core.c 189.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
T
Thomas Gleixner 已提交
44

45 46
#include "internal.h"

47 48
#include <asm/irq_regs.h>

49
struct remote_function_call {
50 51 52 53
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
87 88 89 90
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
111 112 113 114
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
115 116 117 118 119 120 121
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

122 123 124 125 126 127 128
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
129 130
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
131 132
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
133

134 135 136 137 138 139 140
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

141 142 143 144 145 146
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
147 148 149 150
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
151
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
152
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
153
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
154

155 156 157
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
158
static atomic_t nr_freq_events __read_mostly;
159

P
Peter Zijlstra 已提交
160 161 162 163
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

164
/*
165
 * perf event paranoia level:
166 167
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
168
 *   1 - disallow cpu events for unpriv
169
 *   2 - disallow kernel profiling for unpriv
170
 */
171
int sysctl_perf_event_paranoid __read_mostly = 1;
172

173 174
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
175 176

/*
177
 * max perf event sample rate
178
 */
179 180 181 182 183 184 185 186 187
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
188 189
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
190 191 192 193 194 195

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
196
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
197
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
198
}
P
Peter Zijlstra 已提交
199

200 201
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
202 203 204 205
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
206
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
207 208 209 210 211

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
230 231 232

	return 0;
}
233

234 235 236 237 238 239 240
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
241
static DEFINE_PER_CPU(u64, running_sample_length);
242

243
static void perf_duration_warn(struct irq_work *w)
244
{
245
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
246
	u64 avg_local_sample_len;
247
	u64 local_samples_len;
248 249 250 251 252 253 254

	local_samples_len = __get_cpu_var(running_sample_length);
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
255
			avg_local_sample_len, allowed_ns >> 1,
256 257 258 259 260 261 262
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
263
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
264 265
	u64 avg_local_sample_len;
	u64 local_samples_len;
266

P
Peter Zijlstra 已提交
267
	if (allowed_ns == 0)
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
283
	if (avg_local_sample_len <= allowed_ns)
284 285 286 287 288 289 290 291 292 293
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
294

295 296 297 298 299 300
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
301 302
}

303
static atomic64_t perf_event_id;
304

305 306 307 308
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
309 310 311 312 313
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
314

315
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
316

317
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
318
{
319
	return "pmu";
T
Thomas Gleixner 已提交
320 321
}

322 323 324 325 326
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
327 328 329 330 331 332
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
349 350
#ifdef CONFIG_CGROUP_PERF

351 352 353 354 355 356 357 358 359 360 361
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
362
	struct perf_cgroup_info	__percpu *info;
363 364
};

365 366 367 368 369
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
370 371 372
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
373
	return container_of(task_css(task, perf_event_cgrp_id),
374
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
375 376 377 378 379 380 381 382
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
447 448
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
449
	/*
450 451
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
452
	 */
453
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
454 455
		return;

456 457 458 459 460 461
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
462 463 464
}

static inline void
465 466
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
467 468 469 470
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

471 472 473 474 475 476
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
477 478 479 480
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
481
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
514 515
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
516 517 518 519 520 521 522 523 524

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
525 526
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
527 528 529 530 531 532 533 534 535 536 537

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
538
				WARN_ON_ONCE(cpuctx->cgrp);
539 540 541 542
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
543 544 545 546
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
547 548
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
549 550 551 552 553 554 555 556
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

557 558
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
559
{
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
582 583
}

584 585
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
586
{
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
605 606 607 608 609 610 611 612
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
613 614
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
615

616
	if (!f.file)
S
Stephane Eranian 已提交
617 618
		return -EBADF;

619 620
	css = css_tryget_online_from_dir(f.file->f_dentry,
					 &perf_event_cgrp_subsys);
621 622 623 624
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
638
out:
639
	fdput(f);
S
Stephane Eranian 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

713 714
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
715 716 717
{
}

718 719
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
720 721 722 723 724 725 726 727 728 729 730
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
731 732
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
826
	int timer;
827 828 829 830 831

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

832 833 834 835 836 837 838 839 840
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
863
void perf_pmu_disable(struct pmu *pmu)
864
{
P
Peter Zijlstra 已提交
865 866 867
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
868 869
}

P
Peter Zijlstra 已提交
870
void perf_pmu_enable(struct pmu *pmu)
871
{
P
Peter Zijlstra 已提交
872 873 874
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
875 876
}

877 878 879 880 881 882 883
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
884
static void perf_pmu_rotate_start(struct pmu *pmu)
885
{
P
Peter Zijlstra 已提交
886
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
887
	struct list_head *head = &__get_cpu_var(rotation_list);
888

889
	WARN_ON(!irqs_disabled());
890

891
	if (list_empty(&cpuctx->rotation_list))
892
		list_add(&cpuctx->rotation_list, head);
893 894
}

895
static void get_ctx(struct perf_event_context *ctx)
896
{
897
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
898 899
}

900
static void put_ctx(struct perf_event_context *ctx)
901
{
902 903 904
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
905 906
		if (ctx->task)
			put_task_struct(ctx->task);
907
		kfree_rcu(ctx, rcu_head);
908
	}
909 910
}

911
static void unclone_ctx(struct perf_event_context *ctx)
912 913 914 915 916
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
917
	ctx->generation++;
918 919
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

942
/*
943
 * If we inherit events we want to return the parent event id
944 945
 * to userspace.
 */
946
static u64 primary_event_id(struct perf_event *event)
947
{
948
	u64 id = event->id;
949

950 951
	if (event->parent)
		id = event->parent->id;
952 953 954 955

	return id;
}

956
/*
957
 * Get the perf_event_context for a task and lock it.
958 959 960
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
961
static struct perf_event_context *
P
Peter Zijlstra 已提交
962
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
963
{
964
	struct perf_event_context *ctx;
965

P
Peter Zijlstra 已提交
966
retry:
967 968 969 970 971 972 973 974 975 976 977
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
978
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
979 980 981 982
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
983
		 * perf_event_task_sched_out, though the
984 985 986 987 988 989
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
990
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
991
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
992
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
993 994
			rcu_read_unlock();
			preempt_enable();
995 996
			goto retry;
		}
997 998

		if (!atomic_inc_not_zero(&ctx->refcount)) {
999
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1000 1001
			ctx = NULL;
		}
1002 1003
	}
	rcu_read_unlock();
1004
	preempt_enable();
1005 1006 1007 1008 1009 1010 1011 1012
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1013 1014
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1015
{
1016
	struct perf_event_context *ctx;
1017 1018
	unsigned long flags;

P
Peter Zijlstra 已提交
1019
	ctx = perf_lock_task_context(task, ctxn, &flags);
1020 1021
	if (ctx) {
		++ctx->pin_count;
1022
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1023 1024 1025 1026
	}
	return ctx;
}

1027
static void perf_unpin_context(struct perf_event_context *ctx)
1028 1029 1030
{
	unsigned long flags;

1031
	raw_spin_lock_irqsave(&ctx->lock, flags);
1032
	--ctx->pin_count;
1033
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1034 1035
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1047 1048 1049
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1050 1051 1052 1053

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1054 1055 1056
	return ctx ? ctx->time : 0;
}

1057 1058
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1059
 * The caller of this function needs to hold the ctx->lock.
1060 1061 1062 1063 1064 1065 1066 1067 1068
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1080
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1081 1082
	else if (ctx->is_active)
		run_end = ctx->time;
1083 1084 1085 1086
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1087 1088 1089 1090

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1091
		run_end = perf_event_time(event);
1092 1093

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1094

1095 1096
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1109 1110 1111 1112 1113 1114 1115 1116 1117
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1118
/*
1119
 * Add a event from the lists for its context.
1120 1121
 * Must be called with ctx->mutex and ctx->lock held.
 */
1122
static void
1123
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1124
{
1125 1126
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1127 1128

	/*
1129 1130 1131
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1132
	 */
1133
	if (event->group_leader == event) {
1134 1135
		struct list_head *list;

1136 1137 1138
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1139 1140
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1141
	}
P
Peter Zijlstra 已提交
1142

1143
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1144 1145
		ctx->nr_cgroups++;

1146 1147 1148
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1149
	list_add_rcu(&event->event_entry, &ctx->event_list);
1150
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1151
		perf_pmu_rotate_start(ctx->pmu);
1152 1153
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1154
		ctx->nr_stat++;
1155 1156

	ctx->generation++;
1157 1158
}

J
Jiri Olsa 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1207 1208 1209 1210 1211 1212
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1213 1214 1215
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1216 1217 1218
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1219 1220 1221
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1222 1223 1224
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1225 1226 1227 1228 1229 1230 1231 1232 1233
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1234 1235 1236 1237 1238 1239
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1240 1241 1242
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1243 1244 1245 1246 1247 1248 1249 1250 1251
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1252
	event->id_header_size = size;
1253 1254
}

1255 1256
static void perf_group_attach(struct perf_event *event)
{
1257
	struct perf_event *group_leader = event->group_leader, *pos;
1258

P
Peter Zijlstra 已提交
1259 1260 1261 1262 1263 1264
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1276 1277 1278 1279 1280

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1281 1282
}

1283
/*
1284
 * Remove a event from the lists for its context.
1285
 * Must be called with ctx->mutex and ctx->lock held.
1286
 */
1287
static void
1288
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1289
{
1290
	struct perf_cpu_context *cpuctx;
1291 1292 1293 1294
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1295
		return;
1296 1297 1298

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1299
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1300
		ctx->nr_cgroups--;
1301 1302 1303 1304 1305 1306 1307 1308 1309
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1310

1311 1312 1313
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1314 1315
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1316
		ctx->nr_stat--;
1317

1318
	list_del_rcu(&event->event_entry);
1319

1320 1321
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1322

1323
	update_group_times(event);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1334 1335

	ctx->generation++;
1336 1337
}

1338
static void perf_group_detach(struct perf_event *event)
1339 1340
{
	struct perf_event *sibling, *tmp;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1357
		goto out;
1358 1359 1360 1361
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1362

1363
	/*
1364 1365
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1366
	 * to whatever list we are on.
1367
	 */
1368
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1369 1370
		if (list)
			list_move_tail(&sibling->group_entry, list);
1371
		sibling->group_leader = sibling;
1372 1373 1374

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1375
	}
1376 1377 1378 1379 1380 1381

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1382 1383
}

1384 1385 1386
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1387 1388
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1389 1390
}

1391 1392
static void
event_sched_out(struct perf_event *event,
1393
		  struct perf_cpu_context *cpuctx,
1394
		  struct perf_event_context *ctx)
1395
{
1396
	u64 tstamp = perf_event_time(event);
1397 1398 1399 1400 1401 1402 1403 1404 1405
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1406
		delta = tstamp - event->tstamp_stopped;
1407
		event->tstamp_running += delta;
1408
		event->tstamp_stopped = tstamp;
1409 1410
	}

1411
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1412
		return;
1413

1414 1415
	perf_pmu_disable(event->pmu);

1416 1417 1418 1419
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1420
	}
1421
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1422
	event->pmu->del(event, 0);
1423
	event->oncpu = -1;
1424

1425
	if (!is_software_event(event))
1426 1427
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1428 1429
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1430
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1431
		cpuctx->exclusive = 0;
1432 1433

	perf_pmu_enable(event->pmu);
1434 1435
}

1436
static void
1437
group_sched_out(struct perf_event *group_event,
1438
		struct perf_cpu_context *cpuctx,
1439
		struct perf_event_context *ctx)
1440
{
1441
	struct perf_event *event;
1442
	int state = group_event->state;
1443

1444
	event_sched_out(group_event, cpuctx, ctx);
1445 1446 1447 1448

	/*
	 * Schedule out siblings (if any):
	 */
1449 1450
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1451

1452
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1453 1454 1455
		cpuctx->exclusive = 0;
}

1456 1457 1458 1459 1460
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1461
/*
1462
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1463
 *
1464
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1465 1466
 * remove it from the context list.
 */
1467
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1468
{
1469 1470
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1471
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1472
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1473

1474
	raw_spin_lock(&ctx->lock);
1475
	event_sched_out(event, cpuctx, ctx);
1476 1477
	if (re->detach_group)
		perf_group_detach(event);
1478
	list_del_event(event, ctx);
1479 1480 1481 1482
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1483
	raw_spin_unlock(&ctx->lock);
1484 1485

	return 0;
T
Thomas Gleixner 已提交
1486 1487 1488 1489
}


/*
1490
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1491
 *
1492
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1493
 * call when the task is on a CPU.
1494
 *
1495 1496
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1497 1498
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1499
 * When called from perf_event_exit_task, it's OK because the
1500
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1501
 */
1502
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1503
{
1504
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1505
	struct task_struct *task = ctx->task;
1506 1507 1508 1509
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1510

1511 1512
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1513 1514
	if (!task) {
		/*
1515
		 * Per cpu events are removed via an smp call and
1516
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1517
		 */
1518
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1519 1520 1521 1522
		return;
	}

retry:
1523
	if (!task_function_call(task, __perf_remove_from_context, &re))
1524
		return;
T
Thomas Gleixner 已提交
1525

1526
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1527
	/*
1528 1529
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1530
	 */
1531
	if (ctx->is_active) {
1532
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1533 1534 1535 1536
		goto retry;
	}

	/*
1537 1538
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1539
	 */
1540 1541
	if (detach_group)
		perf_group_detach(event);
1542
	list_del_event(event, ctx);
1543
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1544 1545
}

1546
/*
1547
 * Cross CPU call to disable a performance event
1548
 */
1549
int __perf_event_disable(void *info)
1550
{
1551 1552
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1553
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1554 1555

	/*
1556 1557
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1558 1559 1560
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1561
	 */
1562
	if (ctx->task && cpuctx->task_ctx != ctx)
1563
		return -EINVAL;
1564

1565
	raw_spin_lock(&ctx->lock);
1566 1567

	/*
1568
	 * If the event is on, turn it off.
1569 1570
	 * If it is in error state, leave it in error state.
	 */
1571
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1572
		update_context_time(ctx);
S
Stephane Eranian 已提交
1573
		update_cgrp_time_from_event(event);
1574 1575 1576
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1577
		else
1578 1579
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1580 1581
	}

