core.c 161.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include "internal.h"

41 42
#include <asm/irq_regs.h>

43
struct remote_function_call {
44 45 46 47
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
81 82 83 84
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
105 106 107 108
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
109 110 111 112 113 114 115
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
116 117 118 119
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

120 121 122 123 124 125
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
126 127 128 129
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
130
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
131 132
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

133 134 135
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
136

P
Peter Zijlstra 已提交
137 138 139 140
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

141
/*
142
 * perf event paranoia level:
143 144
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
145
 *   1 - disallow cpu events for unpriv
146
 *   2 - disallow kernel profiling for unpriv
147
 */
148
int sysctl_perf_event_paranoid __read_mostly = 1;
149

150 151
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
152 153

/*
154
 * max perf event sample rate
155
 */
P
Peter Zijlstra 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
174

175
static atomic64_t perf_event_id;
176

177 178 179 180
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
181 182 183 184 185
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
186

187
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
188

189
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
190
{
191
	return "pmu";
T
Thomas Gleixner 已提交
192 193
}

194 195 196 197 198
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
199 200 201 202 203 204
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
221 222
#ifdef CONFIG_CGROUP_PERF

223 224 225 226 227
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
295 296
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
297
	/*
298 299
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
300
	 */
301
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
302 303
		return;

304 305 306 307 308 309
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
310 311 312
}

static inline void
313 314
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
315 316 317 318
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

319 320 321 322 323 324
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
325 326 327 328
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
329
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
371 372
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
373 374 375 376 377 378 379 380 381 382 383

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
384
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
385 386 387 388 389 390 391
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
392 393
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
394 395 396 397 398 399 400 401
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

402 403
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
404
{
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
427 428
}

429 430
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
431
{
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
466 467 468 469
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
470 471 472 473

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

474 475 476
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
477 478 479 480 481 482 483 484 485
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
486
out:
S
Stephane Eranian 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

561 562
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
563 564 565
{
}

566 567
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
568 569 570 571 572 573 574 575 576 577 578
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
579 580
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
611
void perf_pmu_disable(struct pmu *pmu)
612
{
P
Peter Zijlstra 已提交
613 614 615
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
616 617
}

P
Peter Zijlstra 已提交
618
void perf_pmu_enable(struct pmu *pmu)
619
{
P
Peter Zijlstra 已提交
620 621 622
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
623 624
}

625 626 627 628 629 630 631
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
632
static void perf_pmu_rotate_start(struct pmu *pmu)
633
{
P
Peter Zijlstra 已提交
634
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
635
	struct list_head *head = &__get_cpu_var(rotation_list);
636

637
	WARN_ON(!irqs_disabled());
638

639 640
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
641 642
}

643
static void get_ctx(struct perf_event_context *ctx)
644
{
645
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
646 647
}

648
static void put_ctx(struct perf_event_context *ctx)
649
{
650 651 652
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
653 654
		if (ctx->task)
			put_task_struct(ctx->task);
655
		kfree_rcu(ctx, rcu_head);
656
	}
657 658
}

659
static void unclone_ctx(struct perf_event_context *ctx)
660 661 662 663 664 665 666
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

689
/*
690
 * If we inherit events we want to return the parent event id
691 692
 * to userspace.
 */
693
static u64 primary_event_id(struct perf_event *event)
694
{
695
	u64 id = event->id;
696

697 698
	if (event->parent)
		id = event->parent->id;
699 700 701 702

	return id;
}

703
/*
704
 * Get the perf_event_context for a task and lock it.
705 706 707
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
708
static struct perf_event_context *
P
Peter Zijlstra 已提交
709
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
710
{
711
	struct perf_event_context *ctx;
712 713

	rcu_read_lock();
P
Peter Zijlstra 已提交
714
retry:
P
Peter Zijlstra 已提交
715
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
716 717 718 719
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
720
		 * perf_event_task_sched_out, though the
721 722 723 724 725 726
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
727
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
728
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
729
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
730 731
			goto retry;
		}
732 733

		if (!atomic_inc_not_zero(&ctx->refcount)) {
734
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
735 736
			ctx = NULL;
		}
737 738 739 740 741 742 743 744 745 746
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
747 748
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
749
{
750
	struct perf_event_context *ctx;
751 752
	unsigned long flags;

P
Peter Zijlstra 已提交
753
	ctx = perf_lock_task_context(task, ctxn, &flags);
754 755
	if (ctx) {
		++ctx->pin_count;
756
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
757 758 759 760
	}
	return ctx;
}

761
static void perf_unpin_context(struct perf_event_context *ctx)
762 763 764
{
	unsigned long flags;

765
	raw_spin_lock_irqsave(&ctx->lock, flags);
766
	--ctx->pin_count;
767
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
768 769
}

770 771 772 773 774 775 776 777 778 779 780
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

781 782 783
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
784 785 786 787

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

788 789 790
	return ctx ? ctx->time : 0;
}

791 792
/*
 * Update the total_time_enabled and total_time_running fields for a event.
793
 * The caller of this function needs to hold the ctx->lock.
794 795 796 797 798 799 800 801 802
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
803 804 805 806 807 808 809 810 811 812 813
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
814
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
815 816
	else if (ctx->is_active)
		run_end = ctx->time;
817 818 819 820
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
821 822 823 824

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
825
		run_end = perf_event_time(event);
826 827

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
828

829 830
}

831 832 833 834 835 836 837 838 839 840 841 842
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

843 844 845 846 847 848 849 850 851
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

852
/*
853
 * Add a event from the lists for its context.
854 855
 * Must be called with ctx->mutex and ctx->lock held.
 */
856
static void
857
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
858
{
859 860
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
861 862

	/*
863 864 865
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
866
	 */
867
	if (event->group_leader == event) {
868 869
		struct list_head *list;

870 871 872
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

873 874
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
875
	}
P
Peter Zijlstra 已提交
876

877
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
878 879
		ctx->nr_cgroups++;

880
	list_add_rcu(&event->event_entry, &ctx->event_list);
881
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
882
		perf_pmu_rotate_start(ctx->pmu);
883 884
	ctx->nr_events++;
	if (event->attr.inherit_stat)
885
		ctx->nr_stat++;
886 887
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

960
	event->id_header_size = size;
961 962
}

963 964
static void perf_group_attach(struct perf_event *event)
{
965
	struct perf_event *group_leader = event->group_leader, *pos;
966

P
Peter Zijlstra 已提交
967 968 969 970 971 972
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

973 974 975 976 977 978 979 980 981 982 983
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
984 985 986 987 988

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
989 990
}

991
/*
992
 * Remove a event from the lists for its context.
993
 * Must be called with ctx->mutex and ctx->lock held.
994
 */
995
static void
996
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
997
{
998
	struct perf_cpu_context *cpuctx;
999 1000 1001 1002
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1003
		return;
1004 1005 1006

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1007
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1008
		ctx->nr_cgroups--;
1009 1010 1011 1012 1013 1014 1015 1016 1017
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1018

1019 1020
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1021
		ctx->nr_stat--;
1022

1023
	list_del_rcu(&event->event_entry);
1024

1025 1026
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1027

1028
	update_group_times(event);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1039 1040
}

1041
static void perf_group_detach(struct perf_event *event)
1042 1043
{
	struct perf_event *sibling, *tmp;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1060
		goto out;
1061 1062 1063 1064
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1065

1066
	/*
1067 1068
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1069
	 * to whatever list we are on.
1070
	 */
1071
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1072 1073
		if (list)
			list_move_tail(&sibling->group_entry, list);
1074
		sibling->group_leader = sibling;
1075 1076 1077

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1078
	}
1079 1080 1081 1082 1083 1084

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1085 1086
}

1087 1088 1089
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1090 1091
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1092 1093
}

1094 1095
static void
event_sched_out(struct perf_event *event,
1096
		  struct perf_cpu_context *cpuctx,
1097
		  struct perf_event_context *ctx)
1098
{
1099
	u64 tstamp = perf_event_time(event);
1100 1101 1102 1103 1104 1105 1106 1107 1108
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1109
		delta = tstamp - event->tstamp_stopped;
1110
		event->tstamp_running += delta;
1111
		event->tstamp_stopped = tstamp;
1112 1113
	}

1114
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1115
		return;
1116

1117 1118 1119 1120
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1121
	}
1122
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1123
	event->pmu->del(event, 0);
1124
	event->oncpu = -1;
1125

1126
	if (!is_software_event(event))
1127 1128
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1129
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1130 1131 1132
		cpuctx->exclusive = 0;
}

1133
static void
1134
group_sched_out(struct perf_event *group_event,
1135
		struct perf_cpu_context *cpuctx,
1136
		struct perf_event_context *ctx)
1137
{
1138
	struct perf_event *event;
1139
	int state = group_event->state;
1140

1141
	event_sched_out(group_event, cpuctx, ctx);
1142 1143 1144 1145

	/*
	 * Schedule out siblings (if any):
	 */
1146 1147
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1148

1149
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1150 1151 1152
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1153
/*
1154
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1155
 *
1156
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1157 1158
 * remove it from the context list.
 */
1159
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1160
{
1161 1162
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1163
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1164

1165
	raw_spin_lock(&ctx->lock);
1166 1167
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1168 1169 1170 1171
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1172
	raw_spin_unlock(&ctx->lock);
1173 1174

	return 0;
T
Thomas Gleixner 已提交
1175 1176 1177 1178
}


/*
1179
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1180
 *
1181
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1182
 * call when the task is on a CPU.
1183
 *
1184 1185
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1186 1187
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1188
 * When called from perf_event_exit_task, it's OK because the
1189
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1190
 */
1191
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1192
{
1193
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1194 1195
	struct task_struct *task = ctx->task;

1196 1197
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1198 1199
	if (!task) {
		/*
1200
		 * Per cpu events are removed via an smp call and
1201
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1202
		 */
1203
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1204 1205 1206 1207
		return;
	}

retry:
1208 1209
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1210

1211
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1212
	/*
1213 1214
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1215
	 */
1216
	if (ctx->is_active) {
1217
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1218 1219 1220 1221
		goto retry;
	}

	/*
1222 1223
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1224
	 */
1225
	list_del_event(event, ctx);
1226
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1227 1228
}

1229
/*
1230
 * Cross CPU call to disable a performance event
1231
 */
1232
static int __perf_event_disable(void *info)
1233
{
1234 1235
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1236
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1237 1238

	/*
1239 1240
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1241 1242 1243
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1244
	 */
1245
	if (ctx->task && cpuctx->task_ctx != ctx)
1246
		return -EINVAL;
1247

1248
	raw_spin_lock(&ctx->lock);
1249 1250

	/*
1251
	 * If the event is on, turn it off.
1252 1253
	 * If it is in error state, leave it in error state.
	 */
1254
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1255
		update_context_time(ctx);
S
Stephane Eranian 已提交
1256
		update_cgrp_time_from_event(event);
1257 1258 1259
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1260
		else
1261 1262
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1263 1264
	}

1265
	raw_spin_unlock(&ctx->lock);
1266 1267

	return 0;
1268 1269 1270
}

/*
1271
 * Disable a event.
1272
 *
1273 1274
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1275
 * remains valid.  This condition is satisifed when called through
1276 1277 1278 1279
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1280
 * is the current context on this CPU and preemption is disabled,
1281
 * hence we can't get into perf_event_task_sched_out for this context.
1282
 */
1283
void perf_event_disable(struct perf_event *event)
1284
{
1285
	struct perf_event_context *ctx = event->ctx;
1286 1287 1288 1289
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1290
		 * Disable the event on the cpu that it's on
1291
		 */
1292
		cpu_function_call(event->cpu, __perf_event_disable, event);
1293 1294 1295
		return;
	}

P
Peter Zijlstra 已提交
1296
retry:
1297 1298
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1299

1300
	raw_spin_lock_irq(&ctx->lock);
1301
	/*
1302
	 * If the event is still active, we need to retry the cross-call.
1303
	 */
1304
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1305
		raw_spin_unlock_irq(&ctx->lock);
1306 1307 1308 1309 1310
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1311 1312 1313 1314 1315 1316 1317
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1318 1319 1320
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1321
	}
1322
	raw_spin_unlock_irq(&ctx->lock);
1323 1324
}

S
Stephane Eranian 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1360 1361 1362 1363
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1364
static int
1365
event_sched_in(struct perf_event *event,
1366
		 struct perf_cpu_context *cpuctx,
1367
		 struct perf_event_context *ctx)
1368
{
1369 1370
	u64 tstamp = perf_event_time(event);

1371
	if (event->state <= PERF_EVENT_STATE_OFF)
1372 1373
		return 0;

1374
	event->state = PERF_EVENT_STATE_ACTIVE;
1375
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1387 1388 1389 1390 1391
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1392
	if (event->pmu->add(event, PERF_EF_START)) {
1393 1394
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1395 1396 1397
		return -EAGAIN;
	}

