core.c 218.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static void event_function_call(struct perf_event *event,
				int (*active)(void *),
				void (*inactive)(void *),
				void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		cpu_function_call(event->cpu, active, data);
		return;
	}

again:
	if (!task_function_call(task, active, data))
		return;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	inactive(data);
	raw_spin_unlock_irq(&ctx->lock);
}

160 161 162 163 164 165 166
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
167 168
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
169 170
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
171

172 173 174 175 176 177 178
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

179 180 181 182 183 184
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
185 186 187 188
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
189
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
190
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
191
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
192

193 194 195
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
196
static atomic_t nr_freq_events __read_mostly;
197
static atomic_t nr_switch_events __read_mostly;
198

P
Peter Zijlstra 已提交
199 200 201 202
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

203
/*
204
 * perf event paranoia level:
205 206
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
207
 *   1 - disallow cpu events for unpriv
208
 *   2 - disallow kernel profiling for unpriv
209
 */
210
int sysctl_perf_event_paranoid __read_mostly = 1;
211

212 213
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
214 215

/*
216
 * max perf event sample rate
217
 */
218 219 220 221 222 223 224 225 226
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
227 228
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
229

230
static void update_perf_cpu_limits(void)
231 232 233 234
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
235
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
236
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
237
}
P
Peter Zijlstra 已提交
238

239 240
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
241 242 243 244
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
245
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
246 247 248 249 250

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
269 270 271

	return 0;
}
272

273 274 275 276 277 278 279
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
280
static DEFINE_PER_CPU(u64, running_sample_length);
281

282
static void perf_duration_warn(struct irq_work *w)
283
{
284
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
285
	u64 avg_local_sample_len;
286
	u64 local_samples_len;
287

288
	local_samples_len = __this_cpu_read(running_sample_length);
289 290 291 292 293
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
294
			avg_local_sample_len, allowed_ns >> 1,
295 296 297 298 299 300 301
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
302
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
303 304
	u64 avg_local_sample_len;
	u64 local_samples_len;
305

P
Peter Zijlstra 已提交
306
	if (allowed_ns == 0)
307 308 309
		return;

	/* decay the counter by 1 average sample */
310
	local_samples_len = __this_cpu_read(running_sample_length);
311 312
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
313
	__this_cpu_write(running_sample_length, local_samples_len);
314 315 316 317 318 319 320 321

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
322
	if (avg_local_sample_len <= allowed_ns)
323 324 325 326 327 328 329 330 331 332
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
333

334 335 336 337 338 339
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
340 341
}

342
static atomic64_t perf_event_id;
343

344 345 346 347
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
348 349 350 351 352
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
353

354
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
355

356
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
357
{
358
	return "pmu";
T
Thomas Gleixner 已提交
359 360
}

361 362 363 364 365
static inline u64 perf_clock(void)
{
	return local_clock();
}

366 367 368 369 370
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
371 372 373 374 375 376
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
393 394 395 396 397 398 399 400
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
417 418 419 420
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
421
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
460 461
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
462
	/*
463 464
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
465
	 */
466
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
467 468
		return;

469
	cgrp = perf_cgroup_from_task(current, event->ctx);
470 471 472 473 474
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
475 476 477
}

static inline void
478 479
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
480 481 482 483
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

484 485 486 487 488 489
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
490 491
		return;

492
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
493
	info = this_cpu_ptr(cgrp->info);
494
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
495 496 497 498 499 500 501 502 503 504 505
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
506
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
526 527
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
528 529 530 531 532 533 534 535 536

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
537 538
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
539 540 541 542 543 544 545 546 547 548 549

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
550
				WARN_ON_ONCE(cpuctx->cgrp);
551 552 553 554
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
555 556
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
557
				 */
558
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
559 560
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
561 562
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
563 564 565 566 567 568
		}
	}

	local_irq_restore(flags);
}

569 570
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
571
{
572 573 574
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

575
	rcu_read_lock();
576 577
	/*
	 * we come here when we know perf_cgroup_events > 0
578 579
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
580
	 */
581
	cgrp1 = perf_cgroup_from_task(task, NULL);
582
	cgrp2 = perf_cgroup_from_task(next, NULL);
583 584 585 586 587 588 589 590

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
591 592

	rcu_read_unlock();
S
Stephane Eranian 已提交
593 594
}

595 596
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
597
{
598 599 600
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

601
	rcu_read_lock();
602 603
	/*
	 * we come here when we know perf_cgroup_events > 0
604 605
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
606
	 */
607 608
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
609 610 611 612 613 614 615 616

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
617 618

	rcu_read_unlock();
S
Stephane Eranian 已提交
619 620 621 622 623 624 625 626
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
627 628
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
629

630
	if (!f.file)
S
Stephane Eranian 已提交
631 632
		return -EBADF;

A
Al Viro 已提交
633
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
634
					 &perf_event_cgrp_subsys);
635 636 637 638
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
652
out:
653
	fdput(f);
S
Stephane Eranian 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

727 728
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
729 730 731
{
}

732 733
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
734 735 736 737 738 739 740 741 742 743 744
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
745 746
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

777 778 779 780 781 782 783 784
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
785
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
786 787 788 789 790 791 792 793 794
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
795 796
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
797
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
798 799 800
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
801

P
Peter Zijlstra 已提交
802
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
803 804
}

805
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
806
{
807
	struct hrtimer *timer = &cpuctx->hrtimer;
808
	struct pmu *pmu = cpuctx->ctx.pmu;
809
	u64 interval;
810 811 812 813 814

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

815 816 817 818
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
819 820 821
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
822

823
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
824

P
Peter Zijlstra 已提交
825 826
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
827
	timer->function = perf_mux_hrtimer_handler;
828 829
}

830
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
831
{
832
	struct hrtimer *timer = &cpuctx->hrtimer;
833
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
834
	unsigned long flags;
835 836 837

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
838
		return 0;
839

P
Peter Zijlstra 已提交
840 841 842 843 844 845 846
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
847

848
	return 0;
849 850
}

P
Peter Zijlstra 已提交
851
void perf_pmu_disable(struct pmu *pmu)
852
{
P
Peter Zijlstra 已提交
853 854 855
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
856 857
}

P
Peter Zijlstra 已提交
858
void perf_pmu_enable(struct pmu *pmu)
859
{
P
Peter Zijlstra 已提交
860 861 862
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
863 864
}

865
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
866 867

/*
868 869 870 871
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
872
 */
873
static void perf_event_ctx_activate(struct perf_event_context *ctx)
874
{
875
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
876

877
	WARN_ON(!irqs_disabled());
878

879 880 881 882 883 884 885 886 887 888 889 890
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
891 892
}

893
static void get_ctx(struct perf_event_context *ctx)
894
{
895
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 897
}

898 899 900 901 902 903 904 905 906
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

907
static void put_ctx(struct perf_event_context *ctx)
908
{
909 910 911
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
912 913
		if (ctx->task)
			put_task_struct(ctx->task);
914
		call_rcu(&ctx->rcu_head, free_ctx);
915
	}
916 917
}

P
Peter Zijlstra 已提交
918 919 920 921 922 923 924
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
979 980
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
981 982 983 984 985 986 987 988 989 990 991 992
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
993
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001 1002
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1003 1004 1005 1006 1007 1008
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1009 1010 1011 1012 1013 1014 1015
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1016 1017 1018 1019 1020 1021 1022
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1023
{
1024 1025 1026 1027 1028
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1029
		ctx->parent_ctx = NULL;
1030
	ctx->generation++;
1031 1032

	return parent_ctx;
1033 1034
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1057
/*
1058
 * If we inherit events we want to return the parent event id
1059 1060
 * to userspace.
 */
1061
static u64 primary_event_id(struct perf_event *event)
1062
{
1063
	u64 id = event->id;
1064

1065 1066
	if (event->parent)
		id = event->parent->id;
1067 1068 1069 1070

	return id;
}

1071
/*
1072
 * Get the perf_event_context for a task and lock it.
1073 1074 1075
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1076
static struct perf_event_context *
P
Peter Zijlstra 已提交
1077
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1078
{
1079
	struct perf_event_context *ctx;
1080

P
Peter Zijlstra 已提交
1081
retry:
1082 1083 1084
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1085
	 * part of the read side critical section was irqs-enabled -- see
1086 1087 1088
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1089
	 * side critical section has interrupts disabled.
1090
	 */
1091
	local_irq_save(*flags);
1092
	rcu_read_lock();
P
Peter Zijlstra 已提交
1093
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1094 1095 1096 1097
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1098
		 * perf_event_task_sched_out, though the
1099 1100 1101 1102 1103 1104
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1105
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1106
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1107
			raw_spin_unlock(&ctx->lock);
1108
			rcu_read_unlock();
1109
			local_irq_restore(*flags);
1110 1111
			goto retry;
		}
1112 1113

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1114
			raw_spin_unlock(&ctx->lock);
1115 1116
			ctx = NULL;
		}
1117 1118
	}
	rcu_read_unlock();
1119 1120
	if (!ctx)
		local_irq_restore(*flags);
1121 1122 1123 1124 1125 1126 1127 1128
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1129 1130
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1131
{
1132
	struct perf_event_context *ctx;
1133 1134
	unsigned long flags;

P
Peter Zijlstra 已提交
1135
	ctx = perf_lock_task_context(task, ctxn, &flags);
1136 1137
	if (ctx) {
		++ctx->pin_count;
1138
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1139 1140 1141 1142
	}
	return ctx;
}

1143
static void perf_unpin_context(struct perf_event_context *ctx)
1144 1145 1146
{
	unsigned long flags;

1147
	raw_spin_lock_irqsave(&ctx->lock, flags);
1148
	--ctx->pin_count;
1149
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1163 1164 1165
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1166 1167 1168 1169

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1170 1171 1172
	return ctx ? ctx->time : 0;
}

1173 1174
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1175
 * The caller of this function needs to hold the ctx->lock.
1176 1177 1178 1179 1180 1181 1182 1183 1184
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1196
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1197 1198
	else if (ctx->is_active)
		run_end = ctx->time;
1199 1200 1201 1202
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1203 1204 1205 1206

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1207
		run_end = perf_event_time(event);
1208 1209

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1210

1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1225 1226 1227 1228 1229 1230 1231 1232 1233
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1234
/*
1235
 * Add a event from the lists for its context.
1236 1237
 * Must be called with ctx->mutex and ctx->lock held.
 */
1238
static void
1239
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1240
{
P
Peter Zijlstra 已提交
1241 1242
	lockdep_assert_held(&ctx->lock);

1243 1244
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1245 1246

	/*
1247 1248 1249
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1250
	 */
1251
	if (event->group_leader == event) {
1252 1253
		struct list_head *list;

1254 1255 1256
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1257 1258
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1259
	}
P
Peter Zijlstra 已提交
1260

1261
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1262 1263
		ctx->nr_cgroups++;

1264 1265 1266
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1267
		ctx->nr_stat++;
1268 1269

	ctx->generation++;
1270 1271
}

J
Jiri Olsa 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1281
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1297
		nr += nr_siblings;
1298 1299 1300 1301 1302 1303 1304
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1305
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1306 1307 1308 1309 1310 1311 1312
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1313 1314 1315 1316 1317 1318
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1319 1320 1321
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1322 1323 1324
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1325 1326 1327
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1328 1329 1330
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1331 1332 1333
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1345 1346 1347 1348 1349 1350
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1351 1352 1353 1354 1355 1356
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1357 1358 1359
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1360 1361 1362 1363 1364 1365 1366 1367 1368
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1369
	event->id_header_size = size;
1370 1371
}

P
Peter Zijlstra 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1393 1394
static void perf_group_attach(struct perf_event *event)
{
1395
	struct perf_event *group_leader = event->group_leader, *pos;
1396

P
Peter Zijlstra 已提交
1397 1398 1399 1400 1401 1402
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1403 1404 1405 1406 1407
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1408 1409
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1410 1411 1412 1413 1414 1415
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1416 1417 1418 1419 1420

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1421 1422
}

1423
/*
1424
 * Remove a event from the lists for its context.
1425
 * Must be called with ctx->mutex and ctx->lock held.
1426
 */
1427
static void
1428
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1429
{
1430
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1431 1432 1433 1434

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1435 1436 1437 1438
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1439
		return;
1440 1441 1442

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1443
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1444
		ctx->nr_cgroups--;
1445 1446 1447 1448
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1449 1450
		cpuctx = __get_cpu_context(ctx);
		/*
1451 1452
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1453 1454 1455 1456
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1457

1458 1459
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1460
		ctx->nr_stat--;
1461

1462
	list_del_rcu(&event->event_entry);
1463

1464 1465
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1466

1467
	update_group_times(event);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1478 1479

	ctx->generation++;
1480 1481
}

1482
static void perf_group_detach(struct perf_event *event)
1483 1484
{
	struct perf_event *sibling, *tmp;
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1501
		goto out;
1502 1503 1504 1505
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1506

1507
	/*
1508 1509
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1510
	 * to whatever list we are on.
1511
	 */
1512
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1513 1514
		if (list)
			list_move_tail(&sibling->group_entry, list);
1515
		sibling->group_leader = sibling;
1516 1517 1518

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1519 1520

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1521
	}
1522 1523 1524 1525 1526 1527

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1569 1570 1571 1572 1573 1574
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1575 1576 1577
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1578
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1579
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1580 1581
}

1582 1583
static void
event_sched_out(struct perf_event *event,
1584
		  struct perf_cpu_context *cpuctx,
1585
		  struct perf_event_context *ctx)
1586
{
1587
	u64 tstamp = perf_event_time(event);
1588
	u64 delta;
P
Peter Zijlstra 已提交
1589 1590 1591 1592

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1593 1594 1595 1596 1597 1598 1599 1600
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1601
		delta = tstamp - event->tstamp_stopped;
1602
		event->tstamp_running += delta;
1603
		event->tstamp_stopped = tstamp;
1604 1605
	}

1606
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1607
		return;
1608

1609 1610
	perf_pmu_disable(event->pmu);

1611 1612 1613 1614
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1615
	}
1616
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1617
	event->pmu->del(event, 0);
1618
	event->oncpu = -1;
1619

1620
	if (!is_software_event(event))
1621
		cpuctx->active_oncpu--;
1622 1623
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1624 1625
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1626
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1627
		cpuctx->exclusive = 0;
1628

1629 1630 1631
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1632
	perf_pmu_enable(event->pmu);
1633 1634
}

1635
static void
1636
group_sched_out(struct perf_event *group_event,
1637
		struct perf_cpu_context *cpuctx,
1638
		struct perf_event_context *ctx)
1639
{
1640
	struct perf_event *event;
1641
	int state = group_event->state;
1642

1643
	event_sched_out(group_event, cpuctx, ctx);
1644 1645 1646 1647

	/*
	 * Schedule out siblings (if any):
	 */
1648 1649
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1650

1651
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1652 1653 1654
		cpuctx->exclusive = 0;
}