1582
	raw_spin_unlock(&ctx->lock);
1583 1584

	return 0;
1585 1586 1587
}

/*
1588
 * Disable a event.
1589
 *
1590 1591
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1592
 * remains valid.  This condition is satisifed when called through
1593 1594 1595 1596
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1597
 * is the current context on this CPU and preemption is disabled,
1598
 * hence we can't get into perf_event_task_sched_out for this context.
1599
 */
1600
void perf_event_disable(struct perf_event *event)
1601
{
1602
	struct perf_event_context *ctx = event->ctx;
1603 1604 1605 1606
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1607
		 * Disable the event on the cpu that it's on
1608
		 */
1609
		cpu_function_call(event->cpu, __perf_event_disable, event);
1610 1611 1612
		return;
	}

P
Peter Zijlstra 已提交
1613
retry:
1614 1615
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1616

1617
	raw_spin_lock_irq(&ctx->lock);
1618
	/*
1619
	 * If the event is still active, we need to retry the cross-call.
1620
	 */
1621
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1622
		raw_spin_unlock_irq(&ctx->lock);
1623 1624 1625 1626 1627
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1628 1629 1630 1631 1632 1633 1634
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1635 1636 1637
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1638
	}
1639
	raw_spin_unlock_irq(&ctx->lock);
1640
}
1641
EXPORT_SYMBOL_GPL(perf_event_disable);
1642

S
Stephane Eranian 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1678 1679 1680 1681
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1682
static int
1683
event_sched_in(struct perf_event *event,
1684
		 struct perf_cpu_context *cpuctx,
1685
		 struct perf_event_context *ctx)
1686
{
1687
	u64 tstamp = perf_event_time(event);
1688
	int ret = 0;
1689

1690 1691
	lockdep_assert_held(&ctx->lock);

1692
	if (event->state <= PERF_EVENT_STATE_OFF)
1693 1694
		return 0;

1695
	event->state = PERF_EVENT_STATE_ACTIVE;
1696
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1708 1709 1710 1711 1712
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1713 1714
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1715
	if (event->pmu->add(event, PERF_EF_START)) {
1716 1717
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1718 1719
		ret = -EAGAIN;
		goto out;
1720 1721
	}

1722
	event->tstamp_running += tstamp - event->tstamp_stopped;
1723

S
Stephane Eranian 已提交
1724
	perf_set_shadow_time(event, ctx, tstamp);
1725

1726
	if (!is_software_event(event))
1727
		cpuctx->active_oncpu++;
1728
	ctx->nr_active++;
1729 1730
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1731

1732
	if (event->attr.exclusive)
1733 1734
		cpuctx->exclusive = 1;

1735 1736 1737 1738
out:
	perf_pmu_enable(event->pmu);

	return ret;
1739 1740
}

1741
static int
1742
group_sched_in(struct perf_event *group_event,
1743
	       struct perf_cpu_context *cpuctx,
1744
	       struct perf_event_context *ctx)
1745
{
1746
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1747
	struct pmu *pmu = ctx->pmu;
1748 1749
	u64 now = ctx->time;
	bool simulate = false;
1750

1751
	if (group_event->state == PERF_EVENT_STATE_OFF)
1752 1753
		return 0;

P
Peter Zijlstra 已提交
1754
	pmu->start_txn(pmu);
1755

1756
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1757
		pmu->cancel_txn(pmu);
1758
		perf_cpu_hrtimer_restart(cpuctx);
1759
		return -EAGAIN;
1760
	}
1761 1762 1763 1764

	/*
	 * Schedule in siblings as one group (if any):
	 */
1765
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1766
		if (event_sched_in(event, cpuctx, ctx)) {
1767
			partial_group = event;
1768 1769 1770 1771
			goto group_error;
		}
	}

1772
	if (!pmu->commit_txn(pmu))
1773
		return 0;
1774

1775 1776 1777 1778
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1789
	 */
1790 1791
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1792 1793 1794 1795 1796 1797 1798 1799
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1800
	}
1801
	event_sched_out(group_event, cpuctx, ctx);
1802

P
Peter Zijlstra 已提交
1803
	pmu->cancel_txn(pmu);
1804

1805 1806
	perf_cpu_hrtimer_restart(cpuctx);

1807 1808 1809
	return -EAGAIN;
}

1810
/*
1811
 * Work out whether we can put this event group on the CPU now.
1812
 */
1813
static int group_can_go_on(struct perf_event *event,
1814 1815 1816 1817
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1818
	 * Groups consisting entirely of software events can always go on.
1819
	 */
1820
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1821 1822 1823
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1824
	 * events can go on.
1825 1826 1827 1828 1829
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1830
	 * events on the CPU, it can't go on.
1831
	 */
1832
	if (event->attr.exclusive && cpuctx->active_oncpu)
1833 1834 1835 1836 1837 1838 1839 1840
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1841 1842
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1843
{
1844 1845
	u64 tstamp = perf_event_time(event);

1846
	list_add_event(event, ctx);
1847
	perf_group_attach(event);
1848 1849 1850
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1851 1852
}

1853 1854 1855 1856 1857 1858
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1872
/*
1873
 * Cross CPU call to install and enable a performance event
1874 1875
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1876
 */
1877
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1878
{
1879 1880
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1881
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1882 1883 1884
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1885
	perf_ctx_lock(cpuctx, task_ctx);
1886
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1887 1888

	/*
1889
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1890
	 */
1891
	if (task_ctx)
1892
		task_ctx_sched_out(task_ctx);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1907 1908
		task = task_ctx->task;
	}
1909

1910
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1911

1912
	update_context_time(ctx);
S
Stephane Eranian 已提交
1913 1914 1915 1916 1917 1918
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1919

1920
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1921

1922
	/*
1923
	 * Schedule everything back in
1924
	 */
1925
	perf_event_sched_in(cpuctx, task_ctx, task);
1926 1927 1928

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1929 1930

	return 0;
T
Thomas Gleixner 已提交
1931 1932 1933
}

/*
1934
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1935
 *
1936 1937
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1938
 *
1939
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1940 1941 1942 1943
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1944 1945
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1946 1947 1948 1949
			int cpu)
{
	struct task_struct *task = ctx->task;

1950 1951
	lockdep_assert_held(&ctx->mutex);

1952
	event->ctx = ctx;
1953 1954
	if (event->cpu != -1)
		event->cpu = cpu;
1955

T
Thomas Gleixner 已提交
1956 1957
	if (!task) {
		/*
1958
		 * Per cpu events are installed via an smp call and
1959
		 * the install is always successful.
T
Thomas Gleixner 已提交
1960
		 */
1961
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1962 1963 1964 1965
		return;
	}

retry:
1966 1967
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1968

1969
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1970
	/*
1971 1972
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1973
	 */
1974
	if (ctx->is_active) {
1975
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1976 1977 1978 1979
		goto retry;
	}

	/*
1980 1981
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1982
	 */
1983
	add_event_to_ctx(event, ctx);
1984
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1985 1986
}

1987
/*
1988
 * Put a event into inactive state and update time fields.
1989 1990 1991 1992 1993 1994
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1995
static void __perf_event_mark_enabled(struct perf_event *event)
1996
{
1997
	struct perf_event *sub;
1998
	u64 tstamp = perf_event_time(event);
1999

2000
	event->state = PERF_EVENT_STATE_INACTIVE;
2001
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2002
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2003 2004
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2005
	}
2006 2007
}

2008
/*
2009
 * Cross CPU call to enable a performance event
2010
 */
2011
static int __perf_event_enable(void *info)
2012
{
2013 2014 2015
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2016
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2017
	int err;
2018

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2029
		return -EINVAL;
2030

2031
	raw_spin_lock(&ctx->lock);
2032
	update_context_time(ctx);
2033

2034
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2035
		goto unlock;
S
Stephane Eranian 已提交
2036 2037 2038 2039

	/*
	 * set current task's cgroup time reference point
	 */
2040
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2041

2042
	__perf_event_mark_enabled(event);
2043

S
Stephane Eranian 已提交
2044 2045 2046
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2047
		goto unlock;
S
Stephane Eranian 已提交
2048
	}
2049

2050
	/*
2051
	 * If the event is in a group and isn't the group leader,
2052
	 * then don't put it on unless the group is on.
2053
	 */
2054
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2055
		goto unlock;
2056

2057
	if (!group_can_go_on(event, cpuctx, 1)) {
2058
		err = -EEXIST;
2059
	} else {
2060
		if (event == leader)
2061
			err = group_sched_in(event, cpuctx, ctx);
2062
		else
2063
			err = event_sched_in(event, cpuctx, ctx);
2064
	}
2065 2066 2067

	if (err) {
		/*
2068
		 * If this event can't go on and it's part of a
2069 2070
		 * group, then the whole group has to come off.
		 */
2071
		if (leader != event) {
2072
			group_sched_out(leader, cpuctx, ctx);
2073 2074
			perf_cpu_hrtimer_restart(cpuctx);
		}
2075
		if (leader->attr.pinned) {
2076
			update_group_times(leader);
2077
			leader->state = PERF_EVENT_STATE_ERROR;
2078
		}
2079 2080
	}

P
Peter Zijlstra 已提交
2081
unlock:
2082
	raw_spin_unlock(&ctx->lock);
2083 2084

	return 0;
2085 2086 2087
}

/*
2088
 * Enable a event.
2089
 *
2090 2091
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2092
 * remains valid.  This condition is satisfied when called through
2093 2094
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2095
 */
2096
void perf_event_enable(struct perf_event *event)
2097
{
2098
	struct perf_event_context *ctx = event->ctx;
2099 2100 2101 2102
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2103
		 * Enable the event on the cpu that it's on
2104
		 */
2105
		cpu_function_call(event->cpu, __perf_event_enable, event);
2106 2107 2108
		return;
	}

2109
	raw_spin_lock_irq(&ctx->lock);
2110
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2111 2112 2113
		goto out;

	/*
2114 2115
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2116 2117 2118 2119
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2120 2121
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2122

P
Peter Zijlstra 已提交
2123
retry:
2124
	if (!ctx->is_active) {
2125
		__perf_event_mark_enabled(event);
2126 2127 2128
		goto out;
	}

2129
	raw_spin_unlock_irq(&ctx->lock);
2130 2131 2132

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2133

2134
	raw_spin_lock_irq(&ctx->lock);
2135 2136

	/*
2137
	 * If the context is active and the event is still off,
2138 2139
	 * we need to retry the cross-call.
	 */
2140 2141 2142 2143 2144 2145
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2146
		goto retry;
2147
	}
2148

P
Peter Zijlstra 已提交
2149
out:
2150
	raw_spin_unlock_irq(&ctx->lock);
2151
}
2152
EXPORT_SYMBOL_GPL(perf_event_enable);
2153

2154
int perf_event_refresh(struct perf_event *event, int refresh)
2155
{
2156
	/*
2157
	 * not supported on inherited events
2158
	 */
2159
	if (event->attr.inherit || !is_sampling_event(event))
2160 2161
		return -EINVAL;

2162 2163
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2164 2165

	return 0;
2166
}
2167
EXPORT_SYMBOL_GPL(perf_event_refresh);
2168

2169 2170 2171
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2172
{
2173
	struct perf_event *event;
2174
	int is_active = ctx->is_active;
2175

2176
	ctx->is_active &= ~event_type;
2177
	if (likely(!ctx->nr_events))
2178 2179
		return;

2180
	update_context_time(ctx);
S
Stephane Eranian 已提交
2181
	update_cgrp_time_from_cpuctx(cpuctx);
2182
	if (!ctx->nr_active)
2183
		return;
2184

P
Peter Zijlstra 已提交
2185
	perf_pmu_disable(ctx->pmu);
2186
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2187 2188
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2189
	}
2190

2191
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2192
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2193
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2194
	}
P
Peter Zijlstra 已提交
2195
	perf_pmu_enable(ctx->pmu);
2196 2197
}

2198
/*
2199 2200 2201 2202 2203 2204
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2205
 */
2206 2207
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2208
{
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2231 2232
}

2233 2234
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2235 2236 2237
{
	u64 value;

2238
	if (!event->attr.inherit_stat)
2239 2240 2241
		return;

	/*
2242
	 * Update the event value, we cannot use perf_event_read()
2243 2244
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2245
	 * we know the event must be on the current CPU, therefore we
2246 2247
	 * don't need to use it.
	 */
2248 2249
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2250 2251
		event->pmu->read(event);
		/* fall-through */
2252

2253 2254
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2255 2256 2257 2258 2259 2260 2261
		break;

	default:
		break;
	}

	/*
2262
	 * In order to keep per-task stats reliable we need to flip the event
2263 2264
	 * values when we flip the contexts.
	 */
2265 2266 2267
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2268

2269 2270
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2271

2272
	/*
2273
	 * Since we swizzled the values, update the user visible data too.
2274
	 */
2275 2276
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2277 2278
}

2279 2280
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2281
{
2282
	struct perf_event *event, *next_event;
2283 2284 2285 2286

	if (!ctx->nr_stat)
		return;

2287 2288
	update_context_time(ctx);

2289 2290
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2291

2292 2293
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2294

2295 2296
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2297

2298
		__perf_event_sync_stat(event, next_event);
2299

2300 2301
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2302 2303 2304
	}
}

2305 2306
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2307
{
P
Peter Zijlstra 已提交
2308
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2309
	struct perf_event_context *next_ctx;
2310
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2311
	struct perf_cpu_context *cpuctx;
2312
	int do_switch = 1;
T
Thomas Gleixner 已提交
2313

P
Peter Zijlstra 已提交
2314 2315
	if (likely(!ctx))
		return;
2316

P
Peter Zijlstra 已提交
2317 2318
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2319 2320
		return;

2321
	rcu_read_lock();
P
Peter Zijlstra 已提交
2322
	next_ctx = next->perf_event_ctxp[ctxn];
2323 2324 2325 2326 2327 2328 2329
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2330
	if (!parent || !next_parent)
2331 2332 2333
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2334 2335 2336 2337 2338 2339 2340 2341 2342
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2343 2344
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2345
		if (context_equiv(ctx, next_ctx)) {
2346 2347
			/*
			 * XXX do we need a memory barrier of sorts
2348
			 * wrt to rcu_dereference() of perf_event_ctxp
2349
			 */
P
Peter Zijlstra 已提交
2350 2351
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2352 2353 2354
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2355

