core.c 186.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
122 123
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
124

125 126 127 128 129 130 131
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

132 133 134 135 136 137
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
138 139 140 141
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
142
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
143
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
145

146 147 148
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
149
static atomic_t nr_freq_events __read_mostly;
150

P
Peter Zijlstra 已提交
151 152 153 154
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

155
/*
156
 * perf event paranoia level:
157 158
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
159
 *   1 - disallow cpu events for unpriv
160
 *   2 - disallow kernel profiling for unpriv
161
 */
162
int sysctl_perf_event_paranoid __read_mostly = 1;
163

164 165
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
166 167

/*
168
 * max perf event sample rate
169
 */
170 171 172 173 174 175 176 177 178
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
179 180
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181 182 183 184 185 186

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
187
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
188
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
189
}
P
Peter Zijlstra 已提交
190

191 192
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
193 194 195 196
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
197
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
198 199 200 201 202

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
221 222 223

	return 0;
}
224

225 226 227 228 229 230 231
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
232
static DEFINE_PER_CPU(u64, running_sample_length);
233 234 235 236

void perf_sample_event_took(u64 sample_len_ns)
{
	u64 avg_local_sample_len;
237
	u64 local_samples_len;
P
Peter Zijlstra 已提交
238
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
239

P
Peter Zijlstra 已提交
240
	if (allowed_ns == 0)
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
256
	if (avg_local_sample_len <= allowed_ns)
257 258 259 260 261 262 263 264 265 266
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	printk_ratelimited(KERN_WARNING
P
Peter Zijlstra 已提交
267
			"perf samples too long (%lld > %lld), lowering "
268
			"kernel.perf_event_max_sample_rate to %d\n",
P
Peter Zijlstra 已提交
269
			avg_local_sample_len, allowed_ns,
270 271 272 273 274
			sysctl_perf_event_sample_rate);

	update_perf_cpu_limits();
}

275
static atomic64_t perf_event_id;
276

277 278 279 280
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
281 282 283 284 285
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
286

287
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
288

289
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
290
{
291
	return "pmu";
T
Thomas Gleixner 已提交
292 293
}

294 295 296 297 298
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
299 300 301 302 303 304
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
321 322
#ifdef CONFIG_CGROUP_PERF

323 324 325 326 327 328 329 330 331 332 333
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
334
	struct perf_cgroup_info	__percpu *info;
335 336
};

337 338 339 340 341
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
342 343 344
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
345 346
	return container_of(task_css(task, perf_subsys_id),
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
347 348 349 350 351 352 353 354
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
371 372
}

373
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
374
{
375
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
424 425
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
426
	/*
427 428
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
429
	 */
430
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
431 432
		return;

433 434 435 436 437 438
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
439 440 441
}

static inline void
442 443
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
444 445 446 447
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

448 449 450 451 452 453
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
454 455 456 457
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
458
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
491 492
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
493 494 495 496 497 498 499 500 501

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
502 503
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
504 505 506 507 508 509 510 511 512 513 514

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
515
				WARN_ON_ONCE(cpuctx->cgrp);
516 517 518 519
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
520 521 522 523
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
524 525
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
526 527 528 529 530 531 532 533
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

534 535
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
536
{
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
559 560
}

561 562
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
563
{
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
582 583 584 585 586 587 588 589
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
590 591
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
592

593
	if (!f.file)
S
Stephane Eranian 已提交
594 595
		return -EBADF;

596 597
	rcu_read_lock();

598
	css = css_from_dir(f.file->f_dentry, &perf_subsys);
599 600 601 602
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
603 604 605 606

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

607
	/* must be done before we fput() the file */
608 609 610 611 612
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
613

S
Stephane Eranian 已提交
614 615 616 617 618 619 620 621 622
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
623
out:
624
	rcu_read_unlock();
625
	fdput(f);
S
Stephane Eranian 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

699 700
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
701 702 703
{
}

704 705
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
706 707 708 709 710 711 712 713 714 715 716
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
717 718
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
812
	int timer;
813 814 815 816 817

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

818 819 820 821 822 823 824 825 826
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
849
void perf_pmu_disable(struct pmu *pmu)
850
{
P
Peter Zijlstra 已提交
851 852 853
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
854 855
}

P
Peter Zijlstra 已提交
856
void perf_pmu_enable(struct pmu *pmu)
857
{
P
Peter Zijlstra 已提交
858 859 860
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
861 862
}

863 864 865 866 867 868 869
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
870
static void perf_pmu_rotate_start(struct pmu *pmu)
871
{
P
Peter Zijlstra 已提交
872
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
873
	struct list_head *head = &__get_cpu_var(rotation_list);
874

875
	WARN_ON(!irqs_disabled());
876

877
	if (list_empty(&cpuctx->rotation_list))
878
		list_add(&cpuctx->rotation_list, head);
879 880
}

881
static void get_ctx(struct perf_event_context *ctx)
882
{
883
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
884 885
}

886
static void put_ctx(struct perf_event_context *ctx)
887
{
888 889 890
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
891 892
		if (ctx->task)
			put_task_struct(ctx->task);
893
		kfree_rcu(ctx, rcu_head);
894
	}
895 896
}

897
static void unclone_ctx(struct perf_event_context *ctx)
898 899 900 901 902
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
903
	ctx->generation++;
904 905
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

928
/*
929
 * If we inherit events we want to return the parent event id
930 931
 * to userspace.
 */
932
static u64 primary_event_id(struct perf_event *event)
933
{
934
	u64 id = event->id;
935

936 937
	if (event->parent)
		id = event->parent->id;
938 939 940 941

	return id;
}

942
/*
943
 * Get the perf_event_context for a task and lock it.
944 945 946
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
947
static struct perf_event_context *
P
Peter Zijlstra 已提交
948
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
949
{
950
	struct perf_event_context *ctx;
951

P
Peter Zijlstra 已提交
952
retry:
953 954 955 956 957 958 959 960 961 962 963
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
964
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
965 966 967 968
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
969
		 * perf_event_task_sched_out, though the
970 971 972 973 974 975
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
976
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
977
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
978
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
979 980
			rcu_read_unlock();
			preempt_enable();
981 982
			goto retry;
		}
983 984

		if (!atomic_inc_not_zero(&ctx->refcount)) {
985
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
986 987
			ctx = NULL;
		}
988 989
	}
	rcu_read_unlock();
990
	preempt_enable();
991 992 993 994 995 996 997 998
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
999 1000
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1001
{
1002
	struct perf_event_context *ctx;
1003 1004
	unsigned long flags;

P
Peter Zijlstra 已提交
1005
	ctx = perf_lock_task_context(task, ctxn, &flags);
1006 1007
	if (ctx) {
		++ctx->pin_count;
1008
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1009 1010 1011 1012
	}
	return ctx;
}

1013
static void perf_unpin_context(struct perf_event_context *ctx)
1014 1015 1016
{
	unsigned long flags;

1017
	raw_spin_lock_irqsave(&ctx->lock, flags);
1018
	--ctx->pin_count;
1019
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1020 1021
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1033 1034 1035
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1036 1037 1038 1039

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1040 1041 1042
	return ctx ? ctx->time : 0;
}

1043 1044
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1045
 * The caller of this function needs to hold the ctx->lock.
1046 1047 1048 1049 1050 1051 1052 1053 1054
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1066
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1067 1068
	else if (ctx->is_active)
		run_end = ctx->time;
1069 1070 1071 1072
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1073 1074 1075 1076

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1077
		run_end = perf_event_time(event);
1078 1079

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1080

1081 1082
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1095 1096 1097 1098 1099 1100 1101 1102 1103
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1104
/*
1105
 * Add a event from the lists for its context.
1106 1107
 * Must be called with ctx->mutex and ctx->lock held.
 */
1108
static void
1109
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1110
{
1111 1112
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1113 1114

	/*
1115 1116 1117
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1118
	 */
1119
	if (event->group_leader == event) {
1120 1121
		struct list_head *list;

1122 1123 1124
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1125 1126
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1127
	}
P
Peter Zijlstra 已提交
1128

1129
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1130 1131
		ctx->nr_cgroups++;

1132 1133 1134
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1135
	list_add_rcu(&event->event_entry, &ctx->event_list);
1136
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1137
		perf_pmu_rotate_start(ctx->pmu);
1138 1139
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1140
		ctx->nr_stat++;
1141 1142

	ctx->generation++;
1143 1144
}

J
Jiri Olsa 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1193 1194 1195 1196 1197 1198
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1199 1200 1201
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1202 1203 1204
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1205 1206 1207
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1208 1209 1210
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1211 1212 1213 1214 1215 1216 1217 1218 1219
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1220 1221 1222 1223 1224 1225
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1226 1227 1228
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1229 1230 1231 1232 1233 1234 1235 1236 1237
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1238
	event->id_header_size = size;
1239 1240
}

1241 1242
static void perf_group_attach(struct perf_event *event)
{
1243
	struct perf_event *group_leader = event->group_leader, *pos;
1244

P
Peter Zijlstra 已提交
1245 1246 1247 1248 1249 1250
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1262 1263 1264 1265 1266

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1267 1268
}

1269
/*
1270
 * Remove a event from the lists for its context.
1271
 * Must be called with ctx->mutex and ctx->lock held.
1272
 */
1273
static void
1274
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1275
{
1276
	struct perf_cpu_context *cpuctx;
1277 1278 1279 1280
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1281
		return;
1282 1283 1284

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1285
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1286
		ctx->nr_cgroups--;
1287 1288 1289 1290 1291 1292 1293 1294 1295
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1296

1297 1298 1299
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1300 1301
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1302
		ctx->nr_stat--;
1303

1304
	list_del_rcu(&event->event_entry);
1305

1306 1307
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1308

1309
	update_group_times(event);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1320 1321

	ctx->generation++;
1322 1323
}

1324
static void perf_group_detach(struct perf_event *event)
1325 1326
{
	struct perf_event *sibling, *tmp;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1343
		goto out;
1344 1345 1346 1347
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1348

1349
	/*
1350 1351
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1352
	 * to whatever list we are on.
1353
	 */
1354
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1355 1356
		if (list)
			list_move_tail(&sibling->group_entry, list);
1357
		sibling->group_leader = sibling;
1358 1359 1360

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1361
	}
1362 1363 1364 1365 1366 1367

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1368 1369
}

1370 1371 1372
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1373 1374
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1375 1376
}

1377 1378
static void
event_sched_out(struct perf_event *event,
1379
		  struct perf_cpu_context *cpuctx,
1380
		  struct perf_event_context *ctx)
1381
{
1382
	u64 tstamp = perf_event_time(event);
1383 1384 1385 1386 1387 1388 1389 1390 1391
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1392
		delta = tstamp - event->tstamp_stopped;
1393
		event->tstamp_running += delta;
1394
		event->tstamp_stopped = tstamp;
1395 1396
	}

1397
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1398
		return;
1399

1400 1401
	perf_pmu_disable(event->pmu);

1402 1403 1404 1405
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1406
	}
1407
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1408
	event->pmu->del(event, 0);
1409
	event->oncpu = -1;
1410

1411
	if (!is_software_event(event))
1412 1413
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1414 1415
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1416
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1417
		cpuctx->exclusive = 0;
1418 1419

	perf_pmu_enable(event->pmu);
1420 1421
}

1422
static void
1423
group_sched_out(struct perf_event *group_event,
1424
		struct perf_cpu_context *cpuctx,
1425
		struct perf_event_context *ctx)
1426
{
1427
	struct perf_event *event;
1428
	int state = group_event->state;
1429

1430
	event_sched_out(group_event, cpuctx, ctx);
1431 1432 1433 1434

	/*
	 * Schedule out siblings (if any):
	 */
1435 1436
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1437

1438
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1439 1440 1441
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1442
/*
1443
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1444
 *
1445
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1446 1447
 * remove it from the context list.
 */
1448
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1449
{
1450 1451
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1452
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1453

1454
	raw_spin_lock(&ctx->lock);
1455 1456
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1457 1458 1459 1460
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1461
	raw_spin_unlock(&ctx->lock);
1462 1463

	return 0;
T
Thomas Gleixner 已提交
1464 1465 1466 1467
}


/*
1468
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1469
 *
1470
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1471
 * call when the task is on a CPU.
1472
 *
1473 1474
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1475 1476
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1477
 * When called from perf_event_exit_task, it's OK because the
1478
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1479
 */
1480
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1481
{
1482
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1483 1484
	struct task_struct *task = ctx->task;

1485 1486
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1487 1488
	if (!task) {
		/*
1489
		 * Per cpu events are removed via an smp call and
1490
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1491
		 */
1492
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1493 1494 1495 1496
		return;
	}

retry:
1497 1498
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1499

1500
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1501
	/*
1502 1503
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1504
	 */
1505
	if (ctx->is_active) {
1506
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1507 1508 1509 1510
		goto retry;
	}

	/*
1511 1512
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1513
	 */
1514
	list_del_event(event, ctx);
1515
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1516 1517
}

1518
/*
1519
 * Cross CPU call to disable a performance event
1520
 */
1521
int __perf_event_disable(void *info)
1522
{
1523 1524
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1525
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1526 1527

	/*
1528 1529
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1530 1531 1532
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1533
	 */
1534
	if (ctx->task && cpuctx->task_ctx != ctx)
1535
		return -EINVAL;
1536

1537
	raw_spin_lock(&ctx->lock);
1538 1539

	/*
1540
	 * If the event is on, turn it off.
1541 1542
	 * If it is in error state, leave it in error state.
	 */
1543
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1544
		update_context_time(ctx);
S
Stephane Eranian 已提交
1545
		update_cgrp_time_from_event(event);
1546 1547 1548
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1549
		else
1550 1551
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1552 1553
	}