1655 1656 1657 1658 1659
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
static void ___perf_remove_from_context(void *info)
{
	struct remove_event *re = info;
	struct perf_event *event = re->event;
	struct perf_event_context *ctx = event->ctx;

	if (re->detach_group)
		perf_group_detach(event);
	list_del_event(event, ctx);
}

T
Thomas Gleixner 已提交
1671
/*
1672
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1673
 *
1674
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1675 1676
 * remove it from the context list.
 */
1677
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1678
{
1679 1680
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1681
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1682
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1683

1684
	raw_spin_lock(&ctx->lock);
1685
	event_sched_out(event, cpuctx, ctx);
1686 1687
	if (re->detach_group)
		perf_group_detach(event);
1688
	list_del_event(event, ctx);
1689 1690 1691 1692
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1693
	raw_spin_unlock(&ctx->lock);
1694 1695

	return 0;
T
Thomas Gleixner 已提交
1696 1697 1698
}

/*
1699
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1700
 *
1701
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1702
 * call when the task is on a CPU.
1703
 *
1704 1705
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1706 1707
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1708
 * When called from perf_event_exit_task, it's OK because the
1709
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1710
 */
1711
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1712
{
1713
	struct perf_event_context *ctx = event->ctx;
1714 1715 1716 1717
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1718

1719 1720
	lockdep_assert_held(&ctx->mutex);

1721 1722
	event_function_call(event, __perf_remove_from_context,
			    ___perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1723 1724
}

1725
/*
1726
 * Cross CPU call to disable a performance event
1727
 */
1728
int __perf_event_disable(void *info)
1729
{
1730 1731
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1732
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1733 1734

	/*
1735 1736
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1737 1738 1739
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1740
	 */
1741
	if (ctx->task && cpuctx->task_ctx != ctx)
1742
		return -EINVAL;
1743

1744
	raw_spin_lock(&ctx->lock);
1745 1746

	/*
1747
	 * If the event is on, turn it off.
1748 1749
	 * If it is in error state, leave it in error state.
	 */
1750
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1751
		update_context_time(ctx);
S
Stephane Eranian 已提交
1752
		update_cgrp_time_from_event(event);
1753 1754 1755
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1756
		else
1757 1758
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1759 1760
	}

1761
	raw_spin_unlock(&ctx->lock);
1762 1763

	return 0;
1764 1765
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
void ___perf_event_disable(void *info)
{
	struct perf_event *event = info;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
	}
}

1780
/*
1781
 * Disable a event.
1782
 *
1783 1784
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1785
 * remains valid.  This condition is satisifed when called through
1786 1787 1788 1789
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1790
 * is the current context on this CPU and preemption is disabled,
1791
 * hence we can't get into perf_event_task_sched_out for this context.
1792
 */
P
Peter Zijlstra 已提交
1793
static void _perf_event_disable(struct perf_event *event)
1794
{
1795
	struct perf_event_context *ctx = event->ctx;
1796

1797
	raw_spin_lock_irq(&ctx->lock);
1798
	if (event->state <= PERF_EVENT_STATE_OFF) {
1799
		raw_spin_unlock_irq(&ctx->lock);
1800
		return;
1801
	}
1802
	raw_spin_unlock_irq(&ctx->lock);
1803 1804 1805

	event_function_call(event, __perf_event_disable,
			    ___perf_event_disable, event);
1806
}
P
Peter Zijlstra 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1820
EXPORT_SYMBOL_GPL(perf_event_disable);
1821

S
Stephane Eranian 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1857 1858 1859
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1860
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1861

1862
static int
1863
event_sched_in(struct perf_event *event,
1864
		 struct perf_cpu_context *cpuctx,
1865
		 struct perf_event_context *ctx)
1866
{
1867
	u64 tstamp = perf_event_time(event);
1868
	int ret = 0;
1869

1870 1871
	lockdep_assert_held(&ctx->lock);

1872
	if (event->state <= PERF_EVENT_STATE_OFF)
1873 1874
		return 0;

1875
	event->state = PERF_EVENT_STATE_ACTIVE;
1876
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1888 1889 1890 1891 1892
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1893 1894
	perf_pmu_disable(event->pmu);

1895 1896
	perf_set_shadow_time(event, ctx, tstamp);

1897 1898
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1899
	if (event->pmu->add(event, PERF_EF_START)) {
1900 1901
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1902 1903
		ret = -EAGAIN;
		goto out;
1904 1905
	}

1906 1907
	event->tstamp_running += tstamp - event->tstamp_stopped;

1908
	if (!is_software_event(event))
1909
		cpuctx->active_oncpu++;
1910 1911
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1912 1913
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1914

1915
	if (event->attr.exclusive)
1916 1917
		cpuctx->exclusive = 1;

1918 1919 1920
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1921 1922 1923 1924
out:
	perf_pmu_enable(event->pmu);

	return ret;
1925 1926
}

1927
static int
1928
group_sched_in(struct perf_event *group_event,
1929
	       struct perf_cpu_context *cpuctx,
1930
	       struct perf_event_context *ctx)
1931
{
1932
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1933
	struct pmu *pmu = ctx->pmu;
1934 1935
	u64 now = ctx->time;
	bool simulate = false;
1936

1937
	if (group_event->state == PERF_EVENT_STATE_OFF)
1938 1939
		return 0;

1940
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1941

1942
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1943
		pmu->cancel_txn(pmu);
1944
		perf_mux_hrtimer_restart(cpuctx);
1945
		return -EAGAIN;
1946
	}
1947 1948 1949 1950

	/*
	 * Schedule in siblings as one group (if any):
	 */
1951
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1952
		if (event_sched_in(event, cpuctx, ctx)) {
1953
			partial_group = event;
1954 1955 1956 1957
			goto group_error;
		}
	}

1958
	if (!pmu->commit_txn(pmu))
1959
		return 0;
1960

1961 1962 1963 1964
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1975
	 */
1976 1977
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1978 1979 1980 1981 1982 1983 1984 1985
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1986
	}
1987
	event_sched_out(group_event, cpuctx, ctx);
1988

P
Peter Zijlstra 已提交
1989
	pmu->cancel_txn(pmu);
1990

1991
	perf_mux_hrtimer_restart(cpuctx);
1992

1993 1994 1995
	return -EAGAIN;
}

1996
/*
1997
 * Work out whether we can put this event group on the CPU now.
1998
 */
1999
static int group_can_go_on(struct perf_event *event,
2000 2001 2002 2003
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2004
	 * Groups consisting entirely of software events can always go on.
2005
	 */
2006
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2007 2008 2009
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2010
	 * events can go on.
2011 2012 2013 2014 2015
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2016
	 * events on the CPU, it can't go on.
2017
	 */
2018
	if (event->attr.exclusive && cpuctx->active_oncpu)
2019 2020 2021 2022 2023 2024 2025 2026
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2027 2028
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2029
{
2030 2031
	u64 tstamp = perf_event_time(event);

2032
	list_add_event(event, ctx);
2033
	perf_group_attach(event);
2034 2035 2036
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2037 2038
}

2039 2040
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2041 2042 2043 2044 2045
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2046

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
static void ___perf_install_in_context(void *info)
{
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;

	/*
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
	 */
	add_event_to_ctx(event, ctx);
}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
{
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
}

T
Thomas Gleixner 已提交
2082
/*
2083
 * Cross CPU call to install and enable a performance event
2084 2085
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2086
 */
2087
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2088
{
2089 2090
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2091
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2092 2093 2094
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2095
	perf_ctx_lock(cpuctx, task_ctx);
2096
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2097 2098

	/*
2099
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2100
	 */
2101
	if (task_ctx)
2102
		task_ctx_sched_out(cpuctx, task_ctx);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2117 2118
		task = task_ctx->task;
	}
2119

2120
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2121

2122
	update_context_time(ctx);
S
Stephane Eranian 已提交
2123 2124 2125 2126 2127 2128
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2129

2130
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2131

2132
	/*
2133
	 * Schedule everything back in
2134
	 */
2135
	perf_event_sched_in(cpuctx, task_ctx, task);
2136 2137 2138

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2139 2140

	return 0;
T
Thomas Gleixner 已提交
2141 2142 2143
}

/*
2144
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2145 2146
 */
static void
2147 2148
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2149 2150
			int cpu)
{
2151 2152
	lockdep_assert_held(&ctx->mutex);

2153
	event->ctx = ctx;
2154 2155
	if (event->cpu != -1)
		event->cpu = cpu;
2156

2157 2158
	event_function_call(event, __perf_install_in_context,
			    ___perf_install_in_context, event);
T
Thomas Gleixner 已提交
2159 2160
}

2161
/*
2162
 * Put a event into inactive state and update time fields.
2163 2164 2165 2166 2167 2168
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2169
static void __perf_event_mark_enabled(struct perf_event *event)
2170
{
2171
	struct perf_event *sub;
2172
	u64 tstamp = perf_event_time(event);
2173

2174
	event->state = PERF_EVENT_STATE_INACTIVE;
2175
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2176
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2177 2178
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2179
	}
2180 2181
}

2182
/*
2183
 * Cross CPU call to enable a performance event
2184
 */
2185
static int __perf_event_enable(void *info)
2186
{
2187 2188 2189
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2190
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2191
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2192

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2203
		return -EINVAL;
2204

2205 2206
	perf_ctx_lock(cpuctx, task_ctx);
	WARN_ON_ONCE(&cpuctx->ctx != ctx && task_ctx != ctx);
2207
	update_context_time(ctx);
2208

2209
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2210
		goto unlock;
S
Stephane Eranian 已提交
2211 2212 2213 2214

	/*
	 * set current task's cgroup time reference point
	 */
2215
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2216

2217
	__perf_event_mark_enabled(event);
2218

S
Stephane Eranian 已提交
2219 2220 2221
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2222
		goto unlock;
S
Stephane Eranian 已提交
2223
	}
2224

2225
	/*
2226
	 * If the event is in a group and isn't the group leader,
2227
	 * then don't put it on unless the group is on.
2228
	 */
2229
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2230
		goto unlock;
2231

2232
	ctx_resched(cpuctx, task_ctx);
2233

P
Peter Zijlstra 已提交
2234
unlock:
2235
	perf_ctx_unlock(cpuctx, task_ctx);
2236 2237

	return 0;
2238 2239
}

2240 2241 2242 2243 2244
void ___perf_event_enable(void *info)
{
	__perf_event_mark_enabled((struct perf_event *)info);
}

2245
/*
2246
 * Enable a event.
2247
 *
2248 2249
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2250
 * remains valid.  This condition is satisfied when called through
2251 2252
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2253
 */
P
Peter Zijlstra 已提交
2254
static void _perf_event_enable(struct perf_event *event)
2255
{
2256
	struct perf_event_context *ctx = event->ctx;
2257

2258 2259 2260
	raw_spin_lock_irq(&ctx->lock);
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
		raw_spin_unlock_irq(&ctx->lock);
2261 2262 2263 2264
		return;
	}

	/*
2265
	 * If the event is in error state, clear that first.
2266 2267 2268 2269
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2270
	 */
2271 2272
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2273
	raw_spin_unlock_irq(&ctx->lock);
2274

2275 2276
	event_function_call(event, __perf_event_enable,
			    ___perf_event_enable, event);
2277
}
P
Peter Zijlstra 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2290
EXPORT_SYMBOL_GPL(perf_event_enable);
2291

P
Peter Zijlstra 已提交
2292
static int _perf_event_refresh(struct perf_event *event, int refresh)
2293
{
2294
	/*
2295
	 * not supported on inherited events
2296
	 */
2297
	if (event->attr.inherit || !is_sampling_event(event))
2298 2299
		return -EINVAL;

2300
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2301
	_perf_event_enable(event);
2302 2303

	return 0;
2304
}
P
Peter Zijlstra 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2320
EXPORT_SYMBOL_GPL(perf_event_refresh);
2321

2322 2323 2324
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2325
{
2326
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2327 2328 2329
	struct perf_event *event;

	lockdep_assert_held(&ctx->lock);
2330

2331
	ctx->is_active &= ~event_type;
2332
	if (likely(!ctx->nr_events))
2333 2334
		return;

2335
	update_context_time(ctx);
S
Stephane Eranian 已提交
2336
	update_cgrp_time_from_cpuctx(cpuctx);
2337
	if (!ctx->nr_active)
2338
		return;
2339

P
Peter Zijlstra 已提交
2340
	perf_pmu_disable(ctx->pmu);
2341
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2342 2343
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2344
	}
2345

2346
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2347
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2348
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2349
	}
P
Peter Zijlstra 已提交
2350
	perf_pmu_enable(ctx->pmu);
2351 2352
}

2353
/*
2354 2355 2356 2357 2358 2359
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2360
 */
2361 2362
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2363
{
2364 2365 2366
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2389 2390
}

2391 2392
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2393 2394 2395
{
	u64 value;

2396
	if (!event->attr.inherit_stat)
2397 2398 2399
		return;

	/*
2400
	 * Update the event value, we cannot use perf_event_read()
2401 2402
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2403
	 * we know the event must be on the current CPU, therefore we
2404 2405
	 * don't need to use it.
	 */
2406 2407
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2408 2409
		event->pmu->read(event);
		/* fall-through */
2410

2411 2412
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2413 2414 2415 2416 2417 2418 2419
		break;

	default:
		break;
	}

	/*
2420
	 * In order to keep per-task stats reliable we need to flip the event
2421 2422
	 * values when we flip the contexts.
	 */
2423 2424 2425
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2426

2427 2428
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2429

2430
	/*
2431
	 * Since we swizzled the values, update the user visible data too.
2432
	 */
2433 2434
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2435 2436
}

2437 2438
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2439
{
2440
	struct perf_event *event, *next_event;
2441 2442 2443 2444

	if (!ctx->nr_stat)
		return;

2445 2446
	update_context_time(ctx);

2447 2448
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2449

2450 2451
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2452

2453 2454
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2455

2456
		__perf_event_sync_stat(event, next_event);
2457

2458 2459
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2460 2461 2462
	}
}

2463 2464
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2465
{
P
Peter Zijlstra 已提交
2466
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2467
	struct perf_event_context *next_ctx;
2468
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2469
	struct perf_cpu_context *cpuctx;
2470
	int do_switch = 1;
T
Thomas Gleixner 已提交
2471

P
Peter Zijlstra 已提交
2472 2473
	if (likely(!ctx))
		return;
2474

P
Peter Zijlstra 已提交
2475 2476
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2477 2478
		return;

2479
	rcu_read_lock();
P
Peter Zijlstra 已提交
2480
	next_ctx = next->perf_event_ctxp[ctxn];
2481 2482 2483 2484 2485 2486 2487
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2488
	if (!parent && !next_parent)
2489 2490 2491
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2492 2493 2494 2495 2496 2497 2498 2499 2500
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2501 2502
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2503
		if (context_equiv(ctx, next_ctx)) {
2504 2505
			/*
			 * XXX do we need a memory barrier of sorts
2506
			 * wrt to rcu_dereference() of perf_event_ctxp
2507
			 */
P
Peter Zijlstra 已提交
2508 2509
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2510 2511
			ctx->task = next;
			next_ctx->task = task;
2512 2513 2514

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2515
			do_switch = 0;
2516

2517
			perf_event_sync_stat(ctx, next_ctx);
2518
		}
2519 2520
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2521
	}
2522
unlock:
2523
	rcu_read_unlock();
2524

