core.c 220.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166
static atomic_t nr_switch_events __read_mostly;
167

P
Peter Zijlstra 已提交
168 169 170 171
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

172
/*
173
 * perf event paranoia level:
174 175
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
176
 *   1 - disallow cpu events for unpriv
177
 *   2 - disallow kernel profiling for unpriv
178
 */
179
int sysctl_perf_event_paranoid __read_mostly = 1;
180

181 182
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 184

/*
185
 * max perf event sample rate
186
 */
187 188 189 190 191 192 193 194 195
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
196 197
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198

199
static void update_perf_cpu_limits(void)
200 201 202 203
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
204
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
205
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206
}
P
Peter Zijlstra 已提交
207

208 209
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
210 211 212 213
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
214
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
215 216 217 218 219

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
238 239 240

	return 0;
}
241

242 243 244 245 246 247 248
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
249
static DEFINE_PER_CPU(u64, running_sample_length);
250

251
static void perf_duration_warn(struct irq_work *w)
252
{
253
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254
	u64 avg_local_sample_len;
255
	u64 local_samples_len;
256

257
	local_samples_len = __this_cpu_read(running_sample_length);
258 259 260 261 262
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
263
			avg_local_sample_len, allowed_ns >> 1,
264 265 266 267 268 269 270
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
271
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 273
	u64 avg_local_sample_len;
	u64 local_samples_len;
274

P
Peter Zijlstra 已提交
275
	if (allowed_ns == 0)
276 277 278
		return;

	/* decay the counter by 1 average sample */
279
	local_samples_len = __this_cpu_read(running_sample_length);
280 281
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
282
	__this_cpu_write(running_sample_length, local_samples_len);
283 284 285 286 287 288 289 290

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
291
	if (avg_local_sample_len <= allowed_ns)
292 293 294 295 296 297 298 299 300 301
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
302

303 304 305 306 307 308
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
309 310
}

311
static atomic64_t perf_event_id;
312

313 314 315 316
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
317 318 319 320 321
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
322

323
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
324

325
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
326
{
327
	return "pmu";
T
Thomas Gleixner 已提交
328 329
}

330 331 332 333 334
static inline u64 perf_clock(void)
{
	return local_clock();
}

335 336 337 338 339
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
340 341 342 343 344 345
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
362 363 364 365 366 367 368 369
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
386 387 388 389
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
390
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
429 430
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
431
	/*
432 433
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
434
	 */
435
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
436 437
		return;

438
	cgrp = perf_cgroup_from_task(current, event->ctx);
439 440 441 442 443
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
444 445 446
}

static inline void
447 448
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
449 450 451 452
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

453 454 455 456 457 458
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
459 460
		return;

461
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
462
	info = this_cpu_ptr(cgrp->info);
463
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
464 465 466 467 468 469 470 471 472 473 474
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
475
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 496
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
497 498 499 500 501 502 503 504 505

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
506 507
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515 516 517 518

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
519
				WARN_ON_ONCE(cpuctx->cgrp);
520 521 522 523
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
524 525
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
526
				 */
527
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
528 529
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
530 531
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
532 533 534 535 536 537
		}
	}

	local_irq_restore(flags);
}

538 539
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
540
{
541 542 543
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

544
	rcu_read_lock();
545 546
	/*
	 * we come here when we know perf_cgroup_events > 0
547 548
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
549
	 */
550
	cgrp1 = perf_cgroup_from_task(task, NULL);
551 552 553 554 555 556

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
557
		cgrp2 = perf_cgroup_from_task(next, NULL);
558 559 560 561 562 563 564 565

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
566 567

	rcu_read_unlock();
S
Stephane Eranian 已提交
568 569
}

570 571
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
572
{
573 574 575
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

576
	rcu_read_lock();
577 578
	/*
	 * we come here when we know perf_cgroup_events > 0
579 580
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
581
	 */
582
	cgrp1 = perf_cgroup_from_task(task, NULL);
583 584

	/* prev can never be NULL */
585
	cgrp2 = perf_cgroup_from_task(prev, NULL);
586 587 588 589 590 591 592 593

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
594 595

	rcu_read_unlock();
S
Stephane Eranian 已提交
596 597 598 599 600 601 602 603
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
604 605
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
606

607
	if (!f.file)
S
Stephane Eranian 已提交
608 609
		return -EBADF;

A
Al Viro 已提交
610
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
611
					 &perf_event_cgrp_subsys);
612 613 614 615
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
629
out:
630
	fdput(f);
S
Stephane Eranian 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

704 705
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
706 707 708
{
}

709 710
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
711 712 713 714 715 716 717 718 719 720 721
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
722 723
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

754 755 756 757 758 759 760 761
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
762
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
763 764 765 766 767 768 769 770 771
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
772 773
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
774
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
775 776 777
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
778

P
Peter Zijlstra 已提交
779
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
780 781
}

782
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
783
{
784
	struct hrtimer *timer = &cpuctx->hrtimer;
785
	struct pmu *pmu = cpuctx->ctx.pmu;
786
	u64 interval;
787 788 789 790 791

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

792 793 794 795
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
796 797 798
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
799

800
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
801

P
Peter Zijlstra 已提交
802 803
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
804
	timer->function = perf_mux_hrtimer_handler;
805 806
}

807
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
808
{
809
	struct hrtimer *timer = &cpuctx->hrtimer;
810
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
811
	unsigned long flags;
812 813 814

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
815
		return 0;
816

P
Peter Zijlstra 已提交
817 818 819 820 821 822 823
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
824

825
	return 0;
826 827
}

P
Peter Zijlstra 已提交
828
void perf_pmu_disable(struct pmu *pmu)
829
{
P
Peter Zijlstra 已提交
830 831 832
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
833 834
}

P
Peter Zijlstra 已提交
835
void perf_pmu_enable(struct pmu *pmu)
836
{
P
Peter Zijlstra 已提交
837 838 839
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
840 841
}

842
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
843 844

/*
845 846 847 848
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
849
 */
850
static void perf_event_ctx_activate(struct perf_event_context *ctx)
851
{
852
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
853

854
	WARN_ON(!irqs_disabled());
855

856 857 858 859 860 861 862 863 864 865 866 867
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
868 869
}

870
static void get_ctx(struct perf_event_context *ctx)
871
{
872
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
873 874
}

875 876 877 878 879 880 881 882 883
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

884
static void put_ctx(struct perf_event_context *ctx)
885
{
886 887 888
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
889 890
		if (ctx->task)
			put_task_struct(ctx->task);
891
		call_rcu(&ctx->rcu_head, free_ctx);
892
	}
893 894
}

P
Peter Zijlstra 已提交
895 896 897 898 899 900 901
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
956 957
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
958 959 960 961 962 963 964 965 966 967 968 969
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
970
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
971 972 973 974 975 976 977 978 979
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
980 981 982 983 984 985
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
986 987 988 989 990 991 992
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

993 994 995 996 997 998 999
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1000
{
1001 1002 1003 1004 1005
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1006
		ctx->parent_ctx = NULL;
1007
	ctx->generation++;
1008 1009

	return parent_ctx;
1010 1011
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1034
/*
1035
 * If we inherit events we want to return the parent event id
1036 1037
 * to userspace.
 */
1038
static u64 primary_event_id(struct perf_event *event)
1039
{
1040
	u64 id = event->id;
1041

1042 1043
	if (event->parent)
		id = event->parent->id;
1044 1045 1046 1047

	return id;
}

1048
/*
1049
 * Get the perf_event_context for a task and lock it.
1050 1051 1052
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1053
static struct perf_event_context *
P
Peter Zijlstra 已提交
1054
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1055
{
1056
	struct perf_event_context *ctx;
1057

P
Peter Zijlstra 已提交
1058
retry:
1059 1060 1061
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1062
	 * part of the read side critical section was irqs-enabled -- see
1063 1064 1065
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1066
	 * side critical section has interrupts disabled.
1067
	 */
1068
	local_irq_save(*flags);
1069
	rcu_read_lock();
P
Peter Zijlstra 已提交
1070
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1071 1072 1073 1074
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1075
		 * perf_event_task_sched_out, though the
1076 1077 1078 1079 1080 1081
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1082
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1083
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1084
			raw_spin_unlock(&ctx->lock);
1085
			rcu_read_unlock();
1086
			local_irq_restore(*flags);
1087 1088
			goto retry;
		}
1089 1090

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1091
			raw_spin_unlock(&ctx->lock);
1092 1093
			ctx = NULL;
		}
1094 1095
	}
	rcu_read_unlock();
1096 1097
	if (!ctx)
		local_irq_restore(*flags);
1098 1099 1100 1101 1102 1103 1104 1105
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1106 1107
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1108
{
1109
	struct perf_event_context *ctx;
1110 1111
	unsigned long flags;

P
Peter Zijlstra 已提交
1112
	ctx = perf_lock_task_context(task, ctxn, &flags);
1113 1114
	if (ctx) {
		++ctx->pin_count;
1115
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1116 1117 1118 1119
	}
	return ctx;
}

1120
static void perf_unpin_context(struct perf_event_context *ctx)
1121 1122 1123
{
	unsigned long flags;

1124
	raw_spin_lock_irqsave(&ctx->lock, flags);
1125
	--ctx->pin_count;
1126
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1140 1141 1142
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1143 1144 1145 1146

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1147 1148 1149
	return ctx ? ctx->time : 0;
}

1150 1151
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1152
 * The caller of this function needs to hold the ctx->lock.
1153 1154 1155 1156 1157 1158 1159 1160 1161
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1173
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1174 1175
	else if (ctx->is_active)
		run_end = ctx->time;
1176 1177 1178 1179
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1180 1181 1182 1183

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1184
		run_end = perf_event_time(event);
1185 1186

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1187

1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1202 1203 1204 1205 1206 1207 1208 1209 1210
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1211
/*
1212
 * Add a event from the lists for its context.
1213 1214
 * Must be called with ctx->mutex and ctx->lock held.
 */
1215
static void
1216
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1217
{
1218 1219
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1220 1221

	/*
1222 1223 1224
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1225
	 */
1226
	if (event->group_leader == event) {
1227 1228
		struct list_head *list;

1229 1230 1231
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1232 1233
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1234
	}
P
Peter Zijlstra 已提交
1235

1236
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1237 1238
		ctx->nr_cgroups++;

1239 1240 1241
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1242
		ctx->nr_stat++;
1243 1244

	ctx->generation++;
1245 1246
}

J
Jiri Olsa 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1256
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1272
		nr += nr_siblings;
1273 1274 1275 1276 1277 1278 1279
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1280
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1281 1282 1283 1284 1285 1286 1287
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1288 1289 1290 1291 1292 1293
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1294 1295 1296
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1297 1298 1299
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1300 1301 1302
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1303 1304 1305
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1306 1307 1308
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1320 1321 1322 1323 1324 1325
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1326 1327 1328 1329 1330 1331
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1332 1333 1334
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1344
	event->id_header_size = size;
1345 1346
}

P
Peter Zijlstra 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1368 1369
static void perf_group_attach(struct perf_event *event)
{
1370
	struct perf_event *group_leader = event->group_leader, *pos;
1371

P
Peter Zijlstra 已提交
1372 1373 1374 1375 1376 1377
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1378 1379 1380 1381 1382
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1383 1384
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1385 1386 1387 1388 1389 1390
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1391 1392 1393 1394 1395

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1396 1397
}

1398
/*
1399
 * Remove a event from the lists for its context.
1400
 * Must be called with ctx->mutex and ctx->lock held.
1401
 */
1402
static void
1403
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1404
{
1405
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1406 1407 1408 1409

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1410 1411 1412 1413
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1414
		return;
1415 1416 1417

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1418
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1419
		ctx->nr_cgroups--;
1420 1421 1422 1423 1424 1425 1426 1427 1428
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1429

1430 1431
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1432
		ctx->nr_stat--;
1433

1434
	list_del_rcu(&event->event_entry);
1435

1436 1437
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1438

1439
	update_group_times(event);
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1450 1451

	ctx->generation++;
1452 1453
}

1454
static void perf_group_detach(struct perf_event *event)
1455 1456
{
	struct perf_event *sibling, *tmp;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1473
		goto out;
1474 1475 1476 1477
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1478

1479
	/*
1480 1481
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1482
	 * to whatever list we are on.
1483
	 */
1484
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1485 1486
		if (list)
			list_move_tail(&sibling->group_entry, list);
1487
		sibling->group_leader = sibling;
1488 1489 1490

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1491 1492

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1493
	}
1494 1495 1496 1497 1498 1499

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1541 1542 1543 1544 1545 1546
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1547 1548 1549
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1550
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1551
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1552 1553
}

1554 1555
static void
event_sched_out(struct perf_event *event,
1556
		  struct perf_cpu_context *cpuctx,
1557
		  struct perf_event_context *ctx)
1558
{
1559
	u64 tstamp = perf_event_time(event);
1560
	u64 delta;
P
Peter Zijlstra 已提交
1561 1562 1563 1564

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1565 1566 1567 1568 1569 1570 1571 1572
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1573
		delta = tstamp - event->tstamp_stopped;
1574
		event->tstamp_running += delta;
1575
		event->tstamp_stopped = tstamp;
1576 1577
	}

1578
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1579
		return;
1580

1581 1582
	perf_pmu_disable(event->pmu);

1583 1584 1585 1586
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1587
	}
1588
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1589
	event->pmu->del(event, 0);
1590
	event->oncpu = -1;
1591