1398
	event->tstamp_running += tstamp - event->tstamp_stopped;
1399

S
Stephane Eranian 已提交
1400
	perf_set_shadow_time(event, ctx, tstamp);
1401

1402
	if (!is_software_event(event))
1403
		cpuctx->active_oncpu++;
1404 1405
	ctx->nr_active++;

1406
	if (event->attr.exclusive)
1407 1408
		cpuctx->exclusive = 1;

1409 1410 1411
	return 0;
}

1412
static int
1413
group_sched_in(struct perf_event *group_event,
1414
	       struct perf_cpu_context *cpuctx,
1415
	       struct perf_event_context *ctx)
1416
{
1417
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1418
	struct pmu *pmu = group_event->pmu;
1419 1420
	u64 now = ctx->time;
	bool simulate = false;
1421

1422
	if (group_event->state == PERF_EVENT_STATE_OFF)
1423 1424
		return 0;

P
Peter Zijlstra 已提交
1425
	pmu->start_txn(pmu);
1426

1427
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1428
		pmu->cancel_txn(pmu);
1429
		return -EAGAIN;
1430
	}
1431 1432 1433 1434

	/*
	 * Schedule in siblings as one group (if any):
	 */
1435
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1436
		if (event_sched_in(event, cpuctx, ctx)) {
1437
			partial_group = event;
1438 1439 1440 1441
			goto group_error;
		}
	}

1442
	if (!pmu->commit_txn(pmu))
1443
		return 0;
1444

1445 1446 1447 1448
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1459
	 */
1460 1461
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1462 1463 1464 1465 1466 1467 1468 1469
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1470
	}
1471
	event_sched_out(group_event, cpuctx, ctx);
1472

P
Peter Zijlstra 已提交
1473
	pmu->cancel_txn(pmu);
1474

1475 1476 1477
	return -EAGAIN;
}

1478
/*
1479
 * Work out whether we can put this event group on the CPU now.
1480
 */
1481
static int group_can_go_on(struct perf_event *event,
1482 1483 1484 1485
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1486
	 * Groups consisting entirely of software events can always go on.
1487
	 */
1488
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1489 1490 1491
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1492
	 * events can go on.
1493 1494 1495 1496 1497
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1498
	 * events on the CPU, it can't go on.
1499
	 */
1500
	if (event->attr.exclusive && cpuctx->active_oncpu)
1501 1502 1503 1504 1505 1506 1507 1508
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1509 1510
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1511
{
1512 1513
	u64 tstamp = perf_event_time(event);

1514
	list_add_event(event, ctx);
1515
	perf_group_attach(event);
1516 1517 1518
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1519 1520
}

1521 1522 1523 1524 1525 1526
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1527

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1540
/*
1541
 * Cross CPU call to install and enable a performance event
1542 1543
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1544
 */
1545
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1546
{
1547 1548
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1549
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1550 1551 1552
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1553
	perf_ctx_lock(cpuctx, task_ctx);
1554
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1555 1556

	/*
1557
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1558
	 */
1559
	if (task_ctx)
1560
		task_ctx_sched_out(task_ctx);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1575 1576
		task = task_ctx->task;
	}
1577

1578
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1579

1580
	update_context_time(ctx);
S
Stephane Eranian 已提交
1581 1582 1583 1584 1585 1586
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1587

1588
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1589

1590
	/*
1591
	 * Schedule everything back in
1592
	 */
1593
	perf_event_sched_in(cpuctx, task_ctx, task);
1594 1595 1596

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1597 1598

	return 0;
T
Thomas Gleixner 已提交
1599 1600 1601
}

/*
1602
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1603
 *
1604 1605
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1606
 *
1607
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1608 1609 1610 1611
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1612 1613
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1614 1615 1616 1617
			int cpu)
{
	struct task_struct *task = ctx->task;

1618 1619
	lockdep_assert_held(&ctx->mutex);

1620 1621
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1622 1623
	if (!task) {
		/*
1624
		 * Per cpu events are installed via an smp call and
1625
		 * the install is always successful.
T
Thomas Gleixner 已提交
1626
		 */
1627
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1628 1629 1630 1631
		return;
	}

retry:
1632 1633
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1634

1635
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1636
	/*
1637 1638
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1639
	 */
1640
	if (ctx->is_active) {
1641
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1642 1643 1644 1645
		goto retry;
	}

	/*
1646 1647
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1648
	 */
1649
	add_event_to_ctx(event, ctx);
1650
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1651 1652
}

1653
/*
1654
 * Put a event into inactive state and update time fields.
1655 1656 1657 1658 1659 1660
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1661 1662
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1663
{
1664
	struct perf_event *sub;
1665
	u64 tstamp = perf_event_time(event);
1666

1667
	event->state = PERF_EVENT_STATE_INACTIVE;
1668
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1669
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1670 1671
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1672
	}
1673 1674
}

1675
/*
1676
 * Cross CPU call to enable a performance event
1677
 */
1678
static int __perf_event_enable(void *info)
1679
{
1680 1681 1682
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1683
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1684
	int err;
1685

1686 1687
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1688

1689
	raw_spin_lock(&ctx->lock);
1690
	update_context_time(ctx);
1691

1692
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1693
		goto unlock;
S
Stephane Eranian 已提交
1694 1695 1696 1697

	/*
	 * set current task's cgroup time reference point
	 */
1698
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1699

1700
	__perf_event_mark_enabled(event, ctx);
1701

S
Stephane Eranian 已提交
1702 1703 1704
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1705
		goto unlock;
S
Stephane Eranian 已提交
1706
	}
1707

1708
	/*
1709
	 * If the event is in a group and isn't the group leader,
1710
	 * then don't put it on unless the group is on.
1711
	 */
1712
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1713
		goto unlock;
1714

1715
	if (!group_can_go_on(event, cpuctx, 1)) {
1716
		err = -EEXIST;
1717
	} else {
1718
		if (event == leader)
1719
			err = group_sched_in(event, cpuctx, ctx);
1720
		else
1721
			err = event_sched_in(event, cpuctx, ctx);
1722
	}
1723 1724 1725

	if (err) {
		/*
1726
		 * If this event can't go on and it's part of a
1727 1728
		 * group, then the whole group has to come off.
		 */
1729
		if (leader != event)
1730
			group_sched_out(leader, cpuctx, ctx);
1731
		if (leader->attr.pinned) {
1732
			update_group_times(leader);
1733
			leader->state = PERF_EVENT_STATE_ERROR;
1734
		}
1735 1736
	}

P
Peter Zijlstra 已提交
1737
unlock:
1738
	raw_spin_unlock(&ctx->lock);
1739 1740

	return 0;
1741 1742 1743
}

/*
1744
 * Enable a event.
1745
 *
1746 1747
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1748
 * remains valid.  This condition is satisfied when called through
1749 1750
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1751
 */
1752
void perf_event_enable(struct perf_event *event)
1753
{
1754
	struct perf_event_context *ctx = event->ctx;
1755 1756 1757 1758
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1759
		 * Enable the event on the cpu that it's on
1760
		 */
1761
		cpu_function_call(event->cpu, __perf_event_enable, event);
1762 1763 1764
		return;
	}

1765
	raw_spin_lock_irq(&ctx->lock);
1766
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1767 1768 1769
		goto out;

	/*
1770 1771
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1772 1773 1774 1775
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1776 1777
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1778

P
Peter Zijlstra 已提交
1779
retry:
1780 1781 1782 1783 1784
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1785
	raw_spin_unlock_irq(&ctx->lock);
1786 1787 1788

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1789

1790
	raw_spin_lock_irq(&ctx->lock);
1791 1792

	/*
1793
	 * If the context is active and the event is still off,
1794 1795
	 * we need to retry the cross-call.
	 */
1796 1797 1798 1799 1800 1801
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1802
		goto retry;
1803
	}
1804

P
Peter Zijlstra 已提交
1805
out:
1806
	raw_spin_unlock_irq(&ctx->lock);
1807 1808
}

1809
int perf_event_refresh(struct perf_event *event, int refresh)
1810
{
1811
	/*
1812
	 * not supported on inherited events
1813
	 */
1814
	if (event->attr.inherit || !is_sampling_event(event))
1815 1816
		return -EINVAL;

1817 1818
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1819 1820

	return 0;
1821
}
1822
EXPORT_SYMBOL_GPL(perf_event_refresh);
1823

1824 1825 1826
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1827
{
1828
	struct perf_event *event;
1829
	int is_active = ctx->is_active;
1830

1831
	ctx->is_active &= ~event_type;
1832
	if (likely(!ctx->nr_events))
1833 1834
		return;

1835
	update_context_time(ctx);
S
Stephane Eranian 已提交
1836
	update_cgrp_time_from_cpuctx(cpuctx);
1837
	if (!ctx->nr_active)
1838
		return;
1839

P
Peter Zijlstra 已提交
1840
	perf_pmu_disable(ctx->pmu);
1841
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1842 1843
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1844
	}
1845

1846
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1847
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1848
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1849
	}
P
Peter Zijlstra 已提交
1850
	perf_pmu_enable(ctx->pmu);
1851 1852
}

1853 1854 1855
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1856 1857 1858 1859
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1860
 * in them directly with an fd; we can only enable/disable all
1861
 * events via prctl, or enable/disable all events in a family
1862 1863
 * via ioctl, which will have the same effect on both contexts.
 */
1864 1865
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1866 1867
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1868
		&& ctx1->parent_gen == ctx2->parent_gen
1869
		&& !ctx1->pin_count && !ctx2->pin_count;
1870 1871
}

1872 1873
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1874 1875 1876
{
	u64 value;

1877
	if (!event->attr.inherit_stat)
1878 1879 1880
		return;

	/*
1881
	 * Update the event value, we cannot use perf_event_read()
1882 1883
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1884
	 * we know the event must be on the current CPU, therefore we
1885 1886
	 * don't need to use it.
	 */
1887 1888
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1889 1890
		event->pmu->read(event);
		/* fall-through */
1891

1892 1893
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1894 1895 1896 1897 1898 1899 1900
		break;

	default:
		break;
	}

	/*
1901
	 * In order to keep per-task stats reliable we need to flip the event
1902 1903
	 * values when we flip the contexts.
	 */
1904 1905 1906
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1907

1908 1909
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1910

1911
	/*
1912
	 * Since we swizzled the values, update the user visible data too.
1913
	 */
1914 1915
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1916 1917 1918 1919 1920
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1921 1922
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1923
{
1924
	struct perf_event *event, *next_event;
1925 1926 1927 1928

	if (!ctx->nr_stat)
		return;

1929 1930
	update_context_time(ctx);

1931 1932
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1933

1934 1935
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1936

1937 1938
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1939

1940
		__perf_event_sync_stat(event, next_event);
1941

1942 1943
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1944 1945 1946
	}
}

1947 1948
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1949
{
P
Peter Zijlstra 已提交
1950
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1951 1952
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1953
	struct perf_cpu_context *cpuctx;
1954
	int do_switch = 1;
T
Thomas Gleixner 已提交
1955

P
Peter Zijlstra 已提交
1956 1957
	if (likely(!ctx))
		return;
1958

P
Peter Zijlstra 已提交
1959 1960
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1961 1962
		return;

1963 1964
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1965
	next_ctx = next->perf_event_ctxp[ctxn];
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1977 1978
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1979
		if (context_equiv(ctx, next_ctx)) {
1980 1981
			/*
			 * XXX do we need a memory barrier of sorts
1982
			 * wrt to rcu_dereference() of perf_event_ctxp
1983
			 */
P
Peter Zijlstra 已提交
1984 1985
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1986 1987 1988
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1989

1990
			perf_event_sync_stat(ctx, next_ctx);
1991
		}
1992 1993
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1994
	}
1995
	rcu_read_unlock();
1996

1997
	if (do_switch) {
1998
		raw_spin_lock(&ctx->lock);
1999
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2000
		cpuctx->task_ctx = NULL;
2001
		raw_spin_unlock(&ctx->lock);
2002
	}
T
Thomas Gleixner 已提交
2003 2004
}

P
Peter Zijlstra 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2019 2020
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2021 2022 2023 2024 2025
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2026 2027 2028 2029 2030 2031 2032

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2033
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2034 2035
}

2036
static void task_ctx_sched_out(struct perf_event_context *ctx)
2037
{
P
Peter Zijlstra 已提交
2038
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2039

2040 2041
	if (!cpuctx->task_ctx)
		return;
2042 2043 2044 2045

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2046
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2047 2048 2049
	cpuctx->task_ctx = NULL;
}

2050 2051 2052 2053 2054 2055 2056
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2057 2058
}

2059
static void
2060
ctx_pinned_sched_in(struct perf_event_context *ctx,
2061
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2062
{
2063
	struct perf_event *event;
T
Thomas Gleixner 已提交
2064