2525
	if (do_switch) {
2526
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2527
		task_ctx_sched_out(cpuctx, ctx);
2528
		raw_spin_unlock(&ctx->lock);
2529
	}
T
Thomas Gleixner 已提交
2530 2531
}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2582 2583 2584
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2599 2600
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2601 2602 2603
{
	int ctxn;

2604 2605 2606
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2607 2608 2609
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2610 2611
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2612 2613 2614 2615 2616 2617

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2618
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2619
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2620 2621
}

2622 2623
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2624
{
2625 2626
	if (!cpuctx->task_ctx)
		return;
2627 2628 2629 2630

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2631
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2632 2633 2634
	cpuctx->task_ctx = NULL;
}

2635 2636 2637 2638 2639 2640 2641
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2642 2643
}

2644
static void
2645
ctx_pinned_sched_in(struct perf_event_context *ctx,
2646
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2647
{
2648
	struct perf_event *event;
T
Thomas Gleixner 已提交
2649

2650 2651
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2652
			continue;
2653
		if (!event_filter_match(event))
2654 2655
			continue;

S
Stephane Eranian 已提交
2656 2657 2658 2659
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2660
		if (group_can_go_on(event, cpuctx, 1))
2661
			group_sched_in(event, cpuctx, ctx);
2662 2663 2664 2665 2666

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2667 2668 2669
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2670
		}
2671
	}
2672 2673 2674 2675
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2676
		      struct perf_cpu_context *cpuctx)
2677 2678 2679
{
	struct perf_event *event;
	int can_add_hw = 1;
2680

2681 2682 2683
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2684
			continue;
2685 2686
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2687
		 * of events:
2688
		 */
2689
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2690 2691
			continue;

S
Stephane Eranian 已提交
2692 2693 2694 2695
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2696
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2697
			if (group_sched_in(event, cpuctx, ctx))
2698
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2699
		}
T
Thomas Gleixner 已提交
2700
	}
2701 2702 2703 2704 2705
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2706 2707
	     enum event_type_t event_type,
	     struct task_struct *task)
2708
{
2709
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2710 2711 2712
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2713

2714
	ctx->is_active |= event_type;
2715
	if (likely(!ctx->nr_events))
2716
		return;
2717

S
Stephane Eranian 已提交
2718 2719
	now = perf_clock();
	ctx->timestamp = now;
2720
	perf_cgroup_set_timestamp(task, ctx);
2721 2722 2723 2724
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2725
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2726
		ctx_pinned_sched_in(ctx, cpuctx);
2727 2728

	/* Then walk through the lower prio flexible groups */
2729
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2730
		ctx_flexible_sched_in(ctx, cpuctx);
2731 2732
}

2733
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2734 2735
			     enum event_type_t event_type,
			     struct task_struct *task)
2736 2737 2738
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2739
	ctx_sched_in(ctx, cpuctx, event_type, task);
2740 2741
}

S
Stephane Eranian 已提交
2742 2743
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2744
{
P
Peter Zijlstra 已提交
2745
	struct perf_cpu_context *cpuctx;
2746

P
Peter Zijlstra 已提交
2747
	cpuctx = __get_cpu_context(ctx);
2748 2749 2750
	if (cpuctx->task_ctx == ctx)
		return;

2751
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2752
	perf_pmu_disable(ctx->pmu);
2753 2754 2755 2756 2757 2758 2759
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2760 2761
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2762

2763 2764
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2765 2766
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2767 2768
}

P
Peter Zijlstra 已提交
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2780 2781
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2782 2783 2784 2785
{
	struct perf_event_context *ctx;
	int ctxn;

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2796 2797 2798 2799 2800
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2801
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2802
	}
2803

2804 2805 2806
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2807 2808
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2809 2810
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2838
#define REDUCE_FLS(a, b)		\
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2878 2879 2880
	if (!divisor)
		return dividend;

2881 2882 2883
	return div64_u64(dividend, divisor);
}

2884 2885 2886
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2887
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2888
{
2889
	struct hw_perf_event *hwc = &event->hw;
2890
	s64 period, sample_period;
2891 2892
	s64 delta;

2893
	period = perf_calculate_period(event, nsec, count);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2904

2905
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2906 2907 2908
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2909
		local64_set(&hwc->period_left, 0);
2910 2911 2912

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2913
	}
2914 2915
}

2916 2917 2918 2919 2920 2921 2922
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2923
{
2924 2925
	struct perf_event *event;
	struct hw_perf_event *hwc;
2926
	u64 now, period = TICK_NSEC;
2927
	s64 delta;
2928

2929 2930 2931 2932 2933 2934
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2935 2936
		return;

2937
	raw_spin_lock(&ctx->lock);
2938
	perf_pmu_disable(ctx->pmu);
2939

2940
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2941
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2942 2943
			continue;

2944
		if (!event_filter_match(event))
2945 2946
			continue;

2947 2948
		perf_pmu_disable(event->pmu);

2949
		hwc = &event->hw;
2950

2951
		if (hwc->interrupts == MAX_INTERRUPTS) {
2952
			hwc->interrupts = 0;
2953
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2954
			event->pmu->start(event, 0);
2955 2956
		}

2957
		if (!event->attr.freq || !event->attr.sample_freq)
2958
			goto next;
2959

2960 2961 2962 2963 2964
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2965
		now = local64_read(&event->count);
2966 2967
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2968

2969 2970 2971
		/*
		 * restart the event
		 * reload only if value has changed
2972 2973 2974
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2975
		 */
2976
		if (delta > 0)
2977
			perf_adjust_period(event, period, delta, false);
2978 2979

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2980 2981
	next:
		perf_pmu_enable(event->pmu);
2982
	}
2983

2984
	perf_pmu_enable(ctx->pmu);
2985
	raw_spin_unlock(&ctx->lock);
2986 2987
}

2988
/*
2989
 * Round-robin a context's events:
2990
 */
2991
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2992
{
2993 2994 2995 2996 2997 2998
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2999 3000
}

3001
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3002
{
P
Peter Zijlstra 已提交
3003
	struct perf_event_context *ctx = NULL;
3004
	int rotate = 0;
3005

3006 3007 3008 3009
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3010

P
Peter Zijlstra 已提交
3011
	ctx = cpuctx->task_ctx;
3012 3013 3014 3015
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3016

3017
	if (!rotate)
3018 3019
		goto done;

3020
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3021
	perf_pmu_disable(cpuctx->ctx.pmu);
3022

3023 3024 3025
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3026

3027 3028 3029
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3030

3031
	perf_event_sched_in(cpuctx, ctx, current);
3032

3033 3034
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3035
done:
3036 3037

	return rotate;
3038 3039
}

3040 3041 3042
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3043
	if (atomic_read(&nr_freq_events) ||
3044
	    __this_cpu_read(perf_throttled_count))
3045
		return false;
3046 3047
	else
		return true;
3048 3049 3050
}
#endif

3051 3052
void perf_event_task_tick(void)
{
3053 3054
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3055
	int throttled;
3056

3057 3058
	WARN_ON(!irqs_disabled());

3059 3060 3061
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3062
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3063
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3064 3065
}

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3076
	__perf_event_mark_enabled(event);
3077 3078 3079 3080

	return 1;
}

3081
/*
3082
 * Enable all of a task's events that have been marked enable-on-exec.
3083 3084
 * This expects task == current.
 */
3085
static void perf_event_enable_on_exec(int ctxn)
3086
{
3087
	struct perf_event_context *ctx, *clone_ctx = NULL;
3088
	struct perf_cpu_context *cpuctx;
3089
	struct perf_event *event;
3090 3091 3092 3093
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3094
	ctx = current->perf_event_ctxp[ctxn];
3095
	if (!ctx || !ctx->nr_events)
3096 3097
		goto out;

3098 3099 3100 3101
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3102 3103

	/*
3104
	 * Unclone and reschedule this context if we enabled any event.
3105
	 */
3106
	if (enabled) {
3107
		clone_ctx = unclone_ctx(ctx);
3108 3109 3110
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3111

P
Peter Zijlstra 已提交
3112
out:
3113
	local_irq_restore(flags);
3114 3115 3116

	if (clone_ctx)
		put_ctx(clone_ctx);
3117 3118
}

3119 3120 3121 3122 3123
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3124 3125
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3126 3127 3128
	rcu_read_unlock();
}

3129 3130 3131
struct perf_read_data {
	struct perf_event *event;
	bool group;
3132
	int ret;
3133 3134
};

T
Thomas Gleixner 已提交
3135
/*
3136
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3137
 */
3138
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3139
{
3140 3141
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3142
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3143
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3144
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3145

3146 3147 3148 3149
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3150 3151
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3152 3153 3154 3155
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3156
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3157
	if (ctx->is_active) {
3158
		update_context_time(ctx);
S
Stephane Eranian 已提交
3159 3160
		update_cgrp_time_from_event(event);
	}
3161

3162
	update_event_times(event);
3163 3164
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3165

3166 3167 3168
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3169
		goto unlock;
3170 3171 3172 3173 3174
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3175 3176 3177

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3178 3179 3180 3181 3182
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3183
			sub->pmu->read(sub);
3184
		}
3185
	}
3186 3187

	data->ret = pmu->commit_txn(pmu);
3188 3189

unlock:
3190
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3191 3192
}

P
Peter Zijlstra 已提交
3193 3194
static inline u64 perf_event_count(struct perf_event *event)
{
3195 3196 3197 3198
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3199 3200
}

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3254
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3255
{
3256 3257
	int ret = 0;

T
Thomas Gleixner 已提交
3258
	/*
3259 3260
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3261
	 */
3262
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3263 3264 3265
		struct perf_read_data data = {
			.event = event,
			.group = group,
3266
			.ret = 0,
3267
		};
3268
		smp_call_function_single(event->oncpu,
3269
					 __perf_event_read, &data, 1);
3270
		ret = data.ret;
3271
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3272 3273 3274
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3275
		raw_spin_lock_irqsave(&ctx->lock, flags);
3276 3277 3278 3279 3280
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3281
		if (ctx->is_active) {
3282
			update_context_time(ctx);
S
Stephane Eranian 已提交
3283 3284
			update_cgrp_time_from_event(event);
		}
3285 3286 3287 3288
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3289
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3290
	}
3291 3292

	return ret;
T
Thomas Gleixner 已提交
3293 3294
}

3295
/*
3296
 * Initialize the perf_event context in a task_struct:
3297
 */
3298
static void __perf_event_init_context(struct perf_event_context *ctx)
3299
{
3300
	raw_spin_lock_init(&ctx->lock);
3301
	mutex_init(&ctx->mutex);
3302
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3303 3304
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3305 3306
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3307
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3323
	}
3324 3325 3326
	ctx->pmu = pmu;

	return ctx;
3327 3328
}

3329 3330 3331 3332 3333
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3334 3335

	rcu_read_lock();
3336
	if (!vpid)
T
Thomas Gleixner 已提交
3337 3338
		task = current;
	else
3339
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3340 3341 3342 3343 3344 3345 3346 3347
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3348 3349 3350 3351
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3352 3353 3354 3355 3356 3357 3358
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3359 3360 3361
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3362
static struct perf_event_context *
3363 3364
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3365
{
3366
	struct perf_event_context *ctx, *clone_ctx = NULL;
3367
	struct perf_cpu_context *cpuctx;
3368
	void *task_ctx_data = NULL;
3369
	unsigned long flags;
P
Peter Zijlstra 已提交
3370
	int ctxn, err;
3371
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3372

3373
	if (!task) {
3374
		/* Must be root to operate on a CPU event: */
3375
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3376 3377 3378
			return ERR_PTR(-EACCES);

		/*
3379
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3380 3381 3382
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3383
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3384 3385
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3386
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3387
		ctx = &cpuctx->ctx;
3388
		get_ctx(ctx);
3389
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3390 3391 3392 3393

		return ctx;
	}

P
Peter Zijlstra 已提交
3394 3395 3396 3397 3398
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3399 3400 3401 3402 3403 3404 3405 3406
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3407
retry:
P
Peter Zijlstra 已提交
3408
	ctx = perf_lock_task_context(task, ctxn, &flags);
3409
	if (ctx) {
3410
		clone_ctx = unclone_ctx(ctx);
3411
		++ctx->pin_count;
3412 3413 3414 3415 3416

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3417
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3418 3419 3420

		if (clone_ctx)
			put_ctx(clone_ctx);
3421
	} else {
3422
		ctx = alloc_perf_context(pmu, task);
3423 3424 3425
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3426

3427 3428 3429 3430 3431
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3442
		else {
3443
			get_ctx(ctx);
3444
			++ctx->pin_count;
3445
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3446
		}
3447 3448 3449
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3450
			put_ctx(ctx);
3451 3452 3453 3454

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3455 3456 3457
		}
	}

3458
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3459
	return ctx;
3460

P
Peter Zijlstra 已提交
3461
errout:
3462
	kfree(task_ctx_data);
3463
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3464 3465
}

L
Li Zefan 已提交
3466
static void perf_event_free_filter(struct perf_event *event);
3467
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3468

3469
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3470
{
3471
	struct perf_event *event;
P
Peter Zijlstra 已提交
3472

3473 3474 3475
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3476
	perf_event_free_filter(event);
3477
	kfree(event);
P
Peter Zijlstra 已提交
3478 3479
}

3480 3481
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3482

3483
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3484
{
3485 3486 3487 3488 3489 3490
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3491

3492 3493
static void unaccount_event(struct perf_event *event)
{
3494 3495
	bool dec = false;

3496 3497 3498 3499
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3500
		dec = true;
3501 3502 3503 3504 3505 3506
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3507 3508
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3509
	if (event->attr.context_switch) {
3510
		dec = true;
3511 3512
		atomic_dec(&nr_switch_events);
	}
3513
	if (is_cgroup_event(event))
3514
		dec = true;
3515
	if (has_branch_stack(event))
3516 3517 3518
		dec = true;

	if (dec)
3519 3520 3521 3522
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3523

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3609 3610
static void __free_event(struct perf_event *event)
{
3611
	if (!event->parent) {
3612 3613
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3614
	}
3615

3616 3617
	perf_event_free_bpf_prog(event);

3618 3619 3620 3621 3622 3623
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3624 3625
	if (event->pmu) {
		exclusive_event_destroy(event);
3626
		module_put(event->pmu->module);
3627
	}
3628

3629 3630
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3631 3632

static void _free_event(struct perf_event *event)
3633
{
3634
	irq_work_sync(&event->pending);
3635

3636
	unaccount_event(event);
3637

3638
	if (event->rb) {
3639 3640 3641 3642 3643 3644 3645
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3646
		ring_buffer_attach(event, NULL);
3647
		mutex_unlock(&event->mmap_mutex);
3648 3649
	}

S
Stephane Eranian 已提交
3650 3651 3652
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3653
	__free_event(event);
3654 3655
}

P
Peter Zijlstra 已提交
3656 3657 3658 3659 3660
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3661
{
P
Peter Zijlstra 已提交
3662 3663 3664 3665 3666 3667
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3668