1554
	raw_spin_unlock(&ctx->lock);
1555 1556

	return 0;
1557 1558 1559
}

/*
1560
 * Disable a event.
1561
 *
1562 1563
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1564
 * remains valid.  This condition is satisifed when called through
1565 1566 1567 1568
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1569
 * is the current context on this CPU and preemption is disabled,
1570
 * hence we can't get into perf_event_task_sched_out for this context.
1571
 */
1572
void perf_event_disable(struct perf_event *event)
1573
{
1574
	struct perf_event_context *ctx = event->ctx;
1575 1576 1577 1578
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1579
		 * Disable the event on the cpu that it's on
1580
		 */
1581
		cpu_function_call(event->cpu, __perf_event_disable, event);
1582 1583 1584
		return;
	}

P
Peter Zijlstra 已提交
1585
retry:
1586 1587
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1588

1589
	raw_spin_lock_irq(&ctx->lock);
1590
	/*
1591
	 * If the event is still active, we need to retry the cross-call.
1592
	 */
1593
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1594
		raw_spin_unlock_irq(&ctx->lock);
1595 1596 1597 1598 1599
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1600 1601 1602 1603 1604 1605 1606
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1607 1608 1609
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1610
	}
1611
	raw_spin_unlock_irq(&ctx->lock);
1612
}
1613
EXPORT_SYMBOL_GPL(perf_event_disable);
1614

S
Stephane Eranian 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1650 1651 1652 1653
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1654
static int
1655
event_sched_in(struct perf_event *event,
1656
		 struct perf_cpu_context *cpuctx,
1657
		 struct perf_event_context *ctx)
1658
{
1659
	u64 tstamp = perf_event_time(event);
1660
	int ret = 0;
1661

1662
	if (event->state <= PERF_EVENT_STATE_OFF)
1663 1664
		return 0;

1665
	event->state = PERF_EVENT_STATE_ACTIVE;
1666
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1678 1679 1680 1681 1682
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1683 1684
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1685
	if (event->pmu->add(event, PERF_EF_START)) {
1686 1687
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1688 1689
		ret = -EAGAIN;
		goto out;
1690 1691
	}

1692
	event->tstamp_running += tstamp - event->tstamp_stopped;
1693

S
Stephane Eranian 已提交
1694
	perf_set_shadow_time(event, ctx, tstamp);
1695

1696
	if (!is_software_event(event))
1697
		cpuctx->active_oncpu++;
1698
	ctx->nr_active++;
1699 1700
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1701

1702
	if (event->attr.exclusive)
1703 1704
		cpuctx->exclusive = 1;

1705 1706 1707 1708
out:
	perf_pmu_enable(event->pmu);

	return ret;
1709 1710
}

1711
static int
1712
group_sched_in(struct perf_event *group_event,
1713
	       struct perf_cpu_context *cpuctx,
1714
	       struct perf_event_context *ctx)
1715
{
1716
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1717
	struct pmu *pmu = group_event->pmu;
1718 1719
	u64 now = ctx->time;
	bool simulate = false;
1720

1721
	if (group_event->state == PERF_EVENT_STATE_OFF)
1722 1723
		return 0;

P
Peter Zijlstra 已提交
1724
	pmu->start_txn(pmu);
1725

1726
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1727
		pmu->cancel_txn(pmu);
1728
		perf_cpu_hrtimer_restart(cpuctx);
1729
		return -EAGAIN;
1730
	}
1731 1732 1733 1734

	/*
	 * Schedule in siblings as one group (if any):
	 */
1735
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1736
		if (event_sched_in(event, cpuctx, ctx)) {
1737
			partial_group = event;
1738 1739 1740 1741
			goto group_error;
		}
	}

1742
	if (!pmu->commit_txn(pmu))
1743
		return 0;
1744

1745 1746 1747 1748
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1759
	 */
1760 1761
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1762 1763 1764 1765 1766 1767 1768 1769
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1770
	}
1771
	event_sched_out(group_event, cpuctx, ctx);
1772

P
Peter Zijlstra 已提交
1773
	pmu->cancel_txn(pmu);
1774

1775 1776
	perf_cpu_hrtimer_restart(cpuctx);

1777 1778 1779
	return -EAGAIN;
}

1780
/*
1781
 * Work out whether we can put this event group on the CPU now.
1782
 */
1783
static int group_can_go_on(struct perf_event *event,
1784 1785 1786 1787
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1788
	 * Groups consisting entirely of software events can always go on.
1789
	 */
1790
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1791 1792 1793
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1794
	 * events can go on.
1795 1796 1797 1798 1799
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1800
	 * events on the CPU, it can't go on.
1801
	 */
1802
	if (event->attr.exclusive && cpuctx->active_oncpu)
1803 1804 1805 1806 1807 1808 1809 1810
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1811 1812
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1813
{
1814 1815
	u64 tstamp = perf_event_time(event);

1816
	list_add_event(event, ctx);
1817
	perf_group_attach(event);
1818 1819 1820
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1821 1822
}

1823 1824 1825 1826 1827 1828
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1829

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1842
/*
1843
 * Cross CPU call to install and enable a performance event
1844 1845
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1846
 */
1847
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1848
{
1849 1850
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1851
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1852 1853 1854
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1855
	perf_ctx_lock(cpuctx, task_ctx);
1856
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1857 1858

	/*
1859
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1860
	 */
1861
	if (task_ctx)
1862
		task_ctx_sched_out(task_ctx);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1877 1878
		task = task_ctx->task;
	}
1879

1880
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1881

1882
	update_context_time(ctx);
S
Stephane Eranian 已提交
1883 1884 1885 1886 1887 1888
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1889

1890
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1891

1892
	/*
1893
	 * Schedule everything back in
1894
	 */
1895
	perf_event_sched_in(cpuctx, task_ctx, task);
1896 1897 1898

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1899 1900

	return 0;
T
Thomas Gleixner 已提交
1901 1902 1903
}

/*
1904
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1905
 *
1906 1907
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1908
 *
1909
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1910 1911 1912 1913
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1914 1915
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1916 1917 1918 1919
			int cpu)
{
	struct task_struct *task = ctx->task;

1920 1921
	lockdep_assert_held(&ctx->mutex);

1922
	event->ctx = ctx;
1923 1924
	if (event->cpu != -1)
		event->cpu = cpu;
1925

T
Thomas Gleixner 已提交
1926 1927
	if (!task) {
		/*
1928
		 * Per cpu events are installed via an smp call and
1929
		 * the install is always successful.
T
Thomas Gleixner 已提交
1930
		 */
1931
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1932 1933 1934 1935
		return;
	}

retry:
1936 1937
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1938

1939
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1940
	/*
1941 1942
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1943
	 */
1944
	if (ctx->is_active) {
1945
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1946 1947 1948 1949
		goto retry;
	}

	/*
1950 1951
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1952
	 */
1953
	add_event_to_ctx(event, ctx);
1954
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1955 1956
}

1957
/*
1958
 * Put a event into inactive state and update time fields.
1959 1960 1961 1962 1963 1964
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1965
static void __perf_event_mark_enabled(struct perf_event *event)
1966
{
1967
	struct perf_event *sub;
1968
	u64 tstamp = perf_event_time(event);
1969

1970
	event->state = PERF_EVENT_STATE_INACTIVE;
1971
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1972
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1973 1974
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1975
	}
1976 1977
}

1978
/*
1979
 * Cross CPU call to enable a performance event
1980
 */
1981
static int __perf_event_enable(void *info)
1982
{
1983 1984 1985
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1986
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1987
	int err;
1988

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
1999
		return -EINVAL;
2000

2001
	raw_spin_lock(&ctx->lock);
2002
	update_context_time(ctx);
2003

2004
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2005
		goto unlock;
S
Stephane Eranian 已提交
2006 2007 2008 2009

	/*
	 * set current task's cgroup time reference point
	 */
2010
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2011

2012
	__perf_event_mark_enabled(event);
2013

S
Stephane Eranian 已提交
2014 2015 2016
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2017
		goto unlock;
S
Stephane Eranian 已提交
2018
	}
2019

2020
	/*
2021
	 * If the event is in a group and isn't the group leader,
2022
	 * then don't put it on unless the group is on.
2023
	 */
2024
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2025
		goto unlock;
2026

2027
	if (!group_can_go_on(event, cpuctx, 1)) {
2028
		err = -EEXIST;
2029
	} else {
2030
		if (event == leader)
2031
			err = group_sched_in(event, cpuctx, ctx);
2032
		else
2033
			err = event_sched_in(event, cpuctx, ctx);
2034
	}
2035 2036 2037

	if (err) {
		/*
2038
		 * If this event can't go on and it's part of a
2039 2040
		 * group, then the whole group has to come off.
		 */
2041
		if (leader != event) {
2042
			group_sched_out(leader, cpuctx, ctx);
2043 2044
			perf_cpu_hrtimer_restart(cpuctx);
		}
2045
		if (leader->attr.pinned) {
2046
			update_group_times(leader);
2047
			leader->state = PERF_EVENT_STATE_ERROR;
2048
		}
2049 2050
	}

P
Peter Zijlstra 已提交
2051
unlock:
2052
	raw_spin_unlock(&ctx->lock);
2053 2054

	return 0;
2055 2056 2057
}

/*
2058
 * Enable a event.
2059
 *
2060 2061
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2062
 * remains valid.  This condition is satisfied when called through
2063 2064
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2065
 */
2066
void perf_event_enable(struct perf_event *event)
2067
{
2068
	struct perf_event_context *ctx = event->ctx;
2069 2070 2071 2072
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2073
		 * Enable the event on the cpu that it's on
2074
		 */
2075
		cpu_function_call(event->cpu, __perf_event_enable, event);
2076 2077 2078
		return;
	}

2079
	raw_spin_lock_irq(&ctx->lock);
2080
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2081 2082 2083
		goto out;

	/*
2084 2085
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2086 2087 2088 2089
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2090 2091
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2092

P
Peter Zijlstra 已提交
2093
retry:
2094
	if (!ctx->is_active) {
2095
		__perf_event_mark_enabled(event);
2096 2097 2098
		goto out;
	}

2099
	raw_spin_unlock_irq(&ctx->lock);
2100 2101 2102

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2103

2104
	raw_spin_lock_irq(&ctx->lock);
2105 2106

	/*
2107
	 * If the context is active and the event is still off,
2108 2109
	 * we need to retry the cross-call.
	 */
2110 2111 2112 2113 2114 2115
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2116
		goto retry;
2117
	}
2118

P
Peter Zijlstra 已提交
2119
out:
2120
	raw_spin_unlock_irq(&ctx->lock);
2121
}
2122
EXPORT_SYMBOL_GPL(perf_event_enable);
2123

2124
int perf_event_refresh(struct perf_event *event, int refresh)
2125
{
2126
	/*
2127
	 * not supported on inherited events
2128
	 */
2129
	if (event->attr.inherit || !is_sampling_event(event))
2130 2131
		return -EINVAL;

2132 2133
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2134 2135

	return 0;
2136
}
2137
EXPORT_SYMBOL_GPL(perf_event_refresh);
2138

2139 2140 2141
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2142
{
2143
	struct perf_event *event;
2144
	int is_active = ctx->is_active;
2145

2146
	ctx->is_active &= ~event_type;
2147
	if (likely(!ctx->nr_events))
2148 2149
		return;

2150
	update_context_time(ctx);
S
Stephane Eranian 已提交
2151
	update_cgrp_time_from_cpuctx(cpuctx);
2152
	if (!ctx->nr_active)
2153
		return;
2154

P
Peter Zijlstra 已提交
2155
	perf_pmu_disable(ctx->pmu);
2156
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2157 2158
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2159
	}
2160

2161
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2162
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2163
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2164
	}
P
Peter Zijlstra 已提交
2165
	perf_pmu_enable(ctx->pmu);
2166 2167
}

2168
/*
2169 2170 2171 2172 2173 2174
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2175
 */
2176 2177
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2178
{
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2201 2202
}

2203 2204
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2205 2206 2207
{
	u64 value;

2208
	if (!event->attr.inherit_stat)
2209 2210 2211
		return;

	/*
2212
	 * Update the event value, we cannot use perf_event_read()
2213 2214
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2215
	 * we know the event must be on the current CPU, therefore we
2216 2217
	 * don't need to use it.
	 */
2218 2219
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2220 2221
		event->pmu->read(event);
		/* fall-through */
2222

2223 2224
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2225 2226 2227 2228 2229 2230 2231
		break;

	default:
		break;
	}

	/*
2232
	 * In order to keep per-task stats reliable we need to flip the event
2233 2234
	 * values when we flip the contexts.
	 */
2235 2236 2237
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2238

2239 2240
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2241

2242
	/*
2243
	 * Since we swizzled the values, update the user visible data too.
2244
	 */
2245 2246
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2247 2248
}

2249 2250
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2251
{
2252
	struct perf_event *event, *next_event;
2253 2254 2255 2256

	if (!ctx->nr_stat)
		return;

2257 2258
	update_context_time(ctx);

2259 2260
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2261

2262 2263
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2264

2265 2266
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2267

2268
		__perf_event_sync_stat(event, next_event);
2269

2270 2271
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2272 2273 2274
	}
}

2275 2276
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2277
{
P
Peter Zijlstra 已提交
2278
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2279
	struct perf_event_context *next_ctx;
2280
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2281
	struct perf_cpu_context *cpuctx;
2282
	int do_switch = 1;
T
Thomas Gleixner 已提交
2283

P
Peter Zijlstra 已提交
2284 2285
	if (likely(!ctx))
		return;
2286

P
Peter Zijlstra 已提交
2287 2288
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2289 2290
		return;

2291
	rcu_read_lock();
P
Peter Zijlstra 已提交
2292
	next_ctx = next->perf_event_ctxp[ctxn];
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
	if (!parent && !next_parent)
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2304 2305 2306 2307 2308 2309 2310 2311 2312
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2313 2314
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2315
		if (context_equiv(ctx, next_ctx)) {
2316 2317
			/*
			 * XXX do we need a memory barrier of sorts
2318
			 * wrt to rcu_dereference() of perf_event_ctxp
2319
			 */
P
Peter Zijlstra 已提交
2320 2321
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2322 2323 2324
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2325