2065 2066
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2067
			continue;
2068
		if (!event_filter_match(event))
2069 2070
			continue;

S
Stephane Eranian 已提交
2071 2072 2073 2074
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2075
		if (group_can_go_on(event, cpuctx, 1))
2076
			group_sched_in(event, cpuctx, ctx);
2077 2078 2079 2080 2081

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2082 2083 2084
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2085
		}
2086
	}
2087 2088 2089 2090
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2091
		      struct perf_cpu_context *cpuctx)
2092 2093 2094
{
	struct perf_event *event;
	int can_add_hw = 1;
2095

2096 2097 2098
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2099
			continue;
2100 2101
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2102
		 * of events:
2103
		 */
2104
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2105 2106
			continue;

S
Stephane Eranian 已提交
2107 2108 2109 2110
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2111
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2112
			if (group_sched_in(event, cpuctx, ctx))
2113
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2114
		}
T
Thomas Gleixner 已提交
2115
	}
2116 2117 2118 2119 2120
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2121 2122
	     enum event_type_t event_type,
	     struct task_struct *task)
2123
{
S
Stephane Eranian 已提交
2124
	u64 now;
2125
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2126

2127
	ctx->is_active |= event_type;
2128
	if (likely(!ctx->nr_events))
2129
		return;
2130

S
Stephane Eranian 已提交
2131 2132
	now = perf_clock();
	ctx->timestamp = now;
2133
	perf_cgroup_set_timestamp(task, ctx);
2134 2135 2136 2137
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2138
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2139
		ctx_pinned_sched_in(ctx, cpuctx);
2140 2141

	/* Then walk through the lower prio flexible groups */
2142
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2143
		ctx_flexible_sched_in(ctx, cpuctx);
2144 2145
}

2146
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2147 2148
			     enum event_type_t event_type,
			     struct task_struct *task)
2149 2150 2151
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2152
	ctx_sched_in(ctx, cpuctx, event_type, task);
2153 2154
}

S
Stephane Eranian 已提交
2155 2156
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2157
{
P
Peter Zijlstra 已提交
2158
	struct perf_cpu_context *cpuctx;
2159

P
Peter Zijlstra 已提交
2160
	cpuctx = __get_cpu_context(ctx);
2161 2162 2163
	if (cpuctx->task_ctx == ctx)
		return;

2164
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2165
	perf_pmu_disable(ctx->pmu);
2166 2167 2168 2169 2170 2171 2172
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2173
	perf_event_sched_in(cpuctx, ctx, task);
2174 2175

	cpuctx->task_ctx = ctx;
2176

2177 2178 2179
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2180 2181 2182 2183
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2184
	perf_pmu_rotate_start(ctx->pmu);
2185 2186
}

P
Peter Zijlstra 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2198 2199
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2209
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2210
	}
S
Stephane Eranian 已提交
2211 2212 2213 2214 2215 2216
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2217
		perf_cgroup_sched_in(prev, task);
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2247
#define REDUCE_FLS(a, b)		\
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2287 2288 2289
	if (!divisor)
		return dividend;

2290 2291 2292 2293
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2294
{
2295
	struct hw_perf_event *hwc = &event->hw;
2296
	s64 period, sample_period;
2297 2298
	s64 delta;

2299
	period = perf_calculate_period(event, nsec, count);
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2310

2311
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2312
		event->pmu->stop(event, PERF_EF_UPDATE);
2313
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2314
		event->pmu->start(event, PERF_EF_RELOAD);
2315
	}
2316 2317
}

2318
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2319
{
2320 2321
	struct perf_event *event;
	struct hw_perf_event *hwc;
2322 2323
	u64 interrupts, now;
	s64 delta;
2324

2325
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2326
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2327 2328
			continue;

2329
		if (!event_filter_match(event))
2330 2331
			continue;

2332
		hwc = &event->hw;
2333 2334 2335

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2336

2337
		/*
2338
		 * unthrottle events on the tick
2339
		 */
2340
		if (interrupts == MAX_INTERRUPTS) {
2341
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2342
			event->pmu->start(event, 0);
2343 2344
		}

2345
		if (!event->attr.freq || !event->attr.sample_freq)
2346 2347
			continue;

2348
		event->pmu->read(event);
2349
		now = local64_read(&event->count);
2350 2351
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2352

2353
		if (delta > 0)
2354
			perf_adjust_period(event, period, delta);
2355 2356 2357
	}
}

2358
/*
2359
 * Round-robin a context's events:
2360
 */
2361
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2362
{
2363 2364 2365 2366 2367 2368
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2369 2370
}

2371
/*
2372 2373 2374
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2375
 */
2376
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2377
{
2378
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2379
	struct perf_event_context *ctx = NULL;
2380
	int rotate = 0, remove = 1;
2381

2382
	if (cpuctx->ctx.nr_events) {
2383
		remove = 0;
2384 2385 2386
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2387

P
Peter Zijlstra 已提交
2388
	ctx = cpuctx->task_ctx;
2389
	if (ctx && ctx->nr_events) {
2390
		remove = 0;
2391 2392 2393
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2394

2395
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2396
	perf_pmu_disable(cpuctx->ctx.pmu);
2397
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2398
	if (ctx)
2399
		perf_ctx_adjust_freq(ctx, interval);
2400

2401
	if (!rotate)
2402
		goto done;
2403

2404
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2405
	if (ctx)
2406
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2407

2408
	rotate_ctx(&cpuctx->ctx);
2409 2410
	if (ctx)
		rotate_ctx(ctx);
2411

2412
	perf_event_sched_in(cpuctx, ctx, current);
2413 2414

done:
2415 2416 2417
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2418
	perf_pmu_enable(cpuctx->ctx.pmu);
2419
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2420 2421 2422 2423 2424 2425
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2426

2427 2428 2429 2430 2431 2432 2433
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2434 2435
}

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2451
/*
2452
 * Enable all of a task's events that have been marked enable-on-exec.
2453 2454
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2455
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2456
{
2457
	struct perf_event *event;
2458 2459
	unsigned long flags;
	int enabled = 0;
2460
	int ret;
2461 2462

	local_irq_save(flags);
2463
	if (!ctx || !ctx->nr_events)
2464 2465
		goto out;

2466 2467 2468 2469 2470 2471 2472
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2473
	perf_cgroup_sched_out(current, NULL);
2474

2475
	raw_spin_lock(&ctx->lock);
2476
	task_ctx_sched_out(ctx);
2477

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2488 2489 2490
	}

	/*
2491
	 * Unclone this context if we enabled any event.
2492
	 */
2493 2494
	if (enabled)
		unclone_ctx(ctx);
2495

2496
	raw_spin_unlock(&ctx->lock);
2497

2498 2499 2500
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2501
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2502
out:
2503 2504 2505
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2506
/*
2507
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2508
 */
2509
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2510
{
2511 2512
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2513
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2514

2515 2516 2517 2518
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2519 2520
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2521 2522 2523 2524
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2525
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2526
	if (ctx->is_active) {
2527
		update_context_time(ctx);
S
Stephane Eranian 已提交
2528 2529
		update_cgrp_time_from_event(event);
	}
2530
	update_event_times(event);
2531 2532
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2533
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2534 2535
}

P
Peter Zijlstra 已提交
2536 2537
static inline u64 perf_event_count(struct perf_event *event)
{
2538
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2539 2540
}

2541
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2542 2543
{
	/*
2544 2545
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2546
	 */
2547 2548 2549 2550
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2551 2552 2553
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2554
		raw_spin_lock_irqsave(&ctx->lock, flags);
2555 2556 2557 2558 2559
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2560
		if (ctx->is_active) {
2561
			update_context_time(ctx);
S
Stephane Eranian 已提交
2562 2563
			update_cgrp_time_from_event(event);
		}
2564
		update_event_times(event);
2565
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2566 2567
	}

P
Peter Zijlstra 已提交
2568
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2569 2570
}

2571
/*
2572
 * Callchain support
2573
 */
2574 2575 2576 2577 2578 2579

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2580
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2581 2582 2583 2584 2585 2586 2587
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2588 2589 2590
{
}

2591 2592
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2593
{
2594
}
T
Thomas Gleixner 已提交
2595

2596 2597 2598 2599
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2600

2601
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2602

2603 2604
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2605

2606 2607
	kfree(entries);
}
T
Thomas Gleixner 已提交
2608

2609 2610 2611
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2612

2613 2614 2615 2616
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2617

2618 2619 2620 2621 2622
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2623

2624
	/*
2625 2626 2627
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2628
	 */
2629
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2630

2631 2632 2633
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2634

2635
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2636

2637 2638 2639 2640 2641
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2642 2643
	}

2644
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2645

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2780
/*
2781
 * Initialize the perf_event context in a task_struct:
2782
 */
2783
static void __perf_event_init_context(struct perf_event_context *ctx)
2784
{
2785
	raw_spin_lock_init(&ctx->lock);
2786
	mutex_init(&ctx->mutex);
2787 2788
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2789 2790
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2806
	}
2807 2808 2809
	ctx->pmu = pmu;

	return ctx;
2810 2811
}

2812 2813 2814 2815 2816
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2817 2818

	rcu_read_lock();
2819
	if (!vpid)
T
Thomas Gleixner 已提交
2820 2821
		task = current;
	else
2822
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2823 2824 2825 2826 2827 2828 2829 2830
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2831 2832 2833 2834
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2835 2836 2837 2838 2839 2840 2841
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2842 2843 2844
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2845
static struct perf_event_context *
M
Matt Helsley 已提交
2846
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2847
{
2848
	struct perf_event_context *ctx;
2849
	struct perf_cpu_context *cpuctx;
2850
	unsigned long flags;
P
Peter Zijlstra 已提交
2851
	int ctxn, err;
T
Thomas Gleixner 已提交
2852

2853
	if (!task) {
2854
		/* Must be root to operate on a CPU event: */
2855
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2856 2857 2858
			return ERR_PTR(-EACCES);

		/*
2859
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2860 2861 2862
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2863
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2864 2865
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2866
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2867
		ctx = &cpuctx->ctx;
2868
		get_ctx(ctx);
2869
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2870 2871 2872 2873

		return ctx;
	}

P
Peter Zijlstra 已提交
2874 2875 2876 2877 2878
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2879
retry:
P
Peter Zijlstra 已提交
2880
	ctx = perf_lock_task_context(task, ctxn, &flags);
2881
	if (ctx) {
2882
		unclone_ctx(ctx);
2883
		++ctx->pin_count;
2884
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2885
	} else {
2886
		ctx = alloc_perf_context(pmu, task);
2887 2888 2889
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2890

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2901
		else {
2902
			get_ctx(ctx);
2903
			++ctx->pin_count;
2904
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2905
		}
2906 2907 2908
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2909
			put_ctx(ctx);
2910 2911 2912 2913

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2914 2915 2916
		}
	}

T
Thomas Gleixner 已提交
2917
	return ctx;
2918

P
Peter Zijlstra 已提交
2919
errout:
2920
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2921 2922
}

L
Li Zefan 已提交
2923 2924
static void perf_event_free_filter(struct perf_event *event);

2925
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2926
{
2927
	struct perf_event *event;
P
Peter Zijlstra 已提交
2928

2929 2930 2931
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2932
	perf_event_free_filter(event);
2933
	kfree(event);
P
Peter Zijlstra 已提交
2934 2935
}

2936
static void ring_buffer_put(struct ring_buffer *rb);
2937

2938
static void free_event(struct perf_event *event)
2939
{
2940
	irq_work_sync(&event->pending);
2941

2942
	if (!event->parent) {
2943
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2944
			jump_label_dec(&perf_sched_events);
2945
		if (event->attr.mmap || event->attr.mmap_data)
2946 2947 2948 2949 2950
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2951 2952
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2953 2954 2955 2956
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2957
	}
2958

2959 2960 2961
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2962 2963
	}

S
Stephane Eranian 已提交
2964 2965 2966
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2967 2968
	if (event->destroy)
		event->destroy(event);
2969

P
Peter Zijlstra 已提交
2970 2971 2972
	if (event->ctx)
		put_ctx(event->ctx);

2973
	call_rcu(&event->rcu_head, free_event_rcu);
2974 2975
}

2976
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2977
{
2978
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2979

2980
	WARN_ON_ONCE(ctx->parent_ctx);
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2994
	raw_spin_lock_irq(&ctx->lock);
2995
	perf_group_detach(event);
2996
	raw_spin_unlock_irq(&ctx->lock);
2997
	perf_remove_from_context(event);
2998
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2999

3000
	free_event(event);
T
Thomas Gleixner 已提交
3001 3002 3003

	return 0;
}
3004
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3005

3006 3007 3008 3009
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
3010
{
3011
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3012
	struct task_struct *owner;
3013