P
Peter Zijlstra 已提交
3669
	_free_event(event);
T
Thomas Gleixner 已提交
3670 3671
}

3672
/*
3673
 * Remove user event from the owner task.
3674
 */
3675
static void perf_remove_from_owner(struct perf_event *event)
3676
{
P
Peter Zijlstra 已提交
3677
	struct task_struct *owner;
3678

P
Peter Zijlstra 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3720 3721 3722 3723
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3724
	struct perf_event_context *ctx;
3725 3726 3727 3728 3729 3730

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3731

P
Peter Zijlstra 已提交
3732 3733 3734 3735 3736 3737 3738
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3739
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3740 3741 3742 3743
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3744 3745
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3746
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3747
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3748 3749

	_free_event(event);
3750 3751
}

P
Peter Zijlstra 已提交
3752 3753 3754 3755 3756 3757 3758
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3759 3760 3761
/*
 * Called when the last reference to the file is gone.
 */
3762 3763 3764 3765
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3766 3767
}

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3804
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3805
{
3806
	struct perf_event *child;
3807 3808
	u64 total = 0;

3809 3810 3811
	*enabled = 0;
	*running = 0;

3812
	mutex_lock(&event->child_mutex);
3813

3814
	(void)perf_event_read(event, false);
3815 3816
	total += perf_event_count(event);

3817 3818 3819 3820 3821 3822
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3823
		(void)perf_event_read(child, false);
3824
		total += perf_event_count(child);
3825 3826 3827
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3828
	mutex_unlock(&event->child_mutex);
3829 3830 3831

	return total;
}
3832
EXPORT_SYMBOL_GPL(perf_event_read_value);
3833

3834
static int __perf_read_group_add(struct perf_event *leader,
3835
					u64 read_format, u64 *values)
3836
{
3837 3838
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3839
	int ret;
P
Peter Zijlstra 已提交
3840

3841 3842 3843
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3844

3845 3846 3847 3848 3849 3850 3851 3852 3853
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3854

3855 3856 3857 3858 3859 3860 3861 3862 3863
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3864 3865
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3866

3867 3868 3869 3870 3871
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3872 3873

	return 0;
3874
}
3875

3876 3877 3878 3879 3880
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3881
	int ret;
3882
	u64 *values;
3883

3884
	lockdep_assert_held(&ctx->mutex);
3885

3886 3887 3888
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3889

3890 3891 3892 3893 3894 3895 3896
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3897

3898 3899 3900 3901 3902 3903 3904 3905 3906
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3907

3908
	mutex_unlock(&leader->child_mutex);
3909

3910
	ret = event->read_size;
3911 3912
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3913
	goto out;
3914

3915 3916 3917
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3918
	kfree(values);
3919
	return ret;
3920 3921
}

3922
static int perf_read_one(struct perf_event *event,
3923 3924
				 u64 read_format, char __user *buf)
{
3925
	u64 enabled, running;
3926 3927 3928
	u64 values[4];
	int n = 0;

3929 3930 3931 3932 3933
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3934
	if (read_format & PERF_FORMAT_ID)
3935
		values[n++] = primary_event_id(event);
3936 3937 3938 3939 3940 3941 3942

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3956
/*
3957
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3958 3959
 */
static ssize_t
3960
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3961
{
3962
	u64 read_format = event->attr.read_format;
3963
	int ret;
T
Thomas Gleixner 已提交
3964

3965
	/*
3966
	 * Return end-of-file for a read on a event that is in
3967 3968 3969
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3970
	if (event->state == PERF_EVENT_STATE_ERROR)
3971 3972
		return 0;

3973
	if (count < event->read_size)
3974 3975
		return -ENOSPC;

3976
	WARN_ON_ONCE(event->ctx->parent_ctx);
3977
	if (read_format & PERF_FORMAT_GROUP)
3978
		ret = perf_read_group(event, read_format, buf);
3979
	else
3980
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3981

3982
	return ret;
T
Thomas Gleixner 已提交
3983 3984 3985 3986 3987
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3988
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3989 3990
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3991

P
Peter Zijlstra 已提交
3992
	ctx = perf_event_ctx_lock(event);
3993
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
3994 3995 3996
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3997 3998 3999 4000
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4001
	struct perf_event *event = file->private_data;
4002
	struct ring_buffer *rb;
4003
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4004

4005
	poll_wait(file, &event->waitq, wait);
4006

4007
	if (is_event_hup(event))
4008
		return events;
P
Peter Zijlstra 已提交
4009

4010
	/*
4011 4012
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4013 4014
	 */
	mutex_lock(&event->mmap_mutex);
4015 4016
	rb = event->rb;
	if (rb)
4017
		events = atomic_xchg(&rb->poll, 0);
4018
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4019 4020 4021
	return events;
}

P
Peter Zijlstra 已提交
4022
static void _perf_event_reset(struct perf_event *event)
4023
{
4024
	(void)perf_event_read(event, false);
4025
	local64_set(&event->count, 0);
4026
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4027 4028
}

4029
/*
4030 4031 4032 4033
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4034
 */
4035 4036
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4037
{
4038
	struct perf_event *child;
P
Peter Zijlstra 已提交
4039

4040
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4041

4042 4043 4044
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4045
		func(child);
4046
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4047 4048
}

4049 4050
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4051
{
4052 4053
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4054

P
Peter Zijlstra 已提交
4055 4056
	lockdep_assert_held(&ctx->mutex);

4057
	event = event->group_leader;
4058

4059 4060
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4061
		perf_event_for_each_child(sibling, func);
4062 4063
}

4064 4065
struct period_event {
	struct perf_event *event;
4066
	u64 value;
4067
};
4068

4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
static void ___perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	u64 value = pe->value;

	if (event->attr.freq) {
		event->attr.sample_freq = value;
	} else {
		event->attr.sample_period = value;
		event->hw.sample_period = value;
	}

	local64_set(&event->hw.period_left, 0);
}

4085 4086 4087 4088 4089 4090 4091
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4092

4093
	raw_spin_lock(&ctx->lock);
4094 4095
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4096
	} else {
4097 4098
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4099
	}
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4113
	raw_spin_unlock(&ctx->lock);
4114

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	pe.value = value;

4137 4138
	event_function_call(event, __perf_event_period,
			    ___perf_event_period, &pe);
4139

4140
	return 0;
4141 4142
}

4143 4144
static const struct file_operations perf_fops;

4145
static inline int perf_fget_light(int fd, struct fd *p)
4146
{
4147 4148 4149
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4150

4151 4152 4153
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4154
	}
4155 4156
	*p = f;
	return 0;
4157 4158 4159 4160
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4161
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4162
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4163

P
Peter Zijlstra 已提交
4164
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4165
{
4166
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4167
	u32 flags = arg;
4168 4169

	switch (cmd) {
4170
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4171
		func = _perf_event_enable;
4172
		break;
4173
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4174
		func = _perf_event_disable;
4175
		break;
4176
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4177
		func = _perf_event_reset;
4178
		break;
P
Peter Zijlstra 已提交
4179

4180
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4181
		return _perf_event_refresh(event, arg);
4182

4183 4184
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4185

4186 4187 4188 4189 4190 4191 4192 4193 4194
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4195
	case PERF_EVENT_IOC_SET_OUTPUT:
4196 4197 4198
	{
		int ret;
		if (arg != -1) {
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4209 4210 4211
		}
		return ret;
	}
4212

L
Li Zefan 已提交
4213 4214 4215
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4216 4217 4218
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4219
	default:
P
Peter Zijlstra 已提交
4220
		return -ENOTTY;
4221
	}
P
Peter Zijlstra 已提交
4222 4223

	if (flags & PERF_IOC_FLAG_GROUP)
4224
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4225
	else
4226
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4227 4228

	return 0;
4229 4230
}

P
Peter Zijlstra 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4264
int perf_event_task_enable(void)
4265
{
P
Peter Zijlstra 已提交
4266
	struct perf_event_context *ctx;
4267
	struct perf_event *event;
4268

4269
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4270 4271 4272 4273 4274
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4275
	mutex_unlock(&current->perf_event_mutex);
4276 4277 4278 4279

	return 0;
}

4280
int perf_event_task_disable(void)
4281
{
P
Peter Zijlstra 已提交
4282
	struct perf_event_context *ctx;
4283
	struct perf_event *event;
4284

4285
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4286 4287 4288 4289 4290
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4291
	mutex_unlock(&current->perf_event_mutex);
4292 4293 4294 4295

	return 0;
}

4296
static int perf_event_index(struct perf_event *event)
4297
{
P
Peter Zijlstra 已提交
4298 4299 4300
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4301
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4302 4303
		return 0;

4304
	return event->pmu->event_idx(event);
4305 4306
}

4307
static void calc_timer_values(struct perf_event *event,
4308
				u64 *now,
4309 4310
				u64 *enabled,
				u64 *running)
4311
{
4312
	u64 ctx_time;
4313

4314 4315
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4316 4317 4318 4319
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4335 4336
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4337 4338 4339 4340 4341

unlock:
	rcu_read_unlock();
}

4342 4343
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4344 4345 4346
{
}

4347 4348 4349 4350 4351
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4352
void perf_event_update_userpage(struct perf_event *event)
4353
{
4354
	struct perf_event_mmap_page *userpg;
4355
	struct ring_buffer *rb;
4356
	u64 enabled, running, now;
4357 4358

	rcu_read_lock();
4359 4360 4361 4362
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4363 4364 4365 4366 4367 4368 4369 4370 4371
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4372
	calc_timer_values(event, &now, &enabled, &running);
4373

4374
	userpg = rb->user_page;
4375 4376 4377 4378 4379
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4380
	++userpg->lock;
4381
	barrier();
4382
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4383
	userpg->offset = perf_event_count(event);
4384
	if (userpg->index)
4385
		userpg->offset -= local64_read(&event->hw.prev_count);
4386

4387
	userpg->time_enabled = enabled +
4388
			atomic64_read(&event->child_total_time_enabled);
4389

4390
	userpg->time_running = running +
4391
			atomic64_read(&event->child_total_time_running);
4392

4393
	arch_perf_update_userpage(event, userpg, now);
4394

4395
	barrier();
4396
	++userpg->lock;
4397
	preempt_enable();
4398
unlock:
4399
	rcu_read_unlock();
4400 4401
}

4402 4403 4404
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4405
	struct ring_buffer *rb;
4406 4407 4408 4409 4410 4411 4412 4413 4414
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4415 4416
	rb = rcu_dereference(event->rb);
	if (!rb)
4417 4418 4419 4420 4421
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4422
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4437 4438 4439
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4440
	struct ring_buffer *old_rb = NULL;
4441 4442
	unsigned long flags;

4443 4444 4445 4446 4447 4448
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4449

4450 4451 4452 4453
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4454

4455 4456
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4457
	}
4458

4459
	if (rb) {
4460 4461 4462 4463 4464
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4481 4482 4483 4484 4485 4486 4487 4488
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4489 4490 4491 4492
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4493 4494 4495
	rcu_read_unlock();
}

4496
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4497
{
4498
	struct ring_buffer *rb;
4499

4500
	rcu_read_lock();
4501 4502 4503 4504
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4505 4506 4507
	}
	rcu_read_unlock();

4508
	return rb;
4509 4510
}

4511
void ring_buffer_put(struct ring_buffer *rb)
4512
{
4513
	if (!atomic_dec_and_test(&rb->refcount))
4514
		return;
4515

4516
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4517

4518
	call_rcu(&rb->rcu_head, rb_free_rcu);
4519 4520 4521 4522
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4523
	struct perf_event *event = vma->vm_file->private_data;
4524

4525
	atomic_inc(&event->mmap_count);
4526
	atomic_inc(&event->rb->mmap_count);
4527

4528 4529 4530
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4531 4532
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4533 4534
}

4535 4536 4537 4538 4539 4540 4541 4542
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4543 4544
static void perf_mmap_close(struct vm_area_struct *vma)
{
4545
	struct perf_event *event = vma->vm_file->private_data;
4546

4547
	struct ring_buffer *rb = ring_buffer_get(event);
4548 4549 4550
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4551

4552 4553 4554
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4569 4570 4571
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4572
		goto out_put;
4573

4574
	ring_buffer_attach(event, NULL);
4575 4576 4577
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4578 4579
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4580

4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4597

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4609 4610 4611
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4612
		mutex_unlock(&event->mmap_mutex);
4613
		put_event(event);
4614

4615 4616 4617 4618 4619
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4620
	}
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4636
out_put:
4637
	ring_buffer_put(rb); /* could be last */
4638 4639
}

4640
static const struct vm_operations_struct perf_mmap_vmops = {
4641
	.open		= perf_mmap_open,
4642
	.close		= perf_mmap_close, /* non mergable */
4643 4644
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4645 4646 4647 4648
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4649
	struct perf_event *event = file->private_data;
4650
	unsigned long user_locked, user_lock_limit;
4651
	struct user_struct *user = current_user();
4652
	unsigned long locked, lock_limit;
4653
	struct ring_buffer *rb = NULL;
4654 4655
	unsigned long vma_size;
	unsigned long nr_pages;
4656
	long user_extra = 0, extra = 0;
4657
	int ret = 0, flags = 0;
4658

4659 4660 4661
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4662
	 * same rb.
4663 4664 4665 4666
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4667
	if (!(vma->vm_flags & VM_SHARED))
4668
		return -EINVAL;
4669 4670

	vma_size = vma->vm_end - vma->vm_start;
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4731

4732
	/*
4733
	 * If we have rb pages ensure they're a power-of-two number, so we
4734 4735
	 * can do bitmasks instead of modulo.
	 */
4736
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4737 4738
		return -EINVAL;

4739
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4740 4741
		return -EINVAL;

4742
	WARN_ON_ONCE(event->ctx->parent_ctx);
4743
again:
4744
	mutex_lock(&event->mmap_mutex);
4745
	if (event->rb) {
4746
		if (event->rb->nr_pages != nr_pages) {
4747
			ret = -EINVAL;
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4761 4762 4763
		goto unlock;
	}

4764
	user_extra = nr_pages + 1;
4765 4766

accounting:
4767
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4768 4769 4770 4771 4772 4773

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4774
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4775

4776 4777
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4778

4779
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4780
	lock_limit >>= PAGE_SHIFT;
4781
	locked = vma->vm_mm->pinned_vm + extra;
4782

4783 4784
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4785 4786 4787
		ret = -EPERM;
		goto unlock;
	}
4788

4789
	WARN_ON(!rb && event->rb);
4790

4791
	if (vma->vm_flags & VM_WRITE)
4792
		flags |= RING_BUFFER_WRITABLE;
4793

4794
	if (!rb) {
4795 4796 4797
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4798

4799 4800 4801 4802
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4803

4804 4805 4806
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4807

4808
		ring_buffer_attach(event, rb);
4809

4810 4811 4812
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4813 4814
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4815 4816 4817
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4818

4819
unlock:
4820 4821 4822 4823
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4824
		atomic_inc(&event->mmap_count);
4825 4826 4827 4828
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4829
	mutex_unlock(&event->mmap_mutex);
4830

4831 4832 4833 4834
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4835
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4836
	vma->vm_ops = &perf_mmap_vmops;
4837

4838 4839 4840
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4841
	return ret;
4842 4843
}