2326
			perf_event_sync_stat(ctx, next_ctx);
2327
		}
2328 2329
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2330
	}
2331
unlock:
2332
	rcu_read_unlock();
2333

2334
	if (do_switch) {
2335
		raw_spin_lock(&ctx->lock);
2336
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2337
		cpuctx->task_ctx = NULL;
2338
		raw_spin_unlock(&ctx->lock);
2339
	}
T
Thomas Gleixner 已提交
2340 2341
}

P
Peter Zijlstra 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2356 2357
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2358 2359 2360 2361 2362
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2363 2364 2365 2366 2367 2368 2369

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2370
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2371 2372
}

2373
static void task_ctx_sched_out(struct perf_event_context *ctx)
2374
{
P
Peter Zijlstra 已提交
2375
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2376

2377 2378
	if (!cpuctx->task_ctx)
		return;
2379 2380 2381 2382

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2383
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2384 2385 2386
	cpuctx->task_ctx = NULL;
}

2387 2388 2389 2390 2391 2392 2393
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2394 2395
}

2396
static void
2397
ctx_pinned_sched_in(struct perf_event_context *ctx,
2398
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2399
{
2400
	struct perf_event *event;
T
Thomas Gleixner 已提交
2401

2402 2403
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2404
			continue;
2405
		if (!event_filter_match(event))
2406 2407
			continue;

S
Stephane Eranian 已提交
2408 2409 2410 2411
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2412
		if (group_can_go_on(event, cpuctx, 1))
2413
			group_sched_in(event, cpuctx, ctx);
2414 2415 2416 2417 2418

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2419 2420 2421
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2422
		}
2423
	}
2424 2425 2426 2427
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2428
		      struct perf_cpu_context *cpuctx)
2429 2430 2431
{
	struct perf_event *event;
	int can_add_hw = 1;
2432

2433 2434 2435
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2436
			continue;
2437 2438
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2439
		 * of events:
2440
		 */
2441
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2442 2443
			continue;

S
Stephane Eranian 已提交
2444 2445 2446 2447
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2448
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2449
			if (group_sched_in(event, cpuctx, ctx))
2450
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2451
		}
T
Thomas Gleixner 已提交
2452
	}
2453 2454 2455 2456 2457
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2458 2459
	     enum event_type_t event_type,
	     struct task_struct *task)
2460
{
S
Stephane Eranian 已提交
2461
	u64 now;
2462
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2463

2464
	ctx->is_active |= event_type;
2465
	if (likely(!ctx->nr_events))
2466
		return;
2467

S
Stephane Eranian 已提交
2468 2469
	now = perf_clock();
	ctx->timestamp = now;
2470
	perf_cgroup_set_timestamp(task, ctx);
2471 2472 2473 2474
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2475
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2476
		ctx_pinned_sched_in(ctx, cpuctx);
2477 2478

	/* Then walk through the lower prio flexible groups */
2479
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2480
		ctx_flexible_sched_in(ctx, cpuctx);
2481 2482
}

2483
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2484 2485
			     enum event_type_t event_type,
			     struct task_struct *task)
2486 2487 2488
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2489
	ctx_sched_in(ctx, cpuctx, event_type, task);
2490 2491
}

S
Stephane Eranian 已提交
2492 2493
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2494
{
P
Peter Zijlstra 已提交
2495
	struct perf_cpu_context *cpuctx;
2496

P
Peter Zijlstra 已提交
2497
	cpuctx = __get_cpu_context(ctx);
2498 2499 2500
	if (cpuctx->task_ctx == ctx)
		return;

2501
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2502
	perf_pmu_disable(ctx->pmu);
2503 2504 2505 2506 2507 2508 2509
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2510 2511
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2512

2513 2514
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2515 2516 2517
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2518 2519 2520 2521
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2522
	perf_pmu_rotate_start(ctx->pmu);
2523 2524
}

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2596 2597
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2598 2599 2600 2601 2602 2603 2604 2605 2606
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2607
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2608
	}
S
Stephane Eranian 已提交
2609 2610 2611 2612 2613 2614
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2615
		perf_cgroup_sched_in(prev, task);
2616 2617 2618 2619

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2620 2621
}

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2649
#define REDUCE_FLS(a, b)		\
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2689 2690 2691
	if (!divisor)
		return dividend;

2692 2693 2694
	return div64_u64(dividend, divisor);
}

2695 2696 2697
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2698
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2699
{
2700
	struct hw_perf_event *hwc = &event->hw;
2701
	s64 period, sample_period;
2702 2703
	s64 delta;

2704
	period = perf_calculate_period(event, nsec, count);
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2715

2716
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2717 2718 2719
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2720
		local64_set(&hwc->period_left, 0);
2721 2722 2723

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2724
	}
2725 2726
}

2727 2728 2729 2730 2731 2732 2733
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2734
{
2735 2736
	struct perf_event *event;
	struct hw_perf_event *hwc;
2737
	u64 now, period = TICK_NSEC;
2738
	s64 delta;
2739

2740 2741 2742 2743 2744 2745
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2746 2747
		return;

2748
	raw_spin_lock(&ctx->lock);
2749
	perf_pmu_disable(ctx->pmu);
2750

2751
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2752
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2753 2754
			continue;

2755
		if (!event_filter_match(event))
2756 2757
			continue;

2758 2759
		perf_pmu_disable(event->pmu);

2760
		hwc = &event->hw;
2761

2762
		if (hwc->interrupts == MAX_INTERRUPTS) {
2763
			hwc->interrupts = 0;
2764
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2765
			event->pmu->start(event, 0);
2766 2767
		}

2768
		if (!event->attr.freq || !event->attr.sample_freq)
2769
			goto next;
2770

2771 2772 2773 2774 2775
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2776
		now = local64_read(&event->count);
2777 2778
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2779

2780 2781 2782
		/*
		 * restart the event
		 * reload only if value has changed
2783 2784 2785
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2786
		 */
2787
		if (delta > 0)
2788
			perf_adjust_period(event, period, delta, false);
2789 2790

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2791 2792
	next:
		perf_pmu_enable(event->pmu);
2793
	}
2794

2795
	perf_pmu_enable(ctx->pmu);
2796
	raw_spin_unlock(&ctx->lock);
2797 2798
}

2799
/*
2800
 * Round-robin a context's events:
2801
 */
2802
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2803
{
2804 2805 2806 2807 2808 2809
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2810 2811
}

2812
/*
2813 2814 2815
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2816
 */
2817
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2818
{
P
Peter Zijlstra 已提交
2819
	struct perf_event_context *ctx = NULL;
2820
	int rotate = 0, remove = 1;
2821

2822
	if (cpuctx->ctx.nr_events) {
2823
		remove = 0;
2824 2825 2826
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2827

P
Peter Zijlstra 已提交
2828
	ctx = cpuctx->task_ctx;
2829
	if (ctx && ctx->nr_events) {
2830
		remove = 0;
2831 2832 2833
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2834

2835
	if (!rotate)
2836 2837
		goto done;

2838
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2839
	perf_pmu_disable(cpuctx->ctx.pmu);
2840

2841 2842 2843
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2844

2845 2846 2847
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2848

2849
	perf_event_sched_in(cpuctx, ctx, current);
2850

2851 2852
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2853
done:
2854 2855
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2856 2857

	return rotate;
2858 2859
}

2860 2861 2862
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2863
	if (atomic_read(&nr_freq_events) ||
2864
	    __this_cpu_read(perf_throttled_count))
2865
		return false;
2866 2867
	else
		return true;
2868 2869 2870
}
#endif

2871 2872 2873 2874
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2875 2876
	struct perf_event_context *ctx;
	int throttled;
2877

2878 2879
	WARN_ON(!irqs_disabled());

2880 2881 2882
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2883
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2884 2885 2886 2887 2888 2889
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2890
	}
T
Thomas Gleixner 已提交
2891 2892
}

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2903
	__perf_event_mark_enabled(event);
2904 2905 2906 2907

	return 1;
}

2908
/*
2909
 * Enable all of a task's events that have been marked enable-on-exec.
2910 2911
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2912
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2913
{
2914
	struct perf_event *event;
2915 2916
	unsigned long flags;
	int enabled = 0;
2917
	int ret;
2918 2919

	local_irq_save(flags);
2920
	if (!ctx || !ctx->nr_events)
2921 2922
		goto out;

2923 2924 2925 2926 2927 2928 2929
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2930
	perf_cgroup_sched_out(current, NULL);
2931

2932
	raw_spin_lock(&ctx->lock);
2933
	task_ctx_sched_out(ctx);
2934

2935
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2936 2937 2938
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2939 2940 2941
	}

	/*
2942
	 * Unclone this context if we enabled any event.
2943
	 */
2944 2945
	if (enabled)
		unclone_ctx(ctx);
2946

2947
	raw_spin_unlock(&ctx->lock);
2948

2949 2950 2951
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2952
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2953
out:
2954 2955 2956
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2957
/*
2958
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2959
 */
2960
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2961
{
2962 2963
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2964
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2965

2966 2967 2968 2969
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2970 2971
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2972 2973 2974 2975
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2976
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2977
	if (ctx->is_active) {
2978
		update_context_time(ctx);
S
Stephane Eranian 已提交
2979 2980
		update_cgrp_time_from_event(event);
	}
2981
	update_event_times(event);
2982 2983
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2984
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2985 2986
}

P
Peter Zijlstra 已提交
2987 2988
static inline u64 perf_event_count(struct perf_event *event)
{
2989
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2990 2991
}

2992
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2993 2994
{
	/*
2995 2996
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2997
	 */
2998 2999 3000 3001
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3002 3003 3004
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3005
		raw_spin_lock_irqsave(&ctx->lock, flags);
3006 3007 3008 3009 3010
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3011
		if (ctx->is_active) {
3012
			update_context_time(ctx);
S
Stephane Eranian 已提交
3013 3014
			update_cgrp_time_from_event(event);
		}
3015
		update_event_times(event);
3016
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3017 3018
	}

P
Peter Zijlstra 已提交
3019
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3020 3021
}

3022
/*
3023
 * Initialize the perf_event context in a task_struct:
3024
 */
3025
static void __perf_event_init_context(struct perf_event_context *ctx)
3026
{
3027
	raw_spin_lock_init(&ctx->lock);
3028
	mutex_init(&ctx->mutex);
3029 3030
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3031 3032
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3048
	}
3049 3050 3051
	ctx->pmu = pmu;

	return ctx;
3052 3053
}

3054 3055 3056 3057 3058
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3059 3060

	rcu_read_lock();
3061
	if (!vpid)
T
Thomas Gleixner 已提交
3062 3063
		task = current;
	else
3064
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3065 3066 3067 3068 3069 3070 3071 3072
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3073 3074 3075 3076
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3077 3078 3079 3080 3081 3082 3083
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3084 3085 3086
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3087
static struct perf_event_context *
M
Matt Helsley 已提交
3088
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3089
{
3090
	struct perf_event_context *ctx;
3091
	struct perf_cpu_context *cpuctx;
3092
	unsigned long flags;
P
Peter Zijlstra 已提交
3093
	int ctxn, err;
T
Thomas Gleixner 已提交
3094

3095
	if (!task) {
3096
		/* Must be root to operate on a CPU event: */
3097
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3098 3099 3100
			return ERR_PTR(-EACCES);

		/*
3101
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3102 3103 3104
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3105
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3106 3107
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3108
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3109
		ctx = &cpuctx->ctx;
3110
		get_ctx(ctx);
3111
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3112 3113 3114 3115

		return ctx;
	}

P
Peter Zijlstra 已提交
3116 3117 3118 3119 3120
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3121
retry:
P
Peter Zijlstra 已提交
3122
	ctx = perf_lock_task_context(task, ctxn, &flags);
3123
	if (ctx) {
3124
		unclone_ctx(ctx);
3125
		++ctx->pin_count;
3126
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3127
	} else {
3128
		ctx = alloc_perf_context(pmu, task);
3129 3130 3131
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3132

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3143
		else {
3144
			get_ctx(ctx);
3145
			++ctx->pin_count;
3146
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3147
		}
3148 3149 3150
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3151
			put_ctx(ctx);
3152 3153 3154 3155

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3156 3157 3158
		}
	}

T
Thomas Gleixner 已提交
3159
	return ctx;
3160

P
Peter Zijlstra 已提交
3161
errout:
3162
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3163 3164
}

L
Li Zefan 已提交
3165 3166
static void perf_event_free_filter(struct perf_event *event);

3167
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3168
{
3169
	struct perf_event *event;
P
Peter Zijlstra 已提交
3170

3171 3172 3173
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3174
	perf_event_free_filter(event);
3175
	kfree(event);
P
Peter Zijlstra 已提交
3176 3177
}

3178
static void ring_buffer_put(struct ring_buffer *rb);
3179
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3180

3181
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3182
{
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3193

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3207 3208
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3209 3210 3211 3212 3213 3214 3215
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3216

3217 3218
static void __free_event(struct perf_event *event)
{
3219
	if (!event->parent) {
3220 3221
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3222
	}
3223

3224 3225 3226 3227 3228 3229 3230 3231
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3232
static void free_event(struct perf_event *event)
3233
{
3234
	irq_work_sync(&event->pending);
3235

3236
	unaccount_event(event);
3237

3238
	if (event->rb) {
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3255 3256
	}

S
Stephane Eranian 已提交
3257 3258 3259
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3260

3261
	__free_event(event);
3262 3263
}

3264
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3265
{
3266
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3267

3268
	WARN_ON_ONCE(ctx->parent_ctx);
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3282
	raw_spin_lock_irq(&ctx->lock);
3283
	perf_group_detach(event);
3284
	raw_spin_unlock_irq(&ctx->lock);
3285
	perf_remove_from_context(event);
3286
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3287