1592
	if (!is_software_event(event))
1593
		cpuctx->active_oncpu--;
1594 1595
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1596 1597
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1598
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1599
		cpuctx->exclusive = 0;
1600

1601 1602 1603
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1604
	perf_pmu_enable(event->pmu);
1605 1606
}

1607
static void
1608
group_sched_out(struct perf_event *group_event,
1609
		struct perf_cpu_context *cpuctx,
1610
		struct perf_event_context *ctx)
1611
{
1612
	struct perf_event *event;
1613
	int state = group_event->state;
1614

1615
	event_sched_out(group_event, cpuctx, ctx);
1616 1617 1618 1619

	/*
	 * Schedule out siblings (if any):
	 */
1620 1621
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1622

1623
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1624 1625 1626
		cpuctx->exclusive = 0;
}

1627 1628 1629 1630 1631
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1632
/*
1633
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1634
 *
1635
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1636 1637
 * remove it from the context list.
 */
1638
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1639
{
1640 1641
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1642
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1643
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1644

1645
	raw_spin_lock(&ctx->lock);
1646
	event_sched_out(event, cpuctx, ctx);
1647 1648
	if (re->detach_group)
		perf_group_detach(event);
1649
	list_del_event(event, ctx);
1650 1651 1652 1653
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1654
	raw_spin_unlock(&ctx->lock);
1655 1656

	return 0;
T
Thomas Gleixner 已提交
1657 1658 1659 1660
}


/*
1661
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1662
 *
1663
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1664
 * call when the task is on a CPU.
1665
 *
1666 1667
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1668 1669
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1670
 * When called from perf_event_exit_task, it's OK because the
1671
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1672
 */
1673
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1674
{
1675
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1676
	struct task_struct *task = ctx->task;
1677 1678 1679 1680
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1681

1682 1683
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1684 1685
	if (!task) {
		/*
1686 1687 1688 1689
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1690
		 */
1691
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1692 1693 1694 1695
		return;
	}

retry:
1696
	if (!task_function_call(task, __perf_remove_from_context, &re))
1697
		return;
T
Thomas Gleixner 已提交
1698

1699
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1700
	/*
1701 1702
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1703
	 */
1704
	if (ctx->is_active) {
1705
		raw_spin_unlock_irq(&ctx->lock);
1706 1707 1708 1709 1710
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1711 1712 1713 1714
		goto retry;
	}

	/*
1715 1716
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1717
	 */
1718 1719
	if (detach_group)
		perf_group_detach(event);
1720
	list_del_event(event, ctx);
1721
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1722 1723
}

1724
/*
1725
 * Cross CPU call to disable a performance event
1726
 */
1727
int __perf_event_disable(void *info)
1728
{
1729 1730
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1731
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1732 1733

	/*
1734 1735
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1736 1737 1738
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1739
	 */
1740
	if (ctx->task && cpuctx->task_ctx != ctx)
1741
		return -EINVAL;
1742

1743
	raw_spin_lock(&ctx->lock);
1744 1745

	/*
1746
	 * If the event is on, turn it off.
1747 1748
	 * If it is in error state, leave it in error state.
	 */
1749
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1750
		update_context_time(ctx);
S
Stephane Eranian 已提交
1751
		update_cgrp_time_from_event(event);
1752 1753 1754
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1755
		else
1756 1757
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1758 1759
	}

1760
	raw_spin_unlock(&ctx->lock);
1761 1762

	return 0;
1763 1764 1765
}

/*
1766
 * Disable a event.
1767
 *
1768 1769
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1770
 * remains valid.  This condition is satisifed when called through
1771 1772 1773 1774
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1775
 * is the current context on this CPU and preemption is disabled,
1776
 * hence we can't get into perf_event_task_sched_out for this context.
1777
 */
P
Peter Zijlstra 已提交
1778
static void _perf_event_disable(struct perf_event *event)
1779
{
1780
	struct perf_event_context *ctx = event->ctx;
1781 1782 1783 1784
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1785
		 * Disable the event on the cpu that it's on
1786
		 */
1787
		cpu_function_call(event->cpu, __perf_event_disable, event);
1788 1789 1790
		return;
	}

P
Peter Zijlstra 已提交
1791
retry:
1792 1793
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1794

1795
	raw_spin_lock_irq(&ctx->lock);
1796
	/*
1797
	 * If the event is still active, we need to retry the cross-call.
1798
	 */
1799
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1800
		raw_spin_unlock_irq(&ctx->lock);
1801 1802 1803 1804 1805
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1806 1807 1808 1809 1810 1811 1812
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1813 1814 1815
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1816
	}
1817
	raw_spin_unlock_irq(&ctx->lock);
1818
}
P
Peter Zijlstra 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1832
EXPORT_SYMBOL_GPL(perf_event_disable);
1833

S
Stephane Eranian 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1869 1870 1871
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1872
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1873

1874
static int
1875
event_sched_in(struct perf_event *event,
1876
		 struct perf_cpu_context *cpuctx,
1877
		 struct perf_event_context *ctx)
1878
{
1879
	u64 tstamp = perf_event_time(event);
1880
	int ret = 0;
1881

1882 1883
	lockdep_assert_held(&ctx->lock);

1884
	if (event->state <= PERF_EVENT_STATE_OFF)
1885 1886
		return 0;

1887
	event->state = PERF_EVENT_STATE_ACTIVE;
1888
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1900 1901 1902 1903 1904
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1905 1906
	perf_pmu_disable(event->pmu);

1907 1908
	perf_set_shadow_time(event, ctx, tstamp);

1909 1910
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1911
	if (event->pmu->add(event, PERF_EF_START)) {
1912 1913
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1914 1915
		ret = -EAGAIN;
		goto out;
1916 1917
	}

1918 1919
	event->tstamp_running += tstamp - event->tstamp_stopped;

1920
	if (!is_software_event(event))
1921
		cpuctx->active_oncpu++;
1922 1923
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1924 1925
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1926

1927
	if (event->attr.exclusive)
1928 1929
		cpuctx->exclusive = 1;

1930 1931 1932
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1933 1934 1935 1936
out:
	perf_pmu_enable(event->pmu);

	return ret;
1937 1938
}

1939
static int
1940
group_sched_in(struct perf_event *group_event,
1941
	       struct perf_cpu_context *cpuctx,
1942
	       struct perf_event_context *ctx)
1943
{
1944
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1945
	struct pmu *pmu = ctx->pmu;
1946 1947
	u64 now = ctx->time;
	bool simulate = false;
1948

1949
	if (group_event->state == PERF_EVENT_STATE_OFF)
1950 1951
		return 0;

1952
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1953

1954
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1955
		pmu->cancel_txn(pmu);
1956
		perf_mux_hrtimer_restart(cpuctx);
1957
		return -EAGAIN;
1958
	}
1959 1960 1961 1962

	/*
	 * Schedule in siblings as one group (if any):
	 */
1963
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1964
		if (event_sched_in(event, cpuctx, ctx)) {
1965
			partial_group = event;
1966 1967 1968 1969
			goto group_error;
		}
	}

1970
	if (!pmu->commit_txn(pmu))
1971
		return 0;
1972

1973 1974 1975 1976
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1987
	 */
1988 1989
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1990 1991 1992 1993 1994 1995 1996 1997
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1998
	}
1999
	event_sched_out(group_event, cpuctx, ctx);
2000

P
Peter Zijlstra 已提交
2001
	pmu->cancel_txn(pmu);
2002

2003
	perf_mux_hrtimer_restart(cpuctx);
2004

2005 2006 2007
	return -EAGAIN;
}

2008
/*
2009
 * Work out whether we can put this event group on the CPU now.
2010
 */
2011
static int group_can_go_on(struct perf_event *event,
2012 2013 2014 2015
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2016
	 * Groups consisting entirely of software events can always go on.
2017
	 */
2018
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2019 2020 2021
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2022
	 * events can go on.
2023 2024 2025 2026 2027
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2028
	 * events on the CPU, it can't go on.
2029
	 */
2030
	if (event->attr.exclusive && cpuctx->active_oncpu)
2031 2032 2033 2034 2035 2036 2037 2038
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2039 2040
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2041
{
2042 2043
	u64 tstamp = perf_event_time(event);

2044
	list_add_event(event, ctx);
2045
	perf_group_attach(event);
2046 2047 2048
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2049 2050
}

2051 2052 2053 2054 2055 2056
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2070
/*
2071
 * Cross CPU call to install and enable a performance event
2072 2073
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2074
 */
2075
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2076
{
2077 2078
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2079
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080 2081 2082
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2083
	perf_ctx_lock(cpuctx, task_ctx);
2084
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2085 2086

	/*
2087
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2088
	 */
2089
	if (task_ctx)
2090
		task_ctx_sched_out(task_ctx);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2105 2106
		task = task_ctx->task;
	}
2107

2108
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2109

2110
	update_context_time(ctx);
S
Stephane Eranian 已提交
2111 2112 2113 2114 2115 2116
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2117

2118
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2119

2120
	/*
2121
	 * Schedule everything back in
2122
	 */
2123
	perf_event_sched_in(cpuctx, task_ctx, task);
2124 2125 2126

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2127 2128

	return 0;
T
Thomas Gleixner 已提交
2129 2130 2131
}

/*
2132
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2133
 *
2134 2135
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2136
 *
2137
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2138 2139 2140 2141
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2142 2143
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2144 2145 2146 2147
			int cpu)
{
	struct task_struct *task = ctx->task;

2148 2149
	lockdep_assert_held(&ctx->mutex);

2150
	event->ctx = ctx;
2151 2152
	if (event->cpu != -1)
		event->cpu = cpu;
2153

T
Thomas Gleixner 已提交
2154 2155
	if (!task) {
		/*
2156
		 * Per cpu events are installed via an smp call and
2157
		 * the install is always successful.
T
Thomas Gleixner 已提交
2158
		 */
2159
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2160 2161 2162 2163
		return;
	}

retry:
2164 2165
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2166

2167
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2168
	/*
2169 2170
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2171
	 */
2172
	if (ctx->is_active) {
2173
		raw_spin_unlock_irq(&ctx->lock);
2174 2175 2176 2177 2178
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2179 2180 2181 2182
		goto retry;
	}

	/*
2183 2184
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2185
	 */
2186
	add_event_to_ctx(event, ctx);
2187
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2188 2189
}

2190
/*
2191
 * Put a event into inactive state and update time fields.
2192 2193 2194 2195 2196 2197
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2198
static void __perf_event_mark_enabled(struct perf_event *event)
2199
{
2200
	struct perf_event *sub;
2201
	u64 tstamp = perf_event_time(event);
2202

2203
	event->state = PERF_EVENT_STATE_INACTIVE;
2204
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2205
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2206 2207
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2208
	}
2209 2210
}

2211
/*
2212
 * Cross CPU call to enable a performance event
2213
 */
2214
static int __perf_event_enable(void *info)
2215
{
2216 2217 2218
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2219
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2220
	int err;
2221

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2232
		return -EINVAL;
2233

2234
	raw_spin_lock(&ctx->lock);
2235
	update_context_time(ctx);
2236

2237
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2238
		goto unlock;
S
Stephane Eranian 已提交
2239 2240 2241 2242

	/*
	 * set current task's cgroup time reference point
	 */
2243
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2244

2245
	__perf_event_mark_enabled(event);
2246

S
Stephane Eranian 已提交
2247 2248 2249
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2250
		goto unlock;
S
Stephane Eranian 已提交
2251
	}
2252

2253
	/*
2254
	 * If the event is in a group and isn't the group leader,
2255
	 * then don't put it on unless the group is on.
2256
	 */
2257
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2258
		goto unlock;
2259

2260
	if (!group_can_go_on(event, cpuctx, 1)) {
2261
		err = -EEXIST;
2262
	} else {
2263
		if (event == leader)
2264
			err = group_sched_in(event, cpuctx, ctx);
2265
		else
2266
			err = event_sched_in(event, cpuctx, ctx);
2267
	}
2268 2269 2270

	if (err) {
		/*
2271
		 * If this event can't go on and it's part of a
2272 2273
		 * group, then the whole group has to come off.
		 */
2274
		if (leader != event) {
2275
			group_sched_out(leader, cpuctx, ctx);
2276
			perf_mux_hrtimer_restart(cpuctx);
2277
		}
2278
		if (leader->attr.pinned) {
2279
			update_group_times(leader);
2280
			leader->state = PERF_EVENT_STATE_ERROR;
2281
		}
2282 2283
	}

P
Peter Zijlstra 已提交
2284
unlock:
2285
	raw_spin_unlock(&ctx->lock);
2286 2287

	return 0;
2288 2289 2290
}

/*
2291
 * Enable a event.
2292
 *
2293 2294
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2295
 * remains valid.  This condition is satisfied when called through
2296 2297
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2298
 */
P
Peter Zijlstra 已提交
2299
static void _perf_event_enable(struct perf_event *event)
2300
{
2301
	struct perf_event_context *ctx = event->ctx;
2302 2303 2304 2305
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2306
		 * Enable the event on the cpu that it's on
2307
		 */
2308
		cpu_function_call(event->cpu, __perf_event_enable, event);
2309 2310 2311
		return;
	}

2312
	raw_spin_lock_irq(&ctx->lock);
2313
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2314 2315 2316
		goto out;

	/*
2317 2318
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2319 2320 2321 2322
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2323 2324
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2325