3014
	file->private_data = NULL;
3015

P
Peter Zijlstra 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3049
	return perf_event_release_kernel(event);
3050 3051
}

3052
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3053
{
3054
	struct perf_event *child;
3055 3056
	u64 total = 0;

3057 3058 3059
	*enabled = 0;
	*running = 0;

3060
	mutex_lock(&event->child_mutex);
3061
	total += perf_event_read(event);
3062 3063 3064 3065 3066 3067
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3068
		total += perf_event_read(child);
3069 3070 3071
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3072
	mutex_unlock(&event->child_mutex);
3073 3074 3075

	return total;
}
3076
EXPORT_SYMBOL_GPL(perf_event_read_value);
3077

3078
static int perf_event_read_group(struct perf_event *event,
3079 3080
				   u64 read_format, char __user *buf)
{
3081
	struct perf_event *leader = event->group_leader, *sub;
3082 3083
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3084
	u64 values[5];
3085
	u64 count, enabled, running;
3086

3087
	mutex_lock(&ctx->mutex);
3088
	count = perf_event_read_value(leader, &enabled, &running);
3089 3090

	values[n++] = 1 + leader->nr_siblings;
3091 3092 3093 3094
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3095 3096 3097
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3098 3099 3100 3101

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3102
		goto unlock;
3103

3104
	ret = size;
3105

3106
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3107
		n = 0;
3108

3109
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3110 3111 3112 3113 3114
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3115
		if (copy_to_user(buf + ret, values, size)) {
3116 3117 3118
			ret = -EFAULT;
			goto unlock;
		}
3119 3120

		ret += size;
3121
	}
3122 3123
unlock:
	mutex_unlock(&ctx->mutex);
3124

3125
	return ret;
3126 3127
}

3128
static int perf_event_read_one(struct perf_event *event,
3129 3130
				 u64 read_format, char __user *buf)
{
3131
	u64 enabled, running;
3132 3133 3134
	u64 values[4];
	int n = 0;

3135 3136 3137 3138 3139
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3140
	if (read_format & PERF_FORMAT_ID)
3141
		values[n++] = primary_event_id(event);
3142 3143 3144 3145 3146 3147 3148

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3149
/*
3150
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3151 3152
 */
static ssize_t
3153
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3154
{
3155
	u64 read_format = event->attr.read_format;
3156
	int ret;
T
Thomas Gleixner 已提交
3157

3158
	/*
3159
	 * Return end-of-file for a read on a event that is in
3160 3161 3162
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3163
	if (event->state == PERF_EVENT_STATE_ERROR)
3164 3165
		return 0;

3166
	if (count < event->read_size)
3167 3168
		return -ENOSPC;

3169
	WARN_ON_ONCE(event->ctx->parent_ctx);
3170
	if (read_format & PERF_FORMAT_GROUP)
3171
		ret = perf_event_read_group(event, read_format, buf);
3172
	else
3173
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3174

3175
	return ret;
T
Thomas Gleixner 已提交
3176 3177 3178 3179 3180
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3181
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3182

3183
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3184 3185 3186 3187
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3188
	struct perf_event *event = file->private_data;
3189
	struct ring_buffer *rb;
3190
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3191 3192

	rcu_read_lock();
3193 3194 3195
	rb = rcu_dereference(event->rb);
	if (rb)
		events = atomic_xchg(&rb->poll, 0);
P
Peter Zijlstra 已提交
3196
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3197

3198
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3199 3200 3201 3202

	return events;
}

3203
static void perf_event_reset(struct perf_event *event)
3204
{
3205
	(void)perf_event_read(event);
3206
	local64_set(&event->count, 0);
3207
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3208 3209
}

3210
/*
3211 3212 3213 3214
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3215
 */
3216 3217
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3218
{
3219
	struct perf_event *child;
P
Peter Zijlstra 已提交
3220

3221 3222 3223 3224
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3225
		func(child);
3226
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3227 3228
}

3229 3230
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3231
{
3232 3233
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3234

3235 3236
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3237
	event = event->group_leader;
3238

3239 3240 3241 3242
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3243
	mutex_unlock(&ctx->mutex);
3244 3245
}

3246
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3247
{
3248
	struct perf_event_context *ctx = event->ctx;
3249 3250 3251
	int ret = 0;
	u64 value;

3252
	if (!is_sampling_event(event))
3253 3254
		return -EINVAL;

3255
	if (copy_from_user(&value, arg, sizeof(value)))
3256 3257 3258 3259 3260
		return -EFAULT;

	if (!value)
		return -EINVAL;

3261
	raw_spin_lock_irq(&ctx->lock);
3262 3263
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3264 3265 3266 3267
			ret = -EINVAL;
			goto unlock;
		}

3268
		event->attr.sample_freq = value;
3269
	} else {
3270 3271
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3272 3273
	}
unlock:
3274
	raw_spin_unlock_irq(&ctx->lock);
3275 3276 3277 3278

	return ret;
}

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3300
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3301

3302 3303
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3304 3305
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3306
	u32 flags = arg;
3307 3308

	switch (cmd) {
3309 3310
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3311
		break;
3312 3313
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3314
		break;
3315 3316
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3317
		break;
P
Peter Zijlstra 已提交
3318

3319 3320
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3321

3322 3323
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3324

3325
	case PERF_EVENT_IOC_SET_OUTPUT:
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3343

L
Li Zefan 已提交
3344 3345 3346
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3347
	default:
P
Peter Zijlstra 已提交
3348
		return -ENOTTY;
3349
	}
P
Peter Zijlstra 已提交
3350 3351

	if (flags & PERF_IOC_FLAG_GROUP)
3352
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3353
	else
3354
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3355 3356

	return 0;
3357 3358
}

3359
int perf_event_task_enable(void)
3360
{
3361
	struct perf_event *event;
3362

3363 3364 3365 3366
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3367 3368 3369 3370

	return 0;
}

3371
int perf_event_task_disable(void)
3372
{
3373
	struct perf_event *event;
3374

3375 3376 3377 3378
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3379 3380 3381 3382

	return 0;
}

3383 3384
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3385 3386
#endif

3387
static int perf_event_index(struct perf_event *event)
3388
{
P
Peter Zijlstra 已提交
3389 3390 3391
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3392
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3393 3394
		return 0;

3395
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3396 3397
}

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
static void calc_timer_values(struct perf_event *event,
				u64 *running,
				u64 *enabled)
{
	u64 now, ctx_time;

	now = perf_clock();
	ctx_time = event->shadow_ctx_time + now;
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3410 3411 3412 3413 3414
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3415
void perf_event_update_userpage(struct perf_event *event)
3416
{
3417
	struct perf_event_mmap_page *userpg;
3418
	struct ring_buffer *rb;
3419
	u64 enabled, running;
3420 3421

	rcu_read_lock();
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
	calc_timer_values(event, &enabled, &running);
3432 3433
	rb = rcu_dereference(event->rb);
	if (!rb)
3434 3435
		goto unlock;

3436
	userpg = rb->user_page;
3437

3438 3439 3440 3441 3442
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3443
	++userpg->lock;
3444
	barrier();
3445
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3446
	userpg->offset = perf_event_count(event);
3447
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3448
		userpg->offset -= local64_read(&event->hw.prev_count);
3449

3450
	userpg->time_enabled = enabled +
3451
			atomic64_read(&event->child_total_time_enabled);
3452

3453
	userpg->time_running = running +
3454
			atomic64_read(&event->child_total_time_running);
3455

3456
	barrier();
3457
	++userpg->lock;
3458
	preempt_enable();
3459
unlock:
3460
	rcu_read_unlock();
3461 3462
}

3463 3464 3465
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3466
	struct ring_buffer *rb;
3467 3468 3469 3470 3471 3472 3473 3474 3475
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3476 3477
	rb = rcu_dereference(event->rb);
	if (!rb)
3478 3479 3480 3481 3482
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3483
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3498
static void rb_free_rcu(struct rcu_head *rcu_head)
3499
{
3500
	struct ring_buffer *rb;
3501

3502 3503
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3504 3505
}

3506
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3507
{
3508
	struct ring_buffer *rb;
3509

3510
	rcu_read_lock();
3511 3512 3513 3514
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3515 3516 3517
	}
	rcu_read_unlock();

3518
	return rb;
3519 3520
}

3521
static void ring_buffer_put(struct ring_buffer *rb)
3522
{
3523
	if (!atomic_dec_and_test(&rb->refcount))
3524
		return;
3525

3526
	call_rcu(&rb->rcu_head, rb_free_rcu);
3527 3528 3529 3530
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3531
	struct perf_event *event = vma->vm_file->private_data;
3532

3533
	atomic_inc(&event->mmap_count);
3534 3535 3536 3537
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3538
	struct perf_event *event = vma->vm_file->private_data;
3539

3540
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3541
		unsigned long size = perf_data_size(event->rb);
3542
		struct user_struct *user = event->mmap_user;
3543
		struct ring_buffer *rb = event->rb;
3544

3545
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3546
		vma->vm_mm->locked_vm -= event->mmap_locked;
3547
		rcu_assign_pointer(event->rb, NULL);
3548
		mutex_unlock(&event->mmap_mutex);
3549

3550
		ring_buffer_put(rb);
3551
		free_uid(user);
3552
	}
3553 3554
}

3555
static const struct vm_operations_struct perf_mmap_vmops = {
3556 3557 3558 3559
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3560 3561 3562 3563
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3564
	struct perf_event *event = file->private_data;
3565
	unsigned long user_locked, user_lock_limit;
3566
	struct user_struct *user = current_user();
3567
	unsigned long locked, lock_limit;
3568
	struct ring_buffer *rb;
3569 3570
	unsigned long vma_size;
	unsigned long nr_pages;
3571
	long user_extra, extra;
3572
	int ret = 0, flags = 0;
3573

3574 3575 3576
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3577
	 * same rb.
3578 3579 3580 3581
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3582
	if (!(vma->vm_flags & VM_SHARED))
3583
		return -EINVAL;
3584 3585 3586 3587

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3588
	/*
3589
	 * If we have rb pages ensure they're a power-of-two number, so we
3590 3591 3592
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3593 3594
		return -EINVAL;

3595
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3596 3597
		return -EINVAL;

3598 3599
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3600

3601 3602
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3603 3604 3605
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3606
		else
3607 3608 3609 3610
			ret = -EINVAL;
		goto unlock;
	}

3611
	user_extra = nr_pages + 1;
3612
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3613 3614 3615 3616 3617 3618

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3619
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3620

3621 3622 3623
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3624

3625
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3626
	lock_limit >>= PAGE_SHIFT;
3627
	locked = vma->vm_mm->locked_vm + extra;
3628

3629 3630
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3631 3632 3633
		ret = -EPERM;
		goto unlock;
	}
3634

3635
	WARN_ON(event->rb);
3636

3637
	if (vma->vm_flags & VM_WRITE)
3638
		flags |= RING_BUFFER_WRITABLE;
3639

3640 3641 3642 3643
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3644
	if (!rb) {
3645
		ret = -ENOMEM;
3646
		goto unlock;
3647
	}
3648
	rcu_assign_pointer(event->rb, rb);
3649

3650 3651 3652 3653 3654
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3655
unlock:
3656 3657
	if (!ret)
		atomic_inc(&event->mmap_count);
3658
	mutex_unlock(&event->mmap_mutex);
3659 3660 3661

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3662 3663

	return ret;
3664 3665
}

P
Peter Zijlstra 已提交
3666 3667 3668
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3669
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3670 3671 3672
	int retval;

	mutex_lock(&inode->i_mutex);
3673
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3674 3675 3676 3677 3678 3679 3680 3681
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3682
static const struct file_operations perf_fops = {
3683
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3684 3685 3686
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3687 3688
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3689
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3690
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3691 3692
};

3693
/*
3694
 * Perf event wakeup
3695 3696 3697 3698 3699
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3700
void perf_event_wakeup(struct perf_event *event)
3701
{
3702
	wake_up_all(&event->waitq);
3703

3704 3705 3706
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3707
	}
3708 3709
}

3710
static void perf_pending_event(struct irq_work *entry)
3711
{
3712 3713
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3714

3715 3716 3717
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3718 3719
	}

3720 3721 3722
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3723 3724 3725
	}
}

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3747 3748 3749
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3777 3778 3779
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3806 3807 3808
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3809 3810 3811 3812 3813
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3814
static void perf_output_read_one(struct perf_output_handle *handle,
3815 3816
				 struct perf_event *event,
				 u64 enabled, u64 running)
3817
{
3818
	u64 read_format = event->attr.read_format;
3819 3820 3821
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3822
	values[n++] = perf_event_count(event);
3823
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3824
		values[n++] = enabled +
3825
			atomic64_read(&event->child_total_time_enabled);
3826 3827
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3828
		values[n++] = running +
3829
			atomic64_read(&event->child_total_time_running);
3830 3831
	}
	if (read_format & PERF_FORMAT_ID)
3832
		values[n++] = primary_event_id(event);
3833