3288
	free_event(event);
T
Thomas Gleixner 已提交
3289 3290 3291

	return 0;
}
3292
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3293

3294 3295 3296
/*
 * Called when the last reference to the file is gone.
 */
3297
static void put_event(struct perf_event *event)
3298
{
P
Peter Zijlstra 已提交
3299
	struct task_struct *owner;
3300

3301 3302
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3303

P
Peter Zijlstra 已提交
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3337 3338 3339 3340 3341 3342 3343
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3344 3345
}

3346
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3347
{
3348
	struct perf_event *child;
3349 3350
	u64 total = 0;

3351 3352 3353
	*enabled = 0;
	*running = 0;

3354
	mutex_lock(&event->child_mutex);
3355
	total += perf_event_read(event);
3356 3357 3358 3359 3360 3361
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3362
		total += perf_event_read(child);
3363 3364 3365
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3366
	mutex_unlock(&event->child_mutex);
3367 3368 3369

	return total;
}
3370
EXPORT_SYMBOL_GPL(perf_event_read_value);
3371

3372
static int perf_event_read_group(struct perf_event *event,
3373 3374
				   u64 read_format, char __user *buf)
{
3375
	struct perf_event *leader = event->group_leader, *sub;
3376 3377
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3378
	u64 values[5];
3379
	u64 count, enabled, running;
3380

3381
	mutex_lock(&ctx->mutex);
3382
	count = perf_event_read_value(leader, &enabled, &running);
3383 3384

	values[n++] = 1 + leader->nr_siblings;
3385 3386 3387 3388
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3389 3390 3391
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3392 3393 3394 3395

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3396
		goto unlock;
3397

3398
	ret = size;
3399

3400
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3401
		n = 0;
3402

3403
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3404 3405 3406 3407 3408
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3409
		if (copy_to_user(buf + ret, values, size)) {
3410 3411 3412
			ret = -EFAULT;
			goto unlock;
		}
3413 3414

		ret += size;
3415
	}
3416 3417
unlock:
	mutex_unlock(&ctx->mutex);
3418

3419
	return ret;
3420 3421
}

3422
static int perf_event_read_one(struct perf_event *event,
3423 3424
				 u64 read_format, char __user *buf)
{
3425
	u64 enabled, running;
3426 3427 3428
	u64 values[4];
	int n = 0;

3429 3430 3431 3432 3433
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3434
	if (read_format & PERF_FORMAT_ID)
3435
		values[n++] = primary_event_id(event);
3436 3437 3438 3439 3440 3441 3442

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3443
/*
3444
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3445 3446
 */
static ssize_t
3447
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3448
{
3449
	u64 read_format = event->attr.read_format;
3450
	int ret;
T
Thomas Gleixner 已提交
3451

3452
	/*
3453
	 * Return end-of-file for a read on a event that is in
3454 3455 3456
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3457
	if (event->state == PERF_EVENT_STATE_ERROR)
3458 3459
		return 0;

3460
	if (count < event->read_size)
3461 3462
		return -ENOSPC;

3463
	WARN_ON_ONCE(event->ctx->parent_ctx);
3464
	if (read_format & PERF_FORMAT_GROUP)
3465
		ret = perf_event_read_group(event, read_format, buf);
3466
	else
3467
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3468

3469
	return ret;
T
Thomas Gleixner 已提交
3470 3471 3472 3473 3474
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3475
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3476

3477
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3478 3479 3480 3481
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3482
	struct perf_event *event = file->private_data;
3483
	struct ring_buffer *rb;
3484
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3485

3486
	/*
3487 3488
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3489 3490
	 */
	mutex_lock(&event->mmap_mutex);
3491 3492
	rb = event->rb;
	if (rb)
3493
		events = atomic_xchg(&rb->poll, 0);
3494 3495
	mutex_unlock(&event->mmap_mutex);

3496
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3497 3498 3499 3500

	return events;
}

3501
static void perf_event_reset(struct perf_event *event)
3502
{
3503
	(void)perf_event_read(event);
3504
	local64_set(&event->count, 0);
3505
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3506 3507
}

3508
/*
3509 3510 3511 3512
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3513
 */
3514 3515
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3516
{
3517
	struct perf_event *child;
P
Peter Zijlstra 已提交
3518

3519 3520 3521 3522
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3523
		func(child);
3524
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3525 3526
}

3527 3528
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3529
{
3530 3531
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3532

3533 3534
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3535
	event = event->group_leader;
3536

3537 3538
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3539
		perf_event_for_each_child(sibling, func);
3540
	mutex_unlock(&ctx->mutex);
3541 3542
}

3543
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3544
{
3545
	struct perf_event_context *ctx = event->ctx;
3546
	int ret = 0, active;
3547 3548
	u64 value;

3549
	if (!is_sampling_event(event))
3550 3551
		return -EINVAL;

3552
	if (copy_from_user(&value, arg, sizeof(value)))
3553 3554 3555 3556 3557
		return -EFAULT;

	if (!value)
		return -EINVAL;

3558
	raw_spin_lock_irq(&ctx->lock);
3559 3560
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3561 3562 3563 3564
			ret = -EINVAL;
			goto unlock;
		}

3565
		event->attr.sample_freq = value;
3566
	} else {
3567 3568
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3569
	}
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3584
unlock:
3585
	raw_spin_unlock_irq(&ctx->lock);
3586 3587 3588 3589

	return ret;
}

3590 3591
static const struct file_operations perf_fops;

3592
static inline int perf_fget_light(int fd, struct fd *p)
3593
{
3594 3595 3596
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3597

3598 3599 3600
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3601
	}
3602 3603
	*p = f;
	return 0;
3604 3605 3606 3607
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3608
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3609

3610 3611
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3612 3613
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3614
	u32 flags = arg;
3615 3616

	switch (cmd) {
3617 3618
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3619
		break;
3620 3621
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3622
		break;
3623 3624
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3625
		break;
P
Peter Zijlstra 已提交
3626

3627 3628
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3629

3630 3631
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3632

3633 3634 3635 3636 3637 3638 3639 3640 3641
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3642
	case PERF_EVENT_IOC_SET_OUTPUT:
3643 3644 3645
	{
		int ret;
		if (arg != -1) {
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3656 3657 3658
		}
		return ret;
	}
3659

L
Li Zefan 已提交
3660 3661 3662
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3663
	default:
P
Peter Zijlstra 已提交
3664
		return -ENOTTY;
3665
	}
P
Peter Zijlstra 已提交
3666 3667

	if (flags & PERF_IOC_FLAG_GROUP)
3668
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3669
	else
3670
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3671 3672

	return 0;
3673 3674
}

3675
int perf_event_task_enable(void)
3676
{
3677
	struct perf_event *event;
3678

3679 3680 3681 3682
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3683 3684 3685 3686

	return 0;
}

3687
int perf_event_task_disable(void)
3688
{
3689
	struct perf_event *event;
3690

3691 3692 3693 3694
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3695 3696 3697 3698

	return 0;
}

3699
static int perf_event_index(struct perf_event *event)
3700
{
P
Peter Zijlstra 已提交
3701 3702 3703
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3704
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3705 3706
		return 0;

3707
	return event->pmu->event_idx(event);
3708 3709
}

3710
static void calc_timer_values(struct perf_event *event,
3711
				u64 *now,
3712 3713
				u64 *enabled,
				u64 *running)
3714
{
3715
	u64 ctx_time;
3716

3717 3718
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3719 3720 3721 3722
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3743
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3744 3745 3746
{
}

3747 3748 3749 3750 3751
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3752
void perf_event_update_userpage(struct perf_event *event)
3753
{
3754
	struct perf_event_mmap_page *userpg;
3755
	struct ring_buffer *rb;
3756
	u64 enabled, running, now;
3757 3758

	rcu_read_lock();
3759 3760 3761 3762
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3763 3764 3765 3766 3767 3768 3769 3770 3771
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3772
	calc_timer_values(event, &now, &enabled, &running);
3773

3774
	userpg = rb->user_page;
3775 3776 3777 3778 3779
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3780
	++userpg->lock;
3781
	barrier();
3782
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3783
	userpg->offset = perf_event_count(event);
3784
	if (userpg->index)
3785
		userpg->offset -= local64_read(&event->hw.prev_count);
3786

3787
	userpg->time_enabled = enabled +
3788
			atomic64_read(&event->child_total_time_enabled);
3789

3790
	userpg->time_running = running +
3791
			atomic64_read(&event->child_total_time_running);
3792

3793
	arch_perf_update_userpage(userpg, now);
3794

3795
	barrier();
3796
	++userpg->lock;
3797
	preempt_enable();
3798
unlock:
3799
	rcu_read_unlock();
3800 3801
}

3802 3803 3804
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3805
	struct ring_buffer *rb;
3806 3807 3808 3809 3810 3811 3812 3813 3814
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3815 3816
	rb = rcu_dereference(event->rb);
	if (!rb)
3817 3818 3819 3820 3821
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3822
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3837 3838 3839 3840 3841 3842 3843 3844 3845
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3846 3847
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3848 3849 3850
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3851
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3870 3871 3872 3873
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3874 3875 3876
	rcu_read_unlock();
}

3877
static void rb_free_rcu(struct rcu_head *rcu_head)
3878
{
3879
	struct ring_buffer *rb;
3880

3881 3882
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3883 3884
}

3885
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3886
{
3887
	struct ring_buffer *rb;
3888

3889
	rcu_read_lock();
3890 3891 3892 3893
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3894 3895 3896
	}
	rcu_read_unlock();

3897
	return rb;
3898 3899
}

3900
static void ring_buffer_put(struct ring_buffer *rb)
3901
{
3902
	if (!atomic_dec_and_test(&rb->refcount))
3903
		return;
3904

3905
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3906

3907
	call_rcu(&rb->rcu_head, rb_free_rcu);
3908 3909 3910 3911
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3912
	struct perf_event *event = vma->vm_file->private_data;
3913

3914
	atomic_inc(&event->mmap_count);
3915
	atomic_inc(&event->rb->mmap_count);
3916 3917
}

3918 3919 3920 3921 3922 3923 3924 3925
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3926 3927
static void perf_mmap_close(struct vm_area_struct *vma)
{
3928
	struct perf_event *event = vma->vm_file->private_data;
3929

3930 3931 3932 3933
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3934

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3950

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3983
		}
3984
		mutex_unlock(&event->mmap_mutex);
3985
		put_event(event);
3986

3987 3988 3989 3990 3991
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3992
	}
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
4009 4010
}

4011
static const struct vm_operations_struct perf_mmap_vmops = {
4012 4013 4014 4015
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4016 4017 4018 4019
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4020
	struct perf_event *event = file->private_data;
4021
	unsigned long user_locked, user_lock_limit;
4022
	struct user_struct *user = current_user();
4023
	unsigned long locked, lock_limit;
4024
	struct ring_buffer *rb;
4025 4026
	unsigned long vma_size;
	unsigned long nr_pages;
4027
	long user_extra, extra;
4028
	int ret = 0, flags = 0;
4029

4030 4031 4032
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4033
	 * same rb.
4034 4035 4036 4037
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4038
	if (!(vma->vm_flags & VM_SHARED))
4039
		return -EINVAL;
4040 4041 4042 4043

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4044
	/*
4045
	 * If we have rb pages ensure they're a power-of-two number, so we
4046 4047 4048
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4049 4050
		return -EINVAL;

4051
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4052 4053
		return -EINVAL;

4054 4055
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4056

4057
	WARN_ON_ONCE(event->ctx->parent_ctx);
4058
again:
4059
	mutex_lock(&event->mmap_mutex);
4060
	if (event->rb) {
4061
		if (event->rb->nr_pages != nr_pages) {
4062
			ret = -EINVAL;
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4076 4077 4078
		goto unlock;
	}

4079
	user_extra = nr_pages + 1;
4080
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4081 4082 4083 4084 4085 4086

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4087
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4088

4089 4090 4091
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4092

4093
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4094
	lock_limit >>= PAGE_SHIFT;
4095
	locked = vma->vm_mm->pinned_vm + extra;
4096

4097 4098
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4099 4100 4101
		ret = -EPERM;
		goto unlock;
	}
4102

4103
	WARN_ON(event->rb);
4104

4105
	if (vma->vm_flags & VM_WRITE)
4106
		flags |= RING_BUFFER_WRITABLE;
4107

4108 4109 4110 4111
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4112
	if (!rb) {
4113
		ret = -ENOMEM;
4114
		goto unlock;
4115
	}
P
Peter Zijlstra 已提交
4116

4117
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4118 4119
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4120

4121
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4122 4123
	vma->vm_mm->pinned_vm += extra;

4124
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4125
	rcu_assign_pointer(event->rb, rb);
4126

4127
	perf_event_init_userpage(event);
4128 4129
	perf_event_update_userpage(event);

4130
unlock:
4131 4132
	if (!ret)
		atomic_inc(&event->mmap_count);
4133
	mutex_unlock(&event->mmap_mutex);
4134

4135 4136 4137 4138
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4139
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4140
	vma->vm_ops = &perf_mmap_vmops;
4141 4142

	return ret;
4143 4144
}

P
Peter Zijlstra 已提交
4145 4146
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4147
	struct inode *inode = file_inode(filp);
4148
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4149 4150 4151
	int retval;

	mutex_lock(&inode->i_mutex);
4152
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4153 4154 4155 4156 4157 4158 4159 4160
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4161
static const struct file_operations perf_fops = {
4162
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4163 4164 4165
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4166 4167
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4168
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4169
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4170 4171
};

4172
/*
4173
 * Perf event wakeup
4174 4175 4176 4177 4178
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4179
void perf_event_wakeup(struct perf_event *event)
4180
{
4181
	ring_buffer_wakeup(event);
4182

4183 4184 4185
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4186
	}
4187 4188
}

4189
static void perf_pending_event(struct irq_work *entry)
4190
{
4191 4192
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4193

4194 4195 4196
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4197 4198
	}

4199 4200 4201
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4202 4203 4204
	}
}