P
Peter Zijlstra 已提交
2326
retry:
2327
	if (!ctx->is_active) {
2328
		__perf_event_mark_enabled(event);
2329 2330 2331
		goto out;
	}

2332
	raw_spin_unlock_irq(&ctx->lock);
2333 2334 2335

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2336

2337
	raw_spin_lock_irq(&ctx->lock);
2338 2339

	/*
2340
	 * If the context is active and the event is still off,
2341 2342
	 * we need to retry the cross-call.
	 */
2343 2344 2345 2346 2347 2348
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2349
		goto retry;
2350
	}
2351

P
Peter Zijlstra 已提交
2352
out:
2353
	raw_spin_unlock_irq(&ctx->lock);
2354
}
P
Peter Zijlstra 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2367
EXPORT_SYMBOL_GPL(perf_event_enable);
2368

P
Peter Zijlstra 已提交
2369
static int _perf_event_refresh(struct perf_event *event, int refresh)
2370
{
2371
	/*
2372
	 * not supported on inherited events
2373
	 */
2374
	if (event->attr.inherit || !is_sampling_event(event))
2375 2376
		return -EINVAL;

2377
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2378
	_perf_event_enable(event);
2379 2380

	return 0;
2381
}
P
Peter Zijlstra 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2397
EXPORT_SYMBOL_GPL(perf_event_refresh);
2398

2399 2400 2401
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2402
{
2403
	struct perf_event *event;
2404
	int is_active = ctx->is_active;
2405

2406
	ctx->is_active &= ~event_type;
2407
	if (likely(!ctx->nr_events))
2408 2409
		return;

2410
	update_context_time(ctx);
S
Stephane Eranian 已提交
2411
	update_cgrp_time_from_cpuctx(cpuctx);
2412
	if (!ctx->nr_active)
2413
		return;
2414

P
Peter Zijlstra 已提交
2415
	perf_pmu_disable(ctx->pmu);
2416
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2417 2418
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2419
	}
2420

2421
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2422
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2423
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2424
	}
P
Peter Zijlstra 已提交
2425
	perf_pmu_enable(ctx->pmu);
2426 2427
}

2428
/*
2429 2430 2431 2432 2433 2434
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2435
 */
2436 2437
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2438
{
2439 2440 2441
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2464 2465
}

2466 2467
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2468 2469 2470
{
	u64 value;

2471
	if (!event->attr.inherit_stat)
2472 2473 2474
		return;

	/*
2475
	 * Update the event value, we cannot use perf_event_read()
2476 2477
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2478
	 * we know the event must be on the current CPU, therefore we
2479 2480
	 * don't need to use it.
	 */
2481 2482
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2483 2484
		event->pmu->read(event);
		/* fall-through */
2485

2486 2487
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2488 2489 2490 2491 2492 2493 2494
		break;

	default:
		break;
	}

	/*
2495
	 * In order to keep per-task stats reliable we need to flip the event
2496 2497
	 * values when we flip the contexts.
	 */
2498 2499 2500
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2501

2502 2503
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2504

2505
	/*
2506
	 * Since we swizzled the values, update the user visible data too.
2507
	 */
2508 2509
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2510 2511
}

2512 2513
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2514
{
2515
	struct perf_event *event, *next_event;
2516 2517 2518 2519

	if (!ctx->nr_stat)
		return;

2520 2521
	update_context_time(ctx);

2522 2523
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2524

2525 2526
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2527

2528 2529
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2530

2531
		__perf_event_sync_stat(event, next_event);
2532

2533 2534
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2535 2536 2537
	}
}

2538 2539
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2540
{
P
Peter Zijlstra 已提交
2541
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2542
	struct perf_event_context *next_ctx;
2543
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2544
	struct perf_cpu_context *cpuctx;
2545
	int do_switch = 1;
T
Thomas Gleixner 已提交
2546

P
Peter Zijlstra 已提交
2547 2548
	if (likely(!ctx))
		return;
2549

P
Peter Zijlstra 已提交
2550 2551
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2552 2553
		return;

2554
	rcu_read_lock();
P
Peter Zijlstra 已提交
2555
	next_ctx = next->perf_event_ctxp[ctxn];
2556 2557 2558 2559 2560 2561 2562
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2563
	if (!parent && !next_parent)
2564 2565 2566
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2567 2568 2569 2570 2571 2572 2573 2574 2575
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2576 2577
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2578
		if (context_equiv(ctx, next_ctx)) {
2579 2580
			/*
			 * XXX do we need a memory barrier of sorts
2581
			 * wrt to rcu_dereference() of perf_event_ctxp
2582
			 */
P
Peter Zijlstra 已提交
2583 2584
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2585 2586
			ctx->task = next;
			next_ctx->task = task;
2587 2588 2589

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2590
			do_switch = 0;
2591

2592
			perf_event_sync_stat(ctx, next_ctx);
2593
		}
2594 2595
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2596
	}
2597
unlock:
2598
	rcu_read_unlock();
2599

2600
	if (do_switch) {
2601
		raw_spin_lock(&ctx->lock);
2602
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2603
		cpuctx->task_ctx = NULL;
2604
		raw_spin_unlock(&ctx->lock);
2605
	}
T
Thomas Gleixner 已提交
2606 2607
}

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2658 2659 2660
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2675 2676
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2677 2678 2679
{
	int ctxn;

2680 2681 2682
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2683 2684 2685
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2686 2687
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2688 2689 2690 2691 2692 2693

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2694
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2695
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2696 2697
}

2698
static void task_ctx_sched_out(struct perf_event_context *ctx)
2699
{
P
Peter Zijlstra 已提交
2700
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2701

2702 2703
	if (!cpuctx->task_ctx)
		return;
2704 2705 2706 2707

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2708
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2709 2710 2711
	cpuctx->task_ctx = NULL;
}

2712 2713 2714 2715 2716 2717 2718
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2719 2720
}

2721
static void
2722
ctx_pinned_sched_in(struct perf_event_context *ctx,
2723
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2724
{
2725
	struct perf_event *event;
T
Thomas Gleixner 已提交
2726

2727 2728
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2729
			continue;
2730
		if (!event_filter_match(event))
2731 2732
			continue;

S
Stephane Eranian 已提交
2733 2734 2735 2736
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2737
		if (group_can_go_on(event, cpuctx, 1))
2738
			group_sched_in(event, cpuctx, ctx);
2739 2740 2741 2742 2743

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2744 2745 2746
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2747
		}
2748
	}
2749 2750 2751 2752
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2753
		      struct perf_cpu_context *cpuctx)
2754 2755 2756
{
	struct perf_event *event;
	int can_add_hw = 1;
2757

2758 2759 2760
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2761
			continue;
2762 2763
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2764
		 * of events:
2765
		 */
2766
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2767 2768
			continue;

S
Stephane Eranian 已提交
2769 2770 2771 2772
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2773
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2774
			if (group_sched_in(event, cpuctx, ctx))
2775
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2776
		}
T
Thomas Gleixner 已提交
2777
	}
2778 2779 2780 2781 2782
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2783 2784
	     enum event_type_t event_type,
	     struct task_struct *task)
2785
{
S
Stephane Eranian 已提交
2786
	u64 now;
2787
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2788

2789
	ctx->is_active |= event_type;
2790
	if (likely(!ctx->nr_events))
2791
		return;
2792

S
Stephane Eranian 已提交
2793 2794
	now = perf_clock();
	ctx->timestamp = now;
2795
	perf_cgroup_set_timestamp(task, ctx);
2796 2797 2798 2799
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2800
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2801
		ctx_pinned_sched_in(ctx, cpuctx);
2802 2803

	/* Then walk through the lower prio flexible groups */
2804
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2805
		ctx_flexible_sched_in(ctx, cpuctx);
2806 2807
}

2808
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2809 2810
			     enum event_type_t event_type,
			     struct task_struct *task)
2811 2812 2813
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2814
	ctx_sched_in(ctx, cpuctx, event_type, task);
2815 2816
}

S
Stephane Eranian 已提交
2817 2818
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2819
{
P
Peter Zijlstra 已提交
2820
	struct perf_cpu_context *cpuctx;
2821

P
Peter Zijlstra 已提交
2822
	cpuctx = __get_cpu_context(ctx);
2823 2824 2825
	if (cpuctx->task_ctx == ctx)
		return;

2826
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2827
	perf_pmu_disable(ctx->pmu);
2828 2829 2830 2831 2832 2833 2834
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2835 2836
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2837

2838 2839
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2840 2841
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2842 2843
}

P
Peter Zijlstra 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2855 2856
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2866
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2867
	}
S
Stephane Eranian 已提交
2868 2869 2870 2871 2872
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2873
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2874
		perf_cgroup_sched_in(prev, task);
2875

2876 2877 2878
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2879 2880
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2881 2882
}

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2910
#define REDUCE_FLS(a, b)		\
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2950 2951 2952
	if (!divisor)
		return dividend;

2953 2954 2955
	return div64_u64(dividend, divisor);
}

2956 2957 2958
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2959
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2960
{
2961
	struct hw_perf_event *hwc = &event->hw;
2962
	s64 period, sample_period;
2963 2964
	s64 delta;

2965
	period = perf_calculate_period(event, nsec, count);
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2976

2977
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2978 2979 2980
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2981
		local64_set(&hwc->period_left, 0);
2982 2983 2984

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2985
	}
2986 2987
}

2988 2989 2990 2991 2992 2993 2994
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2995
{
2996 2997
	struct perf_event *event;
	struct hw_perf_event *hwc;
2998
	u64 now, period = TICK_NSEC;
2999
	s64 delta;
3000

3001 3002 3003 3004 3005 3006
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3007 3008
		return;

3009
	raw_spin_lock(&ctx->lock);
3010
	perf_pmu_disable(ctx->pmu);
3011

3012
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3013
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3014 3015
			continue;

3016
		if (!event_filter_match(event))
3017 3018
			continue;

3019 3020
		perf_pmu_disable(event->pmu);

3021
		hwc = &event->hw;
3022

3023
		if (hwc->interrupts == MAX_INTERRUPTS) {
3024
			hwc->interrupts = 0;
3025
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3026
			event->pmu->start(event, 0);
3027 3028
		}

3029
		if (!event->attr.freq || !event->attr.sample_freq)
3030
			goto next;
3031

3032 3033 3034 3035 3036
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3037
		now = local64_read(&event->count);
3038 3039
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3040

3041 3042 3043
		/*
		 * restart the event
		 * reload only if value has changed
3044 3045 3046
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3047
		 */
3048
		if (delta > 0)
3049
			perf_adjust_period(event, period, delta, false);
3050 3051

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3052 3053
	next:
		perf_pmu_enable(event->pmu);
3054
	}
3055

3056
	perf_pmu_enable(ctx->pmu);
3057
	raw_spin_unlock(&ctx->lock);
3058 3059
}

3060
/*
3061
 * Round-robin a context's events:
3062
 */
3063
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3064
{
3065 3066 3067 3068 3069 3070
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3071 3072
}

3073
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3074
{
P
Peter Zijlstra 已提交
3075
	struct perf_event_context *ctx = NULL;
3076
	int rotate = 0;
3077

3078 3079 3080 3081
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3082

P
Peter Zijlstra 已提交
3083
	ctx = cpuctx->task_ctx;
3084 3085 3086 3087
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3088

3089
	if (!rotate)
3090 3091
		goto done;

3092
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3093
	perf_pmu_disable(cpuctx->ctx.pmu);
3094

3095 3096 3097
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3098

3099 3100 3101
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3102

3103
	perf_event_sched_in(cpuctx, ctx, current);
3104

3105 3106
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3107
done:
3108 3109

	return rotate;
3110 3111
}

3112 3113 3114
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3115
	if (atomic_read(&nr_freq_events) ||
3116
	    __this_cpu_read(perf_throttled_count))
3117
		return false;
3118 3119
	else
		return true;
3120 3121 3122
}
#endif

3123 3124
void perf_event_task_tick(void)
{
3125 3126
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3127
	int throttled;
3128

3129 3130
	WARN_ON(!irqs_disabled());

3131 3132 3133
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3134
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3135
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3136 3137
}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3148
	__perf_event_mark_enabled(event);
3149 3150 3151 3152

	return 1;
}

3153
/*
3154
 * Enable all of a task's events that have been marked enable-on-exec.
3155 3156
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3157
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3158
{
3159
	struct perf_event_context *clone_ctx = NULL;
3160
	struct perf_event *event;
3161 3162
	unsigned long flags;
	int enabled = 0;
3163
	int ret;
3164 3165

	local_irq_save(flags);
3166
	if (!ctx || !ctx->nr_events)
3167 3168
		goto out;

3169 3170 3171 3172 3173 3174 3175
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3176
	perf_cgroup_sched_out(current, NULL);
3177

3178
	raw_spin_lock(&ctx->lock);
3179
	task_ctx_sched_out(ctx);
3180

3181
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3182 3183 3184
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3185 3186 3187
	}

	/*
3188
	 * Unclone this context if we enabled any event.
3189
	 */
3190
	if (enabled)
3191
		clone_ctx = unclone_ctx(ctx);
3192

3193
	raw_spin_unlock(&ctx->lock);
3194

3195 3196 3197
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3198
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3199
out:
3200
	local_irq_restore(flags);
3201 3202 3203

	if (clone_ctx)
		put_ctx(clone_ctx);
3204 3205
}

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

3222 3223 3224
struct perf_read_data {
	struct perf_event *event;
	bool group;
3225
	int ret;
3226 3227
};