3834
	__output_copy(handle, values, n * sizeof(u64));
3835 3836 3837
}

/*
3838
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3839 3840
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3841 3842
			    struct perf_event *event,
			    u64 enabled, u64 running)
3843
{
3844 3845
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3846 3847 3848 3849 3850 3851
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3852
		values[n++] = enabled;
3853 3854

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3855
		values[n++] = running;
3856

3857
	if (leader != event)
3858 3859
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3860
	values[n++] = perf_event_count(leader);
3861
	if (read_format & PERF_FORMAT_ID)
3862
		values[n++] = primary_event_id(leader);
3863

3864
	__output_copy(handle, values, n * sizeof(u64));
3865

3866
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3867 3868
		n = 0;

3869
		if (sub != event)
3870 3871
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3872
		values[n++] = perf_event_count(sub);
3873
		if (read_format & PERF_FORMAT_ID)
3874
			values[n++] = primary_event_id(sub);
3875

3876
		__output_copy(handle, values, n * sizeof(u64));
3877 3878 3879
	}
}

3880 3881 3882
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3883
static void perf_output_read(struct perf_output_handle *handle,
3884
			     struct perf_event *event)
3885
{
3886
	u64 enabled = 0, running = 0;
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
3898 3899
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
		calc_timer_values(event, &enabled, &running);
3900

3901
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3902
		perf_output_read_group(handle, event, enabled, running);
3903
	else
3904
		perf_output_read_one(handle, event, enabled, running);
3905 3906
}

3907 3908 3909
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3910
			struct perf_event *event)
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3941
		perf_output_read(handle, event);
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

3952
			__output_copy(handle, data->callchain, size);
3953 3954 3955 3956 3957 3958 3959 3960 3961
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
3962 3963
			__output_copy(handle, data->raw->data,
					   data->raw->size);
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
3989 3990 3991 3992
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3993
			 struct perf_event *event,
3994
			 struct pt_regs *regs)
3995
{
3996
	u64 sample_type = event->attr.sample_type;
3997

3998
	header->type = PERF_RECORD_SAMPLE;
3999
	header->size = sizeof(*header) + event->header_size;
4000 4001 4002

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4003

4004
	__perf_event_header__init_id(header, data, event);
4005

4006
	if (sample_type & PERF_SAMPLE_IP)
4007 4008
		data->ip = perf_instruction_pointer(regs);

4009
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4010
		int size = 1;
4011

4012 4013 4014 4015 4016 4017
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4018 4019
	}

4020
	if (sample_type & PERF_SAMPLE_RAW) {
4021 4022 4023 4024 4025 4026 4027 4028
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4029
		header->size += size;
4030
	}
4031
}
4032

4033
static void perf_event_output(struct perf_event *event,
4034 4035 4036 4037 4038
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4039

4040 4041 4042
	/* protect the callchain buffers */
	rcu_read_lock();

4043
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4044

4045
	if (perf_output_begin(&handle, event, header.size))
4046
		goto exit;
4047

4048
	perf_output_sample(&handle, &header, data, event);
4049

4050
	perf_output_end(&handle);
4051 4052 4053

exit:
	rcu_read_unlock();
4054 4055
}

4056
/*
4057
 * read event_id
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4068
perf_event_read_event(struct perf_event *event,
4069 4070 4071
			struct task_struct *task)
{
	struct perf_output_handle handle;
4072
	struct perf_sample_data sample;
4073
	struct perf_read_event read_event = {
4074
		.header = {
4075
			.type = PERF_RECORD_READ,
4076
			.misc = 0,
4077
			.size = sizeof(read_event) + event->read_size,
4078
		},
4079 4080
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4081
	};
4082
	int ret;
4083

4084
	perf_event_header__init_id(&read_event.header, &sample, event);
4085
	ret = perf_output_begin(&handle, event, read_event.header.size);
4086 4087 4088
	if (ret)
		return;

4089
	perf_output_put(&handle, read_event);
4090
	perf_output_read(&handle, event);
4091
	perf_event__output_id_sample(event, &handle, &sample);
4092

4093 4094 4095
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4096
/*
P
Peter Zijlstra 已提交
4097 4098
 * task tracking -- fork/exit
 *
4099
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4100 4101
 */

P
Peter Zijlstra 已提交
4102
struct perf_task_event {
4103
	struct task_struct		*task;
4104
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4105 4106 4107 4108 4109 4110

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4111 4112
		u32				tid;
		u32				ptid;
4113
		u64				time;
4114
	} event_id;
P
Peter Zijlstra 已提交
4115 4116
};

4117
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4118
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4119 4120
{
	struct perf_output_handle handle;
4121
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4122
	struct task_struct *task = task_event->task;
4123
	int ret, size = task_event->event_id.header.size;
4124

4125
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4126

4127
	ret = perf_output_begin(&handle, event,
4128
				task_event->event_id.header.size);
4129
	if (ret)
4130
		goto out;
P
Peter Zijlstra 已提交
4131

4132 4133
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4134

4135 4136
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4137

4138
	perf_output_put(&handle, task_event->event_id);
4139

4140 4141
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4142
	perf_output_end(&handle);
4143 4144
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4145 4146
}

4147
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4148
{
P
Peter Zijlstra 已提交
4149
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4150 4151
		return 0;

4152
	if (!event_filter_match(event))
4153 4154
		return 0;

4155 4156
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4157 4158 4159 4160 4161
		return 1;

	return 0;
}

4162
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4163
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4164
{
4165
	struct perf_event *event;
P
Peter Zijlstra 已提交
4166

4167 4168 4169
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4170 4171 4172
	}
}

4173
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4174 4175
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4176
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4177
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4178
	int ctxn;
P
Peter Zijlstra 已提交
4179

4180
	rcu_read_lock();
P
Peter Zijlstra 已提交
4181
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4182
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4183 4184
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4185
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4186 4187 4188 4189 4190

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4191
				goto next;
P
Peter Zijlstra 已提交
4192 4193 4194 4195
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4196 4197
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4198
	}
P
Peter Zijlstra 已提交
4199 4200 4201
	rcu_read_unlock();
}

4202 4203
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4204
			      int new)
P
Peter Zijlstra 已提交
4205
{
P
Peter Zijlstra 已提交
4206
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4207

4208 4209 4210
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4211 4212
		return;

P
Peter Zijlstra 已提交
4213
	task_event = (struct perf_task_event){
4214 4215
		.task	  = task,
		.task_ctx = task_ctx,
4216
		.event_id    = {
P
Peter Zijlstra 已提交
4217
			.header = {
4218
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4219
				.misc = 0,
4220
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4221
			},
4222 4223
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4224 4225
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4226
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4227 4228 4229
		},
	};

4230
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4231 4232
}

4233
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4234
{
4235
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4236 4237
}

4238 4239 4240 4241 4242
/*
 * comm tracking
 */

struct perf_comm_event {
4243 4244
	struct task_struct	*task;
	char			*comm;
4245 4246 4247 4248 4249 4250 4251
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4252
	} event_id;
4253 4254
};

4255
static void perf_event_comm_output(struct perf_event *event,
4256 4257 4258
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4259
	struct perf_sample_data sample;
4260
	int size = comm_event->event_id.header.size;
4261 4262 4263 4264
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4265
				comm_event->event_id.header.size);
4266 4267

	if (ret)
4268
		goto out;
4269

4270 4271
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4272

4273
	perf_output_put(&handle, comm_event->event_id);
4274
	__output_copy(&handle, comm_event->comm,
4275
				   comm_event->comm_size);
4276 4277 4278

	perf_event__output_id_sample(event, &handle, &sample);

4279
	perf_output_end(&handle);
4280 4281
out:
	comm_event->event_id.header.size = size;
4282 4283
}

4284
static int perf_event_comm_match(struct perf_event *event)
4285
{
P
Peter Zijlstra 已提交
4286
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4287 4288
		return 0;

4289
	if (!event_filter_match(event))
4290 4291
		return 0;

4292
	if (event->attr.comm)
4293 4294 4295 4296 4297
		return 1;

	return 0;
}

4298
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4299 4300
				  struct perf_comm_event *comm_event)
{
4301
	struct perf_event *event;
4302

4303 4304 4305
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4306 4307 4308
	}
}

4309
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4310 4311
{
	struct perf_cpu_context *cpuctx;
4312
	struct perf_event_context *ctx;
4313
	char comm[TASK_COMM_LEN];
4314
	unsigned int size;
P
Peter Zijlstra 已提交
4315
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4316
	int ctxn;
4317

4318
	memset(comm, 0, sizeof(comm));
4319
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4320
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4321 4322 4323 4324

	comm_event->comm = comm;
	comm_event->comm_size = size;

4325
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4326
	rcu_read_lock();
P
Peter Zijlstra 已提交
4327
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4328
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4329 4330
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4331
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4332 4333 4334

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4335
			goto next;
P
Peter Zijlstra 已提交
4336 4337 4338 4339

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4340 4341
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4342
	}
4343
	rcu_read_unlock();
4344 4345
}

4346
void perf_event_comm(struct task_struct *task)
4347
{
4348
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4349 4350
	struct perf_event_context *ctx;
	int ctxn;
4351

P
Peter Zijlstra 已提交
4352 4353 4354 4355
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4356

P
Peter Zijlstra 已提交
4357 4358
		perf_event_enable_on_exec(ctx);
	}
4359

4360
	if (!atomic_read(&nr_comm_events))
4361
		return;
4362

4363
	comm_event = (struct perf_comm_event){
4364
		.task	= task,
4365 4366
		/* .comm      */
		/* .comm_size */
4367
		.event_id  = {
4368
			.header = {
4369
				.type = PERF_RECORD_COMM,
4370 4371 4372 4373 4374
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4375 4376 4377
		},
	};

4378
	perf_event_comm_event(&comm_event);
4379 4380
}

4381 4382 4383 4384 4385
/*
 * mmap tracking
 */

struct perf_mmap_event {
4386 4387 4388 4389
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4390 4391 4392 4393 4394 4395 4396 4397 4398

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4399
	} event_id;
4400 4401
};

4402
static void perf_event_mmap_output(struct perf_event *event,
4403 4404 4405
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4406
	struct perf_sample_data sample;
4407
	int size = mmap_event->event_id.header.size;
4408
	int ret;
4409

4410 4411
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4412
				mmap_event->event_id.header.size);
4413
	if (ret)
4414
		goto out;
4415

4416 4417
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4418

4419
	perf_output_put(&handle, mmap_event->event_id);
4420
	__output_copy(&handle, mmap_event->file_name,
4421
				   mmap_event->file_size);
4422 4423 4424

	perf_event__output_id_sample(event, &handle, &sample);

4425
	perf_output_end(&handle);
4426 4427
out:
	mmap_event->event_id.header.size = size;
4428 4429
}

4430
static int perf_event_mmap_match(struct perf_event *event,
4431 4432
				   struct perf_mmap_event *mmap_event,
				   int executable)
4433
{
P
Peter Zijlstra 已提交
4434
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4435 4436
		return 0;

4437
	if (!event_filter_match(event))
4438 4439
		return 0;

4440 4441
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4442 4443 4444 4445 4446
		return 1;

	return 0;
}

4447
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4448 4449
				  struct perf_mmap_event *mmap_event,
				  int executable)
4450
{
4451
	struct perf_event *event;
4452

4453
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4454
		if (perf_event_mmap_match(event, mmap_event, executable))
4455
			perf_event_mmap_output(event, mmap_event);
4456 4457 4458
	}
}

4459
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4460 4461
{
	struct perf_cpu_context *cpuctx;
4462
	struct perf_event_context *ctx;
4463 4464
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4465 4466 4467
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4468
	const char *name;
P
Peter Zijlstra 已提交
4469
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4470
	int ctxn;
4471

4472 4473
	memset(tmp, 0, sizeof(tmp));

4474
	if (file) {
4475
		/*
4476
		 * d_path works from the end of the rb backwards, so we
4477 4478 4479 4480
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4481 4482 4483 4484
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4485
		name = d_path(&file->f_path, buf, PATH_MAX);
4486 4487 4488 4489 4490
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4491 4492 4493
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4494
			goto got_name;
4495
		}
4496 4497 4498 4499

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4500 4501 4502 4503 4504 4505 4506 4507
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4508 4509
		}

4510 4511 4512 4513 4514
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4515
	size = ALIGN(strlen(name)+1, sizeof(u64));
4516 4517 4518 4519

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4520
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4521

4522
	rcu_read_lock();
P
Peter Zijlstra 已提交
4523
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4524
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4525 4526
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4527 4528
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4529 4530 4531