P
Peter Zijlstra 已提交
4844 4845
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4846
	struct inode *inode = file_inode(filp);
4847
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4848 4849 4850
	int retval;

	mutex_lock(&inode->i_mutex);
4851
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4852 4853 4854 4855 4856 4857 4858 4859
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4860
static const struct file_operations perf_fops = {
4861
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4862 4863 4864
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4865
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4866
	.compat_ioctl		= perf_compat_ioctl,
4867
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4868
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4869 4870
};

4871
/*
4872
 * Perf event wakeup
4873 4874 4875 4876 4877
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4878 4879 4880 4881 4882 4883 4884 4885
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4886
void perf_event_wakeup(struct perf_event *event)
4887
{
4888
	ring_buffer_wakeup(event);
4889

4890
	if (event->pending_kill) {
4891
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4892
		event->pending_kill = 0;
4893
	}
4894 4895
}

4896
static void perf_pending_event(struct irq_work *entry)
4897
{
4898 4899
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4900 4901 4902 4903 4904 4905 4906
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4907

4908 4909 4910
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4911 4912
	}

4913 4914 4915
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4916
	}
4917 4918 4919

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4920 4921
}

4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4958
static void perf_sample_regs_user(struct perf_regs *regs_user,
4959 4960
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4961
{
4962 4963
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4964
		regs_user->regs = regs;
4965 4966
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4967 4968 4969
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4970 4971 4972
	}
}

4973 4974 4975 4976 4977 4978 4979 4980
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5076 5077 5078
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5092
		data->time = perf_event_clock(event);
5093

5094
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5106 5107 5108
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5133 5134 5135

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5136 5137
}

5138 5139 5140
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5141 5142 5143 5144 5145
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5146
static void perf_output_read_one(struct perf_output_handle *handle,
5147 5148
				 struct perf_event *event,
				 u64 enabled, u64 running)
5149
{
5150
	u64 read_format = event->attr.read_format;
5151 5152 5153
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5154
	values[n++] = perf_event_count(event);
5155
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5156
		values[n++] = enabled +
5157
			atomic64_read(&event->child_total_time_enabled);
5158 5159
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5160
		values[n++] = running +
5161
			atomic64_read(&event->child_total_time_running);
5162 5163
	}
	if (read_format & PERF_FORMAT_ID)
5164
		values[n++] = primary_event_id(event);
5165

5166
	__output_copy(handle, values, n * sizeof(u64));
5167 5168 5169
}

/*
5170
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5171 5172
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5173 5174
			    struct perf_event *event,
			    u64 enabled, u64 running)
5175
{
5176 5177
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5178 5179 5180 5181 5182 5183
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5184
		values[n++] = enabled;
5185 5186

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5187
		values[n++] = running;
5188

5189
	if (leader != event)
5190 5191
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5192
	values[n++] = perf_event_count(leader);
5193
	if (read_format & PERF_FORMAT_ID)
5194
		values[n++] = primary_event_id(leader);
5195

5196
	__output_copy(handle, values, n * sizeof(u64));
5197

5198
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5199 5200
		n = 0;

5201 5202
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5203 5204
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5205
		values[n++] = perf_event_count(sub);
5206
		if (read_format & PERF_FORMAT_ID)
5207
			values[n++] = primary_event_id(sub);
5208

5209
		__output_copy(handle, values, n * sizeof(u64));
5210 5211 5212
	}
}

5213 5214 5215
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5216
static void perf_output_read(struct perf_output_handle *handle,
5217
			     struct perf_event *event)
5218
{
5219
	u64 enabled = 0, running = 0, now;
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5231
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5232
		calc_timer_values(event, &now, &enabled, &running);
5233

5234
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5235
		perf_output_read_group(handle, event, enabled, running);
5236
	else
5237
		perf_output_read_one(handle, event, enabled, running);
5238 5239
}

5240 5241 5242
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5243
			struct perf_event *event)
5244 5245 5246 5247 5248
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5249 5250 5251
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5277
		perf_output_read(handle, event);
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5288
			__output_copy(handle, data->callchain, size);
5289 5290 5291 5292 5293 5294 5295 5296
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5297 5298 5299 5300 5301 5302 5303 5304 5305
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5317

5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5352

5353
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5354 5355 5356
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5357
	}
A
Andi Kleen 已提交
5358 5359 5360

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5361 5362 5363

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5364

A
Andi Kleen 已提交
5365 5366 5367
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5398 5399 5400 5401
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5402
			 struct perf_event *event,
5403
			 struct pt_regs *regs)
5404
{
5405
	u64 sample_type = event->attr.sample_type;
5406

5407
	header->type = PERF_RECORD_SAMPLE;
5408
	header->size = sizeof(*header) + event->header_size;
5409 5410 5411

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5412

5413
	__perf_event_header__init_id(header, data, event);
5414

5415
	if (sample_type & PERF_SAMPLE_IP)
5416 5417
		data->ip = perf_instruction_pointer(regs);

5418
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5419
		int size = 1;
5420

5421
		data->callchain = perf_callchain(event, regs);
5422 5423 5424 5425 5426

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5427 5428
	}

5429
	if (sample_type & PERF_SAMPLE_RAW) {
5430 5431 5432 5433 5434 5435 5436
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5437
		header->size += round_up(size, sizeof(u64));
5438
	}
5439 5440 5441 5442 5443 5444 5445 5446 5447

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5448

5449
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5450 5451
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5452

5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5476
						     data->regs_user.regs);
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5504
}
5505

5506 5507 5508
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5509 5510 5511
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5512

5513 5514 5515
	/* protect the callchain buffers */
	rcu_read_lock();

5516
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5517

5518
	if (perf_output_begin(&handle, event, header.size))
5519
		goto exit;
5520

5521
	perf_output_sample(&handle, &header, data, event);
5522

5523
	perf_output_end(&handle);
5524 5525 5526

exit:
	rcu_read_unlock();
5527 5528
}

5529
/*
5530
 * read event_id
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5541
perf_event_read_event(struct perf_event *event,
5542 5543 5544
			struct task_struct *task)
{
	struct perf_output_handle handle;
5545
	struct perf_sample_data sample;
5546
	struct perf_read_event read_event = {
5547
		.header = {
5548
			.type = PERF_RECORD_READ,
5549
			.misc = 0,
5550
			.size = sizeof(read_event) + event->read_size,
5551
		},
5552 5553
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5554
	};
5555
	int ret;
5556

5557
	perf_event_header__init_id(&read_event.header, &sample, event);
5558
	ret = perf_output_begin(&handle, event, read_event.header.size);
5559 5560 5561
	if (ret)
		return;

5562
	perf_output_put(&handle, read_event);
5563
	perf_output_read(&handle, event);
5564
	perf_event__output_id_sample(event, &handle, &sample);
5565

5566 5567 5568
	perf_output_end(&handle);
}

5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5583
		output(event, data);
5584 5585 5586
	}
}

J
Jiri Olsa 已提交
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5598
static void
5599
perf_event_aux(perf_event_aux_output_cb output, void *data,
5600 5601 5602 5603 5604 5605 5606
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5618 5619 5620 5621 5622
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5623
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5624 5625 5626 5627 5628
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5629
			perf_event_aux_ctx(ctx, output, data);
5630 5631 5632 5633 5634 5635
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5636
/*
P
Peter Zijlstra 已提交
5637 5638
 * task tracking -- fork/exit
 *
5639
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5640 5641
 */

P
Peter Zijlstra 已提交
5642
struct perf_task_event {
5643
	struct task_struct		*task;
5644
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5645 5646 5647 5648 5649 5650

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5651 5652
		u32				tid;
		u32				ptid;
5653
		u64				time;
5654
	} event_id;
P
Peter Zijlstra 已提交
5655 5656
};

5657 5658
static int perf_event_task_match(struct perf_event *event)
{
5659 5660 5661
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5662 5663
}

5664
static void perf_event_task_output(struct perf_event *event,
5665
				   void *data)
P
Peter Zijlstra 已提交
5666
{
5667
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5668
	struct perf_output_handle handle;
5669
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5670
	struct task_struct *task = task_event->task;
5671
	int ret, size = task_event->event_id.header.size;
5672

5673 5674 5675
	if (!perf_event_task_match(event))
		return;

5676
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5677

5678
	ret = perf_output_begin(&handle, event,
5679
				task_event->event_id.header.size);
5680
	if (ret)
5681
		goto out;
P
Peter Zijlstra 已提交
5682

5683 5684
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5685

5686 5687
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5688

5689 5690
	task_event->event_id.time = perf_event_clock(event);

5691
	perf_output_put(&handle, task_event->event_id);
5692

5693 5694
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5695
	perf_output_end(&handle);
5696 5697
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5698 5699
}

5700 5701
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5702
			      int new)
P
Peter Zijlstra 已提交
5703
{
P
Peter Zijlstra 已提交
5704
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5705

5706 5707 5708
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5709 5710
		return;

P
Peter Zijlstra 已提交
5711
	task_event = (struct perf_task_event){
5712 5713
		.task	  = task,
		.task_ctx = task_ctx,
5714
		.event_id    = {
P
Peter Zijlstra 已提交
5715
			.header = {
5716
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5717
				.misc = 0,
5718
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5719
			},
5720 5721
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5722 5723
			/* .tid  */
			/* .ptid */
5724
			/* .time */
P
Peter Zijlstra 已提交
5725 5726 5727
		},
	};

5728
	perf_event_aux(perf_event_task_output,
5729 5730
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5731 5732
}

5733
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5734
{
5735
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5736 5737
}

5738 5739 5740 5741 5742
/*
 * comm tracking
 */

struct perf_comm_event {
5743 5744
	struct task_struct	*task;
	char			*comm;
5745 5746 5747 5748 5749 5750 5751
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5752
	} event_id;
5753 5754
};

5755 5756 5757 5758 5759
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5760
static void perf_event_comm_output(struct perf_event *event,
5761
				   void *data)
5762
{
5763
	struct perf_comm_event *comm_event = data;
5764
	struct perf_output_handle handle;
5765
	struct perf_sample_data sample;
5766
	int size = comm_event->event_id.header.size;
5767 5768
	int ret;

5769 5770 5771
	if (!perf_event_comm_match(event))
		return;

5772 5773
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5774
				comm_event->event_id.header.size);
5775 5776

	if (ret)
5777
		goto out;
5778

5779 5780
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5781

5782
	perf_output_put(&handle, comm_event->event_id);
5783
	__output_copy(&handle, comm_event->comm,
5784
				   comm_event->comm_size);
5785 5786 5787

	perf_event__output_id_sample(event, &handle, &sample);

5788
	perf_output_end(&handle);
5789 5790
out:
	comm_event->event_id.header.size = size;
5791 5792
}

5793
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5794
{
5795
	char comm[TASK_COMM_LEN];
5796 5797
	unsigned int size;

5798
	memset(comm, 0, sizeof(comm));
5799
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5800
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5801 5802 5803 5804

	comm_event->comm = comm;
	comm_event->comm_size = size;

5805
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5806

5807
	perf_event_aux(perf_event_comm_output,
5808 5809
		       comm_event,
		       NULL);
5810 5811
}

5812
void perf_event_comm(struct task_struct *task, bool exec)
5813
{
5814 5815
	struct perf_comm_event comm_event;

5816
	if (!atomic_read(&nr_comm_events))
5817
		return;
5818

5819
	comm_event = (struct perf_comm_event){
5820
		.task	= task,
5821 5822
		/* .comm      */
		/* .comm_size */
5823
		.event_id  = {
5824
			.header = {
5825
				.type = PERF_RECORD_COMM,
5826
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5827 5828 5829 5830
				/* .size */
			},
			/* .pid */
			/* .tid */
5831 5832 5833
		},
	};

5834
	perf_event_comm_event(&comm_event);
5835 5836
}

5837 5838 5839 5840 5841
/*
 * mmap tracking
 */

struct perf_mmap_event {
5842 5843 5844 5845
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5846 5847 5848
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5849
	u32			prot, flags;
5850 5851 5852 5853 5854 5855 5856 5857 5858

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5859
	} event_id;
5860 5861
};

5862 5863 5864 5865 5866 5867 5868 5869
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5870
	       (executable && (event->attr.mmap || event->attr.mmap2));
5871 5872
}

5873
static void perf_event_mmap_output(struct perf_event *event,
5874
				   void *data)
5875
{
5876
	struct perf_mmap_event *mmap_event = data;
5877
	struct perf_output_handle handle;
5878
	struct perf_sample_data sample;
5879
	int size = mmap_event->event_id.header.size;
5880
	int ret;
5881

5882 5883 5884
	if (!perf_event_mmap_match(event, data))
		return;

5885 5886 5887 5888 5889
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5890
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5891 5892
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5893 5894
	}

5895 5896
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5897
				mmap_event->event_id.header.size);
5898
	if (ret)
5899
		goto out;
5900

5901 5902
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5903

5904
	perf_output_put(&handle, mmap_event->event_id);
5905 5906 5907 5908 5909 5910

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5911 5912
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5913 5914
	}

5915
	__output_copy(&handle, mmap_event->file_name,
5916
				   mmap_event->file_size);
5917 5918 5919

	perf_event__output_id_sample(event, &handle, &sample);

5920
	perf_output_end(&handle);
5921 5922
out:
	mmap_event->event_id.header.size = size;
5923 5924
}

5925
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5926
{
5927 5928
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5929 5930
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5931
	u32 prot = 0, flags = 0;
5932 5933 5934
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5935
	char *name;
5936

5937
	if (file) {
5938 5939
		struct inode *inode;
		dev_t dev;
5940

5941
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5942
		if (!buf) {
5943 5944
			name = "//enomem";
			goto cpy_name;
5945
		}
5946
		/*
5947
		 * d_path() works from the end of the rb backwards, so we
5948 5949 5950
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5951
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5952
		if (IS_ERR(name)) {
5953 5954
			name = "//toolong";
			goto cpy_name;
5955
		}
5956 5957 5958 5959 5960 5961
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5984
		goto got_name;
5985
	} else {
5986 5987 5988 5989 5990 5991
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5992
		name = (char *)arch_vma_name(vma);
5993 5994
		if (name)
			goto cpy_name;
5995

5996
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5997
				vma->vm_end >= vma->vm_mm->brk) {
5998 5999
			name = "[heap]";
			goto cpy_name;
6000 6001
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6002
				vma->vm_end >= vma->vm_mm->start_stack) {
6003 6004
			name = "[stack]";
			goto cpy_name;
6005 6006
		}

6007 6008
		name = "//anon";
		goto cpy_name;
6009 6010
	}

6011 6012 6013
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6014
got_name:
6015 6016 6017 6018 6019 6020 6021 6022
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6023 6024 6025

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6026 6027 6028 6029
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6030 6031
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6032

6033 6034 6035
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6036
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6037

6038
	perf_event_aux(perf_event_mmap_output,
6039 6040
		       mmap_event,
		       NULL);
6041

6042 6043 6044
	kfree(buf);
}

6045
void perf_event_mmap(struct vm_area_struct *vma)
6046
{
6047 6048
	struct perf_mmap_event mmap_event;