T
Thomas Gleixner 已提交
3228
/*
3229
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3230
 */
3231
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3232
{
3233 3234
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3235
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3236
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3237
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3238

3239 3240 3241 3242
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3243 3244
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3245 3246 3247 3248
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3249
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3250
	if (ctx->is_active) {
3251
		update_context_time(ctx);
S
Stephane Eranian 已提交
3252 3253
		update_cgrp_time_from_event(event);
	}
3254

3255
	update_event_times(event);
3256 3257
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3258

3259 3260 3261
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3262
		goto unlock;
3263 3264 3265 3266 3267
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3268 3269 3270

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3271 3272 3273 3274 3275
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3276
			sub->pmu->read(sub);
3277
		}
3278
	}
3279 3280

	data->ret = pmu->commit_txn(pmu);
3281 3282

unlock:
3283
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3284 3285
}

P
Peter Zijlstra 已提交
3286 3287
static inline u64 perf_event_count(struct perf_event *event)
{
3288 3289 3290 3291
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3292 3293
}

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3347
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3348
{
3349 3350
	int ret = 0;

T
Thomas Gleixner 已提交
3351
	/*
3352 3353
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3354
	 */
3355
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3356 3357 3358
		struct perf_read_data data = {
			.event = event,
			.group = group,
3359
			.ret = 0,
3360
		};
3361
		smp_call_function_single(event->oncpu,
3362
					 __perf_event_read, &data, 1);
3363
		ret = data.ret;
3364
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3365 3366 3367
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3368
		raw_spin_lock_irqsave(&ctx->lock, flags);
3369 3370 3371 3372 3373
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3374
		if (ctx->is_active) {
3375
			update_context_time(ctx);
S
Stephane Eranian 已提交
3376 3377
			update_cgrp_time_from_event(event);
		}
3378 3379 3380 3381
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3382
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3383
	}
3384 3385

	return ret;
T
Thomas Gleixner 已提交
3386 3387
}

3388
/*
3389
 * Initialize the perf_event context in a task_struct:
3390
 */
3391
static void __perf_event_init_context(struct perf_event_context *ctx)
3392
{
3393
	raw_spin_lock_init(&ctx->lock);
3394
	mutex_init(&ctx->mutex);
3395
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3396 3397
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3398 3399
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3400
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3416
	}
3417 3418 3419
	ctx->pmu = pmu;

	return ctx;
3420 3421
}

3422 3423 3424 3425 3426
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3427 3428

	rcu_read_lock();
3429
	if (!vpid)
T
Thomas Gleixner 已提交
3430 3431
		task = current;
	else
3432
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3433 3434 3435 3436 3437 3438 3439 3440
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3441 3442 3443 3444
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3445 3446 3447 3448 3449 3450 3451
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3452 3453 3454
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3455
static struct perf_event_context *
3456 3457
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3458
{
3459
	struct perf_event_context *ctx, *clone_ctx = NULL;
3460
	struct perf_cpu_context *cpuctx;
3461
	void *task_ctx_data = NULL;
3462
	unsigned long flags;
P
Peter Zijlstra 已提交
3463
	int ctxn, err;
3464
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3465

3466
	if (!task) {
3467
		/* Must be root to operate on a CPU event: */
3468
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3469 3470 3471
			return ERR_PTR(-EACCES);

		/*
3472
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3473 3474 3475
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3476
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3477 3478
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3479
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3480
		ctx = &cpuctx->ctx;
3481
		get_ctx(ctx);
3482
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3483 3484 3485 3486

		return ctx;
	}

P
Peter Zijlstra 已提交
3487 3488 3489 3490 3491
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3492 3493 3494 3495 3496 3497 3498 3499
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3500
retry:
P
Peter Zijlstra 已提交
3501
	ctx = perf_lock_task_context(task, ctxn, &flags);
3502
	if (ctx) {
3503
		clone_ctx = unclone_ctx(ctx);
3504
		++ctx->pin_count;
3505 3506 3507 3508 3509

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3510
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3511 3512 3513

		if (clone_ctx)
			put_ctx(clone_ctx);
3514
	} else {
3515
		ctx = alloc_perf_context(pmu, task);
3516 3517 3518
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3519

3520 3521 3522 3523 3524
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3535
		else {
3536
			get_ctx(ctx);
3537
			++ctx->pin_count;
3538
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3539
		}
3540 3541 3542
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3543
			put_ctx(ctx);
3544 3545 3546 3547

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3548 3549 3550
		}
	}

3551
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3552
	return ctx;
3553

P
Peter Zijlstra 已提交
3554
errout:
3555
	kfree(task_ctx_data);
3556
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3557 3558
}

L
Li Zefan 已提交
3559
static void perf_event_free_filter(struct perf_event *event);
3560
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3561

3562
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3563
{
3564
	struct perf_event *event;
P
Peter Zijlstra 已提交
3565

3566 3567 3568
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3569
	perf_event_free_filter(event);
3570
	kfree(event);
P
Peter Zijlstra 已提交
3571 3572
}

3573 3574
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3575

3576
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3577
{
3578 3579 3580 3581 3582 3583
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3584

3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3598 3599
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3600 3601 3602 3603
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3604 3605 3606 3607 3608 3609 3610
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3611

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3697 3698
static void __free_event(struct perf_event *event)
{
3699
	if (!event->parent) {
3700 3701
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3702
	}
3703

3704 3705
	perf_event_free_bpf_prog(event);

3706 3707 3708 3709 3710 3711
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3712 3713
	if (event->pmu) {
		exclusive_event_destroy(event);
3714
		module_put(event->pmu->module);
3715
	}
3716

3717 3718
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3719 3720

static void _free_event(struct perf_event *event)
3721
{
3722
	irq_work_sync(&event->pending);
3723

3724
	unaccount_event(event);
3725

3726
	if (event->rb) {
3727 3728 3729 3730 3731 3732 3733
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3734
		ring_buffer_attach(event, NULL);
3735
		mutex_unlock(&event->mmap_mutex);
3736 3737
	}

S
Stephane Eranian 已提交
3738 3739 3740
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3741
	__free_event(event);
3742 3743
}

P
Peter Zijlstra 已提交
3744 3745 3746 3747 3748
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3749
{
P
Peter Zijlstra 已提交
3750 3751 3752 3753 3754 3755
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3756

P
Peter Zijlstra 已提交
3757
	_free_event(event);
T
Thomas Gleixner 已提交
3758 3759
}

3760
/*
3761
 * Remove user event from the owner task.
3762
 */
3763
static void perf_remove_from_owner(struct perf_event *event)
3764
{
P
Peter Zijlstra 已提交
3765
	struct task_struct *owner;
3766

P
Peter Zijlstra 已提交
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3808 3809 3810 3811
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3812
	struct perf_event_context *ctx;
3813 3814 3815 3816 3817 3818

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3819

P
Peter Zijlstra 已提交
3820 3821 3822 3823 3824 3825 3826
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3827
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3828 3829 3830 3831
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3832 3833
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3834
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3835
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3836 3837

	_free_event(event);
3838 3839
}

P
Peter Zijlstra 已提交
3840 3841 3842 3843 3844 3845 3846
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3847 3848 3849
/*
 * Called when the last reference to the file is gone.
 */
3850 3851 3852 3853
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3854 3855
}

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3892
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3893
{
3894
	struct perf_event *child;
3895 3896
	u64 total = 0;

3897 3898 3899
	*enabled = 0;
	*running = 0;

3900
	mutex_lock(&event->child_mutex);
3901

3902
	(void)perf_event_read(event, false);
3903 3904
	total += perf_event_count(event);

3905 3906 3907 3908 3909 3910
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3911
		(void)perf_event_read(child, false);
3912
		total += perf_event_count(child);
3913 3914 3915
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3916
	mutex_unlock(&event->child_mutex);
3917 3918 3919

	return total;
}
3920
EXPORT_SYMBOL_GPL(perf_event_read_value);
3921

3922
static int __perf_read_group_add(struct perf_event *leader,
3923
					u64 read_format, u64 *values)
3924
{
3925 3926
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3927
	int ret;
P
Peter Zijlstra 已提交
3928

3929 3930 3931
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3932

3933 3934 3935 3936 3937 3938 3939 3940 3941
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3942

3943 3944 3945 3946 3947 3948 3949 3950 3951
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3952 3953
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3954

3955 3956 3957 3958 3959
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3960 3961

	return 0;
3962
}
3963

3964 3965 3966 3967 3968
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3969
	int ret;
3970
	u64 *values;
3971

3972
	lockdep_assert_held(&ctx->mutex);
3973

3974 3975 3976
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3977

3978 3979 3980 3981 3982 3983 3984
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3985

3986 3987 3988 3989 3990 3991 3992 3993 3994
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3995

3996
	mutex_unlock(&leader->child_mutex);
3997

3998
	ret = event->read_size;
3999 4000
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4001
	goto out;
4002

4003 4004 4005
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4006
	kfree(values);
4007
	return ret;
4008 4009
}

4010
static int perf_read_one(struct perf_event *event,
4011 4012
				 u64 read_format, char __user *buf)
{
4013
	u64 enabled, running;
4014 4015 4016
	u64 values[4];
	int n = 0;

4017 4018 4019 4020 4021
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4022
	if (read_format & PERF_FORMAT_ID)
4023
		values[n++] = primary_event_id(event);
4024 4025 4026 4027 4028 4029 4030

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4044
/*
4045
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4046 4047
 */
static ssize_t
4048
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4049
{
4050
	u64 read_format = event->attr.read_format;
4051
	int ret;
T
Thomas Gleixner 已提交
4052

4053
	/*
4054
	 * Return end-of-file for a read on a event that is in
4055 4056 4057
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4058
	if (event->state == PERF_EVENT_STATE_ERROR)
4059 4060
		return 0;

4061
	if (count < event->read_size)
4062 4063
		return -ENOSPC;

4064
	WARN_ON_ONCE(event->ctx->parent_ctx);
4065
	if (read_format & PERF_FORMAT_GROUP)
4066
		ret = perf_read_group(event, read_format, buf);
4067
	else
4068
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4069

4070
	return ret;
T
Thomas Gleixner 已提交
4071 4072 4073 4074 4075
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4076
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4077 4078
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4079

P
Peter Zijlstra 已提交
4080
	ctx = perf_event_ctx_lock(event);
4081
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4082 4083 4084
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4085 4086 4087 4088
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4089
	struct perf_event *event = file->private_data;
4090
	struct ring_buffer *rb;
4091
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4092

4093
	poll_wait(file, &event->waitq, wait);
4094

4095
	if (is_event_hup(event))
4096
		return events;
P
Peter Zijlstra 已提交
4097

4098
	/*
4099 4100
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4101 4102
	 */
	mutex_lock(&event->mmap_mutex);
4103 4104
	rb = event->rb;
	if (rb)
4105
		events = atomic_xchg(&rb->poll, 0);
4106
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4107 4108 4109
	return events;
}

P
Peter Zijlstra 已提交
4110
static void _perf_event_reset(struct perf_event *event)
4111
{
4112
	(void)perf_event_read(event, false);
4113
	local64_set(&event->count, 0);
4114
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4115 4116
}

4117
/*
4118 4119 4120 4121
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4122
 */
4123 4124
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4125
{
4126
	struct perf_event *child;
P
Peter Zijlstra 已提交
4127

4128
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4129

4130 4131 4132
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4133
		func(child);
4134
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4135 4136
}

4137 4138
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4139
{
4140 4141
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4142

P
Peter Zijlstra 已提交
4143 4144
	lockdep_assert_held(&ctx->mutex);

4145
	event = event->group_leader;
4146

4147 4148
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4149
		perf_event_for_each_child(sibling, func);
4150 4151
}

4152 4153
struct period_event {
	struct perf_event *event;
4154
	u64 value;
4155
};
4156

4157 4158 4159 4160 4161 4162 4163
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4164

4165
	raw_spin_lock(&ctx->lock);
4166 4167
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4168
	} else {
4169 4170
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4171
	}
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4185
	raw_spin_unlock(&ctx->lock);
4186

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task;
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	task = ctx->task;
	pe.value = value;

	if (!task) {
		cpu_function_call(event->cpu, __perf_event_period, &pe);
		return 0;
	}

retry:
	if (!task_function_call(task, __perf_event_period, &pe))
		return 0;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		task = ctx->task;
		goto retry;
	}

4228 4229 4230 4231 4232 4233 4234 4235
	if (event->attr.freq) {
		event->attr.sample_freq = value;
	} else {
		event->attr.sample_period = value;
		event->hw.sample_period = value;
	}

	local64_set(&event->hw.period_left, 0);
4236
	raw_spin_unlock_irq(&ctx->lock);
4237

4238
	return 0;
4239 4240
}

4241 4242
static const struct file_operations perf_fops;

4243
static inline int perf_fget_light(int fd, struct fd *p)
4244
{
4245 4246 4247
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4248

4249 4250 4251
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4252
	}
4253 4254
	*p = f;
	return 0;
4255 4256 4257 4258
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4259
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4260
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4261

P
Peter Zijlstra 已提交
4262
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4263
{
4264
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4265
	u32 flags = arg;
4266 4267

	switch (cmd) {
4268
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4269
		func = _perf_event_enable;
4270
		break;
4271
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4272
		func = _perf_event_disable;
4273
		break;
4274
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4275
		func = _perf_event_reset;
4276
		break;
P
Peter Zijlstra 已提交
4277

4278
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4279
		return _perf_event_refresh(event, arg);
4280