4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4352 4353 4354
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4370
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4382 4383 4384
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4409 4410 4411

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4412 4413
}

4414 4415 4416
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4417 4418 4419 4420 4421
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4422
static void perf_output_read_one(struct perf_output_handle *handle,
4423 4424
				 struct perf_event *event,
				 u64 enabled, u64 running)
4425
{
4426
	u64 read_format = event->attr.read_format;
4427 4428 4429
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4430
	values[n++] = perf_event_count(event);
4431
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4432
		values[n++] = enabled +
4433
			atomic64_read(&event->child_total_time_enabled);
4434 4435
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4436
		values[n++] = running +
4437
			atomic64_read(&event->child_total_time_running);
4438 4439
	}
	if (read_format & PERF_FORMAT_ID)
4440
		values[n++] = primary_event_id(event);
4441

4442
	__output_copy(handle, values, n * sizeof(u64));
4443 4444 4445
}

/*
4446
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4447 4448
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4449 4450
			    struct perf_event *event,
			    u64 enabled, u64 running)
4451
{
4452 4453
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4454 4455 4456 4457 4458 4459
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4460
		values[n++] = enabled;
4461 4462

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4463
		values[n++] = running;
4464

4465
	if (leader != event)
4466 4467
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4468
	values[n++] = perf_event_count(leader);
4469
	if (read_format & PERF_FORMAT_ID)
4470
		values[n++] = primary_event_id(leader);
4471

4472
	__output_copy(handle, values, n * sizeof(u64));
4473

4474
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4475 4476
		n = 0;

4477 4478
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4479 4480
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4481
		values[n++] = perf_event_count(sub);
4482
		if (read_format & PERF_FORMAT_ID)
4483
			values[n++] = primary_event_id(sub);
4484

4485
		__output_copy(handle, values, n * sizeof(u64));
4486 4487 4488
	}
}

4489 4490 4491
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4492
static void perf_output_read(struct perf_output_handle *handle,
4493
			     struct perf_event *event)
4494
{
4495
	u64 enabled = 0, running = 0, now;
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4507
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4508
		calc_timer_values(event, &now, &enabled, &running);
4509

4510
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4511
		perf_output_read_group(handle, event, enabled, running);
4512
	else
4513
		perf_output_read_one(handle, event, enabled, running);
4514 4515
}

4516 4517 4518
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4519
			struct perf_event *event)
4520 4521 4522 4523 4524
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4525 4526 4527
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4553
		perf_output_read(handle, event);
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4564
			__output_copy(handle, data->callchain, size);
4565 4566 4567 4568 4569 4570 4571 4572 4573
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4574 4575
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4587

4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4622

4623
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4624 4625 4626
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4627
	}
A
Andi Kleen 已提交
4628 4629 4630

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4631 4632 4633

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4634

A
Andi Kleen 已提交
4635 4636 4637
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4651 4652 4653 4654
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4655
			 struct perf_event *event,
4656
			 struct pt_regs *regs)
4657
{
4658
	u64 sample_type = event->attr.sample_type;
4659

4660
	header->type = PERF_RECORD_SAMPLE;
4661
	header->size = sizeof(*header) + event->header_size;
4662 4663 4664

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4665

4666
	__perf_event_header__init_id(header, data, event);
4667

4668
	if (sample_type & PERF_SAMPLE_IP)
4669 4670
		data->ip = perf_instruction_pointer(regs);

4671
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4672
		int size = 1;
4673

4674
		data->callchain = perf_callchain(event, regs);
4675 4676 4677 4678 4679

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4680 4681
	}

4682
	if (sample_type & PERF_SAMPLE_RAW) {
4683 4684 4685 4686 4687 4688 4689 4690
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4691
		header->size += size;
4692
	}
4693 4694 4695 4696 4697 4698 4699 4700 4701

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4745
}
4746

4747
static void perf_event_output(struct perf_event *event,
4748 4749 4750 4751 4752
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4753

4754 4755 4756
	/* protect the callchain buffers */
	rcu_read_lock();

4757
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4758

4759
	if (perf_output_begin(&handle, event, header.size))
4760
		goto exit;
4761

4762
	perf_output_sample(&handle, &header, data, event);
4763

4764
	perf_output_end(&handle);
4765 4766 4767

exit:
	rcu_read_unlock();
4768 4769
}

4770
/*
4771
 * read event_id
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4782
perf_event_read_event(struct perf_event *event,
4783 4784 4785
			struct task_struct *task)
{
	struct perf_output_handle handle;
4786
	struct perf_sample_data sample;
4787
	struct perf_read_event read_event = {
4788
		.header = {
4789
			.type = PERF_RECORD_READ,
4790
			.misc = 0,
4791
			.size = sizeof(read_event) + event->read_size,
4792
		},
4793 4794
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4795
	};
4796
	int ret;
4797

4798
	perf_event_header__init_id(&read_event.header, &sample, event);
4799
	ret = perf_output_begin(&handle, event, read_event.header.size);
4800 4801 4802
	if (ret)
		return;

4803
	perf_output_put(&handle, read_event);
4804
	perf_output_read(&handle, event);
4805
	perf_event__output_id_sample(event, &handle, &sample);
4806

4807 4808 4809
	perf_output_end(&handle);
}

4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4824
		output(event, data);
4825 4826 4827 4828
	}
}

static void
4829
perf_event_aux(perf_event_aux_output_cb output, void *data,
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4842
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4843 4844 4845 4846 4847 4848 4849
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4850
			perf_event_aux_ctx(ctx, output, data);
4851 4852 4853 4854 4855 4856
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4857
		perf_event_aux_ctx(task_ctx, output, data);
4858 4859 4860 4861 4862
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4863
/*
P
Peter Zijlstra 已提交
4864 4865
 * task tracking -- fork/exit
 *
4866
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4867 4868
 */

P
Peter Zijlstra 已提交
4869
struct perf_task_event {
4870
	struct task_struct		*task;
4871
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4872 4873 4874 4875 4876 4877

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4878 4879
		u32				tid;
		u32				ptid;
4880
		u64				time;
4881
	} event_id;
P
Peter Zijlstra 已提交
4882 4883
};

4884 4885
static int perf_event_task_match(struct perf_event *event)
{
4886 4887 4888
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4889 4890
}

4891
static void perf_event_task_output(struct perf_event *event,
4892
				   void *data)
P
Peter Zijlstra 已提交
4893
{
4894
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4895
	struct perf_output_handle handle;
4896
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4897
	struct task_struct *task = task_event->task;
4898
	int ret, size = task_event->event_id.header.size;
4899

4900 4901 4902
	if (!perf_event_task_match(event))
		return;

4903
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4904

4905
	ret = perf_output_begin(&handle, event,
4906
				task_event->event_id.header.size);
4907
	if (ret)
4908
		goto out;
P
Peter Zijlstra 已提交
4909

4910 4911
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4912

4913 4914
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4915

4916
	perf_output_put(&handle, task_event->event_id);
4917

4918 4919
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4920
	perf_output_end(&handle);
4921 4922
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4923 4924
}

4925 4926
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4927
			      int new)
P
Peter Zijlstra 已提交
4928
{
P
Peter Zijlstra 已提交
4929
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4930

4931 4932 4933
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4934 4935
		return;

P
Peter Zijlstra 已提交
4936
	task_event = (struct perf_task_event){
4937 4938
		.task	  = task,
		.task_ctx = task_ctx,
4939
		.event_id    = {
P
Peter Zijlstra 已提交
4940
			.header = {
4941
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4942
				.misc = 0,
4943
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4944
			},
4945 4946
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4947 4948
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4949
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4950 4951 4952
		},
	};

4953
	perf_event_aux(perf_event_task_output,
4954 4955
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4956 4957
}

4958
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4959
{
4960
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4961 4962
}

4963 4964 4965 4966 4967
/*
 * comm tracking
 */

struct perf_comm_event {
4968 4969
	struct task_struct	*task;
	char			*comm;
4970 4971 4972 4973 4974 4975 4976
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4977
	} event_id;
4978 4979
};

4980 4981 4982 4983 4984
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4985
static void perf_event_comm_output(struct perf_event *event,
4986
				   void *data)
4987
{
4988
	struct perf_comm_event *comm_event = data;
4989
	struct perf_output_handle handle;
4990
	struct perf_sample_data sample;
4991
	int size = comm_event->event_id.header.size;
4992 4993
	int ret;

4994 4995 4996
	if (!perf_event_comm_match(event))
		return;

4997 4998
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4999
				comm_event->event_id.header.size);
5000 5001

	if (ret)
5002
		goto out;
5003

5004 5005
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5006

5007
	perf_output_put(&handle, comm_event->event_id);
5008
	__output_copy(&handle, comm_event->comm,
5009
				   comm_event->comm_size);
5010 5011 5012

	perf_event__output_id_sample(event, &handle, &sample);

5013
	perf_output_end(&handle);
5014 5015
out:
	comm_event->event_id.header.size = size;
5016 5017
}

5018
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5019
{
5020
	char comm[TASK_COMM_LEN];
5021 5022
	unsigned int size;

5023
	memset(comm, 0, sizeof(comm));
5024
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5025
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5026 5027 5028 5029

	comm_event->comm = comm;
	comm_event->comm_size = size;

5030
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5031

5032
	perf_event_aux(perf_event_comm_output,
5033 5034
		       comm_event,
		       NULL);
5035 5036
}

5037
void perf_event_comm(struct task_struct *task)
5038
{
5039
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
5040 5041
	struct perf_event_context *ctx;
	int ctxn;
5042

5043
	rcu_read_lock();
P
Peter Zijlstra 已提交
5044 5045 5046 5047
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5048

P
Peter Zijlstra 已提交
5049 5050
		perf_event_enable_on_exec(ctx);
	}
5051
	rcu_read_unlock();
5052

5053
	if (!atomic_read(&nr_comm_events))
5054
		return;
5055

5056
	comm_event = (struct perf_comm_event){
5057
		.task	= task,
5058 5059
		/* .comm      */
		/* .comm_size */
5060
		.event_id  = {
5061
			.header = {
5062
				.type = PERF_RECORD_COMM,
5063 5064 5065 5066 5067
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
5068 5069 5070
		},
	};

5071
	perf_event_comm_event(&comm_event);
5072 5073
}

5074 5075 5076 5077 5078
/*
 * mmap tracking
 */

struct perf_mmap_event {
5079 5080 5081 5082
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5083 5084 5085
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5086 5087 5088 5089 5090 5091 5092 5093 5094

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5095
	} event_id;
5096 5097
};

5098 5099 5100 5101 5102 5103 5104 5105
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5106
	       (executable && (event->attr.mmap || event->attr.mmap2));
5107 5108
}

5109
static void perf_event_mmap_output(struct perf_event *event,
5110
				   void *data)
5111
{
5112
	struct perf_mmap_event *mmap_event = data;
5113
	struct perf_output_handle handle;
5114
	struct perf_sample_data sample;
5115
	int size = mmap_event->event_id.header.size;
5116
	int ret;
5117

5118 5119 5120
	if (!perf_event_mmap_match(event, data))
		return;

5121 5122 5123 5124 5125
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5126
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5127 5128
	}

5129 5130
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5131
				mmap_event->event_id.header.size);
5132
	if (ret)
5133
		goto out;
5134

5135 5136
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5137

5138
	perf_output_put(&handle, mmap_event->event_id);
5139 5140 5141 5142 5143 5144 5145 5146

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
	}

5147
	__output_copy(&handle, mmap_event->file_name,
5148
				   mmap_event->file_size);
5149 5150 5151

	perf_event__output_id_sample(event, &handle, &sample);

5152
	perf_output_end(&handle);
5153 5154
out:
	mmap_event->event_id.header.size = size;
5155 5156
}

5157
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5158
{
5159 5160
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5161 5162
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5163 5164 5165
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5166
	char *name;
5167

5168
	if (file) {
5169 5170
		struct inode *inode;
		dev_t dev;
5171

5172
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5173
		if (!buf) {
5174 5175
			name = "//enomem";
			goto cpy_name;
5176
		}
5177
		/*
5178
		 * d_path() works from the end of the rb backwards, so we
5179 5180 5181
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5182
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5183
		if (IS_ERR(name)) {
5184 5185
			name = "//toolong";
			goto cpy_name;
5186
		}
5187 5188 5189 5190 5191 5192
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5193
		goto got_name;
5194
	} else {
5195
		name = (char *)arch_vma_name(vma);
5196 5197
		if (name)
			goto cpy_name;
5198

5199
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5200
				vma->vm_end >= vma->vm_mm->brk) {
5201 5202
			name = "[heap]";
			goto cpy_name;
5203 5204
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5205
				vma->vm_end >= vma->vm_mm->start_stack) {
5206 5207
			name = "[stack]";
			goto cpy_name;
5208 5209
		}

5210 5211
		name = "//anon";
		goto cpy_name;
5212 5213
	}

5214 5215 5216
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5217
got_name:
5218 5219 5220 5221 5222 5223 5224 5225
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5226 5227 5228

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5229 5230 5231 5232
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5233

5234 5235 5236
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5237
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5238

5239
	perf_event_aux(perf_event_mmap_output,
5240 5241
		       mmap_event,
		       NULL);
5242

5243 5244 5245
	kfree(buf);
}

5246
void perf_event_mmap(struct vm_area_struct *vma)
5247
{
5248 5249
	struct perf_mmap_event mmap_event;

5250
	if (!atomic_read(&nr_mmap_events))
5251 5252 5253
		return;

	mmap_event = (struct perf_mmap_event){
5254
		.vma	= vma,
5255 5256
		/* .file_name */
		/* .file_size */
5257
		.event_id  = {
5258
			.header = {
5259
				.type = PERF_RECORD_MMAP,
5260
				.misc = PERF_RECORD_MISC_USER,
5261 5262 5263 5264
				/* .size */
			},
			/* .pid */
			/* .tid */
5265 5266
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5267
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5268
		},
5269 5270 5271 5272
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5273 5274
	};