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4532
			goto next;
P
Peter Zijlstra 已提交
4533 4534 4535 4536 4537 4538

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4539 4540
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4541
	}
4542 4543
	rcu_read_unlock();

4544 4545 4546
	kfree(buf);
}

4547
void perf_event_mmap(struct vm_area_struct *vma)
4548
{
4549 4550
	struct perf_mmap_event mmap_event;

4551
	if (!atomic_read(&nr_mmap_events))
4552 4553 4554
		return;

	mmap_event = (struct perf_mmap_event){
4555
		.vma	= vma,
4556 4557
		/* .file_name */
		/* .file_size */
4558
		.event_id  = {
4559
			.header = {
4560
				.type = PERF_RECORD_MMAP,
4561
				.misc = PERF_RECORD_MISC_USER,
4562 4563 4564 4565
				/* .size */
			},
			/* .pid */
			/* .tid */
4566 4567
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4568
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4569 4570 4571
		},
	};

4572
	perf_event_mmap_event(&mmap_event);
4573 4574
}

4575 4576 4577 4578
/*
 * IRQ throttle logging
 */

4579
static void perf_log_throttle(struct perf_event *event, int enable)
4580 4581
{
	struct perf_output_handle handle;
4582
	struct perf_sample_data sample;
4583 4584 4585 4586 4587
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4588
		u64				id;
4589
		u64				stream_id;
4590 4591
	} throttle_event = {
		.header = {
4592
			.type = PERF_RECORD_THROTTLE,
4593 4594 4595
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4596
		.time		= perf_clock(),
4597 4598
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4599 4600
	};

4601
	if (enable)
4602
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4603

4604 4605 4606
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4607
				throttle_event.header.size);
4608 4609 4610 4611
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4612
	perf_event__output_id_sample(event, &handle, &sample);
4613 4614 4615
	perf_output_end(&handle);
}

4616
/*
4617
 * Generic event overflow handling, sampling.
4618 4619
 */

4620
static int __perf_event_overflow(struct perf_event *event,
4621 4622
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4623
{
4624 4625
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4626 4627
	int ret = 0;

4628 4629 4630 4631 4632 4633 4634
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4635 4636 4637 4638
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4639 4640
			ret = 1;
		}
P
Peter Zijlstra 已提交
4641 4642
	} else
		hwc->interrupts++;
4643

4644
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4645
		u64 now = perf_clock();
4646
		s64 delta = now - hwc->freq_time_stamp;
4647

4648
		hwc->freq_time_stamp = now;
4649

4650 4651
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4652 4653
	}

4654 4655
	/*
	 * XXX event_limit might not quite work as expected on inherited
4656
	 * events
4657 4658
	 */

4659 4660
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4661
		ret = 1;
4662
		event->pending_kill = POLL_HUP;
4663 4664
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4665 4666
	}

4667
	if (event->overflow_handler)
4668
		event->overflow_handler(event, data, regs);
4669
	else
4670
		perf_event_output(event, data, regs);
4671

P
Peter Zijlstra 已提交
4672
	if (event->fasync && event->pending_kill) {
4673 4674
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4675 4676
	}

4677
	return ret;
4678 4679
}

4680
int perf_event_overflow(struct perf_event *event,
4681 4682
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4683
{
4684
	return __perf_event_overflow(event, 1, data, regs);
4685 4686
}

4687
/*
4688
 * Generic software event infrastructure
4689 4690
 */

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4702
/*
4703 4704
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4705 4706 4707 4708
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4709
static u64 perf_swevent_set_period(struct perf_event *event)
4710
{
4711
	struct hw_perf_event *hwc = &event->hw;
4712 4713 4714 4715 4716
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4717 4718

again:
4719
	old = val = local64_read(&hwc->period_left);
4720 4721
	if (val < 0)
		return 0;
4722

4723 4724 4725
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4726
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4727
		goto again;
4728

4729
	return nr;
4730 4731
}

4732
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4733
				    struct perf_sample_data *data,
4734
				    struct pt_regs *regs)
4735
{
4736
	struct hw_perf_event *hwc = &event->hw;
4737
	int throttle = 0;
4738

4739
	data->period = event->hw.last_period;
4740 4741
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4742

4743 4744
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4745

4746
	for (; overflow; overflow--) {
4747
		if (__perf_event_overflow(event, throttle,
4748
					    data, regs)) {
4749 4750 4751 4752 4753 4754
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4755
		throttle = 1;
4756
	}
4757 4758
}

P
Peter Zijlstra 已提交
4759
static void perf_swevent_event(struct perf_event *event, u64 nr,
4760
			       struct perf_sample_data *data,
4761
			       struct pt_regs *regs)
4762
{
4763
	struct hw_perf_event *hwc = &event->hw;
4764

4765
	local64_add(nr, &event->count);
4766

4767 4768 4769
	if (!regs)
		return;

4770
	if (!is_sampling_event(event))
4771
		return;
4772

4773
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4774
		return perf_swevent_overflow(event, 1, data, regs);
4775

4776
	if (local64_add_negative(nr, &hwc->period_left))
4777
		return;
4778

4779
	perf_swevent_overflow(event, 0, data, regs);
4780 4781
}

4782 4783 4784
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4785
	if (event->hw.state & PERF_HES_STOPPED)
4786
		return 1;
P
Peter Zijlstra 已提交
4787

4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4799
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4800
				enum perf_type_id type,
L
Li Zefan 已提交
4801 4802 4803
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4804
{
4805
	if (event->attr.type != type)
4806
		return 0;
4807

4808
	if (event->attr.config != event_id)
4809 4810
		return 0;

4811 4812
	if (perf_exclude_event(event, regs))
		return 0;
4813 4814 4815 4816

	return 1;
}

4817 4818 4819 4820 4821 4822 4823
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4824 4825
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4826
{
4827 4828 4829 4830
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4831

4832 4833
/* For the read side: events when they trigger */
static inline struct hlist_head *
4834
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4835 4836
{
	struct swevent_hlist *hlist;
4837

4838
	hlist = rcu_dereference(swhash->swevent_hlist);
4839 4840 4841
	if (!hlist)
		return NULL;

4842 4843 4844 4845 4846
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4847
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4858
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4859 4860 4861 4862 4863
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4864 4865 4866
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4867
				    u64 nr,
4868 4869
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4870
{
4871
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4872
	struct perf_event *event;
4873 4874
	struct hlist_node *node;
	struct hlist_head *head;
4875

4876
	rcu_read_lock();
4877
	head = find_swevent_head_rcu(swhash, type, event_id);
4878 4879 4880 4881
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4882
		if (perf_swevent_match(event, type, event_id, data, regs))
4883
			perf_swevent_event(event, nr, data, regs);
4884
	}
4885 4886
end:
	rcu_read_unlock();
4887 4888
}

4889
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4890
{
4891
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4892

4893
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4894
}
I
Ingo Molnar 已提交
4895
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4896

4897
inline void perf_swevent_put_recursion_context(int rctx)
4898
{
4899
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4900

4901
	put_recursion_context(swhash->recursion, rctx);
4902
}
4903

4904
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4905
{
4906
	struct perf_sample_data data;
4907 4908
	int rctx;

4909
	preempt_disable_notrace();
4910 4911 4912
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4913

4914
	perf_sample_data_init(&data, addr);
4915

4916
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4917 4918

	perf_swevent_put_recursion_context(rctx);
4919
	preempt_enable_notrace();
4920 4921
}

4922
static void perf_swevent_read(struct perf_event *event)
4923 4924 4925
{
}

P
Peter Zijlstra 已提交
4926
static int perf_swevent_add(struct perf_event *event, int flags)
4927
{
4928
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4929
	struct hw_perf_event *hwc = &event->hw;
4930 4931
	struct hlist_head *head;

4932
	if (is_sampling_event(event)) {
4933
		hwc->last_period = hwc->sample_period;
4934
		perf_swevent_set_period(event);
4935
	}
4936

P
Peter Zijlstra 已提交
4937 4938
	hwc->state = !(flags & PERF_EF_START);

4939
	head = find_swevent_head(swhash, event);
4940 4941 4942 4943 4944
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4945 4946 4947
	return 0;
}

P
Peter Zijlstra 已提交
4948
static void perf_swevent_del(struct perf_event *event, int flags)
4949
{
4950
	hlist_del_rcu(&event->hlist_entry);
4951 4952
}

P
Peter Zijlstra 已提交
4953
static void perf_swevent_start(struct perf_event *event, int flags)
4954
{
P
Peter Zijlstra 已提交
4955
	event->hw.state = 0;
4956
}
I
Ingo Molnar 已提交
4957

P
Peter Zijlstra 已提交
4958
static void perf_swevent_stop(struct perf_event *event, int flags)
4959
{
P
Peter Zijlstra 已提交
4960
	event->hw.state = PERF_HES_STOPPED;
4961 4962
}

4963 4964
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4965
swevent_hlist_deref(struct swevent_htable *swhash)
4966
{
4967 4968
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4969 4970
}

4971
static void swevent_hlist_release(struct swevent_htable *swhash)
4972
{
4973
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4974

4975
	if (!hlist)
4976 4977
		return;

4978
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4979
	kfree_rcu(hlist, rcu_head);
4980 4981 4982 4983
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4984
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4985

4986
	mutex_lock(&swhash->hlist_mutex);
4987

4988 4989
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4990

4991
	mutex_unlock(&swhash->hlist_mutex);
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5009
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5010 5011
	int err = 0;

5012
	mutex_lock(&swhash->hlist_mutex);
5013

5014
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5015 5016 5017 5018 5019 5020 5021
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5022
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5023
	}
5024
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5025
exit:
5026
	mutex_unlock(&swhash->hlist_mutex);
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5050
fail:
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5061
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5062

5063 5064 5065
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5066

5067 5068
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5069
	jump_label_dec(&perf_swevent_enabled[event_id]);
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5089
	if (event_id >= PERF_COUNT_SW_MAX)
5090 5091 5092 5093 5094 5095 5096 5097 5098
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5099
		jump_label_inc(&perf_swevent_enabled[event_id]);
5100 5101 5102 5103 5104 5105 5106
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5107
	.task_ctx_nr	= perf_sw_context,
5108

5109
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5110 5111 5112 5113
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5114 5115 5116
	.read		= perf_swevent_read,
};

5117 5118
#ifdef CONFIG_EVENT_TRACING

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5133 5134
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5135 5136 5137 5138
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5139 5140 5141 5142 5143 5144 5145 5146 5147
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5148
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5149 5150
{
	struct perf_sample_data data;
5151 5152 5153
	struct perf_event *event;
	struct hlist_node *node;

5154 5155 5156 5157 5158 5159 5160 5161
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5162 5163
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5164
			perf_swevent_event(event, count, &data, regs);
5165
	}
5166 5167

	perf_swevent_put_recursion_context(rctx);
5168 5169 5170
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5171
static void tp_perf_event_destroy(struct perf_event *event)
5172
{
5173
	perf_trace_destroy(event);
5174 5175
}

5176
static int perf_tp_event_init(struct perf_event *event)
5177
{
5178 5179
	int err;

5180 5181 5182
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5183 5184
	err = perf_trace_init(event);
	if (err)
5185
		return err;
5186

5187
	event->destroy = tp_perf_event_destroy;
5188

5189 5190 5191 5192
	return 0;
}

static struct pmu perf_tracepoint = {
5193 5194
	.task_ctx_nr	= perf_sw_context,

5195
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5196 5197 5198 5199
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5200 5201 5202 5203 5204
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5205
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5206
}
L
Li Zefan 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5231
#else
L
Li Zefan 已提交
5232

5233
static inline void perf_tp_register(void)
5234 5235
{
}
L
Li Zefan 已提交
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5246
#endif /* CONFIG_EVENT_TRACING */
5247

5248
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5249
void perf_bp_event(struct perf_event *bp, void *data)
5250
{
5251 5252 5253
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5254
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5255

P
Peter Zijlstra 已提交
5256
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5257
		perf_swevent_event(bp, 1, &sample, regs);
5258 5259 5260
}
#endif

5261 5262 5263
/*
 * hrtimer based swevent callback
 */
5264

5265
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5266
{
5267 5268 5269 5270 5271
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5272

5273
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5274 5275 5276 5277

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5278
	event->pmu->read(event);
5279

5280 5281 5282 5283 5284 5285
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
5286
			if (perf_event_overflow(event, &data, regs))
5287 5288
				ret = HRTIMER_NORESTART;
	}
5289

5290 5291
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5292

5293
	return ret;
5294 5295
}

5296
static void perf_swevent_start_hrtimer(struct perf_event *event)
5297
{
5298
	struct hw_perf_event *hwc = &event->hw;
5299 5300 5301 5302
	s64 period;

	if (!is_sampling_event(event))
		return;
5303

5304 5305 5306 5307
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5308

5309 5310 5311 5312 5313
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5314
				ns_to_ktime(period), 0,
5315
				HRTIMER_MODE_REL_PINNED, 0);
5316
}
5317 5318