4281 4282
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4283

4284 4285 4286 4287 4288 4289 4290 4291 4292
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4293
	case PERF_EVENT_IOC_SET_OUTPUT:
4294 4295 4296
	{
		int ret;
		if (arg != -1) {
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4307 4308 4309
		}
		return ret;
	}
4310

L
Li Zefan 已提交
4311 4312 4313
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4314 4315 4316
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4317
	default:
P
Peter Zijlstra 已提交
4318
		return -ENOTTY;
4319
	}
P
Peter Zijlstra 已提交
4320 4321

	if (flags & PERF_IOC_FLAG_GROUP)
4322
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4323
	else
4324
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4325 4326

	return 0;
4327 4328
}

P
Peter Zijlstra 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4362
int perf_event_task_enable(void)
4363
{
P
Peter Zijlstra 已提交
4364
	struct perf_event_context *ctx;
4365
	struct perf_event *event;
4366

4367
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4368 4369 4370 4371 4372
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4373
	mutex_unlock(&current->perf_event_mutex);
4374 4375 4376 4377

	return 0;
}

4378
int perf_event_task_disable(void)
4379
{
P
Peter Zijlstra 已提交
4380
	struct perf_event_context *ctx;
4381
	struct perf_event *event;
4382

4383
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4384 4385 4386 4387 4388
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4389
	mutex_unlock(&current->perf_event_mutex);
4390 4391 4392 4393

	return 0;
}

4394
static int perf_event_index(struct perf_event *event)
4395
{
P
Peter Zijlstra 已提交
4396 4397 4398
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4399
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4400 4401
		return 0;

4402
	return event->pmu->event_idx(event);
4403 4404
}

4405
static void calc_timer_values(struct perf_event *event,
4406
				u64 *now,
4407 4408
				u64 *enabled,
				u64 *running)
4409
{
4410
	u64 ctx_time;
4411

4412 4413
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4414 4415 4416 4417
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4433 4434
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4435 4436 4437 4438 4439

unlock:
	rcu_read_unlock();
}

4440 4441
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4442 4443 4444
{
}

4445 4446 4447 4448 4449
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4450
void perf_event_update_userpage(struct perf_event *event)
4451
{
4452
	struct perf_event_mmap_page *userpg;
4453
	struct ring_buffer *rb;
4454
	u64 enabled, running, now;
4455 4456

	rcu_read_lock();
4457 4458 4459 4460
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4461 4462 4463 4464 4465 4466 4467 4468 4469
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4470
	calc_timer_values(event, &now, &enabled, &running);
4471

4472
	userpg = rb->user_page;
4473 4474 4475 4476 4477
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4478
	++userpg->lock;
4479
	barrier();
4480
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4481
	userpg->offset = perf_event_count(event);
4482
	if (userpg->index)
4483
		userpg->offset -= local64_read(&event->hw.prev_count);
4484

4485
	userpg->time_enabled = enabled +
4486
			atomic64_read(&event->child_total_time_enabled);
4487

4488
	userpg->time_running = running +
4489
			atomic64_read(&event->child_total_time_running);
4490

4491
	arch_perf_update_userpage(event, userpg, now);
4492

4493
	barrier();
4494
	++userpg->lock;
4495
	preempt_enable();
4496
unlock:
4497
	rcu_read_unlock();
4498 4499
}

4500 4501 4502
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4503
	struct ring_buffer *rb;
4504 4505 4506 4507 4508 4509 4510 4511 4512
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4513 4514
	rb = rcu_dereference(event->rb);
	if (!rb)
4515 4516 4517 4518 4519
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4520
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4535 4536 4537
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4538
	struct ring_buffer *old_rb = NULL;
4539 4540
	unsigned long flags;

4541 4542 4543 4544 4545 4546
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4547

4548 4549 4550 4551
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4552

4553 4554
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4555
	}
4556

4557
	if (rb) {
4558 4559 4560 4561 4562
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4579 4580 4581 4582 4583 4584 4585 4586
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4587 4588 4589 4590
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4591 4592 4593
	rcu_read_unlock();
}

4594
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4595
{
4596
	struct ring_buffer *rb;
4597

4598
	rcu_read_lock();
4599 4600 4601 4602
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4603 4604 4605
	}
	rcu_read_unlock();

4606
	return rb;
4607 4608
}

4609
void ring_buffer_put(struct ring_buffer *rb)
4610
{
4611
	if (!atomic_dec_and_test(&rb->refcount))
4612
		return;
4613

4614
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4615

4616
	call_rcu(&rb->rcu_head, rb_free_rcu);
4617 4618 4619 4620
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4621
	struct perf_event *event = vma->vm_file->private_data;
4622

4623
	atomic_inc(&event->mmap_count);
4624
	atomic_inc(&event->rb->mmap_count);
4625

4626 4627 4628
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4629 4630
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4631 4632
}

4633 4634 4635 4636 4637 4638 4639 4640
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4641 4642
static void perf_mmap_close(struct vm_area_struct *vma)
{
4643
	struct perf_event *event = vma->vm_file->private_data;
4644

4645
	struct ring_buffer *rb = ring_buffer_get(event);
4646 4647 4648
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4649

4650 4651 4652
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4667 4668 4669
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4670
		goto out_put;
4671

4672
	ring_buffer_attach(event, NULL);
4673 4674 4675
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4676 4677
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4678

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4695

4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4707 4708 4709
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4710
		mutex_unlock(&event->mmap_mutex);
4711
		put_event(event);
4712

4713 4714 4715 4716 4717
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4718
	}
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4734
out_put:
4735
	ring_buffer_put(rb); /* could be last */
4736 4737
}

4738
static const struct vm_operations_struct perf_mmap_vmops = {
4739
	.open		= perf_mmap_open,
4740
	.close		= perf_mmap_close, /* non mergable */
4741 4742
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4743 4744 4745 4746
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4747
	struct perf_event *event = file->private_data;
4748
	unsigned long user_locked, user_lock_limit;
4749
	struct user_struct *user = current_user();
4750
	unsigned long locked, lock_limit;
4751
	struct ring_buffer *rb = NULL;
4752 4753
	unsigned long vma_size;
	unsigned long nr_pages;
4754
	long user_extra = 0, extra = 0;
4755
	int ret = 0, flags = 0;
4756

4757 4758 4759
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4760
	 * same rb.
4761 4762 4763 4764
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4765
	if (!(vma->vm_flags & VM_SHARED))
4766
		return -EINVAL;
4767 4768

	vma_size = vma->vm_end - vma->vm_start;
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4829

4830
	/*
4831
	 * If we have rb pages ensure they're a power-of-two number, so we
4832 4833
	 * can do bitmasks instead of modulo.
	 */
4834
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4835 4836
		return -EINVAL;

4837
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4838 4839
		return -EINVAL;

4840
	WARN_ON_ONCE(event->ctx->parent_ctx);
4841
again:
4842
	mutex_lock(&event->mmap_mutex);
4843
	if (event->rb) {
4844
		if (event->rb->nr_pages != nr_pages) {
4845
			ret = -EINVAL;
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4859 4860 4861
		goto unlock;
	}

4862
	user_extra = nr_pages + 1;
4863 4864

accounting:
4865
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4866 4867 4868 4869 4870 4871

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4872
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4873

4874 4875
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4876

4877
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4878
	lock_limit >>= PAGE_SHIFT;
4879
	locked = vma->vm_mm->pinned_vm + extra;
4880

4881 4882
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4883 4884 4885
		ret = -EPERM;
		goto unlock;
	}
4886

4887
	WARN_ON(!rb && event->rb);
4888

4889
	if (vma->vm_flags & VM_WRITE)
4890
		flags |= RING_BUFFER_WRITABLE;
4891

4892
	if (!rb) {
4893 4894 4895
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4896

4897 4898 4899 4900
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4901

4902 4903 4904
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4905

4906
		ring_buffer_attach(event, rb);
4907

4908 4909 4910
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4911 4912
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4913 4914 4915
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4916

4917
unlock:
4918 4919 4920 4921
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4922
		atomic_inc(&event->mmap_count);
4923 4924 4925 4926
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4927
	mutex_unlock(&event->mmap_mutex);
4928

4929 4930 4931 4932
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4933
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4934
	vma->vm_ops = &perf_mmap_vmops;
4935

4936 4937 4938
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4939
	return ret;
4940 4941
}

P
Peter Zijlstra 已提交
4942 4943
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4944
	struct inode *inode = file_inode(filp);
4945
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4946 4947 4948
	int retval;

	mutex_lock(&inode->i_mutex);
4949
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4950 4951 4952 4953 4954 4955 4956 4957
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4958
static const struct file_operations perf_fops = {
4959
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4960 4961 4962
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4963
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4964
	.compat_ioctl		= perf_compat_ioctl,
4965
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4966
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4967 4968
};

4969
/*
4970
 * Perf event wakeup
4971 4972 4973 4974 4975
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4976 4977 4978 4979 4980 4981 4982 4983
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4984
void perf_event_wakeup(struct perf_event *event)
4985
{
4986
	ring_buffer_wakeup(event);
4987

4988
	if (event->pending_kill) {
4989
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4990
		event->pending_kill = 0;
4991
	}
4992 4993
}

4994
static void perf_pending_event(struct irq_work *entry)
4995
{
4996 4997
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4998 4999 5000 5001 5002 5003 5004
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5005

5006 5007 5008
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
5009 5010
	}

5011 5012 5013
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5014
	}
5015 5016 5017

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5018 5019
}

5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5056
static void perf_sample_regs_user(struct perf_regs *regs_user,
5057 5058
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5059
{
5060 5061
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5062
		regs_user->regs = regs;
5063 5064
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5065 5066 5067
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5068 5069 5070
	}
}

5071 5072 5073 5074 5075 5076 5077 5078
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5174 5175 5176
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5190
		data->time = perf_event_clock(event);
5191

5192
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5204 5205 5206
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5231 5232 5233

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5234 5235
}

5236 5237 5238
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5239 5240 5241 5242 5243
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5244
static void perf_output_read_one(struct perf_output_handle *handle,
5245 5246
				 struct perf_event *event,
				 u64 enabled, u64 running)
5247
{
5248
	u64 read_format = event->attr.read_format;
5249 5250 5251
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5252
	values[n++] = perf_event_count(event);
5253
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5254
		values[n++] = enabled +
5255
			atomic64_read(&event->child_total_time_enabled);
5256 5257
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5258
		values[n++] = running +
5259
			atomic64_read(&event->child_total_time_running);
5260 5261
	}
	if (read_format & PERF_FORMAT_ID)
5262
		values[n++] = primary_event_id(event);
5263

5264
	__output_copy(handle, values, n * sizeof(u64));
5265 5266 5267
}

/*
5268
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5269 5270
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5271 5272
			    struct perf_event *event,
			    u64 enabled, u64 running)
5273
{
5274 5275
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5276 5277 5278 5279 5280 5281
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5282
		values[n++] = enabled;
5283 5284

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5285
		values[n++] = running;
5286

5287
	if (leader != event)
5288 5289
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5290
	values[n++] = perf_event_count(leader);
5291
	if (read_format & PERF_FORMAT_ID)
5292
		values[n++] = primary_event_id(leader);
5293

5294
	__output_copy(handle, values, n * sizeof(u64));
5295

5296
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5297 5298
		n = 0;

5299 5300
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5301 5302
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5303
		values[n++] = perf_event_count(sub);
5304
		if (read_format & PERF_FORMAT_ID)
5305
			values[n++] = primary_event_id(sub);
5306

5307
		__output_copy(handle, values, n * sizeof(u64));
5308 5309 5310
	}
}

5311 5312 5313
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5314
static void perf_output_read(struct perf_output_handle *handle,
5315
			     struct perf_event *event)
5316
{
5317
	u64 enabled = 0, running = 0, now;
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5329
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5330
		calc_timer_values(event, &now, &enabled, &running);
5331

5332
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5333
		perf_output_read_group(handle, event, enabled, running);
5334
	else
5335
		perf_output_read_one(handle, event, enabled, running);
5336 5337
}

5338 5339 5340
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5341
			struct perf_event *event)
5342 5343 5344 5345 5346
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5347 5348 5349
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5375
		perf_output_read(handle, event);
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5386
			__output_copy(handle, data->callchain, size);
5387 5388 5389 5390 5391 5392 5393 5394
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5395 5396 5397 5398 5399 5400 5401 5402 5403
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5415

5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5450

5451
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5452 5453 5454
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5455
	}
A
Andi Kleen 已提交
5456 5457 5458

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5459 5460 5461

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5462

A
Andi Kleen 已提交
5463 5464 5465
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5496 5497 5498 5499
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5500
			 struct perf_event *event,
5501
			 struct pt_regs *regs)
5502
{
5503
	u64 sample_type = event->attr.sample_type;
5504

5505
	header->type = PERF_RECORD_SAMPLE;
5506
	header->size = sizeof(*header) + event->header_size;
5507 5508 5509

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5510

5511
	__perf_event_header__init_id(header, data, event);
5512

5513
	if (sample_type & PERF_SAMPLE_IP)
5514 5515
		data->ip = perf_instruction_pointer(regs);

5516
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5517
		int size = 1;
5518

5519
		data->callchain = perf_callchain(event, regs);
5520 5521 5522 5523 5524

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5525 5526
	}

5527
	if (sample_type & PERF_SAMPLE_RAW) {
5528 5529 5530 5531 5532 5533 5534
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5535
		header->size += round_up(size, sizeof(u64));
5536
	}
5537 5538 5539 5540 5541 5542 5543 5544 5545