2356
			perf_event_sync_stat(ctx, next_ctx);
2357
		}
2358 2359
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2360
	}
2361
unlock:
2362
	rcu_read_unlock();
2363

2364
	if (do_switch) {
2365
		raw_spin_lock(&ctx->lock);
2366
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2367
		cpuctx->task_ctx = NULL;
2368
		raw_spin_unlock(&ctx->lock);
2369
	}
T
Thomas Gleixner 已提交
2370 2371
}

P
Peter Zijlstra 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2386 2387
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2388 2389 2390 2391 2392
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2393 2394 2395 2396 2397 2398 2399

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2400
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2401 2402
}

2403
static void task_ctx_sched_out(struct perf_event_context *ctx)
2404
{
P
Peter Zijlstra 已提交
2405
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2406

2407 2408
	if (!cpuctx->task_ctx)
		return;
2409 2410 2411 2412

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2413
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2414 2415 2416
	cpuctx->task_ctx = NULL;
}

2417 2418 2419 2420 2421 2422 2423
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2424 2425
}

2426
static void
2427
ctx_pinned_sched_in(struct perf_event_context *ctx,
2428
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2429
{
2430
	struct perf_event *event;
T
Thomas Gleixner 已提交
2431

2432 2433
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2434
			continue;
2435
		if (!event_filter_match(event))
2436 2437
			continue;

S
Stephane Eranian 已提交
2438 2439 2440 2441
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2442
		if (group_can_go_on(event, cpuctx, 1))
2443
			group_sched_in(event, cpuctx, ctx);
2444 2445 2446 2447 2448

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2449 2450 2451
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2452
		}
2453
	}
2454 2455 2456 2457
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2458
		      struct perf_cpu_context *cpuctx)
2459 2460 2461
{
	struct perf_event *event;
	int can_add_hw = 1;
2462

2463 2464 2465
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2466
			continue;
2467 2468
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2469
		 * of events:
2470
		 */
2471
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2472 2473
			continue;

S
Stephane Eranian 已提交
2474 2475 2476 2477
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2478
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2479
			if (group_sched_in(event, cpuctx, ctx))
2480
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2481
		}
T
Thomas Gleixner 已提交
2482
	}
2483 2484 2485 2486 2487
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2488 2489
	     enum event_type_t event_type,
	     struct task_struct *task)
2490
{
S
Stephane Eranian 已提交
2491
	u64 now;
2492
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2493

2494
	ctx->is_active |= event_type;
2495
	if (likely(!ctx->nr_events))
2496
		return;
2497

S
Stephane Eranian 已提交
2498 2499
	now = perf_clock();
	ctx->timestamp = now;
2500
	perf_cgroup_set_timestamp(task, ctx);
2501 2502 2503 2504
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2505
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2506
		ctx_pinned_sched_in(ctx, cpuctx);
2507 2508

	/* Then walk through the lower prio flexible groups */
2509
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2510
		ctx_flexible_sched_in(ctx, cpuctx);
2511 2512
}

2513
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2514 2515
			     enum event_type_t event_type,
			     struct task_struct *task)
2516 2517 2518
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2519
	ctx_sched_in(ctx, cpuctx, event_type, task);
2520 2521
}

S
Stephane Eranian 已提交
2522 2523
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2524
{
P
Peter Zijlstra 已提交
2525
	struct perf_cpu_context *cpuctx;
2526

P
Peter Zijlstra 已提交
2527
	cpuctx = __get_cpu_context(ctx);
2528 2529 2530
	if (cpuctx->task_ctx == ctx)
		return;

2531
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2532
	perf_pmu_disable(ctx->pmu);
2533 2534 2535 2536 2537 2538 2539
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2540 2541
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2542

2543 2544
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2545 2546 2547
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2548 2549 2550 2551
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2552
	perf_pmu_rotate_start(ctx->pmu);
2553 2554
}

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2624 2625
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2635
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2636
	}
S
Stephane Eranian 已提交
2637 2638 2639 2640 2641 2642
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2643
		perf_cgroup_sched_in(prev, task);
2644 2645 2646 2647

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2648 2649
}

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2677
#define REDUCE_FLS(a, b)		\
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2717 2718 2719
	if (!divisor)
		return dividend;

2720 2721 2722
	return div64_u64(dividend, divisor);
}

2723 2724 2725
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2726
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2727
{
2728
	struct hw_perf_event *hwc = &event->hw;
2729
	s64 period, sample_period;
2730 2731
	s64 delta;

2732
	period = perf_calculate_period(event, nsec, count);
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2743

2744
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2745 2746 2747
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2748
		local64_set(&hwc->period_left, 0);
2749 2750 2751

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2752
	}
2753 2754
}

2755 2756 2757 2758 2759 2760 2761
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2762
{
2763 2764
	struct perf_event *event;
	struct hw_perf_event *hwc;
2765
	u64 now, period = TICK_NSEC;
2766
	s64 delta;
2767

2768 2769 2770 2771 2772 2773
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2774 2775
		return;

2776
	raw_spin_lock(&ctx->lock);
2777
	perf_pmu_disable(ctx->pmu);
2778

2779
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2780
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2781 2782
			continue;

2783
		if (!event_filter_match(event))
2784 2785
			continue;

2786 2787
		perf_pmu_disable(event->pmu);

2788
		hwc = &event->hw;
2789

2790
		if (hwc->interrupts == MAX_INTERRUPTS) {
2791
			hwc->interrupts = 0;
2792
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2793
			event->pmu->start(event, 0);
2794 2795
		}

2796
		if (!event->attr.freq || !event->attr.sample_freq)
2797
			goto next;
2798

2799 2800 2801 2802 2803
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2804
		now = local64_read(&event->count);
2805 2806
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2807

2808 2809 2810
		/*
		 * restart the event
		 * reload only if value has changed
2811 2812 2813
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2814
		 */
2815
		if (delta > 0)
2816
			perf_adjust_period(event, period, delta, false);
2817 2818

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2819 2820
	next:
		perf_pmu_enable(event->pmu);
2821
	}
2822

2823
	perf_pmu_enable(ctx->pmu);
2824
	raw_spin_unlock(&ctx->lock);
2825 2826
}

2827
/*
2828
 * Round-robin a context's events:
2829
 */
2830
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2831
{
2832 2833 2834 2835 2836 2837
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2838 2839
}

2840
/*
2841 2842 2843
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2844
 */
2845
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2846
{
P
Peter Zijlstra 已提交
2847
	struct perf_event_context *ctx = NULL;
2848
	int rotate = 0, remove = 1;
2849

2850
	if (cpuctx->ctx.nr_events) {
2851
		remove = 0;
2852 2853 2854
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2855

P
Peter Zijlstra 已提交
2856
	ctx = cpuctx->task_ctx;
2857
	if (ctx && ctx->nr_events) {
2858
		remove = 0;
2859 2860 2861
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2862

2863
	if (!rotate)
2864 2865
		goto done;

2866
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2867
	perf_pmu_disable(cpuctx->ctx.pmu);
2868

2869 2870 2871
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2872

2873 2874 2875
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2876

2877
	perf_event_sched_in(cpuctx, ctx, current);
2878

2879 2880
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2881
done:
2882 2883
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2884 2885

	return rotate;
2886 2887
}

2888 2889 2890
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2891
	if (atomic_read(&nr_freq_events) ||
2892
	    __this_cpu_read(perf_throttled_count))
2893
		return false;
2894 2895
	else
		return true;
2896 2897 2898
}
#endif

2899 2900 2901 2902
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2903 2904
	struct perf_event_context *ctx;
	int throttled;
2905

2906 2907
	WARN_ON(!irqs_disabled());

2908 2909 2910
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2911
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2912 2913 2914 2915 2916 2917
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2918
	}
T
Thomas Gleixner 已提交
2919 2920
}

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2931
	__perf_event_mark_enabled(event);
2932 2933 2934 2935

	return 1;
}

2936
/*
2937
 * Enable all of a task's events that have been marked enable-on-exec.
2938 2939
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2940
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2941
{
2942
	struct perf_event *event;
2943 2944
	unsigned long flags;
	int enabled = 0;
2945
	int ret;
2946 2947

	local_irq_save(flags);
2948
	if (!ctx || !ctx->nr_events)
2949 2950
		goto out;

2951 2952 2953 2954 2955 2956 2957
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2958
	perf_cgroup_sched_out(current, NULL);
2959

2960
	raw_spin_lock(&ctx->lock);
2961
	task_ctx_sched_out(ctx);
2962

2963
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2964 2965 2966
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2967 2968 2969
	}

	/*
2970
	 * Unclone this context if we enabled any event.
2971
	 */
2972 2973
	if (enabled)
		unclone_ctx(ctx);
2974

2975
	raw_spin_unlock(&ctx->lock);
2976

2977 2978 2979
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2980
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2981
out:
2982 2983 2984
	local_irq_restore(flags);
}

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3001
/*
3002
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3003
 */
3004
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3005
{
3006 3007
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3008
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3009

3010 3011 3012 3013
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3014 3015
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3016 3017 3018 3019
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3020
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3021
	if (ctx->is_active) {
3022
		update_context_time(ctx);
S
Stephane Eranian 已提交
3023 3024
		update_cgrp_time_from_event(event);
	}
3025
	update_event_times(event);
3026 3027
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3028
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3029 3030
}

P
Peter Zijlstra 已提交
3031 3032
static inline u64 perf_event_count(struct perf_event *event)
{
3033
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3034 3035
}

3036
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3037 3038
{
	/*
3039 3040
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3041
	 */
3042 3043 3044 3045
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3046 3047 3048
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3049
		raw_spin_lock_irqsave(&ctx->lock, flags);
3050 3051 3052 3053 3054
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3055
		if (ctx->is_active) {
3056
			update_context_time(ctx);
S
Stephane Eranian 已提交
3057 3058
			update_cgrp_time_from_event(event);
		}
3059
		update_event_times(event);
3060
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3061 3062
	}

P
Peter Zijlstra 已提交
3063
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3064 3065
}

3066
/*
3067
 * Initialize the perf_event context in a task_struct:
3068
 */
3069
static void __perf_event_init_context(struct perf_event_context *ctx)
3070
{
3071
	raw_spin_lock_init(&ctx->lock);
3072
	mutex_init(&ctx->mutex);
3073 3074
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3075 3076
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3092
	}
3093 3094 3095
	ctx->pmu = pmu;

	return ctx;
3096 3097
}

3098 3099 3100 3101 3102
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3103 3104

	rcu_read_lock();
3105
	if (!vpid)
T
Thomas Gleixner 已提交
3106 3107
		task = current;
	else
3108
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3109 3110 3111 3112 3113 3114 3115 3116
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3117 3118 3119 3120
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3121 3122 3123 3124 3125 3126 3127
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3128 3129 3130
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3131
static struct perf_event_context *
M
Matt Helsley 已提交
3132
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3133
{
3134
	struct perf_event_context *ctx;
3135
	struct perf_cpu_context *cpuctx;
3136
	unsigned long flags;
P
Peter Zijlstra 已提交
3137
	int ctxn, err;
T
Thomas Gleixner 已提交
3138

3139
	if (!task) {
3140
		/* Must be root to operate on a CPU event: */
3141
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3142 3143 3144
			return ERR_PTR(-EACCES);

		/*
3145
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3146 3147 3148
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3149
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3150 3151
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3152
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3153
		ctx = &cpuctx->ctx;
3154
		get_ctx(ctx);
3155
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3156 3157 3158 3159

		return ctx;
	}

P
Peter Zijlstra 已提交
3160 3161 3162 3163 3164
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3165
retry:
P
Peter Zijlstra 已提交
3166
	ctx = perf_lock_task_context(task, ctxn, &flags);
3167
	if (ctx) {
3168
		unclone_ctx(ctx);
3169
		++ctx->pin_count;
3170
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3171
	} else {
3172
		ctx = alloc_perf_context(pmu, task);
3173 3174 3175
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3176

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3187
		else {
3188
			get_ctx(ctx);
3189
			++ctx->pin_count;
3190
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3191
		}
3192 3193 3194
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3195
			put_ctx(ctx);
3196 3197 3198 3199

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3200 3201 3202
		}
	}

T
Thomas Gleixner 已提交
3203
	return ctx;
3204

P
Peter Zijlstra 已提交
3205
errout:
3206
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3207 3208
}

L
Li Zefan 已提交
3209 3210
static void perf_event_free_filter(struct perf_event *event);

3211
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3212
{
3213
	struct perf_event *event;
P
Peter Zijlstra 已提交
3214

3215 3216 3217
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3218
	perf_event_free_filter(event);
3219
	kfree(event);
P
Peter Zijlstra 已提交
3220 3221
}

3222
static void ring_buffer_put(struct ring_buffer *rb);
3223 3224
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3225

3226
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3227
{
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3238

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3252 3253
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3254 3255 3256 3257 3258 3259 3260
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3261

3262 3263
static void __free_event(struct perf_event *event)
{
3264
	if (!event->parent) {
3265 3266
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3267
	}
3268

3269 3270 3271 3272 3273 3274
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3275 3276 3277
	if (event->pmu)
		module_put(event->pmu->module);

3278 3279
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3280 3281

static void _free_event(struct perf_event *event)
3282
{
3283
	irq_work_sync(&event->pending);
3284

3285
	unaccount_event(event);
3286

3287
	if (event->rb) {
3288 3289 3290 3291 3292 3293 3294
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3295
		ring_buffer_attach(event, NULL);
3296
		mutex_unlock(&event->mmap_mutex);
3297 3298
	}

S
Stephane Eranian 已提交
3299 3300 3301
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3302
	__free_event(event);
3303 3304
}

P
Peter Zijlstra 已提交
3305 3306 3307 3308 3309
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3310
{
P
Peter Zijlstra 已提交
3311 3312 3313 3314 3315 3316
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3317

P
Peter Zijlstra 已提交
3318
	_free_event(event);
T
Thomas Gleixner 已提交
3319 3320
}

3321
/*
3322
 * Remove user event from the owner task.
3323
 */
3324
static void perf_remove_from_owner(struct perf_event *event)
3325
{
P
Peter Zijlstra 已提交
3326
	struct task_struct *owner;
3327

P
Peter Zijlstra 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3374

P
Peter Zijlstra 已提交
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	WARN_ON_ONCE(ctx->parent_ctx);
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3393 3394
}