6049
	if (!atomic_read(&nr_mmap_events))
6050 6051 6052
		return;

	mmap_event = (struct perf_mmap_event){
6053
		.vma	= vma,
6054 6055
		/* .file_name */
		/* .file_size */
6056
		.event_id  = {
6057
			.header = {
6058
				.type = PERF_RECORD_MMAP,
6059
				.misc = PERF_RECORD_MISC_USER,
6060 6061 6062 6063
				/* .size */
			},
			/* .pid */
			/* .tid */
6064 6065
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6066
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6067
		},
6068 6069 6070 6071
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6072 6073
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6074 6075
	};

6076
	perf_event_mmap_event(&mmap_event);
6077 6078
}

A
Alexander Shishkin 已提交
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6231 6232 6233 6234
/*
 * IRQ throttle logging
 */

6235
static void perf_log_throttle(struct perf_event *event, int enable)
6236 6237
{
	struct perf_output_handle handle;
6238
	struct perf_sample_data sample;
6239 6240 6241 6242 6243
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6244
		u64				id;
6245
		u64				stream_id;
6246 6247
	} throttle_event = {
		.header = {
6248
			.type = PERF_RECORD_THROTTLE,
6249 6250 6251
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6252
		.time		= perf_event_clock(event),
6253 6254
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6255 6256
	};

6257
	if (enable)
6258
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6259

6260 6261 6262
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6263
				throttle_event.header.size);
6264 6265 6266 6267
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6268
	perf_event__output_id_sample(event, &handle, &sample);
6269 6270 6271
	perf_output_end(&handle);
}

6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6308
/*
6309
 * Generic event overflow handling, sampling.
6310 6311
 */

6312
static int __perf_event_overflow(struct perf_event *event,
6313 6314
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6315
{
6316 6317
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6318
	u64 seq;
6319 6320
	int ret = 0;

6321 6322 6323 6324 6325 6326 6327
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6328 6329 6330 6331 6332 6333 6334 6335 6336
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6337 6338
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6339
			tick_nohz_full_kick();
6340 6341
			ret = 1;
		}
6342
	}
6343

6344
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6345
		u64 now = perf_clock();
6346
		s64 delta = now - hwc->freq_time_stamp;
6347

6348
		hwc->freq_time_stamp = now;
6349

6350
		if (delta > 0 && delta < 2*TICK_NSEC)
6351
			perf_adjust_period(event, delta, hwc->last_period, true);
6352 6353
	}

6354 6355
	/*
	 * XXX event_limit might not quite work as expected on inherited
6356
	 * events
6357 6358
	 */

6359 6360
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6361
		ret = 1;
6362
		event->pending_kill = POLL_HUP;
6363 6364
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6365 6366
	}

6367
	if (event->overflow_handler)
6368
		event->overflow_handler(event, data, regs);
6369
	else
6370
		perf_event_output(event, data, regs);
6371

6372
	if (*perf_event_fasync(event) && event->pending_kill) {
6373 6374
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6375 6376
	}

6377
	return ret;
6378 6379
}

6380
int perf_event_overflow(struct perf_event *event,
6381 6382
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6383
{
6384
	return __perf_event_overflow(event, 1, data, regs);
6385 6386
}

6387
/*
6388
 * Generic software event infrastructure
6389 6390
 */

6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6402
/*
6403 6404
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6405 6406 6407 6408
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6409
u64 perf_swevent_set_period(struct perf_event *event)
6410
{
6411
	struct hw_perf_event *hwc = &event->hw;
6412 6413 6414 6415 6416
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6417 6418

again:
6419
	old = val = local64_read(&hwc->period_left);
6420 6421
	if (val < 0)
		return 0;
6422

6423 6424 6425
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6426
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6427
		goto again;
6428

6429
	return nr;
6430 6431
}

6432
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6433
				    struct perf_sample_data *data,
6434
				    struct pt_regs *regs)
6435
{
6436
	struct hw_perf_event *hwc = &event->hw;
6437
	int throttle = 0;
6438

6439 6440
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6441

6442 6443
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6444

6445
	for (; overflow; overflow--) {
6446
		if (__perf_event_overflow(event, throttle,
6447
					    data, regs)) {
6448 6449 6450 6451 6452 6453
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6454
		throttle = 1;
6455
	}
6456 6457
}

P
Peter Zijlstra 已提交
6458
static void perf_swevent_event(struct perf_event *event, u64 nr,
6459
			       struct perf_sample_data *data,
6460
			       struct pt_regs *regs)
6461
{
6462
	struct hw_perf_event *hwc = &event->hw;
6463

6464
	local64_add(nr, &event->count);
6465

6466 6467 6468
	if (!regs)
		return;

6469
	if (!is_sampling_event(event))
6470
		return;
6471

6472 6473 6474 6475 6476 6477
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6478
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6479
		return perf_swevent_overflow(event, 1, data, regs);
6480

6481
	if (local64_add_negative(nr, &hwc->period_left))
6482
		return;
6483

6484
	perf_swevent_overflow(event, 0, data, regs);
6485 6486
}

6487 6488 6489
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6490
	if (event->hw.state & PERF_HES_STOPPED)
6491
		return 1;
P
Peter Zijlstra 已提交
6492

6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6504
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6505
				enum perf_type_id type,
L
Li Zefan 已提交
6506 6507 6508
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6509
{
6510
	if (event->attr.type != type)
6511
		return 0;
6512

6513
	if (event->attr.config != event_id)
6514 6515
		return 0;

6516 6517
	if (perf_exclude_event(event, regs))
		return 0;
6518 6519 6520 6521

	return 1;
}

6522 6523 6524 6525 6526 6527 6528
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6529 6530
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6531
{
6532 6533 6534 6535
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6536

6537 6538
/* For the read side: events when they trigger */
static inline struct hlist_head *
6539
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6540 6541
{
	struct swevent_hlist *hlist;
6542

6543
	hlist = rcu_dereference(swhash->swevent_hlist);
6544 6545 6546
	if (!hlist)
		return NULL;

6547 6548 6549 6550 6551
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6552
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6563
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6564 6565 6566 6567 6568
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6569 6570 6571
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6572
				    u64 nr,
6573 6574
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6575
{
6576
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6577
	struct perf_event *event;
6578
	struct hlist_head *head;
6579

6580
	rcu_read_lock();
6581
	head = find_swevent_head_rcu(swhash, type, event_id);
6582 6583 6584
	if (!head)
		goto end;

6585
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6586
		if (perf_swevent_match(event, type, event_id, data, regs))
6587
			perf_swevent_event(event, nr, data, regs);
6588
	}
6589 6590
end:
	rcu_read_unlock();
6591 6592
}

6593 6594
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6595
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6596
{
6597
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6598

6599
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6600
}
I
Ingo Molnar 已提交
6601
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6602

6603
inline void perf_swevent_put_recursion_context(int rctx)
6604
{
6605
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6606

6607
	put_recursion_context(swhash->recursion, rctx);
6608
}
6609

6610
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6611
{
6612
	struct perf_sample_data data;
6613

6614
	if (WARN_ON_ONCE(!regs))
6615
		return;
6616

6617
	perf_sample_data_init(&data, addr, 0);
6618
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6631 6632

	perf_swevent_put_recursion_context(rctx);
6633
fail:
6634
	preempt_enable_notrace();
6635 6636
}

6637
static void perf_swevent_read(struct perf_event *event)
6638 6639 6640
{
}

P
Peter Zijlstra 已提交
6641
static int perf_swevent_add(struct perf_event *event, int flags)
6642
{
6643
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6644
	struct hw_perf_event *hwc = &event->hw;
6645 6646
	struct hlist_head *head;

6647
	if (is_sampling_event(event)) {
6648
		hwc->last_period = hwc->sample_period;
6649
		perf_swevent_set_period(event);
6650
	}
6651

P
Peter Zijlstra 已提交
6652 6653
	hwc->state = !(flags & PERF_EF_START);

6654
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6655
	if (WARN_ON_ONCE(!head))
6656 6657 6658
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6659
	perf_event_update_userpage(event);
6660

6661 6662 6663
	return 0;
}

P
Peter Zijlstra 已提交
6664
static void perf_swevent_del(struct perf_event *event, int flags)
6665
{
6666
	hlist_del_rcu(&event->hlist_entry);
6667 6668
}

P
Peter Zijlstra 已提交
6669
static void perf_swevent_start(struct perf_event *event, int flags)
6670
{
P
Peter Zijlstra 已提交
6671
	event->hw.state = 0;
6672
}
I
Ingo Molnar 已提交
6673

P
Peter Zijlstra 已提交
6674
static void perf_swevent_stop(struct perf_event *event, int flags)
6675
{
P
Peter Zijlstra 已提交
6676
	event->hw.state = PERF_HES_STOPPED;
6677 6678
}

6679 6680
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6681
swevent_hlist_deref(struct swevent_htable *swhash)
6682
{
6683 6684
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6685 6686
}

6687
static void swevent_hlist_release(struct swevent_htable *swhash)
6688
{
6689
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6690

6691
	if (!hlist)
6692 6693
		return;

6694
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6695
	kfree_rcu(hlist, rcu_head);
6696 6697 6698 6699
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6700
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6701

6702
	mutex_lock(&swhash->hlist_mutex);
6703

6704 6705
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6706

6707
	mutex_unlock(&swhash->hlist_mutex);
6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6720
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6721 6722
	int err = 0;

6723 6724
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6725 6726 6727 6728 6729 6730 6731
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6732
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6733
	}
6734
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6735
exit:
6736
	mutex_unlock(&swhash->hlist_mutex);
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6757
fail:
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6768
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6769

6770 6771 6772
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6773

6774 6775
	WARN_ON(event->parent);

6776
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6777 6778 6779 6780 6781
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6782
	u64 event_id = event->attr.config;
6783 6784 6785 6786

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6787 6788 6789 6790 6791 6792
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6793 6794 6795 6796 6797 6798 6799 6800 6801
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6802
	if (event_id >= PERF_COUNT_SW_MAX)
6803 6804 6805 6806 6807 6808 6809 6810 6811
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6812
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6813 6814 6815 6816 6817 6818 6819
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6820
	.task_ctx_nr	= perf_sw_context,
6821

6822 6823
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6824
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6825 6826 6827 6828
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6829 6830 6831
	.read		= perf_swevent_read,
};

6832 6833
#ifdef CONFIG_EVENT_TRACING

6834 6835 6836 6837 6838
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6839 6840 6841 6842
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6843 6844 6845 6846 6847 6848 6849 6850 6851
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6852 6853
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6854 6855 6856 6857
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6858 6859 6860 6861 6862 6863 6864 6865 6866
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6867 6868
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6869 6870
{
	struct perf_sample_data data;
6871 6872
	struct perf_event *event;

6873 6874 6875 6876 6877
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6878
	perf_sample_data_init(&data, addr, 0);
6879 6880
	data.raw = &raw;

6881
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6882
		if (perf_tp_event_match(event, &data, regs))
6883
			perf_swevent_event(event, count, &data, regs);
6884
	}
6885

6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6911
	perf_swevent_put_recursion_context(rctx);
6912 6913 6914
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6915
static void tp_perf_event_destroy(struct perf_event *event)
6916
{
6917
	perf_trace_destroy(event);
6918 6919
}

6920
static int perf_tp_event_init(struct perf_event *event)
6921
{
6922 6923
	int err;

6924 6925 6926
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6927 6928 6929 6930 6931 6932
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6933 6934
	err = perf_trace_init(event);
	if (err)
6935
		return err;
6936

6937
	event->destroy = tp_perf_event_destroy;
6938

6939 6940 6941 6942
	return 0;
}

static struct pmu perf_tracepoint = {
6943 6944
	.task_ctx_nr	= perf_sw_context,

6945
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6946 6947 6948 6949
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6950 6951 6952 6953 6954
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6955
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6956
}
L
Li Zefan 已提交
6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

6991 6992
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
6993 6994 6995 6996 6997 6998
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

6999
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7024
#else
L
Li Zefan 已提交
7025

7026
static inline void perf_tp_register(void)
7027 7028
{
}
L
Li Zefan 已提交
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7039 7040 7041 7042 7043 7044 7045 7046
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7047
#endif /* CONFIG_EVENT_TRACING */
7048

7049
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7050
void perf_bp_event(struct perf_event *bp, void *data)
7051
{
7052 7053 7054
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7055
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7056

P
Peter Zijlstra 已提交
7057
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7058
		perf_swevent_event(bp, 1, &sample, regs);
7059 7060 7061
}
#endif

7062 7063 7064
/*
 * hrtimer based swevent callback
 */
7065

7066
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7067
{
7068 7069 7070 7071 7072
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7073

7074
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7075 7076 7077 7078

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7079
	event->pmu->read(event);
7080

7081
	perf_sample_data_init(&data, 0, event->hw.last_period);
7082 7083 7084
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7085
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7086
			if (__perf_event_overflow(event, 1, &data, regs))
7087 7088
				ret = HRTIMER_NORESTART;
	}
7089

7090 7091
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7092

7093
	return ret;
7094 7095
}

7096
static void perf_swevent_start_hrtimer(struct perf_event *event)
7097
{
7098
	struct hw_perf_event *hwc = &event->hw;
7099 7100 7101 7102
	s64 period;

	if (!is_sampling_event(event))
		return;
7103

7104 7105 7106 7107
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7108

7109 7110 7111 7112
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7113 7114
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7115
}
7116 7117

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7118
{
7119 7120
	struct hw_perf_event *hwc = &event->hw;

7121
	if (is_sampling_event(event)) {
7122
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7123
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7124 7125 7126

		hrtimer_cancel(&hwc->hrtimer);
	}
7127 7128
}

P
Peter Zijlstra 已提交
7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7149
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7150 7151 7152 7153
		event->attr.freq = 0;
	}
}

7154 7155 7156 7157 7158
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7159
{
7160 7161 7162
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7163
	now = local_clock();
7164 7165
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7166 7167
}

P
Peter Zijlstra 已提交
7168
static void cpu_clock_event_start(struct perf_event *event, int flags)
7169
{
P
Peter Zijlstra 已提交
7170
	local64_set(&event->hw.prev_count, local_clock());
7171 7172 7173
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7174
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7175
{
7176 7177 7178
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7179

P
Peter Zijlstra 已提交
7180 7181 7182 7183
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7184
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7185 7186 7187 7188 7189 7190 7191 7192 7193

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7194 7195 7196 7197
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7198

7199 7200 7201 7202 7203 7204 7205 7206
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7207 7208 7209 7210 7211 7212
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7213 7214
	perf_swevent_init_hrtimer(event);

7215
	return 0;
7216 7217
}

7218
static struct pmu perf_cpu_clock = {
7219 7220
	.task_ctx_nr	= perf_sw_context,

7221 7222
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7223
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7224 7225 7226 7227
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7228 7229 7230 7231 7232 7233 7234 7235
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7236
{
7237 7238
	u64 prev;
	s64 delta;
7239

7240 7241 7242 7243
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7244

P
Peter Zijlstra 已提交
7245
static void task_clock_event_start(struct perf_event *event, int flags)
7246
{
P
Peter Zijlstra 已提交
7247
	local64_set(&event->hw.prev_count, event->ctx->time);
7248 7249 7250
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7251
static void task_clock_event_stop(struct perf_event *event, int flags)
7252 7253 7254
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7255 7256 7257 7258 7259 7260
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7261
	perf_event_update_userpage(event);
7262