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5546

5547
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5548 5549
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5550

5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5574
						     data->regs_user.regs);
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5602
}
5603

5604 5605 5606
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5607 5608 5609
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5610

5611 5612 5613
	/* protect the callchain buffers */
	rcu_read_lock();

5614
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5615

5616
	if (perf_output_begin(&handle, event, header.size))
5617
		goto exit;
5618

5619
	perf_output_sample(&handle, &header, data, event);
5620

5621
	perf_output_end(&handle);
5622 5623 5624

exit:
	rcu_read_unlock();
5625 5626
}

5627
/*
5628
 * read event_id
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5639
perf_event_read_event(struct perf_event *event,
5640 5641 5642
			struct task_struct *task)
{
	struct perf_output_handle handle;
5643
	struct perf_sample_data sample;
5644
	struct perf_read_event read_event = {
5645
		.header = {
5646
			.type = PERF_RECORD_READ,
5647
			.misc = 0,
5648
			.size = sizeof(read_event) + event->read_size,
5649
		},
5650 5651
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5652
	};
5653
	int ret;
5654

5655
	perf_event_header__init_id(&read_event.header, &sample, event);
5656
	ret = perf_output_begin(&handle, event, read_event.header.size);
5657 5658 5659
	if (ret)
		return;

5660
	perf_output_put(&handle, read_event);
5661
	perf_output_read(&handle, event);
5662
	perf_event__output_id_sample(event, &handle, &sample);
5663

5664 5665 5666
	perf_output_end(&handle);
}

5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5681
		output(event, data);
5682 5683 5684 5685
	}
}

static void
5686
perf_event_aux(perf_event_aux_output_cb output, void *data,
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5699
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5700 5701 5702 5703 5704 5705 5706
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5707
			perf_event_aux_ctx(ctx, output, data);
5708 5709 5710 5711 5712 5713
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5714
		perf_event_aux_ctx(task_ctx, output, data);
5715 5716 5717 5718 5719
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5720
/*
P
Peter Zijlstra 已提交
5721 5722
 * task tracking -- fork/exit
 *
5723
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5724 5725
 */

P
Peter Zijlstra 已提交
5726
struct perf_task_event {
5727
	struct task_struct		*task;
5728
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5729 5730 5731 5732 5733 5734

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5735 5736
		u32				tid;
		u32				ptid;
5737
		u64				time;
5738
	} event_id;
P
Peter Zijlstra 已提交
5739 5740
};

5741 5742
static int perf_event_task_match(struct perf_event *event)
{
5743 5744 5745
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5746 5747
}

5748
static void perf_event_task_output(struct perf_event *event,
5749
				   void *data)
P
Peter Zijlstra 已提交
5750
{
5751
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5752
	struct perf_output_handle handle;
5753
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5754
	struct task_struct *task = task_event->task;
5755
	int ret, size = task_event->event_id.header.size;
5756

5757 5758 5759
	if (!perf_event_task_match(event))
		return;

5760
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5761

5762
	ret = perf_output_begin(&handle, event,
5763
				task_event->event_id.header.size);
5764
	if (ret)
5765
		goto out;
P
Peter Zijlstra 已提交
5766

5767 5768
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5769

5770 5771
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5772

5773 5774
	task_event->event_id.time = perf_event_clock(event);

5775
	perf_output_put(&handle, task_event->event_id);
5776

5777 5778
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5779
	perf_output_end(&handle);
5780 5781
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5782 5783
}

5784 5785
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5786
			      int new)
P
Peter Zijlstra 已提交
5787
{
P
Peter Zijlstra 已提交
5788
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5789

5790 5791 5792
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5793 5794
		return;

P
Peter Zijlstra 已提交
5795
	task_event = (struct perf_task_event){
5796 5797
		.task	  = task,
		.task_ctx = task_ctx,
5798
		.event_id    = {
P
Peter Zijlstra 已提交
5799
			.header = {
5800
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5801
				.misc = 0,
5802
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5803
			},
5804 5805
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5806 5807
			/* .tid  */
			/* .ptid */
5808
			/* .time */
P
Peter Zijlstra 已提交
5809 5810 5811
		},
	};

5812
	perf_event_aux(perf_event_task_output,
5813 5814
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5815 5816
}

5817
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5818
{
5819
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5820 5821
}

5822 5823 5824 5825 5826
/*
 * comm tracking
 */

struct perf_comm_event {
5827 5828
	struct task_struct	*task;
	char			*comm;
5829 5830 5831 5832 5833 5834 5835
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5836
	} event_id;
5837 5838
};

5839 5840 5841 5842 5843
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5844
static void perf_event_comm_output(struct perf_event *event,
5845
				   void *data)
5846
{
5847
	struct perf_comm_event *comm_event = data;
5848
	struct perf_output_handle handle;
5849
	struct perf_sample_data sample;
5850
	int size = comm_event->event_id.header.size;
5851 5852
	int ret;

5853 5854 5855
	if (!perf_event_comm_match(event))
		return;

5856 5857
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5858
				comm_event->event_id.header.size);
5859 5860

	if (ret)
5861
		goto out;
5862

5863 5864
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5865

5866
	perf_output_put(&handle, comm_event->event_id);
5867
	__output_copy(&handle, comm_event->comm,
5868
				   comm_event->comm_size);
5869 5870 5871

	perf_event__output_id_sample(event, &handle, &sample);

5872
	perf_output_end(&handle);
5873 5874
out:
	comm_event->event_id.header.size = size;
5875 5876
}

5877
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5878
{
5879
	char comm[TASK_COMM_LEN];
5880 5881
	unsigned int size;

5882
	memset(comm, 0, sizeof(comm));
5883
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5884
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5885 5886 5887 5888

	comm_event->comm = comm;
	comm_event->comm_size = size;

5889
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5890

5891
	perf_event_aux(perf_event_comm_output,
5892 5893
		       comm_event,
		       NULL);
5894 5895
}

5896
void perf_event_comm(struct task_struct *task, bool exec)
5897
{
5898 5899
	struct perf_comm_event comm_event;

5900
	if (!atomic_read(&nr_comm_events))
5901
		return;
5902

5903
	comm_event = (struct perf_comm_event){
5904
		.task	= task,
5905 5906
		/* .comm      */
		/* .comm_size */
5907
		.event_id  = {
5908
			.header = {
5909
				.type = PERF_RECORD_COMM,
5910
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5911 5912 5913 5914
				/* .size */
			},
			/* .pid */
			/* .tid */
5915 5916 5917
		},
	};

5918
	perf_event_comm_event(&comm_event);
5919 5920
}

5921 5922 5923 5924 5925
/*
 * mmap tracking
 */

struct perf_mmap_event {
5926 5927 5928 5929
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5930 5931 5932
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5933
	u32			prot, flags;
5934 5935 5936 5937 5938 5939 5940 5941 5942

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5943
	} event_id;
5944 5945
};

5946 5947 5948 5949 5950 5951 5952 5953
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5954
	       (executable && (event->attr.mmap || event->attr.mmap2));
5955 5956
}

5957
static void perf_event_mmap_output(struct perf_event *event,
5958
				   void *data)
5959
{
5960
	struct perf_mmap_event *mmap_event = data;
5961
	struct perf_output_handle handle;
5962
	struct perf_sample_data sample;
5963
	int size = mmap_event->event_id.header.size;
5964
	int ret;
5965

5966 5967 5968
	if (!perf_event_mmap_match(event, data))
		return;

5969 5970 5971 5972 5973
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5974
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5975 5976
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5977 5978
	}

5979 5980
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5981
				mmap_event->event_id.header.size);
5982
	if (ret)
5983
		goto out;
5984

5985 5986
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5987

5988
	perf_output_put(&handle, mmap_event->event_id);
5989 5990 5991 5992 5993 5994

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5995 5996
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5997 5998
	}

5999
	__output_copy(&handle, mmap_event->file_name,
6000
				   mmap_event->file_size);
6001 6002 6003

	perf_event__output_id_sample(event, &handle, &sample);

6004
	perf_output_end(&handle);
6005 6006
out:
	mmap_event->event_id.header.size = size;
6007 6008
}

6009
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6010
{
6011 6012
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6013 6014
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6015
	u32 prot = 0, flags = 0;
6016 6017 6018
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6019
	char *name;
6020

6021
	if (file) {
6022 6023
		struct inode *inode;
		dev_t dev;
6024

6025
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6026
		if (!buf) {
6027 6028
			name = "//enomem";
			goto cpy_name;
6029
		}
6030
		/*
6031
		 * d_path() works from the end of the rb backwards, so we
6032 6033 6034
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6035
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6036
		if (IS_ERR(name)) {
6037 6038
			name = "//toolong";
			goto cpy_name;
6039
		}
6040 6041 6042 6043 6044 6045
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6068
		goto got_name;
6069
	} else {
6070 6071 6072 6073 6074 6075
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6076
		name = (char *)arch_vma_name(vma);
6077 6078
		if (name)
			goto cpy_name;
6079

6080
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6081
				vma->vm_end >= vma->vm_mm->brk) {
6082 6083
			name = "[heap]";
			goto cpy_name;
6084 6085
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6086
				vma->vm_end >= vma->vm_mm->start_stack) {
6087 6088
			name = "[stack]";
			goto cpy_name;
6089 6090
		}

6091 6092
		name = "//anon";
		goto cpy_name;
6093 6094
	}

6095 6096 6097
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6098
got_name:
6099 6100 6101 6102 6103 6104 6105 6106
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6107 6108 6109

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6110 6111 6112 6113
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6114 6115
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6116

6117 6118 6119
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6120
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6121

6122
	perf_event_aux(perf_event_mmap_output,
6123 6124
		       mmap_event,
		       NULL);
6125

6126 6127 6128
	kfree(buf);
}

6129
void perf_event_mmap(struct vm_area_struct *vma)
6130
{
6131 6132
	struct perf_mmap_event mmap_event;

6133
	if (!atomic_read(&nr_mmap_events))
6134 6135 6136
		return;

	mmap_event = (struct perf_mmap_event){
6137
		.vma	= vma,
6138 6139
		/* .file_name */
		/* .file_size */
6140
		.event_id  = {
6141
			.header = {
6142
				.type = PERF_RECORD_MMAP,
6143
				.misc = PERF_RECORD_MISC_USER,
6144 6145 6146 6147
				/* .size */
			},
			/* .pid */
			/* .tid */
6148 6149
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6150
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6151
		},
6152 6153 6154 6155
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6156 6157
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6158 6159
	};

6160
	perf_event_mmap_event(&mmap_event);
6161 6162
}

A
Alexander Shishkin 已提交
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6315 6316 6317 6318
/*
 * IRQ throttle logging
 */

6319
static void perf_log_throttle(struct perf_event *event, int enable)
6320 6321
{
	struct perf_output_handle handle;
6322
	struct perf_sample_data sample;
6323 6324 6325 6326 6327
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6328
		u64				id;
6329
		u64				stream_id;
6330 6331
	} throttle_event = {
		.header = {
6332
			.type = PERF_RECORD_THROTTLE,
6333 6334 6335
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6336
		.time		= perf_event_clock(event),
6337 6338
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6339 6340
	};

6341
	if (enable)
6342
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6343

6344 6345 6346
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6347
				throttle_event.header.size);
6348 6349 6350 6351
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6352
	perf_event__output_id_sample(event, &handle, &sample);
6353 6354 6355
	perf_output_end(&handle);
}

6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6392
/*
6393
 * Generic event overflow handling, sampling.
6394 6395
 */

6396
static int __perf_event_overflow(struct perf_event *event,
6397 6398
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6399
{
6400 6401
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6402
	u64 seq;
6403 6404
	int ret = 0;

6405 6406 6407 6408 6409 6410 6411
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6412 6413 6414 6415 6416 6417 6418 6419 6420
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6421 6422
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6423
			tick_nohz_full_kick();
6424 6425
			ret = 1;
		}
6426
	}
6427

6428
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6429
		u64 now = perf_clock();
6430
		s64 delta = now - hwc->freq_time_stamp;
6431

6432
		hwc->freq_time_stamp = now;
6433

6434
		if (delta > 0 && delta < 2*TICK_NSEC)
6435
			perf_adjust_period(event, delta, hwc->last_period, true);
6436 6437
	}

6438 6439
	/*
	 * XXX event_limit might not quite work as expected on inherited
6440
	 * events
6441 6442
	 */

6443 6444
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6445
		ret = 1;
6446
		event->pending_kill = POLL_HUP;
6447 6448
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6449 6450
	}

6451
	if (event->overflow_handler)
6452
		event->overflow_handler(event, data, regs);
6453
	else
6454
		perf_event_output(event, data, regs);
6455

6456
	if (*perf_event_fasync(event) && event->pending_kill) {
6457 6458
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6459 6460
	}

6461
	return ret;
6462 6463
}

6464
int perf_event_overflow(struct perf_event *event,
6465 6466
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6467
{
6468
	return __perf_event_overflow(event, 1, data, regs);
6469 6470
}

6471
/*
6472
 * Generic software event infrastructure
6473 6474
 */

6475 6476 6477 6478 6479 6480 6481
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6482 6483 6484