P
Peter Zijlstra 已提交
3395 3396 3397 3398 3399 3400 3401
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3402 3403 3404 3405
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3406 3407
}

3408
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3409
{
3410
	struct perf_event *child;
3411 3412
	u64 total = 0;

3413 3414 3415
	*enabled = 0;
	*running = 0;

3416
	mutex_lock(&event->child_mutex);
3417
	total += perf_event_read(event);
3418 3419 3420 3421 3422 3423
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3424
		total += perf_event_read(child);
3425 3426 3427
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3428
	mutex_unlock(&event->child_mutex);
3429 3430 3431

	return total;
}
3432
EXPORT_SYMBOL_GPL(perf_event_read_value);
3433

3434
static int perf_event_read_group(struct perf_event *event,
3435 3436
				   u64 read_format, char __user *buf)
{
3437
	struct perf_event *leader = event->group_leader, *sub;
3438 3439
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3440
	u64 values[5];
3441
	u64 count, enabled, running;
3442

3443
	mutex_lock(&ctx->mutex);
3444
	count = perf_event_read_value(leader, &enabled, &running);
3445 3446

	values[n++] = 1 + leader->nr_siblings;
3447 3448 3449 3450
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3451 3452 3453
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3454 3455 3456 3457

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3458
		goto unlock;
3459

3460
	ret = size;
3461

3462
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3463
		n = 0;
3464

3465
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3466 3467 3468 3469 3470
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3471
		if (copy_to_user(buf + ret, values, size)) {
3472 3473 3474
			ret = -EFAULT;
			goto unlock;
		}
3475 3476

		ret += size;
3477
	}
3478 3479
unlock:
	mutex_unlock(&ctx->mutex);
3480

3481
	return ret;
3482 3483
}

3484
static int perf_event_read_one(struct perf_event *event,
3485 3486
				 u64 read_format, char __user *buf)
{
3487
	u64 enabled, running;
3488 3489 3490
	u64 values[4];
	int n = 0;

3491 3492 3493 3494 3495
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3496
	if (read_format & PERF_FORMAT_ID)
3497
		values[n++] = primary_event_id(event);
3498 3499 3500 3501 3502 3503 3504

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3505
/*
3506
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3507 3508
 */
static ssize_t
3509
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3510
{
3511
	u64 read_format = event->attr.read_format;
3512
	int ret;
T
Thomas Gleixner 已提交
3513

3514
	/*
3515
	 * Return end-of-file for a read on a event that is in
3516 3517 3518
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3519
	if (event->state == PERF_EVENT_STATE_ERROR)
3520 3521
		return 0;

3522
	if (count < event->read_size)
3523 3524
		return -ENOSPC;

3525
	WARN_ON_ONCE(event->ctx->parent_ctx);
3526
	if (read_format & PERF_FORMAT_GROUP)
3527
		ret = perf_event_read_group(event, read_format, buf);
3528
	else
3529
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3530

3531
	return ret;
T
Thomas Gleixner 已提交
3532 3533 3534 3535 3536
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3537
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3538

3539
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3540 3541 3542 3543
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3544
	struct perf_event *event = file->private_data;
3545
	struct ring_buffer *rb;
3546
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3547

3548
	/*
3549 3550
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3551 3552
	 */
	mutex_lock(&event->mmap_mutex);
3553 3554
	rb = event->rb;
	if (rb)
3555
		events = atomic_xchg(&rb->poll, 0);
3556 3557
	mutex_unlock(&event->mmap_mutex);

3558
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3559 3560 3561 3562

	return events;
}

3563
static void perf_event_reset(struct perf_event *event)
3564
{
3565
	(void)perf_event_read(event);
3566
	local64_set(&event->count, 0);
3567
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3568 3569
}

3570
/*
3571 3572 3573 3574
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3575
 */
3576 3577
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3578
{
3579
	struct perf_event *child;
P
Peter Zijlstra 已提交
3580

3581 3582 3583 3584
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3585
		func(child);
3586
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3587 3588
}

3589 3590
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3591
{
3592 3593
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3594

3595 3596
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3597
	event = event->group_leader;
3598

3599 3600
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3601
		perf_event_for_each_child(sibling, func);
3602
	mutex_unlock(&ctx->mutex);
3603 3604
}

3605
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3606
{
3607
	struct perf_event_context *ctx = event->ctx;
3608
	int ret = 0, active;
3609 3610
	u64 value;

3611
	if (!is_sampling_event(event))
3612 3613
		return -EINVAL;

3614
	if (copy_from_user(&value, arg, sizeof(value)))
3615 3616 3617 3618 3619
		return -EFAULT;

	if (!value)
		return -EINVAL;

3620
	raw_spin_lock_irq(&ctx->lock);
3621 3622
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3623 3624 3625 3626
			ret = -EINVAL;
			goto unlock;
		}

3627
		event->attr.sample_freq = value;
3628
	} else {
3629 3630
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3631
	}
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3646
unlock:
3647
	raw_spin_unlock_irq(&ctx->lock);
3648 3649 3650 3651

	return ret;
}

3652 3653
static const struct file_operations perf_fops;

3654
static inline int perf_fget_light(int fd, struct fd *p)
3655
{
3656 3657 3658
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3659

3660 3661 3662
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3663
	}
3664 3665
	*p = f;
	return 0;
3666 3667 3668 3669
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3670
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3671

3672 3673
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3674 3675
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3676
	u32 flags = arg;
3677 3678

	switch (cmd) {
3679 3680
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3681
		break;
3682 3683
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3684
		break;
3685 3686
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3687
		break;
P
Peter Zijlstra 已提交
3688

3689 3690
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3691

3692 3693
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3694

3695 3696 3697 3698 3699 3700 3701 3702 3703
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3704
	case PERF_EVENT_IOC_SET_OUTPUT:
3705 3706 3707
	{
		int ret;
		if (arg != -1) {
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3718 3719 3720
		}
		return ret;
	}
3721

L
Li Zefan 已提交
3722 3723 3724
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3725
	default:
P
Peter Zijlstra 已提交
3726
		return -ENOTTY;
3727
	}
P
Peter Zijlstra 已提交
3728 3729

	if (flags & PERF_IOC_FLAG_GROUP)
3730
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3731
	else
3732
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3733 3734

	return 0;
3735 3736
}

3737
int perf_event_task_enable(void)
3738
{
3739
	struct perf_event *event;
3740

3741 3742 3743 3744
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3745 3746 3747 3748

	return 0;
}

3749
int perf_event_task_disable(void)
3750
{
3751
	struct perf_event *event;
3752

3753 3754 3755 3756
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3757 3758 3759 3760

	return 0;
}

3761
static int perf_event_index(struct perf_event *event)
3762
{
P
Peter Zijlstra 已提交
3763 3764 3765
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3766
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3767 3768
		return 0;

3769
	return event->pmu->event_idx(event);
3770 3771
}

3772
static void calc_timer_values(struct perf_event *event,
3773
				u64 *now,
3774 3775
				u64 *enabled,
				u64 *running)
3776
{
3777
	u64 ctx_time;
3778

3779 3780
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3781 3782 3783 3784
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3805
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3806 3807 3808
{
}

3809 3810 3811 3812 3813
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3814
void perf_event_update_userpage(struct perf_event *event)
3815
{
3816
	struct perf_event_mmap_page *userpg;
3817
	struct ring_buffer *rb;
3818
	u64 enabled, running, now;
3819 3820

	rcu_read_lock();
3821 3822 3823 3824
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3825 3826 3827 3828 3829 3830 3831 3832 3833
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3834
	calc_timer_values(event, &now, &enabled, &running);
3835

3836
	userpg = rb->user_page;
3837 3838 3839 3840 3841
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3842
	++userpg->lock;
3843
	barrier();
3844
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3845
	userpg->offset = perf_event_count(event);
3846
	if (userpg->index)
3847
		userpg->offset -= local64_read(&event->hw.prev_count);
3848

3849
	userpg->time_enabled = enabled +
3850
			atomic64_read(&event->child_total_time_enabled);
3851

3852
	userpg->time_running = running +
3853
			atomic64_read(&event->child_total_time_running);
3854

3855
	arch_perf_update_userpage(userpg, now);
3856

3857
	barrier();
3858
	++userpg->lock;
3859
	preempt_enable();
3860
unlock:
3861
	rcu_read_unlock();
3862 3863
}

3864 3865 3866
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3867
	struct ring_buffer *rb;
3868 3869 3870 3871 3872 3873 3874 3875 3876
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3877 3878
	rb = rcu_dereference(event->rb);
	if (!rb)
3879 3880 3881 3882 3883
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3884
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3899 3900 3901
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
3902
	struct ring_buffer *old_rb = NULL;
3903 3904
	unsigned long flags;

3905 3906 3907 3908 3909 3910
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
3911

3912 3913 3914
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
3915

3916 3917 3918 3919
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
3920

3921 3922 3923 3924
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
3925

3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
3943 3944 3945 3946 3947 3948 3949 3950
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3951 3952 3953 3954
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3955 3956 3957
	rcu_read_unlock();
}

3958
static void rb_free_rcu(struct rcu_head *rcu_head)
3959
{
3960
	struct ring_buffer *rb;
3961

3962 3963
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3964 3965
}

3966
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3967
{
3968
	struct ring_buffer *rb;
3969

3970
	rcu_read_lock();
3971 3972 3973 3974
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3975 3976 3977
	}
	rcu_read_unlock();

3978
	return rb;
3979 3980
}

3981
static void ring_buffer_put(struct ring_buffer *rb)
3982
{
3983
	if (!atomic_dec_and_test(&rb->refcount))
3984
		return;
3985

3986
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3987

3988
	call_rcu(&rb->rcu_head, rb_free_rcu);
3989 3990 3991 3992
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3993
	struct perf_event *event = vma->vm_file->private_data;
3994

3995
	atomic_inc(&event->mmap_count);
3996
	atomic_inc(&event->rb->mmap_count);
3997 3998
}

3999 4000 4001 4002 4003 4004 4005 4006
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4007 4008
static void perf_mmap_close(struct vm_area_struct *vma)
{
4009
	struct perf_event *event = vma->vm_file->private_data;
4010

4011
	struct ring_buffer *rb = ring_buffer_get(event);
4012 4013 4014
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4015

4016 4017 4018
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4019
		goto out_put;
4020

4021
	ring_buffer_attach(event, NULL);
4022 4023 4024
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4025 4026
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4027

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4044

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4056 4057 4058
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4059
		mutex_unlock(&event->mmap_mutex);
4060
		put_event(event);
4061

4062 4063 4064 4065 4066
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4067
	}
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4083
out_put:
4084
	ring_buffer_put(rb); /* could be last */
4085 4086
}

4087
static const struct vm_operations_struct perf_mmap_vmops = {
4088 4089 4090 4091
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4092 4093 4094 4095
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4096
	struct perf_event *event = file->private_data;
4097
	unsigned long user_locked, user_lock_limit;
4098
	struct user_struct *user = current_user();
4099
	unsigned long locked, lock_limit;
4100
	struct ring_buffer *rb;
4101 4102
	unsigned long vma_size;
	unsigned long nr_pages;
4103
	long user_extra, extra;
4104
	int ret = 0, flags = 0;
4105

4106 4107 4108
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4109
	 * same rb.
4110 4111 4112 4113
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4114
	if (!(vma->vm_flags & VM_SHARED))
4115
		return -EINVAL;
4116 4117 4118 4119

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4120
	/*
4121
	 * If we have rb pages ensure they're a power-of-two number, so we
4122 4123 4124
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4125 4126
		return -EINVAL;

4127
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4128 4129
		return -EINVAL;

4130 4131
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4132

4133
	WARN_ON_ONCE(event->ctx->parent_ctx);
4134
again:
4135
	mutex_lock(&event->mmap_mutex);
4136
	if (event->rb) {
4137
		if (event->rb->nr_pages != nr_pages) {
4138
			ret = -EINVAL;
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4152 4153 4154
		goto unlock;
	}

4155
	user_extra = nr_pages + 1;
4156
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4157 4158 4159 4160 4161 4162

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4163
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4164

4165 4166 4167
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4168

4169
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4170
	lock_limit >>= PAGE_SHIFT;
4171
	locked = vma->vm_mm->pinned_vm + extra;
4172

4173 4174
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4175 4176 4177
		ret = -EPERM;
		goto unlock;
	}
4178

4179
	WARN_ON(event->rb);
4180

4181
	if (vma->vm_flags & VM_WRITE)
4182
		flags |= RING_BUFFER_WRITABLE;
4183

4184 4185 4186 4187
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4188
	if (!rb) {
4189
		ret = -ENOMEM;
4190
		goto unlock;
4191
	}
P
Peter Zijlstra 已提交
4192

4193
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4194 4195
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4196

4197
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4198 4199
	vma->vm_mm->pinned_vm += extra;

4200
	ring_buffer_attach(event, rb);
4201

4202
	perf_event_init_userpage(event);
4203 4204
	perf_event_update_userpage(event);

4205
unlock:
4206 4207
	if (!ret)
		atomic_inc(&event->mmap_count);
4208
	mutex_unlock(&event->mmap_mutex);
4209

4210 4211 4212 4213
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4214
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4215
	vma->vm_ops = &perf_mmap_vmops;
4216 4217

	return ret;
4218 4219
}

P
Peter Zijlstra 已提交
4220 4221
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4222
	struct inode *inode = file_inode(filp);
4223
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4224 4225 4226
	int retval;

	mutex_lock(&inode->i_mutex);
4227
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4228 4229 4230 4231 4232 4233 4234 4235
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4236
static const struct file_operations perf_fops = {
4237
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4238 4239 4240
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4241 4242
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4243
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4244
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4245 4246
};

4247
/*
4248
 * Perf event wakeup
4249 4250 4251 4252 4253
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4254
void perf_event_wakeup(struct perf_event *event)
4255
{
4256
	ring_buffer_wakeup(event);
4257

4258 4259 4260
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4261
	}
4262 4263
}

4264
static void perf_pending_event(struct irq_work *entry)
4265
{
4266 4267
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4268

4269 4270 4271
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4272 4273
	}

4274 4275 4276
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4277 4278 4279
	}
}

4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4427 4428 4429
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4445
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4457 4458 4459
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4484 4485 4486