P
Peter Zijlstra 已提交
7263 7264 7265 7266 7267 7268
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7269 7270 7271 7272
}

static void task_clock_event_read(struct perf_event *event)
{
7273 7274 7275
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7276 7277 7278 7279 7280

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7281
{
7282 7283 7284 7285 7286 7287
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7288 7289 7290 7291 7292 7293
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7294 7295
	perf_swevent_init_hrtimer(event);

7296
	return 0;
L
Li Zefan 已提交
7297 7298
}

7299
static struct pmu perf_task_clock = {
7300 7301
	.task_ctx_nr	= perf_sw_context,

7302 7303
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7304
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7305 7306 7307 7308
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7309 7310
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7311

P
Peter Zijlstra 已提交
7312
static void perf_pmu_nop_void(struct pmu *pmu)
7313 7314
{
}
L
Li Zefan 已提交
7315

7316 7317 7318 7319
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7320
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7321
{
P
Peter Zijlstra 已提交
7322
	return 0;
L
Li Zefan 已提交
7323 7324
}

7325
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7326 7327

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7328
{
7329 7330 7331 7332 7333
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7334
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7335 7336
}

P
Peter Zijlstra 已提交
7337 7338
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7339 7340 7341 7342 7343 7344 7345
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7346 7347 7348
	perf_pmu_enable(pmu);
	return 0;
}
7349

P
Peter Zijlstra 已提交
7350
static void perf_pmu_cancel_txn(struct pmu *pmu)
7351
{
7352 7353 7354 7355 7356 7357 7358
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7359
	perf_pmu_enable(pmu);
7360 7361
}

7362 7363
static int perf_event_idx_default(struct perf_event *event)
{
7364
	return 0;
7365 7366
}

P
Peter Zijlstra 已提交
7367 7368 7369 7370
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7371
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7372
{
P
Peter Zijlstra 已提交
7373
	struct pmu *pmu;
7374

P
Peter Zijlstra 已提交
7375 7376
	if (ctxn < 0)
		return NULL;
7377

P
Peter Zijlstra 已提交
7378 7379 7380 7381
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7382

P
Peter Zijlstra 已提交
7383
	return NULL;
7384 7385
}

7386
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7387
{
7388 7389 7390 7391 7392 7393 7394
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7395 7396
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7397 7398 7399 7400 7401 7402
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7403

P
Peter Zijlstra 已提交
7404
	mutex_lock(&pmus_lock);
7405
	/*
P
Peter Zijlstra 已提交
7406
	 * Like a real lame refcount.
7407
	 */
7408 7409 7410
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7411
			goto out;
7412
		}
P
Peter Zijlstra 已提交
7413
	}
7414

7415
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7416 7417
out:
	mutex_unlock(&pmus_lock);
7418
}
P
Peter Zijlstra 已提交
7419
static struct idr pmu_idr;
7420

P
Peter Zijlstra 已提交
7421 7422 7423 7424 7425 7426 7427
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7428
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7429

7430 7431 7432 7433 7434 7435 7436 7437 7438 7439
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7440 7441
static DEFINE_MUTEX(mux_interval_mutex);

7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7461
	mutex_lock(&mux_interval_mutex);
7462 7463 7464
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7465 7466
	get_online_cpus();
	for_each_online_cpu(cpu) {
7467 7468 7469 7470
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7471 7472
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7473
	}
7474 7475
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7476 7477 7478

	return count;
}
7479
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7480

7481 7482 7483 7484
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7485
};
7486
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7487 7488 7489 7490

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7491
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7507
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7528
static struct lock_class_key cpuctx_mutex;
7529
static struct lock_class_key cpuctx_lock;
7530

7531
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7532
{
P
Peter Zijlstra 已提交
7533
	int cpu, ret;
7534

7535
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7536 7537 7538 7539
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7540

P
Peter Zijlstra 已提交
7541 7542 7543 7544 7545 7546
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7547 7548 7549
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7550 7551 7552 7553 7554
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7555 7556 7557 7558 7559 7560
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7561
skip_type:
P
Peter Zijlstra 已提交
7562 7563 7564
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7565

W
Wei Yongjun 已提交
7566
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7567 7568
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7569
		goto free_dev;
7570

P
Peter Zijlstra 已提交
7571 7572 7573 7574
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7575
		__perf_event_init_context(&cpuctx->ctx);
7576
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7577
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7578
		cpuctx->ctx.pmu = pmu;
7579

7580
		__perf_mux_hrtimer_init(cpuctx, cpu);
7581

7582
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7583
	}
7584

P
Peter Zijlstra 已提交
7585
got_cpu_context:
P
Peter Zijlstra 已提交
7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7597
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7598 7599
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7600
		}
7601
	}
7602

P
Peter Zijlstra 已提交
7603 7604 7605 7606 7607
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7608 7609 7610
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7611
	list_add_rcu(&pmu->entry, &pmus);
7612
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7613 7614
	ret = 0;
unlock:
7615 7616
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7617
	return ret;
P
Peter Zijlstra 已提交
7618

P
Peter Zijlstra 已提交
7619 7620 7621 7622
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7623 7624 7625 7626
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7627 7628 7629
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7630
}
7631
EXPORT_SYMBOL_GPL(perf_pmu_register);
7632

7633
void perf_pmu_unregister(struct pmu *pmu)
7634
{
7635 7636 7637
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7638

7639
	/*
P
Peter Zijlstra 已提交
7640 7641
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7642
	 */
7643
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7644
	synchronize_rcu();
7645

P
Peter Zijlstra 已提交
7646
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7647 7648
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7649 7650
	device_del(pmu->dev);
	put_device(pmu->dev);
7651
	free_pmu_context(pmu);
7652
}
7653
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7654

7655 7656
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7657
	struct perf_event_context *ctx = NULL;
7658 7659 7660 7661
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7662 7663

	if (event->group_leader != event) {
7664 7665 7666 7667 7668 7669
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7670 7671 7672
		BUG_ON(!ctx);
	}

7673 7674
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7675 7676 7677 7678

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7679 7680 7681 7682 7683 7684
	if (ret)
		module_put(pmu->module);

	return ret;
}

7685
static struct pmu *perf_init_event(struct perf_event *event)
7686 7687 7688
{
	struct pmu *pmu = NULL;
	int idx;
7689
	int ret;
7690 7691

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7692 7693 7694 7695

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7696
	if (pmu) {
7697
		ret = perf_try_init_event(pmu, event);
7698 7699
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7700
		goto unlock;
7701
	}
P
Peter Zijlstra 已提交
7702

7703
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7704
		ret = perf_try_init_event(pmu, event);
7705
		if (!ret)
P
Peter Zijlstra 已提交
7706
			goto unlock;
7707

7708 7709
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7710
			goto unlock;
7711
		}
7712
	}
P
Peter Zijlstra 已提交
7713 7714
	pmu = ERR_PTR(-ENOENT);
unlock:
7715
	srcu_read_unlock(&pmus_srcu, idx);
7716

7717
	return pmu;
7718 7719
}

7720 7721 7722 7723 7724 7725 7726 7727 7728
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7729 7730
static void account_event(struct perf_event *event)
{
7731 7732
	bool inc = false;

7733 7734 7735
	if (event->parent)
		return;

7736
	if (event->attach_state & PERF_ATTACH_TASK)
7737
		inc = true;
7738 7739 7740 7741 7742 7743
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7744 7745 7746 7747
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7748 7749
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7750
		inc = true;
7751
	}
7752
	if (has_branch_stack(event))
7753
		inc = true;
7754
	if (is_cgroup_event(event))
7755 7756 7757
		inc = true;

	if (inc)
7758
		static_key_slow_inc(&perf_sched_events.key);
7759 7760

	account_event_cpu(event, event->cpu);
7761 7762
}

T
Thomas Gleixner 已提交
7763
/*
7764
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7765
 */
7766
static struct perf_event *
7767
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7768 7769 7770
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7771
		 perf_overflow_handler_t overflow_handler,
7772
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7773
{
P
Peter Zijlstra 已提交
7774
	struct pmu *pmu;
7775 7776
	struct perf_event *event;
	struct hw_perf_event *hwc;
7777
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7778

7779 7780 7781 7782 7783
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7784
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7785
	if (!event)
7786
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7787

7788
	/*
7789
	 * Single events are their own group leaders, with an
7790 7791 7792
	 * empty sibling list:
	 */
	if (!group_leader)
7793
		group_leader = event;
7794

7795 7796
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7797

7798 7799 7800
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7801
	INIT_LIST_HEAD(&event->rb_entry);
7802
	INIT_LIST_HEAD(&event->active_entry);
7803 7804
	INIT_HLIST_NODE(&event->hlist_entry);

7805

7806
	init_waitqueue_head(&event->waitq);
7807
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7808

7809
	mutex_init(&event->mmap_mutex);
7810

7811
	atomic_long_set(&event->refcount, 1);
7812 7813 7814 7815 7816
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7817

7818
	event->parent		= parent_event;
7819

7820
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7821
	event->id		= atomic64_inc_return(&perf_event_id);
7822

7823
	event->state		= PERF_EVENT_STATE_INACTIVE;
7824

7825 7826 7827
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7828 7829 7830
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7831
		 */
7832
		event->hw.target = task;
7833 7834
	}

7835 7836 7837 7838
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7839
	if (!overflow_handler && parent_event) {
7840
		overflow_handler = parent_event->overflow_handler;
7841 7842
		context = parent_event->overflow_handler_context;
	}
7843

7844
	event->overflow_handler	= overflow_handler;
7845
	event->overflow_handler_context = context;
7846

J
Jiri Olsa 已提交
7847
	perf_event__state_init(event);
7848

7849
	pmu = NULL;
7850

7851
	hwc = &event->hw;
7852
	hwc->sample_period = attr->sample_period;
7853
	if (attr->freq && attr->sample_freq)
7854
		hwc->sample_period = 1;
7855
	hwc->last_period = hwc->sample_period;
7856

7857
	local64_set(&hwc->period_left, hwc->sample_period);
7858

7859
	/*
7860
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7861
	 */
7862
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7863
		goto err_ns;
7864 7865 7866

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7867

7868 7869 7870 7871 7872 7873
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7874
	pmu = perf_init_event(event);
7875
	if (!pmu)
7876 7877
		goto err_ns;
	else if (IS_ERR(pmu)) {
7878
		err = PTR_ERR(pmu);
7879
		goto err_ns;
I
Ingo Molnar 已提交
7880
	}
7881

7882 7883 7884 7885
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7886
	if (!event->parent) {
7887 7888
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7889
			if (err)
7890
				goto err_per_task;
7891
		}
7892
	}
7893

7894
	return event;
7895

7896 7897 7898
err_per_task:
	exclusive_event_destroy(event);

7899 7900 7901
err_pmu:
	if (event->destroy)
		event->destroy(event);
7902
	module_put(pmu->module);
7903
err_ns:
7904 7905
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7906 7907 7908 7909 7910
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7911 7912
}

7913 7914
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7915 7916
{
	u32 size;
7917
	int ret;
7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7942 7943 7944
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7945 7946
	 */
	if (size > sizeof(*attr)) {
7947 7948 7949
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7950

7951 7952
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7953

7954
		for (; addr < end; addr++) {
7955 7956 7957 7958 7959 7960
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7961
		size = sizeof(*attr);
7962 7963 7964 7965 7966 7967
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7968
	if (attr->__reserved_1)
7969 7970 7971 7972 7973 7974 7975 7976
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8005 8006
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8007 8008
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8009
	}
8010

8011
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8012
		ret = perf_reg_validate(attr->sample_regs_user);
8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8031

8032 8033
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8034 8035 8036 8037 8038 8039 8040 8041 8042
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8043 8044
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8045
{
8046
	struct ring_buffer *rb = NULL;
8047 8048
	int ret = -EINVAL;

8049
	if (!output_event)
8050 8051
		goto set;

8052 8053
	/* don't allow circular references */
	if (event == output_event)
8054 8055
		goto out;

8056 8057 8058 8059 8060 8061 8062
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8063
	 * If its not a per-cpu rb, it must be the same task.
8064 8065 8066 8067
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8068 8069 8070 8071 8072 8073
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8074 8075 8076 8077 8078 8079 8080
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8081
set:
8082
	mutex_lock(&event->mmap_mutex);
8083 8084 8085
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8086

8087
	if (output_event) {
8088 8089 8090
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8091
			goto unlock;
8092 8093
	}

8094
	ring_buffer_attach(event, rb);
8095

8096
	ret = 0;
8097 8098 8099
unlock:
	mutex_unlock(&event->mmap_mutex);

8100 8101 8102 8103
out:
	return ret;
}

P
Peter Zijlstra 已提交
8104 8105 8106 8107 8108 8109 8110 8111 8112
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8150
/**
8151
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8152
 *
8153
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8154
 * @pid:		target pid
I
Ingo Molnar 已提交
8155
 * @cpu:		target cpu
8156
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8157
 */
8158 8159
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8160
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8161
{
8162 8163
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8164
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8165
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8166
	struct file *event_file = NULL;
8167
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8168
	struct task_struct *task = NULL;
8169
	struct pmu *pmu;
8170
	int event_fd;
8171
	int move_group = 0;
8172
	int err;
8173
	int f_flags = O_RDWR;
8174
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8175

8176
	/* for future expandability... */
S
Stephane Eranian 已提交
8177
	if (flags & ~PERF_FLAG_ALL)
8178 8179
		return -EINVAL;

8180 8181 8182
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8183

8184 8185 8186 8187 8188
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8189
	if (attr.freq) {
8190
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8191
			return -EINVAL;
8192 8193 8194
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8195 8196
	}

S
Stephane Eranian 已提交
8197 8198 8199 8200 8201 8202 8203 8204 8205
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8206 8207 8208 8209
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8210 8211 8212
	if (event_fd < 0)
		return event_fd;

8213
	if (group_fd != -1) {
8214 8215
		err = perf_fget_light(group_fd, &group);
		if (err)
8216
			goto err_fd;
8217
		group_leader = group.file->private_data;
8218 8219 8220 8221 8222 8223
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8224
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8225 8226 8227 8228 8229 8230 8231
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8232 8233 8234 8235 8236 8237
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8238 8239
	get_online_cpus();

8240 8241 8242
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8243
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8244
				 NULL, NULL, cgroup_fd);
8245 8246
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8247
		goto err_cpus;
8248 8249
	}

8250 8251 8252 8253 8254 8255 8256
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8257 8258
	account_event(event);

8259 8260 8261 8262 8263
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8264

8265 8266 8267 8268 8269 8270
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8293 8294 8295 8296

	/*
	 * Get the target context (task or percpu):
	 */
8297
	ctx = find_get_context(pmu, task, event);
8298 8299
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8300
		goto err_alloc;
8301 8302
	}

8303 8304 8305 8306 8307
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8308 8309 8310 8311 8312
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8313
	/*
8314
	 * Look up the group leader (we will attach this event to it):
8315
	 */
8316
	if (group_leader) {
8317
		err = -EINVAL;
8318 8319