5275
	perf_event_mmap_event(&mmap_event);
5276 5277
}

5278 5279 5280 5281
/*
 * IRQ throttle logging
 */

5282
static void perf_log_throttle(struct perf_event *event, int enable)
5283 5284
{
	struct perf_output_handle handle;
5285
	struct perf_sample_data sample;
5286 5287 5288 5289 5290
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5291
		u64				id;
5292
		u64				stream_id;
5293 5294
	} throttle_event = {
		.header = {
5295
			.type = PERF_RECORD_THROTTLE,
5296 5297 5298
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5299
		.time		= perf_clock(),
5300 5301
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5302 5303
	};

5304
	if (enable)
5305
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5306

5307 5308 5309
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5310
				throttle_event.header.size);
5311 5312 5313 5314
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5315
	perf_event__output_id_sample(event, &handle, &sample);
5316 5317 5318
	perf_output_end(&handle);
}

5319
/*
5320
 * Generic event overflow handling, sampling.
5321 5322
 */

5323
static int __perf_event_overflow(struct perf_event *event,
5324 5325
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5326
{
5327 5328
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5329
	u64 seq;
5330 5331
	int ret = 0;

5332 5333 5334 5335 5336 5337 5338
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5339 5340 5341 5342 5343 5344 5345 5346 5347
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5348 5349
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5350
			tick_nohz_full_kick();
5351 5352
			ret = 1;
		}
5353
	}
5354

5355
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5356
		u64 now = perf_clock();
5357
		s64 delta = now - hwc->freq_time_stamp;
5358

5359
		hwc->freq_time_stamp = now;
5360

5361
		if (delta > 0 && delta < 2*TICK_NSEC)
5362
			perf_adjust_period(event, delta, hwc->last_period, true);
5363 5364
	}

5365 5366
	/*
	 * XXX event_limit might not quite work as expected on inherited
5367
	 * events
5368 5369
	 */

5370 5371
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5372
		ret = 1;
5373
		event->pending_kill = POLL_HUP;
5374 5375
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5376 5377
	}

5378
	if (event->overflow_handler)
5379
		event->overflow_handler(event, data, regs);
5380
	else
5381
		perf_event_output(event, data, regs);
5382

P
Peter Zijlstra 已提交
5383
	if (event->fasync && event->pending_kill) {
5384 5385
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5386 5387
	}

5388
	return ret;
5389 5390
}

5391
int perf_event_overflow(struct perf_event *event,
5392 5393
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5394
{
5395
	return __perf_event_overflow(event, 1, data, regs);
5396 5397
}

5398
/*
5399
 * Generic software event infrastructure
5400 5401
 */

5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5413
/*
5414 5415
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5416 5417 5418 5419
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5420
u64 perf_swevent_set_period(struct perf_event *event)
5421
{
5422
	struct hw_perf_event *hwc = &event->hw;
5423 5424 5425 5426 5427
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5428 5429

again:
5430
	old = val = local64_read(&hwc->period_left);
5431 5432
	if (val < 0)
		return 0;
5433

5434 5435 5436
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5437
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5438
		goto again;
5439

5440
	return nr;
5441 5442
}

5443
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5444
				    struct perf_sample_data *data,
5445
				    struct pt_regs *regs)
5446
{
5447
	struct hw_perf_event *hwc = &event->hw;
5448
	int throttle = 0;
5449

5450 5451
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5452

5453 5454
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5455

5456
	for (; overflow; overflow--) {
5457
		if (__perf_event_overflow(event, throttle,
5458
					    data, regs)) {
5459 5460 5461 5462 5463 5464
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5465
		throttle = 1;
5466
	}
5467 5468
}

P
Peter Zijlstra 已提交
5469
static void perf_swevent_event(struct perf_event *event, u64 nr,
5470
			       struct perf_sample_data *data,
5471
			       struct pt_regs *regs)
5472
{
5473
	struct hw_perf_event *hwc = &event->hw;
5474

5475
	local64_add(nr, &event->count);
5476

5477 5478 5479
	if (!regs)
		return;

5480
	if (!is_sampling_event(event))
5481
		return;
5482

5483 5484 5485 5486 5487 5488
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5489
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5490
		return perf_swevent_overflow(event, 1, data, regs);
5491

5492
	if (local64_add_negative(nr, &hwc->period_left))
5493
		return;
5494

5495
	perf_swevent_overflow(event, 0, data, regs);
5496 5497
}

5498 5499 5500
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5501
	if (event->hw.state & PERF_HES_STOPPED)
5502
		return 1;
P
Peter Zijlstra 已提交
5503

5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5515
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5516
				enum perf_type_id type,
L
Li Zefan 已提交
5517 5518 5519
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5520
{
5521
	if (event->attr.type != type)
5522
		return 0;
5523

5524
	if (event->attr.config != event_id)
5525 5526
		return 0;

5527 5528
	if (perf_exclude_event(event, regs))
		return 0;
5529 5530 5531 5532

	return 1;
}

5533 5534 5535 5536 5537 5538 5539
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5540 5541
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5542
{
5543 5544 5545 5546
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5547

5548 5549
/* For the read side: events when they trigger */
static inline struct hlist_head *
5550
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5551 5552
{
	struct swevent_hlist *hlist;
5553

5554
	hlist = rcu_dereference(swhash->swevent_hlist);
5555 5556 5557
	if (!hlist)
		return NULL;

5558 5559 5560 5561 5562
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5563
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5574
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5575 5576 5577 5578 5579
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5580 5581 5582
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5583
				    u64 nr,
5584 5585
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5586
{
5587
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5588
	struct perf_event *event;
5589
	struct hlist_head *head;
5590

5591
	rcu_read_lock();
5592
	head = find_swevent_head_rcu(swhash, type, event_id);
5593 5594 5595
	if (!head)
		goto end;

5596
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5597
		if (perf_swevent_match(event, type, event_id, data, regs))
5598
			perf_swevent_event(event, nr, data, regs);
5599
	}
5600 5601
end:
	rcu_read_unlock();
5602 5603
}

5604
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5605
{
5606
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5607

5608
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5609
}
I
Ingo Molnar 已提交
5610
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5611

5612
inline void perf_swevent_put_recursion_context(int rctx)
5613
{
5614
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5615

5616
	put_recursion_context(swhash->recursion, rctx);
5617
}
5618

5619
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5620
{
5621
	struct perf_sample_data data;
5622 5623
	int rctx;

5624
	preempt_disable_notrace();
5625 5626 5627
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5628

5629
	perf_sample_data_init(&data, addr, 0);
5630

5631
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5632 5633

	perf_swevent_put_recursion_context(rctx);
5634
	preempt_enable_notrace();
5635 5636
}

5637
static void perf_swevent_read(struct perf_event *event)
5638 5639 5640
{
}

P
Peter Zijlstra 已提交
5641
static int perf_swevent_add(struct perf_event *event, int flags)
5642
{
5643
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5644
	struct hw_perf_event *hwc = &event->hw;
5645 5646
	struct hlist_head *head;

5647
	if (is_sampling_event(event)) {
5648
		hwc->last_period = hwc->sample_period;
5649
		perf_swevent_set_period(event);
5650
	}
5651

P
Peter Zijlstra 已提交
5652 5653
	hwc->state = !(flags & PERF_EF_START);

5654
	head = find_swevent_head(swhash, event);
5655 5656 5657 5658 5659
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5660 5661 5662
	return 0;
}

P
Peter Zijlstra 已提交
5663
static void perf_swevent_del(struct perf_event *event, int flags)
5664
{
5665
	hlist_del_rcu(&event->hlist_entry);
5666 5667
}

P
Peter Zijlstra 已提交
5668
static void perf_swevent_start(struct perf_event *event, int flags)
5669
{
P
Peter Zijlstra 已提交
5670
	event->hw.state = 0;
5671
}
I
Ingo Molnar 已提交
5672

P
Peter Zijlstra 已提交
5673
static void perf_swevent_stop(struct perf_event *event, int flags)
5674
{
P
Peter Zijlstra 已提交
5675
	event->hw.state = PERF_HES_STOPPED;
5676 5677
}

5678 5679
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5680
swevent_hlist_deref(struct swevent_htable *swhash)
5681
{
5682 5683
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5684 5685
}

5686
static void swevent_hlist_release(struct swevent_htable *swhash)
5687
{
5688
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5689

5690
	if (!hlist)
5691 5692
		return;

5693
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5694
	kfree_rcu(hlist, rcu_head);
5695 5696 5697 5698
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5699
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5700

5701
	mutex_lock(&swhash->hlist_mutex);
5702

5703 5704
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5705

5706
	mutex_unlock(&swhash->hlist_mutex);
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5719
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5720 5721
	int err = 0;

5722
	mutex_lock(&swhash->hlist_mutex);
5723

5724
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5725 5726 5727 5728 5729 5730 5731
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5732
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5733
	}
5734
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5735
exit:
5736
	mutex_unlock(&swhash->hlist_mutex);
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5757
fail:
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5768
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5769

5770 5771 5772
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5773

5774 5775
	WARN_ON(event->parent);

5776
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5777 5778 5779 5780 5781
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5782
	u64 event_id = event->attr.config;
5783 5784 5785 5786

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5787 5788 5789 5790 5791 5792
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5793 5794 5795 5796 5797 5798 5799 5800 5801
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5802
	if (event_id >= PERF_COUNT_SW_MAX)
5803 5804 5805 5806 5807 5808 5809 5810 5811
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5812
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5813 5814 5815 5816 5817 5818
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5819 5820 5821 5822 5823
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5824
static struct pmu perf_swevent = {
5825
	.task_ctx_nr	= perf_sw_context,
5826

5827
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5828 5829 5830 5831
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5832
	.read		= perf_swevent_read,
5833 5834

	.event_idx	= perf_swevent_event_idx,
5835 5836
};

5837 5838
#ifdef CONFIG_EVENT_TRACING

5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5853 5854
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5855 5856 5857 5858
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5859 5860 5861 5862 5863 5864 5865 5866 5867
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5868 5869
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5870 5871
{
	struct perf_sample_data data;
5872 5873
	struct perf_event *event;

5874 5875 5876 5877 5878
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5879
	perf_sample_data_init(&data, addr, 0);
5880 5881
	data.raw = &raw;

5882
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5883
		if (perf_tp_event_match(event, &data, regs))
5884
			perf_swevent_event(event, count, &data, regs);
5885
	}
5886

5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5912
	perf_swevent_put_recursion_context(rctx);
5913 5914 5915
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5916
static void tp_perf_event_destroy(struct perf_event *event)
5917
{
5918
	perf_trace_destroy(event);
5919 5920
}

5921
static int perf_tp_event_init(struct perf_event *event)
5922
{
5923 5924
	int err;

5925 5926 5927
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5928 5929 5930 5931 5932 5933
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5934 5935
	err = perf_trace_init(event);
	if (err)
5936
		return err;
5937

5938
	event->destroy = tp_perf_event_destroy;
5939

5940 5941 5942 5943
	return 0;
}

static struct pmu perf_tracepoint = {
5944 5945
	.task_ctx_nr	= perf_sw_context,

5946
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5947 5948 5949 5950
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5951
	.read		= perf_swevent_read,
5952 5953

	.event_idx	= perf_swevent_event_idx,
5954 5955 5956 5957
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5958
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5959
}
L
Li Zefan 已提交
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5984
#else
L
Li Zefan 已提交
5985

5986
static inline void perf_tp_register(void)
5987 5988
{
}
L
Li Zefan 已提交
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5999
#endif /* CONFIG_EVENT_TRACING */
6000

6001
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6002
void perf_bp_event(struct perf_event *bp, void *data)
6003
{
6004 6005 6006
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6007
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6008

P
Peter Zijlstra 已提交
6009
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6010
		perf_swevent_event(bp, 1, &sample, regs);
6011 6012 6013
}
#endif

6014 6015 6016
/*
 * hrtimer based swevent callback
 */
6017

6018
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6019
{
6020 6021 6022 6023 6024
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6025

6026
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6027 6028 6029 6030

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6031
	event->pmu->read(event);
6032

6033
	perf_sample_data_init(&data, 0, event->hw.last_period);
6034 6035 6036
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6037
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6038
			if (__perf_event_overflow(event, 1, &data, regs))
6039 6040
				ret = HRTIMER_NORESTART;
	}
6041

6042 6043
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6044

6045
	return ret;
6046 6047
}

6048
static void perf_swevent_start_hrtimer(struct perf_event *event)
6049
{
6050
	struct hw_perf_event *hwc = &event->hw;
6051 6052 6053 6054
	s64 period;

	if (!is_sampling_event(event))
		return;
6055

6056 6057 6058 6059
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6060

6061 6062 6063 6064 6065
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6066
				ns_to_ktime(period), 0,
6067
				HRTIMER_MODE_REL_PINNED, 0);
6068
}
6069 6070

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6071
{
6072 6073
	struct hw_perf_event *hwc = &event->hw;

6074
	if (is_sampling_event(event)) {
6075
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6076
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6077 6078 6079

		hrtimer_cancel(&hwc->hrtimer);
	}
6080 6081
}

P
Peter Zijlstra 已提交
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6102
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6103 6104 6105 6106
		event->attr.freq = 0;
	}
}

6107 6108 6109 6110 6111
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6112
{
6113 6114 6115
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6116
	now = local_clock();
6117 6118
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6119 6120
}

P
Peter Zijlstra 已提交
6121
static void cpu_clock_event_start(struct perf_event *event, int flags)
6122
{
P
Peter Zijlstra 已提交
6123
	local64_set(&event->hw.prev_count, local_clock());
6124 6125 6126
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6127
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6128
{
6129 6130 6131
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6132

P
Peter Zijlstra 已提交
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6146 6147 6148 6149
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6150

6151 6152 6153 6154 6155 6156 6157 6158
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6159 6160 6161 6162 6163 6164
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6165 6166
	perf_swevent_init_hrtimer(event);

