are still around due to the child reference. These
8712
	 * events need to be zapped.
8713
	 */
8714
	if (child_event->parent) {
8715 8716
		sync_child_event(child_event, child);
		free_event(child_event);
8717 8718 8719
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8720
	}
8721 8722
}

P
Peter Zijlstra 已提交
8723
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8724
{
8725
	struct perf_event *child_event, *next;
8726
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8727
	unsigned long flags;
8728

J
Jiri Olsa 已提交
8729
	if (likely(!child->perf_event_ctxp[ctxn]))
8730 8731
		return;

8732
	local_irq_save(flags);
8733 8734 8735 8736 8737 8738
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8739
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8740 8741 8742

	/*
	 * Take the context lock here so that if find_get_context is
8743
	 * reading child->perf_event_ctxp, we wait until it has
8744 8745
	 * incremented the context's refcount before we do put_ctx below.
	 */
8746
	raw_spin_lock(&child_ctx->lock);
8747
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
P
Peter Zijlstra 已提交
8748
	child->perf_event_ctxp[ctxn] = NULL;
8749

8750 8751 8752
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8753
	 * the events from it.
8754
	 */
8755
	clone_ctx = unclone_ctx(child_ctx);
8756
	update_context_time(child_ctx);
8757
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8758

8759 8760
	if (clone_ctx)
		put_ctx(clone_ctx);
8761

P
Peter Zijlstra 已提交
8762
	/*
8763 8764 8765
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8766
	 */
8767
	perf_event_task(child, child_ctx, 0);
8768

8769 8770 8771
	/*
	 * We can recurse on the same lock type through:
	 *
8772 8773
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8774 8775
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8776 8777 8778
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8779
	mutex_lock(&child_ctx->mutex);
8780

8781
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8782
		__perf_event_exit_task(child_event, child_ctx, child);
8783

8784 8785 8786
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8787 8788
}

P
Peter Zijlstra 已提交
8789 8790 8791 8792 8793
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8794
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8795 8796
	int ctxn;

P
Peter Zijlstra 已提交
8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8812 8813
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8814 8815 8816 8817 8818 8819 8820 8821

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8822 8823
}

8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8836
	put_event(parent);
8837

P
Peter Zijlstra 已提交
8838
	raw_spin_lock_irq(&ctx->lock);
8839
	perf_group_detach(event);
8840
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8841
	raw_spin_unlock_irq(&ctx->lock);
8842 8843 8844
	free_event(event);
}

8845
/*
P
Peter Zijlstra 已提交
8846
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8847
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8848 8849 8850
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8851
 */
8852
void perf_event_free_task(struct task_struct *task)
8853
{
P
Peter Zijlstra 已提交
8854
	struct perf_event_context *ctx;
8855
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8856
	int ctxn;
8857

P
Peter Zijlstra 已提交
8858 8859 8860 8861
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8862

P
Peter Zijlstra 已提交
8863
		mutex_lock(&ctx->mutex);
8864
again:
P
Peter Zijlstra 已提交
8865 8866 8867
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8868

P
Peter Zijlstra 已提交
8869 8870 8871
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8872

P
Peter Zijlstra 已提交
8873 8874 8875
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8876

P
Peter Zijlstra 已提交
8877
		mutex_unlock(&ctx->mutex);
8878

P
Peter Zijlstra 已提交
8879 8880
		put_ctx(ctx);
	}
8881 8882
}

8883 8884 8885 8886 8887 8888 8889 8890
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8927
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8928
	struct perf_event *child_event;
8929
	unsigned long flags;
P
Peter Zijlstra 已提交
8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8942
					   child,
P
Peter Zijlstra 已提交
8943
					   group_leader, parent_event,
8944
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8945 8946
	if (IS_ERR(child_event))
		return child_event;
8947

8948 8949
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8950 8951 8952 8953
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8954 8955 8956 8957 8958 8959 8960
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8961
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8978 8979
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8980

8981 8982 8983 8984
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8985
	perf_event__id_header_size(child_event);
8986

P
Peter Zijlstra 已提交
8987 8988 8989
	/*
	 * Link it up in the child's context:
	 */
8990
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8991
	add_event_to_ctx(child_event, child_ctx);
8992
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9026 9027 9028 9029 9030
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9031
		   struct task_struct *child, int ctxn,
9032 9033 9034
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9035
	struct perf_event_context *child_ctx;
9036 9037 9038 9039

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9040 9041
	}

9042
	child_ctx = child->perf_event_ctxp[ctxn];
9043 9044 9045 9046 9047 9048 9049
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9050

9051
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9052 9053
		if (!child_ctx)
			return -ENOMEM;
9054

P
Peter Zijlstra 已提交
9055
		child->perf_event_ctxp[ctxn] = child_ctx;
9056 9057 9058 9059 9060 9061 9062 9063 9064
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9065 9066
}