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5319
{
5320 5321
	struct hw_perf_event *hwc = &event->hw;

5322
	if (is_sampling_event(event)) {
5323
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5324
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5325 5326 5327

		hrtimer_cancel(&hwc->hrtimer);
	}
5328 5329
}

P
Peter Zijlstra 已提交
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5354 5355 5356 5357 5358
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5359
{
5360 5361 5362
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5363
	now = local_clock();
5364 5365
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5366 5367
}

P
Peter Zijlstra 已提交
5368
static void cpu_clock_event_start(struct perf_event *event, int flags)
5369
{
P
Peter Zijlstra 已提交
5370
	local64_set(&event->hw.prev_count, local_clock());
5371 5372 5373
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5374
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5375
{
5376 5377 5378
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5379

P
Peter Zijlstra 已提交
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5393 5394 5395 5396
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5397

5398 5399 5400 5401 5402 5403 5404 5405
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5406 5407
	perf_swevent_init_hrtimer(event);

5408
	return 0;
5409 5410
}

5411
static struct pmu perf_cpu_clock = {
5412 5413
	.task_ctx_nr	= perf_sw_context,

5414
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5415 5416 5417 5418
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5419 5420 5421 5422 5423 5424 5425 5426
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5427
{
5428 5429
	u64 prev;
	s64 delta;
5430

5431 5432 5433 5434
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5435

P
Peter Zijlstra 已提交
5436
static void task_clock_event_start(struct perf_event *event, int flags)
5437
{
P
Peter Zijlstra 已提交
5438
	local64_set(&event->hw.prev_count, event->ctx->time);
5439 5440 5441
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5442
static void task_clock_event_stop(struct perf_event *event, int flags)
5443 5444 5445
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5446 5447 5448 5449 5450 5451
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5452

P
Peter Zijlstra 已提交
5453 5454 5455 5456 5457 5458
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5459 5460 5461 5462
}

static void task_clock_event_read(struct perf_event *event)
{
5463 5464 5465
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5466 5467 5468 5469 5470

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5471
{
5472 5473 5474 5475 5476 5477
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5478 5479
	perf_swevent_init_hrtimer(event);

5480
	return 0;
L
Li Zefan 已提交
5481 5482
}

5483
static struct pmu perf_task_clock = {
5484 5485
	.task_ctx_nr	= perf_sw_context,

5486
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5487 5488 5489 5490
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5491 5492
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5493

P
Peter Zijlstra 已提交
5494
static void perf_pmu_nop_void(struct pmu *pmu)
5495 5496
{
}
L
Li Zefan 已提交
5497

P
Peter Zijlstra 已提交
5498
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5499
{
P
Peter Zijlstra 已提交
5500
	return 0;
L
Li Zefan 已提交
5501 5502
}

P
Peter Zijlstra 已提交
5503
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5504
{
P
Peter Zijlstra 已提交
5505
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5506 5507
}

P
Peter Zijlstra 已提交
5508 5509 5510 5511 5512
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5513

P
Peter Zijlstra 已提交
5514
static void perf_pmu_cancel_txn(struct pmu *pmu)
5515
{
P
Peter Zijlstra 已提交
5516
	perf_pmu_enable(pmu);
5517 5518
}

P
Peter Zijlstra 已提交
5519 5520 5521 5522 5523
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5524
{
P
Peter Zijlstra 已提交
5525
	struct pmu *pmu;
5526

P
Peter Zijlstra 已提交
5527 5528
	if (ctxn < 0)
		return NULL;
5529

P
Peter Zijlstra 已提交
5530 5531 5532 5533
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5534

P
Peter Zijlstra 已提交
5535
	return NULL;
5536 5537
}

5538
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5539
{
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5555

P
Peter Zijlstra 已提交
5556
	mutex_lock(&pmus_lock);
5557
	/*
P
Peter Zijlstra 已提交
5558
	 * Like a real lame refcount.
5559
	 */
5560 5561 5562
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5563
			goto out;
5564
		}
P
Peter Zijlstra 已提交
5565
	}
5566

5567
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5568 5569
out:
	mutex_unlock(&pmus_lock);
5570
}
P
Peter Zijlstra 已提交
5571
static struct idr pmu_idr;
5572

P
Peter Zijlstra 已提交
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5625
static struct lock_class_key cpuctx_mutex;
5626
static struct lock_class_key cpuctx_lock;
5627

P
Peter Zijlstra 已提交
5628
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5629
{
P
Peter Zijlstra 已提交
5630
	int cpu, ret;
5631

5632
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5633 5634 5635 5636
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5637

P
Peter Zijlstra 已提交
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5656 5657 5658 5659 5660 5661
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5662
skip_type:
P
Peter Zijlstra 已提交
5663 5664 5665
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5666

P
Peter Zijlstra 已提交
5667 5668
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5669
		goto free_dev;
5670

P
Peter Zijlstra 已提交
5671 5672 5673 5674
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5675
		__perf_event_init_context(&cpuctx->ctx);
5676
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5677
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5678
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5679
		cpuctx->ctx.pmu = pmu;
5680 5681
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5682
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5683
	}
5684

P
Peter Zijlstra 已提交
5685
got_cpu_context:
P
Peter Zijlstra 已提交
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5700
		}
5701
	}
5702

P
Peter Zijlstra 已提交
5703 5704 5705 5706 5707
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5708
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5709 5710
	ret = 0;
unlock:
5711 5712
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5713
	return ret;
P
Peter Zijlstra 已提交
5714

P
Peter Zijlstra 已提交
5715 5716 5717 5718
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5719 5720 5721 5722
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5723 5724 5725
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5726 5727
}

5728
void perf_pmu_unregister(struct pmu *pmu)
5729
{
5730 5731 5732
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5733

5734
	/*
P
Peter Zijlstra 已提交
5735 5736
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5737
	 */
5738
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5739
	synchronize_rcu();
5740

P
Peter Zijlstra 已提交
5741
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5742 5743
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5744 5745
	device_del(pmu->dev);
	put_device(pmu->dev);
5746
	free_pmu_context(pmu);
5747
}
5748

5749 5750 5751 5752
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5753
	int ret;
5754 5755

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5756 5757 5758 5759

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5760 5761 5762 5763
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5764
		goto unlock;
5765
	}
P
Peter Zijlstra 已提交
5766

5767
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5768
		ret = pmu->event_init(event);
5769
		if (!ret)
P
Peter Zijlstra 已提交
5770
			goto unlock;
5771

5772 5773
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5774
			goto unlock;
5775
		}
5776
	}
P
Peter Zijlstra 已提交
5777 5778
	pmu = ERR_PTR(-ENOENT);
unlock:
5779
	srcu_read_unlock(&pmus_srcu, idx);
5780

5781
	return pmu;
5782 5783
}

T
Thomas Gleixner 已提交
5784
/*
5785
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5786
 */
5787
static struct perf_event *
5788
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5789 5790 5791
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
5792 5793
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
5794
{
P
Peter Zijlstra 已提交
5795
	struct pmu *pmu;
5796 5797
	struct perf_event *event;
	struct hw_perf_event *hwc;
5798
	long err;
T
Thomas Gleixner 已提交
5799

5800 5801 5802 5803 5804
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5805
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5806
	if (!event)
5807
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5808

5809
	/*
5810
	 * Single events are their own group leaders, with an
5811 5812 5813
	 * empty sibling list:
	 */
	if (!group_leader)
5814
		group_leader = event;
5815

5816 5817
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5818

5819 5820 5821 5822
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
5823
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5824

5825
	mutex_init(&event->mmap_mutex);
5826

5827 5828 5829 5830 5831
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5832

5833
	event->parent		= parent_event;
5834

5835 5836
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5837

5838
	event->state		= PERF_EVENT_STATE_INACTIVE;
5839

5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5851
	if (!overflow_handler && parent_event) {
5852
		overflow_handler = parent_event->overflow_handler;
5853 5854
		context = parent_event->overflow_handler_context;
	}
5855

5856
	event->overflow_handler	= overflow_handler;
5857
	event->overflow_handler_context = context;
5858

5859
	if (attr->disabled)
5860
		event->state = PERF_EVENT_STATE_OFF;
5861

5862
	pmu = NULL;
5863

5864
	hwc = &event->hw;
5865
	hwc->sample_period = attr->sample_period;
5866
	if (attr->freq && attr->sample_freq)
5867
		hwc->sample_period = 1;
5868
	hwc->last_period = hwc->sample_period;
5869

5870
	local64_set(&hwc->period_left, hwc->sample_period);
5871

5872
	/*
5873
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5874
	 */
5875
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5876 5877
		goto done;

5878
	pmu = perf_init_event(event);
5879

5880 5881
done:
	err = 0;
5882
	if (!pmu)
5883
		err = -EINVAL;
5884 5885
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5886

5887
	if (err) {
5888 5889 5890
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5891
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5892
	}
5893

5894
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5895

5896
	if (!event->parent) {
5897
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
5898
			jump_label_inc(&perf_sched_events);
5899
		if (event->attr.mmap || event->attr.mmap_data)
5900 5901 5902 5903 5904
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5905 5906 5907 5908 5909 5910 5911
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5912
	}
5913

5914
	return event;
T
Thomas Gleixner 已提交
5915 5916
}

5917 5918
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5919 5920
{
	u32 size;
5921
	int ret;
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5946 5947 5948
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5949 5950
	 */
	if (size > sizeof(*attr)) {
5951 5952 5953
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5954

5955 5956
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5957

5958
		for (; addr < end; addr++) {
5959 5960 5961 5962 5963 5964
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5965
		size = sizeof(*attr);
5966 5967 5968 5969 5970 5971
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

5972
	if (attr->__reserved_1)
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5990 5991
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5992
{
5993
	struct ring_buffer *rb = NULL, *old_rb = NULL;
5994 5995
	int ret = -EINVAL;

5996
	if (!output_event)
5997 5998
		goto set;

5999 6000
	/* don't allow circular references */
	if (event == output_event)
6001 6002
		goto out;

6003 6004 6005 6006 6007 6008 6009
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6010
	 * If its not a per-cpu rb, it must be the same task.
6011 6012 6013 6014
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6015
set:
6016
	mutex_lock(&event->mmap_mutex);
6017 6018 6019
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6020

6021
	if (output_event) {
6022 6023 6024
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6025
			goto unlock;
6026 6027
	}

6028 6029
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6030
	ret = 0;
6031 6032 6033
unlock:
	mutex_unlock(&event->mmap_mutex);

6034 6035
	if (old_rb)
		ring_buffer_put(old_rb);
6036 6037 6038 6039
out:
	return ret;
}

T
Thomas Gleixner 已提交
6040
/**
6041
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6042
 *
6043
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6044
 * @pid:		target pid
I
Ingo Molnar 已提交
6045
 * @cpu:		target cpu
6046
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6047
 */
6048 6049
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6050
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6051
{
6052 6053
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6054 6055 6056
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6057
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6058
	struct task_struct *task = NULL;
6059
	struct pmu *pmu;
6060
	int event_fd;
6061
	int move_group = 0;
6062
	int fput_needed = 0;
6063
	int err;
T
Thomas Gleixner 已提交
6064

6065
	/* for future expandability... */
S
Stephane Eranian 已提交
6066
	if (flags & ~PERF_FLAG_ALL)
6067 6068
		return -EINVAL;

6069 6070 6071
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6072

6073 6074 6075 6076 6077
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6078
	if (attr.freq) {
6079
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6080 6081 6082
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6083 6084 6085 6086 6087 6088 6089 6090 6091
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6092 6093 6094 6095
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6096 6097 6098 6099
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6100
			goto err_fd;
6101 6102 6103 6104 6105 6106 6107 6108
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6109
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6110 6111 6112 6113 6114 6115 6116
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6117 6118
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6119 6120
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6121
		goto err_task;
6122 6123
	}

S
Stephane Eranian 已提交
6124 6125 6126 6127
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6128 6129 6130 6131 6132 6133 6134
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6135 6136
	}

6137 6138 6139 6140 6141
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6165 6166 6167 6168

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6169
	ctx = find_get_context(pmu, task, cpu);
6170 6171
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6172
		goto err_alloc;
6173 6174
	}

6175 6176 6177 6178 6179
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6180
	/*
6181
	 * Look up the group leader (we will attach this event to it):
6182
	 */
6183
	if (group_leader) {
6184
		err = -EINVAL;
6185 6186