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4487 4488
}

4489 4490 4491
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4492 4493 4494 4495 4496
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4497
static void perf_output_read_one(struct perf_output_handle *handle,
4498 4499
				 struct perf_event *event,
				 u64 enabled, u64 running)
4500
{
4501
	u64 read_format = event->attr.read_format;
4502 4503 4504
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4505
	values[n++] = perf_event_count(event);
4506
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4507
		values[n++] = enabled +
4508
			atomic64_read(&event->child_total_time_enabled);
4509 4510
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4511
		values[n++] = running +
4512
			atomic64_read(&event->child_total_time_running);
4513 4514
	}
	if (read_format & PERF_FORMAT_ID)
4515
		values[n++] = primary_event_id(event);
4516

4517
	__output_copy(handle, values, n * sizeof(u64));
4518 4519 4520
}

/*
4521
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4522 4523
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4524 4525
			    struct perf_event *event,
			    u64 enabled, u64 running)
4526
{
4527 4528
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4529 4530 4531 4532 4533 4534
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4535
		values[n++] = enabled;
4536 4537

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4538
		values[n++] = running;
4539

4540
	if (leader != event)
4541 4542
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4543
	values[n++] = perf_event_count(leader);
4544
	if (read_format & PERF_FORMAT_ID)
4545
		values[n++] = primary_event_id(leader);
4546

4547
	__output_copy(handle, values, n * sizeof(u64));
4548

4549
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4550 4551
		n = 0;

4552 4553
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4554 4555
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4556
		values[n++] = perf_event_count(sub);
4557
		if (read_format & PERF_FORMAT_ID)
4558
			values[n++] = primary_event_id(sub);
4559

4560
		__output_copy(handle, values, n * sizeof(u64));
4561 4562 4563
	}
}

4564 4565 4566
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4567
static void perf_output_read(struct perf_output_handle *handle,
4568
			     struct perf_event *event)
4569
{
4570
	u64 enabled = 0, running = 0, now;
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4582
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4583
		calc_timer_values(event, &now, &enabled, &running);
4584

4585
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4586
		perf_output_read_group(handle, event, enabled, running);
4587
	else
4588
		perf_output_read_one(handle, event, enabled, running);
4589 4590
}

4591 4592 4593
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4594
			struct perf_event *event)
4595 4596 4597 4598 4599
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4600 4601 4602
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4628
		perf_output_read(handle, event);
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4639
			__output_copy(handle, data->callchain, size);
4640 4641 4642 4643 4644 4645 4646 4647 4648
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4649 4650
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4662

4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4697

4698
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4699 4700 4701
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4702
	}
A
Andi Kleen 已提交
4703 4704 4705

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4706 4707 4708

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4709

A
Andi Kleen 已提交
4710 4711 4712
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4726 4727 4728 4729
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4730
			 struct perf_event *event,
4731
			 struct pt_regs *regs)
4732
{
4733
	u64 sample_type = event->attr.sample_type;
4734

4735
	header->type = PERF_RECORD_SAMPLE;
4736
	header->size = sizeof(*header) + event->header_size;
4737 4738 4739

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4740

4741
	__perf_event_header__init_id(header, data, event);
4742

4743
	if (sample_type & PERF_SAMPLE_IP)
4744 4745
		data->ip = perf_instruction_pointer(regs);

4746
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4747
		int size = 1;
4748

4749
		data->callchain = perf_callchain(event, regs);
4750 4751 4752 4753 4754

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4755 4756
	}

4757
	if (sample_type & PERF_SAMPLE_RAW) {
4758 4759 4760 4761 4762 4763 4764 4765
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4766
		header->size += size;
4767
	}
4768 4769 4770 4771 4772 4773 4774 4775 4776

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4820
}
4821

4822
static void perf_event_output(struct perf_event *event,
4823 4824 4825 4826 4827
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4828

4829 4830 4831
	/* protect the callchain buffers */
	rcu_read_lock();

4832
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4833

4834
	if (perf_output_begin(&handle, event, header.size))
4835
		goto exit;
4836

4837
	perf_output_sample(&handle, &header, data, event);
4838

4839
	perf_output_end(&handle);
4840 4841 4842

exit:
	rcu_read_unlock();
4843 4844
}

4845
/*
4846
 * read event_id
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4857
perf_event_read_event(struct perf_event *event,
4858 4859 4860
			struct task_struct *task)
{
	struct perf_output_handle handle;
4861
	struct perf_sample_data sample;
4862
	struct perf_read_event read_event = {
4863
		.header = {
4864
			.type = PERF_RECORD_READ,
4865
			.misc = 0,
4866
			.size = sizeof(read_event) + event->read_size,
4867
		},
4868 4869
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4870
	};
4871
	int ret;
4872

4873
	perf_event_header__init_id(&read_event.header, &sample, event);
4874
	ret = perf_output_begin(&handle, event, read_event.header.size);
4875 4876 4877
	if (ret)
		return;

4878
	perf_output_put(&handle, read_event);
4879
	perf_output_read(&handle, event);
4880
	perf_event__output_id_sample(event, &handle, &sample);
4881

4882 4883 4884
	perf_output_end(&handle);
}

4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4899
		output(event, data);
4900 4901 4902 4903
	}
}

static void
4904
perf_event_aux(perf_event_aux_output_cb output, void *data,
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4917
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4918 4919 4920 4921 4922 4923 4924
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4925
			perf_event_aux_ctx(ctx, output, data);
4926 4927 4928 4929 4930 4931
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4932
		perf_event_aux_ctx(task_ctx, output, data);
4933 4934 4935 4936 4937
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4938
/*
P
Peter Zijlstra 已提交
4939 4940
 * task tracking -- fork/exit
 *
4941
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4942 4943
 */

P
Peter Zijlstra 已提交
4944
struct perf_task_event {
4945
	struct task_struct		*task;
4946
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4947 4948 4949 4950 4951 4952

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4953 4954
		u32				tid;
		u32				ptid;
4955
		u64				time;
4956
	} event_id;
P
Peter Zijlstra 已提交
4957 4958
};

4959 4960
static int perf_event_task_match(struct perf_event *event)
{
4961 4962 4963
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4964 4965
}

4966
static void perf_event_task_output(struct perf_event *event,
4967
				   void *data)
P
Peter Zijlstra 已提交
4968
{
4969
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4970
	struct perf_output_handle handle;
4971
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4972
	struct task_struct *task = task_event->task;
4973
	int ret, size = task_event->event_id.header.size;
4974

4975 4976 4977
	if (!perf_event_task_match(event))
		return;

4978
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4979

4980
	ret = perf_output_begin(&handle, event,
4981
				task_event->event_id.header.size);
4982
	if (ret)
4983
		goto out;
P
Peter Zijlstra 已提交
4984

4985 4986
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4987

4988 4989
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4990

4991
	perf_output_put(&handle, task_event->event_id);
4992

4993 4994
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4995
	perf_output_end(&handle);
4996 4997
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4998 4999
}

5000 5001
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5002
			      int new)
P
Peter Zijlstra 已提交
5003
{
P
Peter Zijlstra 已提交
5004
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5005

5006 5007 5008
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5009 5010
		return;

P
Peter Zijlstra 已提交
5011
	task_event = (struct perf_task_event){
5012 5013
		.task	  = task,
		.task_ctx = task_ctx,
5014
		.event_id    = {
P
Peter Zijlstra 已提交
5015
			.header = {
5016
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5017
				.misc = 0,
5018
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5019
			},
5020 5021
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5022 5023
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5024
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5025 5026 5027
		},
	};

5028
	perf_event_aux(perf_event_task_output,
5029 5030
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5031 5032
}

5033
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5034
{
5035
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5036 5037
}

5038 5039 5040 5041 5042
/*
 * comm tracking
 */

struct perf_comm_event {
5043 5044
	struct task_struct	*task;
	char			*comm;
5045 5046 5047 5048 5049 5050 5051
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5052
	} event_id;
5053 5054
};

5055 5056 5057 5058 5059
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5060
static void perf_event_comm_output(struct perf_event *event,
5061
				   void *data)
5062
{
5063
	struct perf_comm_event *comm_event = data;
5064
	struct perf_output_handle handle;
5065
	struct perf_sample_data sample;
5066
	int size = comm_event->event_id.header.size;
5067 5068
	int ret;

5069 5070 5071
	if (!perf_event_comm_match(event))
		return;

5072 5073
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5074
				comm_event->event_id.header.size);
5075 5076

	if (ret)
5077
		goto out;
5078

5079 5080
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5081

5082
	perf_output_put(&handle, comm_event->event_id);
5083
	__output_copy(&handle, comm_event->comm,
5084
				   comm_event->comm_size);
5085 5086 5087

	perf_event__output_id_sample(event, &handle, &sample);

5088
	perf_output_end(&handle);
5089 5090
out:
	comm_event->event_id.header.size = size;
5091 5092
}

5093
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5094
{
5095
	char comm[TASK_COMM_LEN];
5096 5097
	unsigned int size;

5098
	memset(comm, 0, sizeof(comm));
5099
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5100
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5101 5102 5103 5104

	comm_event->comm = comm;
	comm_event->comm_size = size;

5105
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5106

5107
	perf_event_aux(perf_event_comm_output,
5108 5109
		       comm_event,
		       NULL);
5110 5111
}

5112
void perf_event_comm(struct task_struct *task, bool exec)
5113
{
5114 5115
	struct perf_comm_event comm_event;

5116
	if (!atomic_read(&nr_comm_events))
5117
		return;
5118

5119
	comm_event = (struct perf_comm_event){
5120
		.task	= task,
5121 5122
		/* .comm      */
		/* .comm_size */
5123
		.event_id  = {
5124
			.header = {
5125
				.type = PERF_RECORD_COMM,
5126
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5127 5128 5129 5130
				/* .size */
			},
			/* .pid */
			/* .tid */
5131 5132 5133
		},
	};

5134
	perf_event_comm_event(&comm_event);
5135 5136
}

5137 5138 5139 5140 5141
/*
 * mmap tracking
 */

struct perf_mmap_event {
5142 5143 5144 5145
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5146 5147 5148
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5149
	u32			prot, flags;
5150 5151 5152 5153 5154 5155 5156 5157 5158

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5159
	} event_id;
5160 5161
};

5162 5163 5164 5165 5166 5167 5168 5169
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5170
	       (executable && (event->attr.mmap || event->attr.mmap2));
5171 5172
}

5173
static void perf_event_mmap_output(struct perf_event *event,
5174
				   void *data)
5175
{
5176
	struct perf_mmap_event *mmap_event = data;
5177
	struct perf_output_handle handle;
5178
	struct perf_sample_data sample;
5179
	int size = mmap_event->event_id.header.size;
5180
	int ret;
5181

5182 5183 5184
	if (!perf_event_mmap_match(event, data))
		return;

5185 5186 5187 5188 5189
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5190
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5191 5192
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5193 5194
	}

5195 5196
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5197
				mmap_event->event_id.header.size);
5198
	if (ret)
5199
		goto out;
5200

5201 5202
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5203

5204
	perf_output_put(&handle, mmap_event->event_id);
5205 5206 5207 5208 5209 5210

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5211 5212
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5213 5214
	}

5215
	__output_copy(&handle, mmap_event->file_name,
5216
				   mmap_event->file_size);
5217 5218 5219

	perf_event__output_id_sample(event, &handle, &sample);

5220
	perf_output_end(&handle);
5221 5222
out:
	mmap_event->event_id.header.size = size;
5223 5224
}

5225
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5226
{
5227 5228
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5229 5230
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5231
	u32 prot = 0, flags = 0;
5232 5233 5234
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5235
	char *name;
5236

5237
	if (file) {
5238 5239
		struct inode *inode;
		dev_t dev;
5240

5241
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5242
		if (!buf) {
5243 5244
			name = "//enomem";
			goto cpy_name;
5245
		}
5246
		/*
5247
		 * d_path() works from the end of the rb backwards, so we
5248 5249 5250
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5251
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5252
		if (IS_ERR(name)) {
5253 5254
			name = "//toolong";
			goto cpy_name;
5255
		}
5256 5257 5258 5259 5260 5261
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5284
		goto got_name;
5285
	} else {
5286 5287 5288 5289 5290 5291
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5292
		name = (char *)arch_vma_name(vma);
5293 5294
		if (name)
			goto cpy_name;
5295

5296
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5297
				vma->vm_end >= vma->vm_mm->brk) {
5298 5299
			name = "[heap]";
			goto cpy_name;
5300 5301
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5302
				vma->vm_end >= vma->vm_mm->start_stack) {
5303 5304
			name = "[stack]";
			goto cpy_name;
5305 5306
		}

5307 5308
		name = "//anon";
		goto cpy_name;
5309 5310
	}

5311 5312 5313
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5314
got_name:
5315 5316 5317 5318 5319 5320 5321 5322
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5323 5324 5325

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5326 5327 5328 5329
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5330 5331
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5332

5333 5334 5335
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5336
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5337

5338
	perf_event_aux(perf_event_mmap_output,
5339 5340
		       mmap_event,
		       NULL);
5341

5342 5343 5344
	kfree(buf);
}

5345
void perf_event_mmap(struct vm_area_struct *vma)
5346
{
5347 5348
	struct perf_mmap_event mmap_event;

5349
	if (!atomic_read(&nr_mmap_events))
5350 5351 5352
		return;

	mmap_event = (struct perf_mmap_event){
5353
		.vma	= vma,
5354 5355
		/* .file_name */
		/* .file_size */
5356
		.event_id  = {
5357
			.header = {
5358
				.type = PERF_RECORD_MMAP,
5359
				.misc = PERF_RECORD_MISC_USER,
5360 5361 5362 5363
				/* .size */
			},
			/* .pid */
			/* .tid */
5364 5365
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5366
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5367
		},
5368 5369 5370 5371
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5372 5373
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5374 5375
	};

5376
	perf_event_mmap_event(&mmap_event);
5377 5378
}

5379 5380 5381 5382
/*
 * IRQ throttle logging
 */

5383
static void perf_log_throttle(struct perf_event *event, int enable)
5384 5385
{
	struct perf_output_handle handle;
5386
	struct perf_sample_data sample;
5387 5388 5389 5390 5391
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5392
		u64				id;
5393
		u64				stream_id;
5394 5395
	} throttle_event = {
		.header = {
5396
			.type = PERF_RECORD_THROTTLE,
5397 5398 5399
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5400
		.time		= perf_clock(),
5401 5402
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5403 5404
	};