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6485 6486 6487 6488
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6489
/*
6490 6491
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6492 6493 6494 6495
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6496
u64 perf_swevent_set_period(struct perf_event *event)
6497
{
6498
	struct hw_perf_event *hwc = &event->hw;
6499 6500 6501 6502 6503
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6504 6505

again:
6506
	old = val = local64_read(&hwc->period_left);
6507 6508
	if (val < 0)
		return 0;
6509

6510 6511 6512
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6513
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6514
		goto again;
6515

6516
	return nr;
6517 6518
}

6519
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6520
				    struct perf_sample_data *data,
6521
				    struct pt_regs *regs)
6522
{
6523
	struct hw_perf_event *hwc = &event->hw;
6524
	int throttle = 0;
6525

6526 6527
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6528

6529 6530
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6531

6532
	for (; overflow; overflow--) {
6533
		if (__perf_event_overflow(event, throttle,
6534
					    data, regs)) {
6535 6536 6537 6538 6539 6540
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6541
		throttle = 1;
6542
	}
6543 6544
}

P
Peter Zijlstra 已提交
6545
static void perf_swevent_event(struct perf_event *event, u64 nr,
6546
			       struct perf_sample_data *data,
6547
			       struct pt_regs *regs)
6548
{
6549
	struct hw_perf_event *hwc = &event->hw;
6550

6551
	local64_add(nr, &event->count);
6552

6553 6554 6555
	if (!regs)
		return;

6556
	if (!is_sampling_event(event))
6557
		return;
6558

6559 6560 6561 6562 6563 6564
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6565
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6566
		return perf_swevent_overflow(event, 1, data, regs);
6567

6568
	if (local64_add_negative(nr, &hwc->period_left))
6569
		return;
6570

6571
	perf_swevent_overflow(event, 0, data, regs);
6572 6573
}

6574 6575 6576
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6577
	if (event->hw.state & PERF_HES_STOPPED)
6578
		return 1;
P
Peter Zijlstra 已提交
6579

6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6591
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6592
				enum perf_type_id type,
L
Li Zefan 已提交
6593 6594 6595
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6596
{
6597
	if (event->attr.type != type)
6598
		return 0;
6599

6600
	if (event->attr.config != event_id)
6601 6602
		return 0;

6603 6604
	if (perf_exclude_event(event, regs))
		return 0;
6605 6606 6607 6608

	return 1;
}

6609 6610 6611 6612 6613 6614 6615
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6616 6617
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6618
{
6619 6620 6621 6622
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6623

6624 6625
/* For the read side: events when they trigger */
static inline struct hlist_head *
6626
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6627 6628
{
	struct swevent_hlist *hlist;
6629

6630
	hlist = rcu_dereference(swhash->swevent_hlist);
6631 6632 6633
	if (!hlist)
		return NULL;

6634 6635 6636 6637 6638
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6639
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6650
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6651 6652 6653 6654 6655
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6656 6657 6658
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6659
				    u64 nr,
6660 6661
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6662
{
6663
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6664
	struct perf_event *event;
6665
	struct hlist_head *head;
6666

6667
	rcu_read_lock();
6668
	head = find_swevent_head_rcu(swhash, type, event_id);
6669 6670 6671
	if (!head)
		goto end;

6672
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6673
		if (perf_swevent_match(event, type, event_id, data, regs))
6674
			perf_swevent_event(event, nr, data, regs);
6675
	}
6676 6677
end:
	rcu_read_unlock();
6678 6679
}

6680 6681
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6682
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6683
{
6684
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6685

6686
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6687
}
I
Ingo Molnar 已提交
6688
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6689

6690
inline void perf_swevent_put_recursion_context(int rctx)
6691
{
6692
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6693

6694
	put_recursion_context(swhash->recursion, rctx);
6695
}
6696

6697
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6698
{
6699
	struct perf_sample_data data;
6700

6701
	if (WARN_ON_ONCE(!regs))
6702
		return;
6703

6704
	perf_sample_data_init(&data, addr, 0);
6705
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6718 6719

	perf_swevent_put_recursion_context(rctx);
6720
fail:
6721
	preempt_enable_notrace();
6722 6723
}

6724
static void perf_swevent_read(struct perf_event *event)
6725 6726 6727
{
}

P
Peter Zijlstra 已提交
6728
static int perf_swevent_add(struct perf_event *event, int flags)
6729
{
6730
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6731
	struct hw_perf_event *hwc = &event->hw;
6732 6733
	struct hlist_head *head;

6734
	if (is_sampling_event(event)) {
6735
		hwc->last_period = hwc->sample_period;
6736
		perf_swevent_set_period(event);
6737
	}
6738

P
Peter Zijlstra 已提交
6739 6740
	hwc->state = !(flags & PERF_EF_START);

6741
	head = find_swevent_head(swhash, event);
6742 6743 6744 6745 6746 6747
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6748
		return -EINVAL;
6749
	}
6750 6751

	hlist_add_head_rcu(&event->hlist_entry, head);
6752
	perf_event_update_userpage(event);
6753

6754 6755 6756
	return 0;
}

P
Peter Zijlstra 已提交
6757
static void perf_swevent_del(struct perf_event *event, int flags)
6758
{
6759
	hlist_del_rcu(&event->hlist_entry);
6760 6761
}

P
Peter Zijlstra 已提交
6762
static void perf_swevent_start(struct perf_event *event, int flags)
6763
{
P
Peter Zijlstra 已提交
6764
	event->hw.state = 0;
6765
}
I
Ingo Molnar 已提交
6766

P
Peter Zijlstra 已提交
6767
static void perf_swevent_stop(struct perf_event *event, int flags)
6768
{
P
Peter Zijlstra 已提交
6769
	event->hw.state = PERF_HES_STOPPED;
6770 6771
}

6772 6773
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6774
swevent_hlist_deref(struct swevent_htable *swhash)
6775
{
6776 6777
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6778 6779
}

6780
static void swevent_hlist_release(struct swevent_htable *swhash)
6781
{
6782
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6783

6784
	if (!hlist)
6785 6786
		return;

6787
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6788
	kfree_rcu(hlist, rcu_head);
6789 6790 6791 6792
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6793
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6794

6795
	mutex_lock(&swhash->hlist_mutex);
6796

6797 6798
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6799

6800
	mutex_unlock(&swhash->hlist_mutex);
6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6813
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6814 6815
	int err = 0;

6816
	mutex_lock(&swhash->hlist_mutex);
6817

6818
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6819 6820 6821 6822 6823 6824 6825
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6826
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6827
	}
6828
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6829
exit:
6830
	mutex_unlock(&swhash->hlist_mutex);
6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6851
fail:
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6862
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6863

6864 6865 6866
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6867

6868 6869
	WARN_ON(event->parent);

6870
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6871 6872 6873 6874 6875
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6876
	u64 event_id = event->attr.config;
6877 6878 6879 6880

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6881 6882 6883 6884 6885 6886
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6887 6888 6889 6890 6891 6892 6893 6894 6895
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6896
	if (event_id >= PERF_COUNT_SW_MAX)
6897 6898 6899 6900 6901 6902 6903 6904 6905
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6906
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6907 6908 6909 6910 6911 6912 6913
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6914
	.task_ctx_nr	= perf_sw_context,
6915

6916 6917
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6918
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6919 6920 6921 6922
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6923 6924 6925
	.read		= perf_swevent_read,
};

6926 6927
#ifdef CONFIG_EVENT_TRACING

6928 6929 6930 6931 6932
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6933 6934 6935 6936
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6937 6938 6939 6940 6941 6942 6943 6944 6945
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6946 6947
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6948 6949 6950 6951
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6952 6953 6954 6955 6956 6957 6958 6959 6960
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6961 6962
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6963 6964
{
	struct perf_sample_data data;
6965 6966
	struct perf_event *event;

6967 6968 6969 6970 6971
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6972
	perf_sample_data_init(&data, addr, 0);
6973 6974
	data.raw = &raw;

6975
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6976
		if (perf_tp_event_match(event, &data, regs))
6977
			perf_swevent_event(event, count, &data, regs);
6978
	}
6979

6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7005
	perf_swevent_put_recursion_context(rctx);
7006 7007 7008
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7009
static void tp_perf_event_destroy(struct perf_event *event)
7010
{
7011
	perf_trace_destroy(event);
7012 7013
}

7014
static int perf_tp_event_init(struct perf_event *event)
7015
{
7016 7017
	int err;

7018 7019 7020
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7021 7022 7023 7024 7025 7026
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7027 7028
	err = perf_trace_init(event);
	if (err)
7029
		return err;
7030

7031
	event->destroy = tp_perf_event_destroy;
7032

7033 7034 7035 7036
	return 0;
}

static struct pmu perf_tracepoint = {
7037 7038
	.task_ctx_nr	= perf_sw_context,

7039
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7040 7041 7042 7043
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7044 7045 7046 7047 7048
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7049
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7050
}
L
Li Zefan 已提交
7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7075 7076 7077 7078 7079 7080 7081 7082 7083 7084
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7085 7086
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7087 7088 7089 7090 7091 7092
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7093
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7118
#else
L
Li Zefan 已提交
7119

7120
static inline void perf_tp_register(void)
7121 7122
{
}
L
Li Zefan 已提交
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7133 7134 7135 7136 7137 7138 7139 7140
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7141
#endif /* CONFIG_EVENT_TRACING */
7142

7143
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7144
void perf_bp_event(struct perf_event *bp, void *data)
7145
{
7146 7147 7148
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7149
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7150

P
Peter Zijlstra 已提交
7151
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7152
		perf_swevent_event(bp, 1, &sample, regs);
7153 7154 7155
}
#endif

7156 7157 7158
/*
 * hrtimer based swevent callback
 */
7159

7160
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7161
{
7162 7163 7164 7165 7166
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7167

7168
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7169 7170 7171 7172

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7173
	event->pmu->read(event);
7174

7175
	perf_sample_data_init(&data, 0, event->hw.last_period);
7176 7177 7178
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7179
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7180
			if (__perf_event_overflow(event, 1, &data, regs))
7181 7182
				ret = HRTIMER_NORESTART;
	}
7183

7184 7185
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7186

7187
	return ret;
7188 7189
}

7190
static void perf_swevent_start_hrtimer(struct perf_event *event)
7191
{
7192
	struct hw_perf_event *hwc = &event->hw;
7193 7194 7195 7196
	s64 period;

	if (!is_sampling_event(event))
		return;
7197

7198 7199 7200 7201
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7202

7203 7204 7205 7206
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7207 7208
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7209
}
7210 7211

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7212
{
7213 7214
	struct hw_perf_event *hwc = &event->hw;

7215
	if (is_sampling_event(event)) {
7216
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7217
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7218 7219 7220

		hrtimer_cancel(&hwc->hrtimer);
	}
7221 7222
}

P
Peter Zijlstra 已提交
7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7243
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7244 7245 7246 7247
		event->attr.freq = 0;
	}
}

7248 7249 7250 7251 7252
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7253
{
7254 7255 7256
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7257
	now = local_clock();
7258 7259
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7260 7261
}

P
Peter Zijlstra 已提交
7262
static void cpu_clock_event_start(struct perf_event *event, int flags)
7263
{
P
Peter Zijlstra 已提交
7264
	local64_set(&event->hw.prev_count, local_clock());
7265 7266 7267
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7268
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7269
{
7270 7271 7272
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7273

P
Peter Zijlstra 已提交
7274 7275 7276 7277
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7278
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7279 7280 7281 7282 7283 7284 7285 7286 7287

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7288 7289 7290 7291
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7292

7293 7294 7295 7296 7297 7298 7299 7300
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7301 7302 7303 7304 7305 7306
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7307 7308
	perf_swevent_init_hrtimer(event);

7309
	return 0;
7310 7311
}

7312
static struct pmu perf_cpu_clock = {
7313 7314
	.task_ctx_nr	= perf_sw_context,

7315 7316
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7317
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7318 7319 7320 7321
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7322 7323 7324 7325 7326 7327 7328 7329
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7330
{
7331 7332
	u64 prev;
	s64 delta;
7333

7334 7335 7336 7337
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7338

P
Peter Zijlstra 已提交
7339
static void task_clock_event_start(struct perf_event *event, int flags)
7340
{
P
Peter Zijlstra 已提交
7341
	local64_set(&event->hw.prev_count, event->ctx->time);
7342 7343 7344
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7345
static void task_clock_event_stop(struct perf_event *event, int flags)
7346 7347 7348
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7349 7350 7351 7352 7353 7354
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7355
	perf_event_update_userpage(event);
7356

P
Peter Zijlstra 已提交
7357 7358 7359 7360 7361 7362
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7363 7364 7365 7366
}

static void task_clock_event_read(struct perf_event *event)
{
7367 7368 7369
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7370 7371 7372 7373 7374

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7375
{
7376 7377 7378 7379 7380 7381
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7382 7383 7384 7385 7386 7387
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7388 7389
	perf_swevent_init_hrtimer(event);

7390
	return 0;
L
Li Zefan 已提交
7391 7392
}

7393
static struct pmu perf_task_clock = {
7394 7395
	.task_ctx_nr	= perf_sw_context,

7396 7397
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7398
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7399 7400 7401 7402
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7403 7404
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7405

P
Peter Zijlstra 已提交
7406
static void perf_pmu_nop_void(struct pmu *pmu)
7407 7408
{
}
L
Li Zefan 已提交
7409

7410 7411 7412 7413
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7414
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7415
{
P
Peter Zijlstra 已提交
7416
	return 0;
L
Li Zefan 已提交
7417 7418
}

7419
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7420 7421

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7422
{
7423 7424 7425 7426 7427
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7428
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7429 7430
}