		/*
I
Ingo Molnar 已提交
6187 6188 6189 6190
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6191
			goto err_context;
I
Ingo Molnar 已提交
6192 6193 6194
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6195
		 */
6196 6197 6198 6199 6200 6201 6202 6203
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6204 6205 6206
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6207
		if (attr.exclusive || attr.pinned)
6208
			goto err_context;
6209 6210 6211 6212 6213
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6214
			goto err_context;
6215
	}
T
Thomas Gleixner 已提交
6216

6217 6218 6219
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6220
		goto err_context;
6221
	}
6222

6223 6224 6225 6226
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6227
		perf_remove_from_context(group_leader);
6228 6229
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6230
			perf_remove_from_context(sibling);
6231 6232 6233 6234
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6235
	}
6236

6237
	event->filp = event_file;
6238
	WARN_ON_ONCE(ctx->parent_ctx);
6239
	mutex_lock(&ctx->mutex);
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6251
	perf_install_in_context(ctx, event, cpu);
6252
	++ctx->generation;
6253
	perf_unpin_context(ctx);
6254
	mutex_unlock(&ctx->mutex);
6255

6256
	event->owner = current;
P
Peter Zijlstra 已提交
6257

6258 6259 6260
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6261

6262 6263 6264 6265
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6266
	perf_event__id_header_size(event);
6267

6268 6269 6270 6271 6272 6273
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6274 6275 6276
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6277

6278
err_context:
6279
	perf_unpin_context(ctx);
6280
	put_ctx(ctx);
6281
err_alloc:
6282
	free_event(event);
P
Peter Zijlstra 已提交
6283 6284 6285
err_task:
	if (task)
		put_task_struct(task);
6286
err_group_fd:
6287
	fput_light(group_file, fput_needed);
6288 6289
err_fd:
	put_unused_fd(event_fd);
6290
	return err;
T
Thomas Gleixner 已提交
6291 6292
}

6293 6294 6295 6296 6297
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6298
 * @task: task to profile (NULL for percpu)
6299 6300 6301
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6302
				 struct task_struct *task,
6303 6304
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6305 6306
{
	struct perf_event_context *ctx;
6307
	struct perf_event *event;
6308
	int err;
6309

6310 6311 6312
	/*
	 * Get the target context (task or percpu):
	 */
6313

6314 6315
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6316 6317 6318 6319
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6320

M
Matt Helsley 已提交
6321
	ctx = find_get_context(event->pmu, task, cpu);
6322 6323
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6324
		goto err_free;
6325
	}
6326 6327 6328 6329 6330 6331

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6332
	perf_unpin_context(ctx);
6333 6334 6335 6336
	mutex_unlock(&ctx->mutex);

	return event;

6337 6338 6339
err_free:
	free_event(event);
err:
6340
	return ERR_PTR(err);
6341
}
6342
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6343

6344
static void sync_child_event(struct perf_event *child_event,
6345
			       struct task_struct *child)
6346
{
6347
	struct perf_event *parent_event = child_event->parent;
6348
	u64 child_val;
6349

6350 6351
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6352

P
Peter Zijlstra 已提交
6353
	child_val = perf_event_count(child_event);
6354 6355 6356 6357

	/*
	 * Add back the child's count to the parent's count:
	 */
6358
	atomic64_add(child_val, &parent_event->child_count);
6359 6360 6361 6362
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6363 6364

	/*
6365
	 * Remove this event from the parent's list
6366
	 */
6367 6368 6369 6370
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6371 6372

	/*
6373
	 * Release the parent event, if this was the last
6374 6375
	 * reference to it.
	 */
6376
	fput(parent_event->filp);
6377 6378
}

6379
static void
6380 6381
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6382
			 struct task_struct *child)
6383
{
6384 6385 6386 6387 6388
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6389

6390
	perf_remove_from_context(child_event);
6391

6392
	/*
6393
	 * It can happen that the parent exits first, and has events
6394
	 * that are still around due to the child reference. These
6395
	 * events need to be zapped.
6396
	 */
6397
	if (child_event->parent) {
6398 6399
		sync_child_event(child_event, child);
		free_event(child_event);
6400
	}
6401 6402
}

P
Peter Zijlstra 已提交
6403
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6404
{
6405 6406
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6407
	unsigned long flags;
6408

P
Peter Zijlstra 已提交
6409
	if (likely(!child->perf_event_ctxp[ctxn])) {
6410
		perf_event_task(child, NULL, 0);
6411
		return;
P
Peter Zijlstra 已提交
6412
	}
6413

6414
	local_irq_save(flags);
6415 6416 6417 6418 6419 6420
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6421
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6422 6423 6424

	/*
	 * Take the context lock here so that if find_get_context is
6425
	 * reading child->perf_event_ctxp, we wait until it has
6426 6427
	 * incremented the context's refcount before we do put_ctx below.
	 */
6428
	raw_spin_lock(&child_ctx->lock);
6429
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6430
	child->perf_event_ctxp[ctxn] = NULL;
6431 6432 6433
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6434
	 * the events from it.
6435 6436
	 */
	unclone_ctx(child_ctx);
6437
	update_context_time(child_ctx);
6438
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6439 6440

	/*
6441 6442 6443
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6444
	 */
6445
	perf_event_task(child, child_ctx, 0);
6446

6447 6448 6449
	/*
	 * We can recurse on the same lock type through:
	 *
6450 6451 6452
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6453 6454 6455 6456 6457
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6458
	mutex_lock(&child_ctx->mutex);
6459

6460
again:
6461 6462 6463 6464 6465
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6466
				 group_entry)
6467
		__perf_event_exit_task(child_event, child_ctx, child);
6468 6469

	/*
6470
	 * If the last event was a group event, it will have appended all
6471 6472 6473
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6474 6475
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6476
		goto again;
6477 6478 6479 6480

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6481 6482
}

P
Peter Zijlstra 已提交
6483 6484 6485 6486 6487
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6488
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6489 6490
	int ctxn;

P
Peter Zijlstra 已提交
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6506 6507 6508 6509
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6524
	perf_group_detach(event);
6525 6526 6527 6528
	list_del_event(event, ctx);
	free_event(event);
}

6529 6530
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6531
 * perf_event_init_task below, used by fork() in case of fail.
6532
 */
6533
void perf_event_free_task(struct task_struct *task)
6534
{
P
Peter Zijlstra 已提交
6535
	struct perf_event_context *ctx;
6536
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6537
	int ctxn;
6538

P
Peter Zijlstra 已提交
6539 6540 6541 6542
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6543

P
Peter Zijlstra 已提交
6544
		mutex_lock(&ctx->mutex);
6545
again:
P
Peter Zijlstra 已提交
6546 6547 6548
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6549

P
Peter Zijlstra 已提交
6550 6551 6552
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6553

P
Peter Zijlstra 已提交
6554 6555 6556
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6557

P
Peter Zijlstra 已提交
6558
		mutex_unlock(&ctx->mutex);
6559

P
Peter Zijlstra 已提交
6560 6561
		put_ctx(ctx);
	}
6562 6563
}

6564 6565 6566 6567 6568 6569 6570 6571
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6584
	unsigned long flags;
P
Peter Zijlstra 已提交
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6597
					   child,
P
Peter Zijlstra 已提交
6598
					   group_leader, parent_event,
6599
				           NULL, NULL);
P
Peter Zijlstra 已提交
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
6626 6627
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
6628

6629 6630 6631 6632
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6633
	perf_event__id_header_size(child_event);
6634

P
Peter Zijlstra 已提交
6635 6636 6637
	/*
	 * Link it up in the child's context:
	 */
6638
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6639
	add_event_to_ctx(child_event, child_ctx);
6640
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6682 6683 6684 6685 6686
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6687
		   struct task_struct *child, int ctxn,
6688 6689 6690
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6691
	struct perf_event_context *child_ctx;
6692 6693 6694 6695

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6696 6697
	}

6698
	child_ctx = child->perf_event_ctxp[ctxn];
6699 6700 6701 6702 6703 6704 6705
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6706

6707
		child_ctx = alloc_perf_context(event->pmu, child);
6708 6709
		if (!child_ctx)
			return -ENOMEM;
6710

P
Peter Zijlstra 已提交
6711
		child->perf_event_ctxp[ctxn] = child_ctx;
6712 6713 6714 6715 6716 6717 6718 6719 6720
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6721 6722
}

6723
/*
6724
 * Initialize the perf_event context in task_struct
6725
 */
P
Peter Zijlstra 已提交
6726
int perf_event_init_context(struct task_struct *child, int ctxn)
6727
{
6728
	struct perf_event_context *child_ctx, *parent_ctx;
6729 6730
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6731
	struct task_struct *parent = current;
6732
	int inherited_all = 1;
6733
	unsigned long flags;
6734
	int ret = 0;
6735

P
Peter Zijlstra 已提交
6736
	if (likely(!parent->perf_event_ctxp[ctxn]))
6737 6738
		return 0;

6739
	/*
6740 6741
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6742
	 */
P
Peter Zijlstra 已提交
6743
	parent_ctx = perf_pin_task_context(parent, ctxn);
6744

6745 6746 6747 6748 6749 6750 6751
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6752 6753 6754 6755
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6756
	mutex_lock(&parent_ctx->mutex);
6757 6758 6759 6760 6761

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6762
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6763 6764
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6765 6766 6767
		if (ret)
			break;
	}
6768

6769 6770 6771 6772 6773 6774 6775 6776 6777
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6778
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6779 6780
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6781
		if (ret)
6782
			break;
6783 6784
	}

6785 6786 6787
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6788
	child_ctx = child->perf_event_ctxp[ctxn];
6789

6790
	if (child_ctx && inherited_all) {
6791 6792 6793
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6794 6795 6796
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6797
		 */
P
Peter Zijlstra 已提交
6798
		cloned_ctx = parent_ctx->parent_ctx;
6799 6800
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6801
			child_ctx->parent_gen = parent_ctx->parent_gen;
6802 6803 6804 6805 6806
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6807 6808
	}

P
Peter Zijlstra 已提交
6809
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6810
	mutex_unlock(&parent_ctx->mutex);
6811

6812
	perf_unpin_context(parent_ctx);
6813
	put_ctx(parent_ctx);
6814

6815
	return ret;
6816 6817
}

P
Peter Zijlstra 已提交
6818 6819 6820 6821 6822 6823 6824
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6825 6826 6827 6828
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6829 6830 6831 6832 6833 6834 6835 6836 6837
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6838 6839
static void __init perf_event_init_all_cpus(void)
{
6840
	struct swevent_htable *swhash;
6841 6842 6843
	int cpu;

	for_each_possible_cpu(cpu) {
6844 6845
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6846
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6847 6848 6849
	}
}

6850
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6851
{
P
Peter Zijlstra 已提交
6852
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6853

6854 6855
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6856 6857
		struct swevent_hlist *hlist;

6858 6859 6860
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6861
	}
6862
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6863 6864
}

P
Peter Zijlstra 已提交
6865
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6866
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6867
{
6868 6869 6870 6871 6872 6873 6874
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6875
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6876
{
P
Peter Zijlstra 已提交
6877
	struct perf_event_context *ctx = __info;
6878
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6879

P
Peter Zijlstra 已提交
6880
	perf_pmu_rotate_stop(ctx->pmu);
6881

6882
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6883
		__perf_remove_from_context(event);
6884
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6885
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
6886
}
P
Peter Zijlstra 已提交
6887 6888 6889 6890 6891 6892 6893 6894 6895

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6896
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6897 6898 6899 6900 6901 6902 6903 6904

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6905
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6906
{
6907
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6908

6909 6910 6911
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6912

P
Peter Zijlstra 已提交
6913
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6914 6915
}
#else
6916
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6917 6918
#endif

P
Peter Zijlstra 已提交
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
6939 6940 6941 6942 6943
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6944
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6945 6946

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6947
	case CPU_DOWN_FAILED:
6948
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6949 6950
		break;

P
Peter Zijlstra 已提交
6951
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6952
	case CPU_DOWN_PREPARE:
6953
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6954 6955 6956 6957 6958 6959 6960 6961 6962
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6963
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6964
{
6965 6966
	int ret;

P
Peter Zijlstra 已提交
6967 6968
	idr_init(&pmu_idr);

6969
	perf_event_init_all_cpus();
6970
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
6971 6972 6973
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
6974 6975
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
6976
	register_reboot_notifier(&perf_reboot_notifier);
6977 6978 6979

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
6980
}
P
Peter Zijlstra 已提交
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7009 7010 7011 7012 7013 7014 7015

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7016
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7046 7047
static void
perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
S
Stephane Eranian 已提交
7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7063
	perf_cgroup_attach_task(cgrp, task);
S
Stephane Eranian 已提交
7064 7065 7066
}

struct cgroup_subsys perf_subsys = {
7067 7068 7069 7070 7071
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
7072
	.attach_task	= perf_cgroup_attach_task,
S
Stephane Eranian 已提交
7073 7074
};
#endif /* CONFIG_CGROUP_PERF */