5405
	if (enable)
5406
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5407

5408 5409 5410
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5411
				throttle_event.header.size);
5412 5413 5414 5415
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5416
	perf_event__output_id_sample(event, &handle, &sample);
5417 5418 5419
	perf_output_end(&handle);
}

5420
/*
5421
 * Generic event overflow handling, sampling.
5422 5423
 */

5424
static int __perf_event_overflow(struct perf_event *event,
5425 5426
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5427
{
5428 5429
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5430
	u64 seq;
5431 5432
	int ret = 0;

5433 5434 5435 5436 5437 5438 5439
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5440 5441 5442 5443 5444 5445 5446 5447 5448
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5449 5450
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5451
			tick_nohz_full_kick();
5452 5453
			ret = 1;
		}
5454
	}
5455

5456
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5457
		u64 now = perf_clock();
5458
		s64 delta = now - hwc->freq_time_stamp;
5459

5460
		hwc->freq_time_stamp = now;
5461

5462
		if (delta > 0 && delta < 2*TICK_NSEC)
5463
			perf_adjust_period(event, delta, hwc->last_period, true);
5464 5465
	}

5466 5467
	/*
	 * XXX event_limit might not quite work as expected on inherited
5468
	 * events
5469 5470
	 */

5471 5472
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5473
		ret = 1;
5474
		event->pending_kill = POLL_HUP;
5475 5476
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5477 5478
	}

5479
	if (event->overflow_handler)
5480
		event->overflow_handler(event, data, regs);
5481
	else
5482
		perf_event_output(event, data, regs);
5483

P
Peter Zijlstra 已提交
5484
	if (event->fasync && event->pending_kill) {
5485 5486
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5487 5488
	}

5489
	return ret;
5490 5491
}

5492
int perf_event_overflow(struct perf_event *event,
5493 5494
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5495
{
5496
	return __perf_event_overflow(event, 1, data, regs);
5497 5498
}

5499
/*
5500
 * Generic software event infrastructure
5501 5502
 */

5503 5504 5505 5506 5507 5508 5509
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5510 5511 5512

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5513 5514 5515 5516
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5517
/*
5518 5519
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5520 5521 5522 5523
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5524
u64 perf_swevent_set_period(struct perf_event *event)
5525
{
5526
	struct hw_perf_event *hwc = &event->hw;
5527 5528 5529 5530 5531
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5532 5533

again:
5534
	old = val = local64_read(&hwc->period_left);
5535 5536
	if (val < 0)
		return 0;
5537

5538 5539 5540
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5541
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5542
		goto again;
5543

5544
	return nr;
5545 5546
}

5547
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5548
				    struct perf_sample_data *data,
5549
				    struct pt_regs *regs)
5550
{
5551
	struct hw_perf_event *hwc = &event->hw;
5552
	int throttle = 0;
5553

5554 5555
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5556

5557 5558
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5559

5560
	for (; overflow; overflow--) {
5561
		if (__perf_event_overflow(event, throttle,
5562
					    data, regs)) {
5563 5564 5565 5566 5567 5568
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5569
		throttle = 1;
5570
	}
5571 5572
}

P
Peter Zijlstra 已提交
5573
static void perf_swevent_event(struct perf_event *event, u64 nr,
5574
			       struct perf_sample_data *data,
5575
			       struct pt_regs *regs)
5576
{
5577
	struct hw_perf_event *hwc = &event->hw;
5578

5579
	local64_add(nr, &event->count);
5580

5581 5582 5583
	if (!regs)
		return;

5584
	if (!is_sampling_event(event))
5585
		return;
5586

5587 5588 5589 5590 5591 5592
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5593
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5594
		return perf_swevent_overflow(event, 1, data, regs);
5595

5596
	if (local64_add_negative(nr, &hwc->period_left))
5597
		return;
5598

5599
	perf_swevent_overflow(event, 0, data, regs);
5600 5601
}

5602 5603 5604
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5605
	if (event->hw.state & PERF_HES_STOPPED)
5606
		return 1;
P
Peter Zijlstra 已提交
5607

5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5619
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5620
				enum perf_type_id type,
L
Li Zefan 已提交
5621 5622 5623
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5624
{
5625
	if (event->attr.type != type)
5626
		return 0;
5627

5628
	if (event->attr.config != event_id)
5629 5630
		return 0;

5631 5632
	if (perf_exclude_event(event, regs))
		return 0;
5633 5634 5635 5636

	return 1;
}

5637 5638 5639 5640 5641 5642 5643
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5644 5645
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5646
{
5647 5648 5649 5650
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5651

5652 5653
/* For the read side: events when they trigger */
static inline struct hlist_head *
5654
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5655 5656
{
	struct swevent_hlist *hlist;
5657

5658
	hlist = rcu_dereference(swhash->swevent_hlist);
5659 5660 5661
	if (!hlist)
		return NULL;

5662 5663 5664 5665 5666
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5667
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5678
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5679 5680 5681 5682 5683
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5684 5685 5686
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5687
				    u64 nr,
5688 5689
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5690
{
5691
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5692
	struct perf_event *event;
5693
	struct hlist_head *head;
5694

5695
	rcu_read_lock();
5696
	head = find_swevent_head_rcu(swhash, type, event_id);
5697 5698 5699
	if (!head)
		goto end;

5700
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5701
		if (perf_swevent_match(event, type, event_id, data, regs))
5702
			perf_swevent_event(event, nr, data, regs);
5703
	}
5704 5705
end:
	rcu_read_unlock();
5706 5707
}

5708
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5709
{
5710
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5711

5712
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5713
}
I
Ingo Molnar 已提交
5714
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5715

5716
inline void perf_swevent_put_recursion_context(int rctx)
5717
{
5718
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5719

5720
	put_recursion_context(swhash->recursion, rctx);
5721
}
5722

5723
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5724
{
5725
	struct perf_sample_data data;
5726 5727
	int rctx;

5728
	preempt_disable_notrace();
5729 5730 5731
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5732

5733
	perf_sample_data_init(&data, addr, 0);
5734

5735
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5736 5737

	perf_swevent_put_recursion_context(rctx);
5738
	preempt_enable_notrace();
5739 5740
}

5741
static void perf_swevent_read(struct perf_event *event)
5742 5743 5744
{
}

P
Peter Zijlstra 已提交
5745
static int perf_swevent_add(struct perf_event *event, int flags)
5746
{
5747
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5748
	struct hw_perf_event *hwc = &event->hw;
5749 5750
	struct hlist_head *head;

5751
	if (is_sampling_event(event)) {
5752
		hwc->last_period = hwc->sample_period;
5753
		perf_swevent_set_period(event);
5754
	}
5755

P
Peter Zijlstra 已提交
5756 5757
	hwc->state = !(flags & PERF_EF_START);

5758
	head = find_swevent_head(swhash, event);
5759 5760 5761 5762 5763 5764
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
5765
		return -EINVAL;
5766
	}
5767 5768 5769

	hlist_add_head_rcu(&event->hlist_entry, head);

5770 5771 5772
	return 0;
}

P
Peter Zijlstra 已提交
5773
static void perf_swevent_del(struct perf_event *event, int flags)
5774
{
5775
	hlist_del_rcu(&event->hlist_entry);
5776 5777
}

P
Peter Zijlstra 已提交
5778
static void perf_swevent_start(struct perf_event *event, int flags)
5779
{
P
Peter Zijlstra 已提交
5780
	event->hw.state = 0;
5781
}
I
Ingo Molnar 已提交
5782

P
Peter Zijlstra 已提交
5783
static void perf_swevent_stop(struct perf_event *event, int flags)
5784
{
P
Peter Zijlstra 已提交
5785
	event->hw.state = PERF_HES_STOPPED;
5786 5787
}

5788 5789
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5790
swevent_hlist_deref(struct swevent_htable *swhash)
5791
{
5792 5793
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5794 5795
}

5796
static void swevent_hlist_release(struct swevent_htable *swhash)
5797
{
5798
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5799

5800
	if (!hlist)
5801 5802
		return;

5803
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5804
	kfree_rcu(hlist, rcu_head);
5805 5806 5807 5808
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5809
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5810

5811
	mutex_lock(&swhash->hlist_mutex);
5812

5813 5814
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5815

5816
	mutex_unlock(&swhash->hlist_mutex);
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5829
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5830 5831
	int err = 0;

5832
	mutex_lock(&swhash->hlist_mutex);
5833

5834
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5835 5836 5837 5838 5839 5840 5841
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5842
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5843
	}
5844
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5845
exit:
5846
	mutex_unlock(&swhash->hlist_mutex);
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5867
fail:
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5878
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5879

5880 5881 5882
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5883

5884 5885
	WARN_ON(event->parent);

5886
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5887 5888 5889 5890 5891
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5892
	u64 event_id = event->attr.config;
5893 5894 5895 5896

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5897 5898 5899 5900 5901 5902
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5903 5904 5905 5906 5907 5908 5909 5910 5911
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5912
	if (event_id >= PERF_COUNT_SW_MAX)
5913 5914 5915 5916 5917 5918 5919 5920 5921
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5922
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5923 5924 5925 5926 5927 5928
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5929 5930 5931 5932 5933
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5934
static struct pmu perf_swevent = {
5935
	.task_ctx_nr	= perf_sw_context,
5936

5937
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5938 5939 5940 5941
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5942
	.read		= perf_swevent_read,
5943 5944

	.event_idx	= perf_swevent_event_idx,
5945 5946
};

5947 5948
#ifdef CONFIG_EVENT_TRACING

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5963 5964
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5965 5966 5967 5968
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5969 5970 5971 5972 5973 5974 5975 5976 5977
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5978 5979
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5980 5981
{
	struct perf_sample_data data;
5982 5983
	struct perf_event *event;

5984 5985 5986 5987 5988
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5989
	perf_sample_data_init(&data, addr, 0);
5990 5991
	data.raw = &raw;

5992
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5993
		if (perf_tp_event_match(event, &data, regs))
5994
			perf_swevent_event(event, count, &data, regs);
5995
	}
5996

5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6022
	perf_swevent_put_recursion_context(rctx);
6023 6024 6025
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6026
static void tp_perf_event_destroy(struct perf_event *event)
6027
{
6028
	perf_trace_destroy(event);
6029 6030
}

6031
static int perf_tp_event_init(struct perf_event *event)
6032
{
6033 6034
	int err;

6035 6036 6037
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6038 6039 6040 6041 6042 6043
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6044 6045
	err = perf_trace_init(event);
	if (err)
6046
		return err;
6047

6048
	event->destroy = tp_perf_event_destroy;
6049

6050 6051 6052 6053
	return 0;
}

static struct pmu perf_tracepoint = {
6054 6055
	.task_ctx_nr	= perf_sw_context,

6056
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6057 6058 6059 6060
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6061
	.read		= perf_swevent_read,
6062 6063

	.event_idx	= perf_swevent_event_idx,
6064 6065 6066 6067
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6068
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6069
}
L
Li Zefan 已提交
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6094
#else
L
Li Zefan 已提交
6095

6096
static inline void perf_tp_register(void)
6097 6098
{
}
L
Li Zefan 已提交
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6109
#endif /* CONFIG_EVENT_TRACING */
6110

6111
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6112
void perf_bp_event(struct perf_event *bp, void *data)
6113
{
6114 6115 6116
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6117
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6118

P
Peter Zijlstra 已提交
6119
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6120
		perf_swevent_event(bp, 1, &sample, regs);
6121 6122 6123
}
#endif

6124 6125 6126
/*
 * hrtimer based swevent callback
 */
6127

6128
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6129
{
6130 6131 6132 6133 6134
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6135

6136
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6137 6138 6139 6140

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6141
	event->pmu->read(event);
6142

6143
	perf_sample_data_init(&data, 0, event->hw.last_period);
6144 6145 6146
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6147
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6148
			if (__perf_event_overflow(event, 1, &data, regs))
6149 6150
				ret = HRTIMER_NORESTART;
	}
6151

6152 6153
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6154

6155
	return ret;
6156 6157
}

6158
static void perf_swevent_start_hrtimer(struct perf_event *event)
6159
{
6160
	struct hw_perf_event *hwc = &event->hw;
6161 6162 6163 6164
	s64 period;

	if (!is_sampling_event(event))
		return;
6165

6166 6167 6168 6169
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6170

6171 6172 6173 6174 6175
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6176
				ns_to_ktime(period), 0,
6177
				HRTIMER_MODE_REL_PINNED, 0);
6178
}
6179 6180

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6181
{
6182 6183
	struct hw_perf_event *hwc = &event->hw;

6184
	if (is_sampling_event(event)) {
6185
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6186
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6187 6188 6189

		hrtimer_cancel(&hwc->hrtimer);
	}
6190 6191
}

P
Peter Zijlstra 已提交
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6212
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6213 6214 6215 6216
		event->attr.freq = 0;
	}
}

6217 6218 6219 6220 6221
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6222
{
6223 6224 6225
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6226
	now = local_clock();
6227 6228
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6229 6230
}

P
Peter Zijlstra 已提交
6231
static void cpu_clock_event_start(struct perf_event *event, int flags)
6232
{
P
Peter Zijlstra 已提交
6233
	local64_set(&event->hw.prev_count, local_clock());
6234 6235 6236
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6237
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6238
{
6239 6240 6241
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6242

P
Peter Zijlstra 已提交
6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6256 6257 6258 6259
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6260

6261 6262 6263 6264 6265 6266 6267 6268
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6269 6270 6271 6272 6273 6274
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6275 6276
	perf_swevent_init_hrtimer(event);

6277
	return 0;
6278 6279
}

6280
static struct pmu perf_cpu_clock = {
6281 6282
	.task_ctx_nr	= perf_sw_context,

6283
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6284 6285 6286 6287
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6288
	.read		= cpu_clock_event_read,
6289 6290

	.event_idx	= perf_swevent_event_idx,
6291 6292 6293 6294 6295 6296 6297
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6298
{
6299 6300
	u64 prev;
	s64 delta;
6301