6167
	return 0;
6168 6169
}

6170
static struct pmu perf_cpu_clock = {
6171 6172
	.task_ctx_nr	= perf_sw_context,

6173
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6174 6175 6176 6177
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6178
	.read		= cpu_clock_event_read,
6179 6180

	.event_idx	= perf_swevent_event_idx,
6181 6182 6183 6184 6185 6186 6187
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6188
{
6189 6190
	u64 prev;
	s64 delta;
6191

6192 6193 6194 6195
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6196

P
Peter Zijlstra 已提交
6197
static void task_clock_event_start(struct perf_event *event, int flags)
6198
{
P
Peter Zijlstra 已提交
6199
	local64_set(&event->hw.prev_count, event->ctx->time);
6200 6201 6202
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6203
static void task_clock_event_stop(struct perf_event *event, int flags)
6204 6205 6206
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6207 6208 6209 6210 6211 6212
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6213

P
Peter Zijlstra 已提交
6214 6215 6216 6217 6218 6219
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6220 6221 6222 6223
}

static void task_clock_event_read(struct perf_event *event)
{
6224 6225 6226
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6227 6228 6229 6230 6231

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6232
{
6233 6234 6235 6236 6237 6238
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6239 6240 6241 6242 6243 6244
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6245 6246
	perf_swevent_init_hrtimer(event);

6247
	return 0;
L
Li Zefan 已提交
6248 6249
}

6250
static struct pmu perf_task_clock = {
6251 6252
	.task_ctx_nr	= perf_sw_context,

6253
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6254 6255 6256 6257
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6258
	.read		= task_clock_event_read,
6259 6260

	.event_idx	= perf_swevent_event_idx,
6261
};
L
Li Zefan 已提交
6262

P
Peter Zijlstra 已提交
6263
static void perf_pmu_nop_void(struct pmu *pmu)
6264 6265
{
}
L
Li Zefan 已提交
6266

P
Peter Zijlstra 已提交
6267
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6268
{
P
Peter Zijlstra 已提交
6269
	return 0;
L
Li Zefan 已提交
6270 6271
}

P
Peter Zijlstra 已提交
6272
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6273
{
P
Peter Zijlstra 已提交
6274
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6275 6276
}

P
Peter Zijlstra 已提交
6277 6278 6279 6280 6281
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6282

P
Peter Zijlstra 已提交
6283
static void perf_pmu_cancel_txn(struct pmu *pmu)
6284
{
P
Peter Zijlstra 已提交
6285
	perf_pmu_enable(pmu);
6286 6287
}

6288 6289 6290 6291 6292
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6293 6294 6295 6296 6297
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6298
{
P
Peter Zijlstra 已提交
6299
	struct pmu *pmu;
6300

P
Peter Zijlstra 已提交
6301 6302
	if (ctxn < 0)
		return NULL;
6303

P
Peter Zijlstra 已提交
6304 6305 6306 6307
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6308

P
Peter Zijlstra 已提交
6309
	return NULL;
6310 6311
}

6312
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6313
{
6314 6315 6316 6317 6318 6319 6320
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6321 6322
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6323 6324 6325 6326 6327 6328
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6329

P
Peter Zijlstra 已提交
6330
	mutex_lock(&pmus_lock);
6331
	/*
P
Peter Zijlstra 已提交
6332
	 * Like a real lame refcount.
6333
	 */
6334 6335 6336
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6337
			goto out;
6338
		}
P
Peter Zijlstra 已提交
6339
	}
6340

6341
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6342 6343
out:
	mutex_unlock(&pmus_lock);
6344
}
P
Peter Zijlstra 已提交
6345
static struct idr pmu_idr;
6346

P
Peter Zijlstra 已提交
6347 6348 6349 6350 6351 6352 6353
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6354
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6355

6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6399
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6400

6401 6402 6403 6404
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6405
};
6406
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6407 6408 6409 6410

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6411
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6427
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6448
static struct lock_class_key cpuctx_mutex;
6449
static struct lock_class_key cpuctx_lock;
6450

6451
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6452
{
P
Peter Zijlstra 已提交
6453
	int cpu, ret;
6454

6455
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6456 6457 6458 6459
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6460

P
Peter Zijlstra 已提交
6461 6462 6463 6464 6465 6466
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6467 6468 6469
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6470 6471 6472 6473 6474
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6475 6476 6477 6478 6479 6480
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6481
skip_type:
P
Peter Zijlstra 已提交
6482 6483 6484
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6485

W
Wei Yongjun 已提交
6486
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6487 6488
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6489
		goto free_dev;
6490

P
Peter Zijlstra 已提交
6491 6492 6493 6494
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6495
		__perf_event_init_context(&cpuctx->ctx);
6496
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6497
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6498
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6499
		cpuctx->ctx.pmu = pmu;
6500 6501 6502

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6503
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6504
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6505
	}
6506

P
Peter Zijlstra 已提交
6507
got_cpu_context:
P
Peter Zijlstra 已提交
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6522
		}
6523
	}
6524

P
Peter Zijlstra 已提交
6525 6526 6527 6528 6529
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6530 6531 6532
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6533
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6534 6535
	ret = 0;
unlock:
6536 6537
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6538
	return ret;
P
Peter Zijlstra 已提交
6539

P
Peter Zijlstra 已提交
6540 6541 6542 6543
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6544 6545 6546 6547
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6548 6549 6550
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6551 6552
}

6553
void perf_pmu_unregister(struct pmu *pmu)
6554
{
6555 6556 6557
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6558

6559
	/*
P
Peter Zijlstra 已提交
6560 6561
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6562
	 */
6563
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6564
	synchronize_rcu();
6565

P
Peter Zijlstra 已提交
6566
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6567 6568
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6569 6570
	device_del(pmu->dev);
	put_device(pmu->dev);
6571
	free_pmu_context(pmu);
6572
}
6573

6574 6575 6576 6577
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6578
	int ret;
6579 6580

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6581 6582 6583 6584

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6585
	if (pmu) {
6586
		event->pmu = pmu;
6587 6588 6589
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6590
		goto unlock;
6591
	}
P
Peter Zijlstra 已提交
6592

6593
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6594
		event->pmu = pmu;
6595
		ret = pmu->event_init(event);
6596
		if (!ret)
P
Peter Zijlstra 已提交
6597
			goto unlock;
6598

6599 6600
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6601
			goto unlock;
6602
		}
6603
	}
P
Peter Zijlstra 已提交
6604 6605
	pmu = ERR_PTR(-ENOENT);
unlock:
6606
	srcu_read_unlock(&pmus_srcu, idx);
6607

6608
	return pmu;
6609 6610
}

6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6624 6625
static void account_event(struct perf_event *event)
{
6626 6627 6628
	if (event->parent)
		return;

6629 6630 6631 6632 6633 6634 6635 6636
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6637 6638 6639 6640
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6641
	if (has_branch_stack(event))
6642
		static_key_slow_inc(&perf_sched_events.key);
6643
	if (is_cgroup_event(event))
6644
		static_key_slow_inc(&perf_sched_events.key);
6645 6646

	account_event_cpu(event, event->cpu);
6647 6648
}

T
Thomas Gleixner 已提交
6649
/*
6650
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6651
 */
6652
static struct perf_event *
6653
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6654 6655 6656
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6657 6658
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6659
{
P
Peter Zijlstra 已提交
6660
	struct pmu *pmu;
6661 6662
	struct perf_event *event;
	struct hw_perf_event *hwc;
6663
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6664

6665 6666 6667 6668 6669
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6670
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6671
	if (!event)
6672
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6673

6674
	/*
6675
	 * Single events are their own group leaders, with an
6676 6677 6678
	 * empty sibling list:
	 */
	if (!group_leader)
6679
		group_leader = event;
6680

6681 6682
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6683

6684 6685 6686
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6687
	INIT_LIST_HEAD(&event->rb_entry);
6688
	INIT_LIST_HEAD(&event->active_entry);
6689 6690
	INIT_HLIST_NODE(&event->hlist_entry);

6691

6692
	init_waitqueue_head(&event->waitq);
6693
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6694

6695
	mutex_init(&event->mmap_mutex);
6696

6697
	atomic_long_set(&event->refcount, 1);
6698 6699 6700 6701 6702
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6703

6704
	event->parent		= parent_event;
6705

6706
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6707
	event->id		= atomic64_inc_return(&perf_event_id);
6708

6709
	event->state		= PERF_EVENT_STATE_INACTIVE;
6710

6711 6712
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6713 6714 6715

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6716 6717 6718 6719
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6720
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6721 6722 6723 6724
			event->hw.bp_target = task;
#endif
	}

6725
	if (!overflow_handler && parent_event) {
6726
		overflow_handler = parent_event->overflow_handler;
6727 6728
		context = parent_event->overflow_handler_context;
	}
6729

6730
	event->overflow_handler	= overflow_handler;
6731
	event->overflow_handler_context = context;
6732

J
Jiri Olsa 已提交
6733
	perf_event__state_init(event);
6734

6735
	pmu = NULL;
6736

6737
	hwc = &event->hw;
6738
	hwc->sample_period = attr->sample_period;
6739
	if (attr->freq && attr->sample_freq)
6740
		hwc->sample_period = 1;
6741
	hwc->last_period = hwc->sample_period;
6742

6743
	local64_set(&hwc->period_left, hwc->sample_period);
6744

6745
	/*
6746
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6747
	 */
6748
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6749
		goto err_ns;
6750

6751
	pmu = perf_init_event(event);
6752
	if (!pmu)
6753 6754
		goto err_ns;
	else if (IS_ERR(pmu)) {
6755
		err = PTR_ERR(pmu);
6756
		goto err_ns;
I
Ingo Molnar 已提交
6757
	}
6758

6759
	if (!event->parent) {
6760 6761
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6762 6763
			if (err)
				goto err_pmu;
6764
		}
6765
	}
6766

6767
	return event;
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6778 6779
}

6780 6781
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6782 6783
{
	u32 size;
6784
	int ret;
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6809 6810 6811
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6812 6813
	 */
	if (size > sizeof(*attr)) {
6814 6815 6816
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6817

6818 6819
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6820

6821
		for (; addr < end; addr++) {
6822 6823 6824 6825 6826 6827
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6828
		size = sizeof(*attr);
6829 6830 6831 6832 6833 6834
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6835 6836 6837 6838
	/* disabled for now */
	if (attr->mmap2)
		return -EINVAL;

6839
	if (attr->__reserved_1)
6840 6841 6842 6843 6844 6845 6846 6847
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6876 6877
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6878 6879
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6880
	}
6881

6882
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6883
		ret = perf_reg_validate(attr->sample_regs_user);
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6902

6903 6904 6905 6906 6907 6908 6909 6910 6911
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6912 6913
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6914
{
6915
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6916 6917
	int ret = -EINVAL;

6918
	if (!output_event)
6919 6920
		goto set;

6921 6922
	/* don't allow circular references */
	if (event == output_event)
6923 6924
		goto out;

6925 6926 6927 6928 6929 6930 6931
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6932
	 * If its not a per-cpu rb, it must be the same task.
6933 6934 6935 6936
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6937
set:
6938
	mutex_lock(&event->mmap_mutex);
6939 6940 6941
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6942

6943 6944
	old_rb = event->rb;

6945
	if (output_event) {
6946 6947 6948
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6949
			goto unlock;
6950 6951
	}

6952 6953
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6970
	ret = 0;
6971 6972 6973
unlock:
	mutex_unlock(&event->mmap_mutex);

6974 6975 6976 6977
out:
	return ret;
}

T
Thomas Gleixner 已提交
6978
/**
6979
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6980
 *
6981
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6982
 * @pid:		target pid
I
Ingo Molnar 已提交
6983
 * @cpu:		target cpu
6984
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6985
 */
6986 6987
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6988
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6989
{
6990 6991
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6992 6993 6994
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6995
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6996
	struct task_struct *task = NULL;
6997
	struct pmu *pmu;
6998
	int event_fd;
6999
	int move_group = 0;
7000
	int err;
7001
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7002

7003
	/* for future expandability... */
S
Stephane Eranian 已提交
7004
	if (flags & ~PERF_FLAG_ALL)
7005 7006
		return -EINVAL;

7007 7008 7009
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7010

7011 7012 7013 7014 7015
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7016
	if (attr.freq) {
7017
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7018 7019 7020
			return -EINVAL;
	}

S
Stephane Eranian 已提交
7021 7022 7023 7024 7025 7026 7027 7028 7029
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7030 7031 7032 7033
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7034 7035 7036
	if (event_fd < 0)
		return event_fd;

7037
	if (group_fd != -1) {
7038 7039
		err = perf_fget_light(group_fd, &group);
		if (err)
7040
			goto err_fd;
7041
		group_leader = group.file->private_data;
7042 7043 7044 7045 7046 7047
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7048
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7049 7050 7051 7052 7053 7054 7055
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7056 7057
	get_online_cpus();

7058 7059
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7060 7061
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7062
		goto err_task;
7063 7064
	}

S
Stephane Eranian 已提交
7065 7066
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7067 7068 7069 7070
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
7071 7072
	}

7073 7074
	account_event(event);

7075 7076 7077 7078 7079
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7103 7104 7105 7106

	/*
	 * Get the target context (task or percpu):
	 */
7107
	ctx = find_get_context(pmu, task, event->cpu);
7108 7109
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7110
		goto err_alloc;
7111 7112
	}

7113 7114 7115 7116 7117
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7118
	/*
7119
	 * Look up the group leader (we will attach this event to it):
7120
	 */
7121
	if (group_leader) {
7122
		err = -EINVAL;
7123 7124

		/*
I
Ingo Molnar 已提交
7125 7126 7127 7128
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7129
			goto err_context;
I
Ingo Molnar 已提交
7130 7131 7132
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7133
		 */
7134 7135 7136 7137 7138 7139 7140 7141
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7142 7143 7144
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7145
		if (attr.exclusive || attr.pinned)
7146
			goto err_context;
7147 7148 7149 7150 7151
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7152
			goto err_context;
7153
	}
T
Thomas Gleixner 已提交
7154