9067
/*
9068
 * Initialize the perf_event context in task_struct
9069
 */
9070
static int perf_event_init_context(struct task_struct *child, int ctxn)
9071
{
9072
	struct perf_event_context *child_ctx, *parent_ctx;
9073 9074
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9075
	struct task_struct *parent = current;
9076
	int inherited_all = 1;
9077
	unsigned long flags;
9078
	int ret = 0;
9079

P
Peter Zijlstra 已提交
9080
	if (likely(!parent->perf_event_ctxp[ctxn]))
9081 9082
		return 0;

9083
	/*
9084 9085
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9086
	 */
P
Peter Zijlstra 已提交
9087
	parent_ctx = perf_pin_task_context(parent, ctxn);
9088 9089
	if (!parent_ctx)
		return 0;
9090

9091 9092 9093 9094 9095 9096 9097
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9098 9099 9100 9101
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9102
	mutex_lock(&parent_ctx->mutex);
9103 9104 9105 9106 9107

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9108
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9109 9110
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9111 9112 9113
		if (ret)
			break;
	}
9114

9115 9116 9117 9118 9119 9120 9121 9122 9123
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9124
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9125 9126
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9127
		if (ret)
9128
			break;
9129 9130
	}

9131 9132 9133
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9134
	child_ctx = child->perf_event_ctxp[ctxn];
9135

9136
	if (child_ctx && inherited_all) {
9137 9138 9139
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9140 9141 9142
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9143
		 */
P
Peter Zijlstra 已提交
9144
		cloned_ctx = parent_ctx->parent_ctx;
9145 9146
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9147
			child_ctx->parent_gen = parent_ctx->parent_gen;
9148 9149 9150 9151 9152
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9153 9154
	}

P
Peter Zijlstra 已提交
9155
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9156
	mutex_unlock(&parent_ctx->mutex);
9157

9158
	perf_unpin_context(parent_ctx);
9159
	put_ctx(parent_ctx);
9160

9161
	return ret;
9162 9163
}

P
Peter Zijlstra 已提交
9164 9165 9166 9167 9168 9169 9170
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9171 9172 9173 9174
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9175 9176
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9177 9178
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9179
			return ret;
P
Peter Zijlstra 已提交
9180
		}
P
Peter Zijlstra 已提交
9181 9182 9183 9184 9185
	}

	return 0;
}

9186 9187
static void __init perf_event_init_all_cpus(void)
{
9188
	struct swevent_htable *swhash;
9189 9190 9191
	int cpu;

	for_each_possible_cpu(cpu) {
9192 9193
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9194
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9195 9196 9197
	}
}

9198
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9199
{
P
Peter Zijlstra 已提交
9200
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9201

9202
	mutex_lock(&swhash->hlist_mutex);
9203
	if (swhash->hlist_refcount > 0) {
9204 9205
		struct swevent_hlist *hlist;

9206 9207 9208
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9209
	}
9210
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9211 9212
}

9213
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9214
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9215
{
9216
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9217
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9218

P
Peter Zijlstra 已提交
9219
	rcu_read_lock();
9220 9221
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9222
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9223
}
P
Peter Zijlstra 已提交
9224 9225 9226 9227 9228 9229 9230 9231 9232

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9233
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9234 9235 9236 9237 9238 9239 9240 9241

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9242
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9243
{
P
Peter Zijlstra 已提交
9244
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9245 9246
}
#else
9247
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9248 9249
#endif

P
Peter Zijlstra 已提交
9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9270
static int
T
Thomas Gleixner 已提交
9271 9272 9273 9274
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9275
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9276 9277

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9278
	case CPU_DOWN_FAILED:
9279
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9280 9281
		break;

P
Peter Zijlstra 已提交
9282
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9283
	case CPU_DOWN_PREPARE:
9284
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9285 9286 9287 9288 9289 9290 9291 9292
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9293
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9294
{
9295 9296
	int ret;

P
Peter Zijlstra 已提交
9297 9298
	idr_init(&pmu_idr);

9299
	perf_event_init_all_cpus();
9300
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9301 9302 9303
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9304 9305
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9306
	register_reboot_notifier(&perf_reboot_notifier);
9307 9308 9309

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9310 9311 9312

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9313 9314 9315 9316 9317 9318 9319

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9320
}
P
Peter Zijlstra 已提交
9321

9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9361 9362

#ifdef CONFIG_CGROUP_PERF
9363 9364
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9365 9366 9367
{
	struct perf_cgroup *jc;

9368
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9381
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9382
{
9383 9384
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9385 9386 9387 9388 9389 9390 9391
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9392
	rcu_read_lock();
S
Stephane Eranian 已提交
9393
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9394
	rcu_read_unlock();
S
Stephane Eranian 已提交
9395 9396 9397
	return 0;
}

9398
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9399
{
9400
	struct task_struct *task;
9401
	struct cgroup_subsys_state *css;
9402

9403
	cgroup_taskset_for_each(task, css, tset)
9404
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9405 9406
}

9407
struct cgroup_subsys perf_event_cgrp_subsys = {
9408 9409
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9410
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9411 9412
};
#endif /* CONFIG_CGROUP_PERF */