6302 6303 6304 6305
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6306

P
Peter Zijlstra 已提交
6307
static void task_clock_event_start(struct perf_event *event, int flags)
6308
{
P
Peter Zijlstra 已提交
6309
	local64_set(&event->hw.prev_count, event->ctx->time);
6310 6311 6312
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6313
static void task_clock_event_stop(struct perf_event *event, int flags)
6314 6315 6316
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6317 6318 6319 6320 6321 6322
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6323

P
Peter Zijlstra 已提交
6324 6325 6326 6327 6328 6329
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6330 6331 6332 6333
}

static void task_clock_event_read(struct perf_event *event)
{
6334 6335 6336
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6337 6338 6339 6340 6341

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6342
{
6343 6344 6345 6346 6347 6348
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6349 6350 6351 6352 6353 6354
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6355 6356
	perf_swevent_init_hrtimer(event);

6357
	return 0;
L
Li Zefan 已提交
6358 6359
}

6360
static struct pmu perf_task_clock = {
6361 6362
	.task_ctx_nr	= perf_sw_context,

6363
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6364 6365 6366 6367
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6368
	.read		= task_clock_event_read,
6369 6370

	.event_idx	= perf_swevent_event_idx,
6371
};
L
Li Zefan 已提交
6372

P
Peter Zijlstra 已提交
6373
static void perf_pmu_nop_void(struct pmu *pmu)
6374 6375
{
}
L
Li Zefan 已提交
6376

P
Peter Zijlstra 已提交
6377
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6378
{
P
Peter Zijlstra 已提交
6379
	return 0;
L
Li Zefan 已提交
6380 6381
}

P
Peter Zijlstra 已提交
6382
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6383
{
P
Peter Zijlstra 已提交
6384
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6385 6386
}

P
Peter Zijlstra 已提交
6387 6388 6389 6390 6391
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6392

P
Peter Zijlstra 已提交
6393
static void perf_pmu_cancel_txn(struct pmu *pmu)
6394
{
P
Peter Zijlstra 已提交
6395
	perf_pmu_enable(pmu);
6396 6397
}

6398 6399 6400 6401 6402
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6403 6404 6405 6406
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6407
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6408
{
P
Peter Zijlstra 已提交
6409
	struct pmu *pmu;
6410

P
Peter Zijlstra 已提交
6411 6412
	if (ctxn < 0)
		return NULL;
6413

P
Peter Zijlstra 已提交
6414 6415 6416 6417
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6418

P
Peter Zijlstra 已提交
6419
	return NULL;
6420 6421
}

6422
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6423
{
6424 6425 6426 6427 6428 6429 6430
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6431 6432
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6433 6434 6435 6436 6437 6438
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6439

P
Peter Zijlstra 已提交
6440
	mutex_lock(&pmus_lock);
6441
	/*
P
Peter Zijlstra 已提交
6442
	 * Like a real lame refcount.
6443
	 */
6444 6445 6446
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6447
			goto out;
6448
		}
P
Peter Zijlstra 已提交
6449
	}
6450

6451
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6452 6453
out:
	mutex_unlock(&pmus_lock);
6454
}
P
Peter Zijlstra 已提交
6455
static struct idr pmu_idr;
6456

P
Peter Zijlstra 已提交
6457 6458 6459 6460 6461 6462 6463
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6464
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6465

6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6509
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6510

6511 6512 6513 6514
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6515
};
6516
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6517 6518 6519 6520

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6521
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6537
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6558
static struct lock_class_key cpuctx_mutex;
6559
static struct lock_class_key cpuctx_lock;
6560

6561
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6562
{
P
Peter Zijlstra 已提交
6563
	int cpu, ret;
6564

6565
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6566 6567 6568 6569
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6570

P
Peter Zijlstra 已提交
6571 6572 6573 6574 6575 6576
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6577 6578 6579
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6580 6581 6582 6583 6584
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6585 6586 6587 6588 6589 6590
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6591
skip_type:
P
Peter Zijlstra 已提交
6592 6593 6594
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6595

W
Wei Yongjun 已提交
6596
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6597 6598
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6599
		goto free_dev;
6600

P
Peter Zijlstra 已提交
6601 6602 6603 6604
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6605
		__perf_event_init_context(&cpuctx->ctx);
6606
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6607
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6608
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6609
		cpuctx->ctx.pmu = pmu;
6610 6611 6612

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6613
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6614
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6615
	}
6616

P
Peter Zijlstra 已提交
6617
got_cpu_context:
P
Peter Zijlstra 已提交
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6632
		}
6633
	}
6634

P
Peter Zijlstra 已提交
6635 6636 6637 6638 6639
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6640 6641 6642
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6643
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6644 6645
	ret = 0;
unlock:
6646 6647
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6648
	return ret;
P
Peter Zijlstra 已提交
6649

P
Peter Zijlstra 已提交
6650 6651 6652 6653
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6654 6655 6656 6657
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6658 6659 6660
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6661
}
6662
EXPORT_SYMBOL_GPL(perf_pmu_register);
6663

6664
void perf_pmu_unregister(struct pmu *pmu)
6665
{
6666 6667 6668
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6669

6670
	/*
P
Peter Zijlstra 已提交
6671 6672
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6673
	 */
6674
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6675
	synchronize_rcu();
6676

P
Peter Zijlstra 已提交
6677
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6678 6679
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6680 6681
	device_del(pmu->dev);
	put_device(pmu->dev);
6682
	free_pmu_context(pmu);
6683
}
6684
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6685

6686 6687 6688 6689
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6690
	int ret;
6691 6692

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6693 6694 6695 6696

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6697
	if (pmu) {
6698 6699 6700 6701
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6702
		event->pmu = pmu;
6703 6704 6705
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6706
		goto unlock;
6707
	}
P
Peter Zijlstra 已提交
6708

6709
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6710 6711 6712 6713
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6714
		event->pmu = pmu;
6715
		ret = pmu->event_init(event);
6716
		if (!ret)
P
Peter Zijlstra 已提交
6717
			goto unlock;
6718

6719 6720
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6721
			goto unlock;
6722
		}
6723
	}
P
Peter Zijlstra 已提交
6724 6725
	pmu = ERR_PTR(-ENOENT);
unlock:
6726
	srcu_read_unlock(&pmus_srcu, idx);
6727

6728
	return pmu;
6729 6730
}

6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6744 6745
static void account_event(struct perf_event *event)
{
6746 6747 6748
	if (event->parent)
		return;

6749 6750 6751 6752 6753 6754 6755 6756
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6757 6758 6759 6760
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6761
	if (has_branch_stack(event))
6762
		static_key_slow_inc(&perf_sched_events.key);
6763
	if (is_cgroup_event(event))
6764
		static_key_slow_inc(&perf_sched_events.key);
6765 6766

	account_event_cpu(event, event->cpu);
6767 6768
}

T
Thomas Gleixner 已提交
6769
/*
6770
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6771
 */
6772
static struct perf_event *
6773
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6774 6775 6776
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6777 6778
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6779
{
P
Peter Zijlstra 已提交
6780
	struct pmu *pmu;
6781 6782
	struct perf_event *event;
	struct hw_perf_event *hwc;
6783
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6784

6785 6786 6787 6788 6789
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6790
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6791
	if (!event)
6792
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6793

6794
	/*
6795
	 * Single events are their own group leaders, with an
6796 6797 6798
	 * empty sibling list:
	 */
	if (!group_leader)
6799
		group_leader = event;
6800

6801 6802
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6803

6804 6805 6806
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6807
	INIT_LIST_HEAD(&event->rb_entry);
6808
	INIT_LIST_HEAD(&event->active_entry);
6809 6810
	INIT_HLIST_NODE(&event->hlist_entry);

6811

6812
	init_waitqueue_head(&event->waitq);
6813
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6814

6815
	mutex_init(&event->mmap_mutex);
6816

6817
	atomic_long_set(&event->refcount, 1);
6818 6819 6820 6821 6822
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6823

6824
	event->parent		= parent_event;
6825

6826
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6827
	event->id		= atomic64_inc_return(&perf_event_id);
6828

6829
	event->state		= PERF_EVENT_STATE_INACTIVE;
6830

6831 6832
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6833 6834 6835

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6836 6837 6838 6839
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6840
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6841 6842 6843 6844
			event->hw.bp_target = task;
#endif
	}

6845
	if (!overflow_handler && parent_event) {
6846
		overflow_handler = parent_event->overflow_handler;
6847 6848
		context = parent_event->overflow_handler_context;
	}
6849

6850
	event->overflow_handler	= overflow_handler;
6851
	event->overflow_handler_context = context;
6852

J
Jiri Olsa 已提交
6853
	perf_event__state_init(event);
6854

6855
	pmu = NULL;
6856

6857
	hwc = &event->hw;
6858
	hwc->sample_period = attr->sample_period;
6859
	if (attr->freq && attr->sample_freq)
6860
		hwc->sample_period = 1;
6861
	hwc->last_period = hwc->sample_period;
6862

6863
	local64_set(&hwc->period_left, hwc->sample_period);
6864

6865
	/*
6866
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6867
	 */
6868
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6869
		goto err_ns;
6870

6871
	pmu = perf_init_event(event);
6872
	if (!pmu)
6873 6874
		goto err_ns;
	else if (IS_ERR(pmu)) {
6875
		err = PTR_ERR(pmu);
6876
		goto err_ns;
I
Ingo Molnar 已提交
6877
	}
6878

6879
	if (!event->parent) {
6880 6881
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6882 6883
			if (err)
				goto err_pmu;
6884
		}
6885
	}
6886

6887
	return event;
6888 6889 6890 6891

err_pmu:
	if (event->destroy)
		event->destroy(event);
6892
	module_put(pmu->module);
6893 6894 6895 6896 6897 6898
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6899 6900
}

6901 6902
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6903 6904
{
	u32 size;
6905
	int ret;
6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6930 6931 6932
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6933 6934
	 */
	if (size > sizeof(*attr)) {
6935 6936 6937
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6938

6939 6940
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6941

6942
		for (; addr < end; addr++) {
6943 6944 6945 6946 6947 6948
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6949
		size = sizeof(*attr);
6950 6951 6952 6953 6954 6955
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6956
	if (attr->__reserved_1)
6957 6958 6959 6960 6961 6962 6963 6964
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6993 6994
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6995 6996
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6997
	}
6998

6999
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7000
		ret = perf_reg_validate(attr->sample_regs_user);
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7019

7020 7021 7022 7023 7024 7025 7026 7027 7028
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7029 7030
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7031
{
7032
	struct ring_buffer *rb = NULL;
7033 7034
	int ret = -EINVAL;

7035
	if (!output_event)
7036 7037
		goto set;

7038 7039
	/* don't allow circular references */
	if (event == output_event)
7040 7041
		goto out;

7042 7043 7044 7045 7046 7047 7048
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7049
	 * If its not a per-cpu rb, it must be the same task.
7050 7051 7052 7053
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7054
set:
7055
	mutex_lock(&event->mmap_mutex);
7056 7057 7058
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7059

7060
	if (output_event) {
7061 7062 7063
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7064
			goto unlock;
7065 7066
	}

7067
	ring_buffer_attach(event, rb);
7068

7069
	ret = 0;
7070 7071 7072
unlock:
	mutex_unlock(&event->mmap_mutex);

7073 7074 7075 7076
out:
	return ret;
}

T
Thomas Gleixner 已提交
7077
/**
7078
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7079
 *
7080
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7081
 * @pid:		target pid
I
Ingo Molnar 已提交
7082
 * @cpu:		target cpu
7083
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7084
 */
7085 7086
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7087
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7088
{
7089 7090
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7091 7092 7093
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7094
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7095
	struct task_struct *task = NULL;
7096
	struct pmu *pmu;
7097
	int event_fd;
7098
	int move_group = 0;
7099
	int err;
7100
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7101

7102
	/* for future expandability... */
S
Stephane Eranian 已提交
7103
	if (flags & ~PERF_FLAG_ALL)
7104 7105
		return -EINVAL;

7106 7107 7108
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7109

7110 7111 7112 7113 7114
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7115
	if (attr.freq) {
7116
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7117
			return -EINVAL;
7118 7119 7120
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7121 7122
	}

S
Stephane Eranian 已提交
7123 7124 7125 7126 7127 7128 7129 7130 7131
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7132 7133 7134 7135
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7136 7137 7138
	if (event_fd < 0)
		return event_fd;

7139
	if (group_fd != -1) {
7140 7141
		err = perf_fget_light(group_fd, &group);
		if (err)
7142
			goto err_fd;
7143
		group_leader = group.file->private_data;
7144 7145 7146 7147 7148 7149
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7150
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7151 7152 7153 7154 7155 7156 7157
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7158 7159 7160 7161 7162 7163
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7164 7165
	get_online_cpus();

7166 7167
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7168 7169
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7170
		goto err_cpus;
7171 7172
	}

S
Stephane Eranian 已提交
7173 7174
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7175 7176
		if (err) {
			__free_event(event);
7177
			goto err_cpus;
7178
		}
S
Stephane Eranian 已提交
7179 7180
	}

7181 7182 7183 7184 7185 7186 7187
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7188 7189
	account_event(event);

7190 7191 7192 7193 7194
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7218 7219 7220 7221

	/*
	 * Get the target context (task or percpu):
	 */
7222
	ctx = find_get_context(pmu, task, event->cpu);
7223 7224
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7225
		goto err_alloc;
7226 7227
	}

7228 7229 7230 7231 7232
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7233
	/*
7234
	 * Look up the group leader (we will attach this event to it):
7235
	 */
7236
	if (group_leader) {
7237
		err = -EINVAL;
7238 7239

		/*
I
Ingo Molnar 已提交
7240 7241 7242 7243
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7244
			goto err_context;
I
Ingo Molnar 已提交
7245 7246 7247
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7248
		 */
7249 7250 7251 7252 7253 7254 7255 7256
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7257 7258 7259
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7260
		if (attr.exclusive || attr.pinned)
7261
			goto err_context;
7262 7263 7264 7265 7266
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7267
			goto err_context;
7268
	}
T
Thomas Gleixner 已提交
7269

7270 7271
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7272 7273
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7274
		goto err_context;
7275
	}
7276

7277 7278 7279 7280
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7281
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7282 7283 7284 7285 7286 7287 7288

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7289 7290
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7291
			perf_remove_from_context(sibling, false);
J
Jiri Olsa 已提交
7292
			perf_event__state_init(sibling);
7293 7294 7295 7296
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7297
	}
7298