7155 7156
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7157 7158
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7159
		goto err_context;
7160
	}
7161

7162 7163 7164 7165
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7166
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7167 7168 7169 7170 7171 7172 7173

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7174 7175
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7176
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7177
			perf_event__state_init(sibling);
7178 7179 7180 7181
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7182
	}
7183

7184
	WARN_ON_ONCE(ctx->parent_ctx);
7185
	mutex_lock(&ctx->mutex);
7186 7187

	if (move_group) {
7188
		synchronize_rcu();
7189
		perf_install_in_context(ctx, group_leader, event->cpu);
7190 7191 7192
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7193
			perf_install_in_context(ctx, sibling, event->cpu);
7194 7195 7196 7197
			get_ctx(ctx);
		}
	}

7198
	perf_install_in_context(ctx, event, event->cpu);
7199
	perf_unpin_context(ctx);
7200
	mutex_unlock(&ctx->mutex);
7201

7202 7203
	put_online_cpus();

7204
	event->owner = current;
P
Peter Zijlstra 已提交
7205

7206 7207 7208
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7209

7210 7211 7212 7213
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7214
	perf_event__id_header_size(event);
7215

7216 7217 7218 7219 7220 7221
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7222
	fdput(group);
7223 7224
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7225

7226
err_context:
7227
	perf_unpin_context(ctx);
7228
	put_ctx(ctx);
7229
err_alloc:
7230
	free_event(event);
P
Peter Zijlstra 已提交
7231
err_task:
7232
	put_online_cpus();
P
Peter Zijlstra 已提交
7233 7234
	if (task)
		put_task_struct(task);
7235
err_group_fd:
7236
	fdput(group);
7237 7238
err_fd:
	put_unused_fd(event_fd);
7239
	return err;
T
Thomas Gleixner 已提交
7240 7241
}

7242 7243 7244 7245 7246
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7247
 * @task: task to profile (NULL for percpu)
7248 7249 7250
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7251
				 struct task_struct *task,
7252 7253
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7254 7255
{
	struct perf_event_context *ctx;
7256
	struct perf_event *event;
7257
	int err;
7258

7259 7260 7261
	/*
	 * Get the target context (task or percpu):
	 */
7262

7263 7264
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7265 7266 7267 7268
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7269

7270 7271
	account_event(event);

M
Matt Helsley 已提交
7272
	ctx = find_get_context(event->pmu, task, cpu);
7273 7274
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7275
		goto err_free;
7276
	}
7277 7278 7279 7280

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7281
	perf_unpin_context(ctx);
7282 7283 7284 7285
	mutex_unlock(&ctx->mutex);

	return event;

7286 7287 7288
err_free:
	free_event(event);
err:
7289
	return ERR_PTR(err);
7290
}
7291
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7292

7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
7307
		unaccount_event_cpu(event, src_cpu);
7308
		put_ctx(src_ctx);
7309
		list_add(&event->migrate_entry, &events);
7310 7311 7312 7313 7314 7315
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7316 7317
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7318 7319
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7320
		account_event_cpu(event, dst_cpu);
7321 7322 7323 7324 7325 7326 7327
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7328
static void sync_child_event(struct perf_event *child_event,
7329
			       struct task_struct *child)
7330
{
7331
	struct perf_event *parent_event = child_event->parent;
7332
	u64 child_val;
7333

7334 7335
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7336

P
Peter Zijlstra 已提交
7337
	child_val = perf_event_count(child_event);
7338 7339 7340 7341

	/*
	 * Add back the child's count to the parent's count:
	 */
7342
	atomic64_add(child_val, &parent_event->child_count);
7343 7344 7345 7346
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7347 7348

	/*
7349
	 * Remove this event from the parent's list
7350
	 */
7351 7352 7353 7354
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7355 7356

	/*
7357
	 * Release the parent event, if this was the last
7358 7359
	 * reference to it.
	 */
7360
	put_event(parent_event);
7361 7362
}

7363
static void
7364 7365
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7366
			 struct task_struct *child)
7367
{
7368 7369 7370 7371 7372
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7373

7374
	perf_remove_from_context(child_event);
7375

7376
	/*
7377
	 * It can happen that the parent exits first, and has events
7378
	 * that are still around due to the child reference. These
7379
	 * events need to be zapped.
7380
	 */
7381
	if (child_event->parent) {
7382 7383
		sync_child_event(child_event, child);
		free_event(child_event);
7384
	}
7385 7386
}

P
Peter Zijlstra 已提交
7387
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7388
{
7389 7390
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7391
	unsigned long flags;
7392

P
Peter Zijlstra 已提交
7393
	if (likely(!child->perf_event_ctxp[ctxn])) {
7394
		perf_event_task(child, NULL, 0);
7395
		return;
P
Peter Zijlstra 已提交
7396
	}
7397

7398
	local_irq_save(flags);
7399 7400 7401 7402 7403 7404
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7405
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7406 7407 7408

	/*
	 * Take the context lock here so that if find_get_context is
7409
	 * reading child->perf_event_ctxp, we wait until it has
7410 7411
	 * incremented the context's refcount before we do put_ctx below.
	 */
7412
	raw_spin_lock(&child_ctx->lock);
7413
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7414
	child->perf_event_ctxp[ctxn] = NULL;
7415 7416 7417
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7418
	 * the events from it.
7419 7420
	 */
	unclone_ctx(child_ctx);
7421
	update_context_time(child_ctx);
7422
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7423 7424

	/*
7425 7426 7427
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7428
	 */
7429
	perf_event_task(child, child_ctx, 0);
7430

7431 7432 7433
	/*
	 * We can recurse on the same lock type through:
	 *
7434 7435
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7436 7437
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7438 7439 7440
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7441
	mutex_lock(&child_ctx->mutex);
7442

7443
again:
7444 7445 7446 7447 7448
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7449
				 group_entry)
7450
		__perf_event_exit_task(child_event, child_ctx, child);
7451 7452

	/*
7453
	 * If the last event was a group event, it will have appended all
7454 7455 7456
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7457 7458
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7459
		goto again;
7460 7461 7462 7463

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7464 7465
}

P
Peter Zijlstra 已提交
7466 7467 7468 7469 7470
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7471
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7472 7473
	int ctxn;

P
Peter Zijlstra 已提交
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7489 7490 7491 7492
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7505
	put_event(parent);
7506

7507
	perf_group_detach(event);
7508 7509 7510 7511
	list_del_event(event, ctx);
	free_event(event);
}

7512 7513
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7514
 * perf_event_init_task below, used by fork() in case of fail.
7515
 */
7516
void perf_event_free_task(struct task_struct *task)
7517
{
P
Peter Zijlstra 已提交
7518
	struct perf_event_context *ctx;
7519
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7520
	int ctxn;
7521

P
Peter Zijlstra 已提交
7522 7523 7524 7525
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7526

P
Peter Zijlstra 已提交
7527
		mutex_lock(&ctx->mutex);
7528
again:
P
Peter Zijlstra 已提交
7529 7530 7531
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7532

P
Peter Zijlstra 已提交
7533 7534 7535
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7536

P
Peter Zijlstra 已提交
7537 7538 7539
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7540

P
Peter Zijlstra 已提交
7541
		mutex_unlock(&ctx->mutex);
7542

P
Peter Zijlstra 已提交
7543 7544
		put_ctx(ctx);
	}
7545 7546
}

7547 7548 7549 7550 7551 7552 7553 7554
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7567
	unsigned long flags;
P
Peter Zijlstra 已提交
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7580
					   child,
P
Peter Zijlstra 已提交
7581
					   group_leader, parent_event,
7582
				           NULL, NULL);
P
Peter Zijlstra 已提交
7583 7584
	if (IS_ERR(child_event))
		return child_event;
7585 7586 7587 7588 7589 7590

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7615 7616
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7617

7618 7619 7620 7621
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7622
	perf_event__id_header_size(child_event);
7623

P
Peter Zijlstra 已提交
7624 7625 7626
	/*
	 * Link it up in the child's context:
	 */
7627
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7628
	add_event_to_ctx(child_event, child_ctx);
7629
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7663 7664 7665 7666 7667
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7668
		   struct task_struct *child, int ctxn,
7669 7670 7671
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7672
	struct perf_event_context *child_ctx;
7673 7674 7675 7676

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7677 7678
	}

7679
	child_ctx = child->perf_event_ctxp[ctxn];
7680 7681 7682 7683 7684 7685 7686
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7687

7688
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7689 7690
		if (!child_ctx)
			return -ENOMEM;
7691

P
Peter Zijlstra 已提交
7692
		child->perf_event_ctxp[ctxn] = child_ctx;
7693 7694 7695 7696 7697 7698 7699 7700 7701
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7702 7703
}

7704
/*
7705
 * Initialize the perf_event context in task_struct
7706
 */
P
Peter Zijlstra 已提交
7707
int perf_event_init_context(struct task_struct *child, int ctxn)
7708
{
7709
	struct perf_event_context *child_ctx, *parent_ctx;
7710 7711
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7712
	struct task_struct *parent = current;
7713
	int inherited_all = 1;
7714
	unsigned long flags;
7715
	int ret = 0;
7716

P
Peter Zijlstra 已提交
7717
	if (likely(!parent->perf_event_ctxp[ctxn]))
7718 7719
		return 0;

7720
	/*
7721 7722
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7723
	 */
P
Peter Zijlstra 已提交
7724
	parent_ctx = perf_pin_task_context(parent, ctxn);
7725

7726 7727 7728 7729 7730 7731 7732
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7733 7734 7735 7736
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7737
	mutex_lock(&parent_ctx->mutex);
7738 7739 7740 7741 7742

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7743
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7744 7745
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7746 7747 7748
		if (ret)
			break;
	}
7749

7750 7751 7752 7753 7754 7755 7756 7757 7758
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7759
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7760 7761
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7762
		if (ret)
7763
			break;
7764 7765
	}

7766 7767 7768
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7769
	child_ctx = child->perf_event_ctxp[ctxn];
7770

7771
	if (child_ctx && inherited_all) {
7772 7773 7774
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7775 7776 7777
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7778
		 */
P
Peter Zijlstra 已提交
7779
		cloned_ctx = parent_ctx->parent_ctx;
7780 7781
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7782
			child_ctx->parent_gen = parent_ctx->parent_gen;
7783 7784 7785 7786 7787
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7788 7789
	}

P
Peter Zijlstra 已提交
7790
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7791
	mutex_unlock(&parent_ctx->mutex);
7792

7793
	perf_unpin_context(parent_ctx);
7794
	put_ctx(parent_ctx);
7795

7796
	return ret;
7797 7798
}

P
Peter Zijlstra 已提交
7799 7800 7801 7802 7803 7804 7805
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7806 7807 7808 7809
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7810 7811 7812 7813 7814 7815 7816 7817 7818
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7819 7820
static void __init perf_event_init_all_cpus(void)
{
7821
	struct swevent_htable *swhash;
7822 7823 7824
	int cpu;

	for_each_possible_cpu(cpu) {
7825 7826
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7827
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7828 7829 7830
	}
}

7831
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7832
{
P
Peter Zijlstra 已提交
7833
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7834

7835
	mutex_lock(&swhash->hlist_mutex);
7836
	if (swhash->hlist_refcount > 0) {
7837 7838
		struct swevent_hlist *hlist;

7839 7840 7841
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7842
	}
7843
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7844 7845
}

P
Peter Zijlstra 已提交
7846
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7847
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7848
{
7849 7850 7851 7852 7853 7854 7855
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7856
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7857
{
P
Peter Zijlstra 已提交
7858
	struct perf_event_context *ctx = __info;
7859
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7860

P
Peter Zijlstra 已提交
7861
	perf_pmu_rotate_stop(ctx->pmu);
7862

7863
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7864
		__perf_remove_from_context(event);
7865
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7866
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7867
}
P
Peter Zijlstra 已提交
7868 7869 7870 7871 7872 7873 7874 7875 7876

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7877
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7878 7879 7880 7881 7882 7883 7884 7885

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7886
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7887
{
7888
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7889

7890 7891 7892
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7893

P
Peter Zijlstra 已提交
7894
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7895 7896
}
#else
7897
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7898 7899
#endif

P
Peter Zijlstra 已提交
7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7920
static int
T
Thomas Gleixner 已提交
7921 7922 7923 7924
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7925
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7926 7927

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7928
	case CPU_DOWN_FAILED:
7929
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7930 7931
		break;

P
Peter Zijlstra 已提交
7932
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7933
	case CPU_DOWN_PREPARE:
7934
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7935 7936 7937 7938 7939 7940 7941 7942
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7943
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7944
{
7945 7946
	int ret;

P
Peter Zijlstra 已提交
7947 7948
	idr_init(&pmu_idr);

7949
	perf_event_init_all_cpus();
7950
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7951 7952 7953
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7954 7955
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7956
	register_reboot_notifier(&perf_reboot_notifier);
7957 7958 7959

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7960 7961 7962

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7963 7964 7965 7966 7967 7968 7969

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7970
}
P
Peter Zijlstra 已提交
7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7999 8000

#ifdef CONFIG_CGROUP_PERF
8001 8002
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8003 8004 8005
{
	struct perf_cgroup *jc;

8006
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8019
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8020
{
8021 8022
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8034 8035
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8036
{
8037 8038
	struct task_struct *task;

8039
	cgroup_taskset_for_each(task, css, tset)
8040
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8041 8042
}

8043 8044
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8045
			     struct task_struct *task)
S
Stephane Eranian 已提交
8046 8047 8048 8049 8050 8051 8052 8053 8054
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8055
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8056 8057 8058
}

struct cgroup_subsys perf_subsys = {
8059 8060
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
8061 8062
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8063
	.exit		= perf_cgroup_exit,
8064
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8065 8066
};
#endif /* CONFIG_CGROUP_PERF */