		/*
I
Ingo Molnar 已提交
8320 8321 8322 8323
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8324
			goto err_context;
8325 8326 8327 8328 8329

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8330 8331 8332
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8333
		 */
8334
		if (move_group) {
8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8348 8349 8350 8351 8352 8353
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8354 8355 8356
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8357
		if (attr.exclusive || attr.pinned)
8358
			goto err_context;
8359 8360 8361 8362 8363
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8364
			goto err_context;
8365
	}
T
Thomas Gleixner 已提交
8366

8367 8368
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8369 8370
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8371
		goto err_context;
8372
	}
8373

8374
	if (move_group) {
P
Peter Zijlstra 已提交
8375
		gctx = group_leader->ctx;
8376 8377 8378 8379 8380
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8381 8382 8383 8384 8385
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8386 8387 8388 8389 8390 8391 8392
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8393

8394 8395 8396
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8397

8398 8399 8400
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8401 8402 8403 8404
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8405
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8406

8407 8408
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8409
			perf_remove_from_context(sibling, false);
8410 8411 8412
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8413 8414 8415 8416
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8417
		synchronize_rcu();
P
Peter Zijlstra 已提交
8418

8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8429 8430
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8431
			perf_event__state_init(sibling);
8432
			perf_install_in_context(ctx, sibling, sibling->cpu);
8433 8434
			get_ctx(ctx);
		}
8435 8436 8437 8438 8439 8440 8441 8442 8443

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8444

8445 8446 8447 8448 8449 8450
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8451 8452
	}

8453 8454 8455 8456 8457 8458 8459 8460 8461
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8462
	perf_install_in_context(ctx, event, event->cpu);
8463
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8464

8465
	if (move_group)
P
Peter Zijlstra 已提交
8466
		mutex_unlock(&gctx->mutex);
8467
	mutex_unlock(&ctx->mutex);
8468

8469 8470
	put_online_cpus();

8471
	event->owner = current;
P
Peter Zijlstra 已提交
8472

8473 8474 8475
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8476

8477 8478 8479 8480 8481 8482
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8483
	fdput(group);
8484 8485
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8486

8487 8488 8489 8490 8491 8492
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8493
err_context:
8494
	perf_unpin_context(ctx);
8495
	put_ctx(ctx);
8496
err_alloc:
8497
	free_event(event);
8498
err_cpus:
8499
	put_online_cpus();
8500
err_task:
P
Peter Zijlstra 已提交
8501 8502
	if (task)
		put_task_struct(task);
8503
err_group_fd:
8504
	fdput(group);
8505 8506
err_fd:
	put_unused_fd(event_fd);
8507
	return err;
T
Thomas Gleixner 已提交
8508 8509
}

8510 8511 8512 8513 8514
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8515
 * @task: task to profile (NULL for percpu)
8516 8517 8518
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8519
				 struct task_struct *task,
8520 8521
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8522 8523
{
	struct perf_event_context *ctx;
8524
	struct perf_event *event;
8525
	int err;
8526

8527 8528 8529
	/*
	 * Get the target context (task or percpu):
	 */
8530

8531
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8532
				 overflow_handler, context, -1);
8533 8534 8535 8536
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8537

8538 8539 8540
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8541 8542
	account_event(event);

8543
	ctx = find_get_context(event->pmu, task, event);
8544 8545
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8546
		goto err_free;
8547
	}
8548 8549 8550

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8551 8552 8553 8554 8555 8556 8557 8558
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8559
	perf_install_in_context(ctx, event, cpu);
8560
	perf_unpin_context(ctx);
8561 8562 8563 8564
	mutex_unlock(&ctx->mutex);

	return event;

8565 8566 8567
err_free:
	free_event(event);
err:
8568
	return ERR_PTR(err);
8569
}
8570
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8571

8572 8573 8574 8575 8576 8577 8578 8579 8580 8581
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8582 8583 8584 8585 8586
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8587 8588
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8589
		perf_remove_from_context(event, false);
8590
		unaccount_event_cpu(event, src_cpu);
8591
		put_ctx(src_ctx);
8592
		list_add(&event->migrate_entry, &events);
8593 8594
	}

8595 8596 8597
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8598 8599
	synchronize_rcu();

8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8624 8625
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8626 8627
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8628
		account_event_cpu(event, dst_cpu);
8629 8630 8631 8632
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8633
	mutex_unlock(&src_ctx->mutex);
8634 8635 8636
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8637
static void sync_child_event(struct perf_event *child_event,
8638
			       struct task_struct *child)
8639
{
8640
	struct perf_event *parent_event = child_event->parent;
8641
	u64 child_val;
8642

8643 8644
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8645

P
Peter Zijlstra 已提交
8646
	child_val = perf_event_count(child_event);
8647 8648 8649 8650

	/*
	 * Add back the child's count to the parent's count:
	 */
8651
	atomic64_add(child_val, &parent_event->child_count);
8652 8653 8654 8655
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8656 8657

	/*
8658
	 * Remove this event from the parent's list
8659
	 */
8660 8661 8662 8663
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8664

8665 8666 8667 8668 8669 8670
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8671
	/*
8672
	 * Release the parent event, if this was the last
8673 8674
	 * reference to it.
	 */
8675
	put_event(parent_event);
8676 8677
}

8678
static void
8679 8680
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8681
			 struct task_struct *child)
8682
{
8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8696

8697
	/*
8698
	 * It can happen that the parent exits first, and has events
8699
	 * that are still around due to the child reference. These
8700
	 * events need to be zapped.
8701
	 */
8702
	if (child_event->parent) {
8703 8704
		sync_child_event(child_event, child);
		free_event(child_event);
8705 8706 8707
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8708
	}
8709 8710
}

P
Peter Zijlstra 已提交
8711
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8712
{
8713
	struct perf_event *child_event, *next;
8714
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8715
	unsigned long flags;
8716

J
Jiri Olsa 已提交
8717
	if (likely(!child->perf_event_ctxp[ctxn]))
8718 8719
		return;

8720
	local_irq_save(flags);
8721 8722 8723 8724 8725 8726
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8727
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8728 8729 8730

	/*
	 * Take the context lock here so that if find_get_context is
8731
	 * reading child->perf_event_ctxp, we wait until it has
8732 8733
	 * incremented the context's refcount before we do put_ctx below.
	 */
8734
	raw_spin_lock(&child_ctx->lock);
8735
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
P
Peter Zijlstra 已提交
8736
	child->perf_event_ctxp[ctxn] = NULL;
8737

8738 8739 8740
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8741
	 * the events from it.
8742
	 */
8743
	clone_ctx = unclone_ctx(child_ctx);
8744
	update_context_time(child_ctx);
8745
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8746

8747 8748
	if (clone_ctx)
		put_ctx(clone_ctx);
8749

P
Peter Zijlstra 已提交
8750
	/*
8751 8752 8753
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8754
	 */
8755
	perf_event_task(child, child_ctx, 0);
8756

8757 8758 8759
	/*
	 * We can recurse on the same lock type through:
	 *
8760 8761
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8762 8763
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8764 8765 8766
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8767
	mutex_lock(&child_ctx->mutex);
8768

8769
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8770
		__perf_event_exit_task(child_event, child_ctx, child);
8771

8772 8773 8774
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8775 8776
}

P
Peter Zijlstra 已提交
8777 8778 8779 8780 8781
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8782
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8783 8784
	int ctxn;

P
Peter Zijlstra 已提交
8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8800 8801
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8802 8803 8804 8805 8806 8807 8808 8809

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8810 8811
}

8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8824
	put_event(parent);
8825

P
Peter Zijlstra 已提交
8826
	raw_spin_lock_irq(&ctx->lock);
8827
	perf_group_detach(event);
8828
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8829
	raw_spin_unlock_irq(&ctx->lock);
8830 8831 8832
	free_event(event);
}

8833
/*
P
Peter Zijlstra 已提交
8834
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8835
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8836 8837 8838
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8839
 */
8840
void perf_event_free_task(struct task_struct *task)
8841
{
P
Peter Zijlstra 已提交
8842
	struct perf_event_context *ctx;
8843
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8844
	int ctxn;
8845

P
Peter Zijlstra 已提交
8846 8847 8848 8849
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8850

P
Peter Zijlstra 已提交
8851
		mutex_lock(&ctx->mutex);
8852
again:
P
Peter Zijlstra 已提交
8853 8854 8855
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8856

P
Peter Zijlstra 已提交
8857 8858 8859
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8860

P
Peter Zijlstra 已提交
8861 8862 8863
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8864

P
Peter Zijlstra 已提交
8865
		mutex_unlock(&ctx->mutex);
8866

P
Peter Zijlstra 已提交
8867 8868
		put_ctx(ctx);
	}
8869 8870
}

8871 8872 8873 8874 8875 8876 8877 8878
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8915
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8916
	struct perf_event *child_event;
8917
	unsigned long flags;
P
Peter Zijlstra 已提交
8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8930
					   child,
P
Peter Zijlstra 已提交
8931
					   group_leader, parent_event,
8932
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8933 8934
	if (IS_ERR(child_event))
		return child_event;
8935

8936 8937
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8938 8939 8940 8941
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8942 8943 8944 8945 8946 8947 8948
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8949
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8966 8967
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8968

8969 8970 8971 8972
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8973
	perf_event__id_header_size(child_event);
8974

P
Peter Zijlstra 已提交
8975 8976 8977
	/*
	 * Link it up in the child's context:
	 */
8978
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8979
	add_event_to_ctx(child_event, child_ctx);
8980
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9014 9015 9016 9017 9018
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9019
		   struct task_struct *child, int ctxn,
9020 9021 9022
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9023
	struct perf_event_context *child_ctx;
9024 9025 9026 9027

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9028 9029
	}

9030
	child_ctx = child->perf_event_ctxp[ctxn];
9031 9032 9033 9034 9035 9036 9037
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9038

9039
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9040 9041
		if (!child_ctx)
			return -ENOMEM;
9042

P
Peter Zijlstra 已提交
9043
		child->perf_event_ctxp[ctxn] = child_ctx;
9044 9045 9046 9047 9048 9049 9050 9051 9052
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9053 9054
}

9055
/*
9056
 * Initialize the perf_event context in task_struct
9057
 */
9058
static int perf_event_init_context(struct task_struct *child, int ctxn)
9059
{
9060
	struct perf_event_context *child_ctx, *parent_ctx;
9061 9062
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9063
	struct task_struct *parent = current;
9064
	int inherited_all = 1;
9065
	unsigned long flags;
9066
	int ret = 0;
9067

P
Peter Zijlstra 已提交
9068
	if (likely(!parent->perf_event_ctxp[ctxn]))
9069 9070
		return 0;

9071
	/*
9072 9073
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9074
	 */
P
Peter Zijlstra 已提交
9075
	parent_ctx = perf_pin_task_context(parent, ctxn);
9076 9077
	if (!parent_ctx)
		return 0;
9078

9079 9080 9081 9082 9083 9084 9085
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9086 9087 9088 9089
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9090
	mutex_lock(&parent_ctx->mutex);
9091 9092 9093 9094 9095

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9096
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9097 9098
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9099 9100 9101
		if (ret)
			break;
	}
9102

9103 9104 9105 9106 9107 9108 9109 9110 9111
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9112
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9113 9114
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9115
		if (ret)
9116
			break;
9117 9118
	}

9119 9120 9121
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9122
	child_ctx = child->perf_event_ctxp[ctxn];
9123

9124
	if (child_ctx && inherited_all) {
9125 9126 9127
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9128 9129 9130
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9131
		 */
P
Peter Zijlstra 已提交
9132
		cloned_ctx = parent_ctx->parent_ctx;
9133 9134
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9135
			child_ctx->parent_gen = parent_ctx->parent_gen;
9136 9137 9138 9139 9140
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9141 9142
	}

P
Peter Zijlstra 已提交
9143
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9144
	mutex_unlock(&parent_ctx->mutex);
9145

9146
	perf_unpin_context(parent_ctx);
9147
	put_ctx(parent_ctx);
9148

9149
	return ret;
9150 9151
}

P
Peter Zijlstra 已提交
9152 9153 9154 9155 9156 9157 9158
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9159 9160 9161 9162
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9163 9164
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9165 9166
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9167
			return ret;
P
Peter Zijlstra 已提交
9168
		}
P
Peter Zijlstra 已提交
9169 9170 9171 9172 9173
	}

	return 0;
}

9174 9175
static void __init perf_event_init_all_cpus(void)
{
9176
	struct swevent_htable *swhash;
9177 9178 9179
	int cpu;

	for_each_possible_cpu(cpu) {
9180 9181
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9182
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9183 9184 9185
	}
}

9186
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9187
{
P
Peter Zijlstra 已提交
9188
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9189

9190
	mutex_lock(&swhash->hlist_mutex);
9191
	if (swhash->hlist_refcount > 0) {
9192 9193
		struct swevent_hlist *hlist;

9194 9195 9196
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9197
	}
9198
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9199 9200
}

9201
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9202
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9203
{
9204
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9205
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9206

P
Peter Zijlstra 已提交
9207
	rcu_read_lock();
9208 9209
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9210
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9211
}
P
Peter Zijlstra 已提交
9212 9213 9214 9215 9216 9217 9218 9219 9220

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9221
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9222 9223 9224 9225 9226 9227 9228 9229

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9230
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9231
{
P
Peter Zijlstra 已提交
9232
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9233 9234
}
#else
9235
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9236 9237
#endif

P
Peter Zijlstra 已提交
9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9258
static int
T
Thomas Gleixner 已提交
9259 9260 9261 9262
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9263
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9264 9265

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9266
	case CPU_DOWN_FAILED:
9267
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9268 9269
		break;

P
Peter Zijlstra 已提交
9270
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9271
	case CPU_DOWN_PREPARE:
9272
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9273 9274 9275 9276 9277 9278 9279 9280
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9281
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9282
{
9283 9284
	int ret;

P
Peter Zijlstra 已提交
9285 9286
	idr_init(&pmu_idr);

9287
	perf_event_init_all_cpus();
9288
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9289 9290 9291
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9292 9293
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9294
	register_reboot_notifier(&perf_reboot_notifier);
9295 9296 9297

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9298 9299 9300

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9301 9302 9303 9304 9305 9306 9307

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9308
}
P
Peter Zijlstra 已提交
9309

9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9349 9350

#ifdef CONFIG_CGROUP_PERF
9351 9352
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9353 9354 9355
{
	struct perf_cgroup *jc;

9356
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9369
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9370
{
9371 9372
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9373 9374 9375 9376 9377 9378 9379
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9380
	rcu_read_lock();
S
Stephane Eranian 已提交
9381
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9382
	rcu_read_unlock();
S
Stephane Eranian 已提交
9383 9384 9385
	return 0;
}

9386
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9387
{
9388
	struct task_struct *task;
9389
	struct cgroup_subsys_state *css;
9390

9391
	cgroup_taskset_for_each(task, css, tset)
9392
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9393 9394
}

9395
struct cgroup_subsys perf_event_cgrp_subsys = {
9396 9397
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9398
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9399 9400
};
#endif /* CONFIG_CGROUP_PERF */