7299
	WARN_ON_ONCE(ctx->parent_ctx);
7300
	mutex_lock(&ctx->mutex);
7301 7302

	if (move_group) {
7303
		synchronize_rcu();
7304
		perf_install_in_context(ctx, group_leader, event->cpu);
7305 7306 7307
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7308
			perf_install_in_context(ctx, sibling, event->cpu);
7309 7310 7311 7312
			get_ctx(ctx);
		}
	}

7313
	perf_install_in_context(ctx, event, event->cpu);
7314
	perf_unpin_context(ctx);
7315
	mutex_unlock(&ctx->mutex);
7316

7317 7318
	put_online_cpus();

7319
	event->owner = current;
P
Peter Zijlstra 已提交
7320

7321 7322 7323
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7324

7325 7326 7327 7328
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7329
	perf_event__id_header_size(event);
7330

7331 7332 7333 7334 7335 7336
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7337
	fdput(group);
7338 7339
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7340

7341
err_context:
7342
	perf_unpin_context(ctx);
7343
	put_ctx(ctx);
7344
err_alloc:
7345
	free_event(event);
7346
err_cpus:
7347
	put_online_cpus();
7348
err_task:
P
Peter Zijlstra 已提交
7349 7350
	if (task)
		put_task_struct(task);
7351
err_group_fd:
7352
	fdput(group);
7353 7354
err_fd:
	put_unused_fd(event_fd);
7355
	return err;
T
Thomas Gleixner 已提交
7356 7357
}

7358 7359 7360 7361 7362
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7363
 * @task: task to profile (NULL for percpu)
7364 7365 7366
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7367
				 struct task_struct *task,
7368 7369
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7370 7371
{
	struct perf_event_context *ctx;
7372
	struct perf_event *event;
7373
	int err;
7374

7375 7376 7377
	/*
	 * Get the target context (task or percpu):
	 */
7378

7379 7380
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7381 7382 7383 7384
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7385

7386 7387 7388
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7389 7390
	account_event(event);

M
Matt Helsley 已提交
7391
	ctx = find_get_context(event->pmu, task, cpu);
7392 7393
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7394
		goto err_free;
7395
	}
7396 7397 7398 7399

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7400
	perf_unpin_context(ctx);
7401 7402 7403 7404
	mutex_unlock(&ctx->mutex);

	return event;

7405 7406 7407
err_free:
	free_event(event);
err:
7408
	return ERR_PTR(err);
7409
}
7410
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7411

7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7425
		perf_remove_from_context(event, false);
7426
		unaccount_event_cpu(event, src_cpu);
7427
		put_ctx(src_ctx);
7428
		list_add(&event->migrate_entry, &events);
7429 7430 7431 7432 7433 7434
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7435 7436
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7437 7438
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7439
		account_event_cpu(event, dst_cpu);
7440 7441 7442 7443 7444 7445 7446
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7447
static void sync_child_event(struct perf_event *child_event,
7448
			       struct task_struct *child)
7449
{
7450
	struct perf_event *parent_event = child_event->parent;
7451
	u64 child_val;
7452

7453 7454
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7455

P
Peter Zijlstra 已提交
7456
	child_val = perf_event_count(child_event);
7457 7458 7459 7460

	/*
	 * Add back the child's count to the parent's count:
	 */
7461
	atomic64_add(child_val, &parent_event->child_count);
7462 7463 7464 7465
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7466 7467

	/*
7468
	 * Remove this event from the parent's list
7469
	 */
7470 7471 7472 7473
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7474 7475

	/*
7476
	 * Release the parent event, if this was the last
7477 7478
	 * reference to it.
	 */
7479
	put_event(parent_event);
7480 7481
}

7482
static void
7483 7484
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7485
			 struct task_struct *child)
7486
{
7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7500

7501
	/*
7502
	 * It can happen that the parent exits first, and has events
7503
	 * that are still around due to the child reference. These
7504
	 * events need to be zapped.
7505
	 */
7506
	if (child_event->parent) {
7507 7508
		sync_child_event(child_event, child);
		free_event(child_event);
7509
	}
7510 7511
}

P
Peter Zijlstra 已提交
7512
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7513
{
7514
	struct perf_event *child_event, *next;
7515
	struct perf_event_context *child_ctx, *parent_ctx;
7516
	unsigned long flags;
7517

P
Peter Zijlstra 已提交
7518
	if (likely(!child->perf_event_ctxp[ctxn])) {
7519
		perf_event_task(child, NULL, 0);
7520
		return;
P
Peter Zijlstra 已提交
7521
	}
7522

7523
	local_irq_save(flags);
7524 7525 7526 7527 7528 7529
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7530
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7531 7532 7533

	/*
	 * Take the context lock here so that if find_get_context is
7534
	 * reading child->perf_event_ctxp, we wait until it has
7535 7536
	 * incremented the context's refcount before we do put_ctx below.
	 */
7537
	raw_spin_lock(&child_ctx->lock);
7538
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7539
	child->perf_event_ctxp[ctxn] = NULL;
7540 7541 7542 7543 7544 7545 7546 7547 7548

	/*
	 * In order to avoid freeing: child_ctx->parent_ctx->task
	 * under perf_event_context::lock, grab another reference.
	 */
	parent_ctx = child_ctx->parent_ctx;
	if (parent_ctx)
		get_ctx(parent_ctx);

7549 7550 7551
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7552
	 * the events from it.
7553 7554
	 */
	unclone_ctx(child_ctx);
7555
	update_context_time(child_ctx);
7556
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7557

7558 7559 7560 7561 7562 7563 7564
	/*
	 * Now that we no longer hold perf_event_context::lock, drop
	 * our extra child_ctx->parent_ctx reference.
	 */
	if (parent_ctx)
		put_ctx(parent_ctx);

P
Peter Zijlstra 已提交
7565
	/*
7566 7567 7568
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7569
	 */
7570
	perf_event_task(child, child_ctx, 0);
7571

7572 7573 7574
	/*
	 * We can recurse on the same lock type through:
	 *
7575 7576
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7577 7578
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7579 7580 7581
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7582
	mutex_lock(&child_ctx->mutex);
7583

7584
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7585
		__perf_event_exit_task(child_event, child_ctx, child);
7586

7587 7588 7589
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7590 7591
}

P
Peter Zijlstra 已提交
7592 7593 7594 7595 7596
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7597
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7598 7599
	int ctxn;

P
Peter Zijlstra 已提交
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7615 7616 7617 7618
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7631
	put_event(parent);
7632

7633
	perf_group_detach(event);
7634 7635 7636 7637
	list_del_event(event, ctx);
	free_event(event);
}

7638 7639
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7640
 * perf_event_init_task below, used by fork() in case of fail.
7641
 */
7642
void perf_event_free_task(struct task_struct *task)
7643
{
P
Peter Zijlstra 已提交
7644
	struct perf_event_context *ctx;
7645
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7646
	int ctxn;
7647

P
Peter Zijlstra 已提交
7648 7649 7650 7651
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7652

P
Peter Zijlstra 已提交
7653
		mutex_lock(&ctx->mutex);
7654
again:
P
Peter Zijlstra 已提交
7655 7656 7657
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7658

P
Peter Zijlstra 已提交
7659 7660 7661
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7662

P
Peter Zijlstra 已提交
7663 7664 7665
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7666

P
Peter Zijlstra 已提交
7667
		mutex_unlock(&ctx->mutex);
7668

P
Peter Zijlstra 已提交
7669 7670
		put_ctx(ctx);
	}
7671 7672
}

7673 7674 7675 7676 7677 7678 7679 7680
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7693
	unsigned long flags;
P
Peter Zijlstra 已提交
7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7706
					   child,
P
Peter Zijlstra 已提交
7707
					   group_leader, parent_event,
7708
				           NULL, NULL);
P
Peter Zijlstra 已提交
7709 7710
	if (IS_ERR(child_event))
		return child_event;
7711 7712 7713 7714 7715 7716

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7741 7742
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7743

7744 7745 7746 7747
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7748
	perf_event__id_header_size(child_event);
7749

P
Peter Zijlstra 已提交
7750 7751 7752
	/*
	 * Link it up in the child's context:
	 */
7753
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7754
	add_event_to_ctx(child_event, child_ctx);
7755
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7789 7790 7791 7792 7793
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7794
		   struct task_struct *child, int ctxn,
7795 7796 7797
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7798
	struct perf_event_context *child_ctx;
7799 7800 7801 7802

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7803 7804
	}

7805
	child_ctx = child->perf_event_ctxp[ctxn];
7806 7807 7808 7809 7810 7811 7812
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7813

7814
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7815 7816
		if (!child_ctx)
			return -ENOMEM;
7817

P
Peter Zijlstra 已提交
7818
		child->perf_event_ctxp[ctxn] = child_ctx;
7819 7820 7821 7822 7823 7824 7825 7826 7827
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7828 7829
}

7830
/*
7831
 * Initialize the perf_event context in task_struct
7832
 */
7833
static int perf_event_init_context(struct task_struct *child, int ctxn)
7834
{
7835
	struct perf_event_context *child_ctx, *parent_ctx;
7836 7837
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7838
	struct task_struct *parent = current;
7839
	int inherited_all = 1;
7840
	unsigned long flags;
7841
	int ret = 0;
7842

P
Peter Zijlstra 已提交
7843
	if (likely(!parent->perf_event_ctxp[ctxn]))
7844 7845
		return 0;

7846
	/*
7847 7848
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7849
	 */
P
Peter Zijlstra 已提交
7850
	parent_ctx = perf_pin_task_context(parent, ctxn);
7851 7852
	if (!parent_ctx)
		return 0;
7853

7854 7855 7856 7857 7858 7859 7860
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7861 7862 7863 7864
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7865
	mutex_lock(&parent_ctx->mutex);
7866 7867 7868 7869 7870

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7871
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7872 7873
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7874 7875 7876
		if (ret)
			break;
	}
7877

7878 7879 7880 7881 7882 7883 7884 7885 7886
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7887
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7888 7889
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7890
		if (ret)
7891
			break;
7892 7893
	}

7894 7895 7896
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7897
	child_ctx = child->perf_event_ctxp[ctxn];
7898

7899
	if (child_ctx && inherited_all) {
7900 7901 7902
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7903 7904 7905
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7906
		 */
P
Peter Zijlstra 已提交
7907
		cloned_ctx = parent_ctx->parent_ctx;
7908 7909
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7910
			child_ctx->parent_gen = parent_ctx->parent_gen;
7911 7912 7913 7914 7915
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7916 7917
	}

P
Peter Zijlstra 已提交
7918
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7919
	mutex_unlock(&parent_ctx->mutex);
7920

7921
	perf_unpin_context(parent_ctx);
7922
	put_ctx(parent_ctx);
7923

7924
	return ret;
7925 7926
}

P
Peter Zijlstra 已提交
7927 7928 7929 7930 7931 7932 7933
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7934 7935 7936 7937
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7938 7939 7940 7941 7942 7943 7944 7945 7946
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7947 7948
static void __init perf_event_init_all_cpus(void)
{
7949
	struct swevent_htable *swhash;
7950 7951 7952
	int cpu;

	for_each_possible_cpu(cpu) {
7953 7954
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7955
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7956 7957 7958
	}
}

7959
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7960
{
P
Peter Zijlstra 已提交
7961
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7962

7963
	mutex_lock(&swhash->hlist_mutex);
7964
	swhash->online = true;
7965
	if (swhash->hlist_refcount > 0) {
7966 7967
		struct swevent_hlist *hlist;

7968 7969 7970
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7971
	}
7972
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7973 7974
}

P
Peter Zijlstra 已提交
7975
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7976
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7977
{
7978 7979 7980 7981 7982 7983 7984
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7985
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7986
{
7987
	struct remove_event re = { .detach_group = false };
P
Peter Zijlstra 已提交
7988
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
7989

P
Peter Zijlstra 已提交
7990
	perf_pmu_rotate_stop(ctx->pmu);
7991

P
Peter Zijlstra 已提交
7992
	rcu_read_lock();
7993 7994
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
7995
	rcu_read_unlock();
T
Thomas Gleixner 已提交
7996
}
P
Peter Zijlstra 已提交
7997 7998 7999 8000 8001 8002 8003 8004 8005

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8006
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8007 8008 8009 8010 8011 8012 8013 8014

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8015
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8016
{
8017
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8018

P
Peter Zijlstra 已提交
8019 8020
	perf_event_exit_cpu_context(cpu);

8021
	mutex_lock(&swhash->hlist_mutex);
8022
	swhash->online = false;
8023 8024
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8025 8026
}
#else
8027
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8028 8029
#endif

P
Peter Zijlstra 已提交
8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8050
static int
T
Thomas Gleixner 已提交
8051 8052 8053 8054
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8055
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8056 8057

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8058
	case CPU_DOWN_FAILED:
8059
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8060 8061
		break;

P
Peter Zijlstra 已提交
8062
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8063
	case CPU_DOWN_PREPARE:
8064
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8065 8066 8067 8068 8069 8070 8071 8072
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8073
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8074
{
8075 8076
	int ret;

P
Peter Zijlstra 已提交
8077 8078
	idr_init(&pmu_idr);

8079
	perf_event_init_all_cpus();
8080
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8081 8082 8083
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8084 8085
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8086
	register_reboot_notifier(&perf_reboot_notifier);
8087 8088 8089

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8090 8091 8092

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8093 8094 8095 8096 8097 8098 8099

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8100
}
P
Peter Zijlstra 已提交
8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8129 8130

#ifdef CONFIG_CGROUP_PERF
8131 8132
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8133 8134 8135
{
	struct perf_cgroup *jc;

8136
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8149
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8150
{
8151 8152
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8164 8165
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8166
{
8167 8168
	struct task_struct *task;

8169
	cgroup_taskset_for_each(task, tset)
8170
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8171 8172
}

8173 8174
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8175
			     struct task_struct *task)
S
Stephane Eranian 已提交
8176 8177 8178 8179 8180 8181 8182 8183 8184
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8185
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8186 8187
}

8188
struct cgroup_subsys perf_event_cgrp_subsys = {
8189 8190
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8191
	.exit		= perf_cgroup_exit,
8192
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8193 8194
};
#endif /* CONFIG_CGROUP_PERF */