P
Peter Zijlstra 已提交
7431 7432
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7433 7434 7435 7436 7437 7438 7439
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7440 7441 7442
	perf_pmu_enable(pmu);
	return 0;
}
7443

P
Peter Zijlstra 已提交
7444
static void perf_pmu_cancel_txn(struct pmu *pmu)
7445
{
7446 7447 7448 7449 7450 7451 7452
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7453
	perf_pmu_enable(pmu);
7454 7455
}

7456 7457
static int perf_event_idx_default(struct perf_event *event)
{
7458
	return 0;
7459 7460
}

P
Peter Zijlstra 已提交
7461 7462 7463 7464
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7465
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7466
{
P
Peter Zijlstra 已提交
7467
	struct pmu *pmu;
7468

P
Peter Zijlstra 已提交
7469 7470
	if (ctxn < 0)
		return NULL;
7471

P
Peter Zijlstra 已提交
7472 7473 7474 7475
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7476

P
Peter Zijlstra 已提交
7477
	return NULL;
7478 7479
}

7480
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7481
{
7482 7483 7484 7485 7486 7487 7488
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7489 7490
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7491 7492 7493 7494 7495 7496
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7497

P
Peter Zijlstra 已提交
7498
	mutex_lock(&pmus_lock);
7499
	/*
P
Peter Zijlstra 已提交
7500
	 * Like a real lame refcount.
7501
	 */
7502 7503 7504
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7505
			goto out;
7506
		}
P
Peter Zijlstra 已提交
7507
	}
7508

7509
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7510 7511
out:
	mutex_unlock(&pmus_lock);
7512
}
P
Peter Zijlstra 已提交
7513
static struct idr pmu_idr;
7514

P
Peter Zijlstra 已提交
7515 7516 7517 7518 7519 7520 7521
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7522
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7523

7524 7525 7526 7527 7528 7529 7530 7531 7532 7533
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7534 7535
static DEFINE_MUTEX(mux_interval_mutex);

7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7555
	mutex_lock(&mux_interval_mutex);
7556 7557 7558
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7559 7560
	get_online_cpus();
	for_each_online_cpu(cpu) {
7561 7562 7563 7564
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7565 7566
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7567
	}
7568 7569
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7570 7571 7572

	return count;
}
7573
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7574

7575 7576 7577 7578
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7579
};
7580
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7581 7582 7583 7584

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7585
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7601
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7622
static struct lock_class_key cpuctx_mutex;
7623
static struct lock_class_key cpuctx_lock;
7624

7625
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7626
{
P
Peter Zijlstra 已提交
7627
	int cpu, ret;
7628

7629
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7630 7631 7632 7633
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7634

P
Peter Zijlstra 已提交
7635 7636 7637 7638 7639 7640
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7641 7642 7643
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7644 7645 7646 7647 7648
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7649 7650 7651 7652 7653 7654
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7655
skip_type:
P
Peter Zijlstra 已提交
7656 7657 7658
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7659

W
Wei Yongjun 已提交
7660
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7661 7662
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7663
		goto free_dev;
7664

P
Peter Zijlstra 已提交
7665 7666 7667 7668
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7669
		__perf_event_init_context(&cpuctx->ctx);
7670
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7671
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7672
		cpuctx->ctx.pmu = pmu;
7673

7674
		__perf_mux_hrtimer_init(cpuctx, cpu);
7675

7676
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7677
	}
7678

P
Peter Zijlstra 已提交
7679
got_cpu_context:
P
Peter Zijlstra 已提交
7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7691
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7692 7693
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7694
		}
7695
	}
7696

P
Peter Zijlstra 已提交
7697 7698 7699 7700 7701
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7702 7703 7704
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7705
	list_add_rcu(&pmu->entry, &pmus);
7706
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7707 7708
	ret = 0;
unlock:
7709 7710
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7711
	return ret;
P
Peter Zijlstra 已提交
7712

P
Peter Zijlstra 已提交
7713 7714 7715 7716
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7717 7718 7719 7720
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7721 7722 7723
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7724
}
7725
EXPORT_SYMBOL_GPL(perf_pmu_register);
7726

7727
void perf_pmu_unregister(struct pmu *pmu)
7728
{
7729 7730 7731
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7732

7733
	/*
P
Peter Zijlstra 已提交
7734 7735
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7736
	 */
7737
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7738
	synchronize_rcu();
7739

P
Peter Zijlstra 已提交
7740
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7741 7742
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7743 7744
	device_del(pmu->dev);
	put_device(pmu->dev);
7745
	free_pmu_context(pmu);
7746
}
7747
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7748

7749 7750
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7751
	struct perf_event_context *ctx = NULL;
7752 7753 7754 7755
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7756 7757

	if (event->group_leader != event) {
7758 7759 7760 7761 7762 7763
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7764 7765 7766
		BUG_ON(!ctx);
	}

7767 7768
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7769 7770 7771 7772

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7773 7774 7775 7776 7777 7778
	if (ret)
		module_put(pmu->module);

	return ret;
}

7779
static struct pmu *perf_init_event(struct perf_event *event)
7780 7781 7782
{
	struct pmu *pmu = NULL;
	int idx;
7783
	int ret;
7784 7785

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7786 7787 7788 7789

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7790
	if (pmu) {
7791
		ret = perf_try_init_event(pmu, event);
7792 7793
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7794
		goto unlock;
7795
	}
P
Peter Zijlstra 已提交
7796

7797
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7798
		ret = perf_try_init_event(pmu, event);
7799
		if (!ret)
P
Peter Zijlstra 已提交
7800
			goto unlock;
7801

7802 7803
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7804
			goto unlock;
7805
		}
7806
	}
P
Peter Zijlstra 已提交
7807 7808
	pmu = ERR_PTR(-ENOENT);
unlock:
7809
	srcu_read_unlock(&pmus_srcu, idx);
7810

7811
	return pmu;
7812 7813
}

7814 7815 7816 7817 7818 7819 7820 7821 7822
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7823 7824
static void account_event(struct perf_event *event)
{
7825 7826 7827
	if (event->parent)
		return;

7828 7829 7830 7831 7832 7833 7834 7835
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7836 7837 7838 7839
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7840 7841 7842 7843
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7844
	if (has_branch_stack(event))
7845
		static_key_slow_inc(&perf_sched_events.key);
7846
	if (is_cgroup_event(event))
7847
		static_key_slow_inc(&perf_sched_events.key);
7848 7849

	account_event_cpu(event, event->cpu);
7850 7851
}

T
Thomas Gleixner 已提交
7852
/*
7853
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7854
 */
7855
static struct perf_event *
7856
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7857 7858 7859
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7860
		 perf_overflow_handler_t overflow_handler,
7861
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7862
{
P
Peter Zijlstra 已提交
7863
	struct pmu *pmu;
7864 7865
	struct perf_event *event;
	struct hw_perf_event *hwc;
7866
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7867

7868 7869 7870 7871 7872
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7873
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7874
	if (!event)
7875
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7876

7877
	/*
7878
	 * Single events are their own group leaders, with an
7879 7880 7881
	 * empty sibling list:
	 */
	if (!group_leader)
7882
		group_leader = event;
7883

7884 7885
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7886

7887 7888 7889
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7890
	INIT_LIST_HEAD(&event->rb_entry);
7891
	INIT_LIST_HEAD(&event->active_entry);
7892 7893
	INIT_HLIST_NODE(&event->hlist_entry);

7894

7895
	init_waitqueue_head(&event->waitq);
7896
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7897

7898
	mutex_init(&event->mmap_mutex);
7899

7900
	atomic_long_set(&event->refcount, 1);
7901 7902 7903 7904 7905
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7906

7907
	event->parent		= parent_event;
7908

7909
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7910
	event->id		= atomic64_inc_return(&perf_event_id);
7911

7912
	event->state		= PERF_EVENT_STATE_INACTIVE;
7913

7914 7915 7916
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7917 7918 7919
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7920
		 */
7921
		event->hw.target = task;
7922 7923
	}

7924 7925 7926 7927
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7928
	if (!overflow_handler && parent_event) {
7929
		overflow_handler = parent_event->overflow_handler;
7930 7931
		context = parent_event->overflow_handler_context;
	}
7932

7933
	event->overflow_handler	= overflow_handler;
7934
	event->overflow_handler_context = context;
7935

J
Jiri Olsa 已提交
7936
	perf_event__state_init(event);
7937

7938
	pmu = NULL;
7939

7940
	hwc = &event->hw;
7941
	hwc->sample_period = attr->sample_period;
7942
	if (attr->freq && attr->sample_freq)
7943
		hwc->sample_period = 1;
7944
	hwc->last_period = hwc->sample_period;
7945

7946
	local64_set(&hwc->period_left, hwc->sample_period);
7947

7948
	/*
7949
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7950
	 */
7951
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7952
		goto err_ns;
7953 7954 7955

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7956

7957 7958 7959 7960 7961 7962
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7963
	pmu = perf_init_event(event);
7964
	if (!pmu)
7965 7966
		goto err_ns;
	else if (IS_ERR(pmu)) {
7967
		err = PTR_ERR(pmu);
7968
		goto err_ns;
I
Ingo Molnar 已提交
7969
	}
7970

7971 7972 7973 7974
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7975
	if (!event->parent) {
7976 7977
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7978
			if (err)
7979
				goto err_per_task;
7980
		}
7981
	}
7982

7983
	return event;
7984

7985 7986 7987
err_per_task:
	exclusive_event_destroy(event);

7988 7989 7990
err_pmu:
	if (event->destroy)
		event->destroy(event);
7991
	module_put(pmu->module);
7992
err_ns:
7993 7994
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7995 7996 7997 7998 7999
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
8000 8001
}

8002 8003
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
8004 8005
{
	u32 size;
8006
	int ret;
8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8031 8032 8033
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8034 8035
	 */
	if (size > sizeof(*attr)) {
8036 8037 8038
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8039

8040 8041
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8042

8043
		for (; addr < end; addr++) {
8044 8045 8046 8047 8048 8049
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8050
		size = sizeof(*attr);
8051 8052 8053 8054 8055 8056
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8057
	if (attr->__reserved_1)
8058 8059 8060 8061 8062 8063 8064 8065
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8094 8095
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8096 8097
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8098
	}
8099

8100
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8101
		ret = perf_reg_validate(attr->sample_regs_user);
8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8120

8121 8122
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8123 8124 8125 8126 8127 8128 8129 8130 8131
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8132 8133
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8134
{
8135
	struct ring_buffer *rb = NULL;
8136 8137
	int ret = -EINVAL;

8138
	if (!output_event)
8139 8140
		goto set;

8141 8142
	/* don't allow circular references */
	if (event == output_event)
8143 8144
		goto out;

8145 8146 8147 8148 8149 8150 8151
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8152
	 * If its not a per-cpu rb, it must be the same task.
8153 8154 8155 8156
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8157 8158 8159 8160 8161 8162
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8163 8164 8165 8166 8167 8168 8169
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8170
set:
8171
	mutex_lock(&event->mmap_mutex);
8172 8173 8174
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8175

8176
	if (output_event) {
8177 8178 8179
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8180
			goto unlock;
8181 8182
	}

8183
	ring_buffer_attach(event, rb);
8184

8185
	ret = 0;
8186 8187 8188
unlock:
	mutex_unlock(&event->mmap_mutex);

8189 8190 8191 8192
out:
	return ret;
}

P
Peter Zijlstra 已提交
8193 8194 8195 8196 8197 8198 8199 8200 8201
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8239
/**
8240
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8241
 *
8242
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8243
 * @pid:		target pid
I
Ingo Molnar 已提交
8244
 * @cpu:		target cpu
8245
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8246
 */
8247 8248
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8249
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8250
{
8251 8252
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8253
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8254
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8255
	struct file *event_file = NULL;
8256
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8257
	struct task_struct *task = NULL;
8258
	struct pmu *pmu;
8259
	int event_fd;
8260
	int move_group = 0;
8261
	int err;
8262
	int f_flags = O_RDWR;
8263
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8264

8265
	/* for future expandability... */
S
Stephane Eranian 已提交
8266
	if (flags & ~PERF_FLAG_ALL)
8267 8268
		return -EINVAL;

8269 8270 8271
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8272

8273 8274 8275 8276 8277
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8278
	if (attr.freq) {
8279
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8280
			return -EINVAL;
8281 8282 8283
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8284 8285
	}

S
Stephane Eranian 已提交
8286 8287 8288 8289 8290 8291 8292 8293 8294
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8295 8296 8297 8298
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8299 8300 8301
	if (event_fd < 0)
		return event_fd;

8302
	if (group_fd != -1) {
8303 8304
		err = perf_fget_light(group_fd, &group);
		if (err)
8305
			goto err_fd;
8306
		group_leader = group.file->private_data;
8307 8308 8309 8310 8311 8312
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8313
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8314 8315 8316 8317 8318 8319 8320
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8321 8322 8323 8324 8325 8326
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8327 8328
	get_online_cpus();

8329 8330 8331
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8332
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8333
				 NULL, NULL, cgroup_fd);
8334 8335
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8336
		goto err_cpus;
8337 8338
	}

8339 8340 8341 8342 8343 8344 8345
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8346 8347
	account_event(event);

8348 8349 8350 8351 8352
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8353

8354 8355 8356 8357 8358 8359
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8382 8383 8384 8385

	/*
	 * Get the target context (task or percpu):
	 */
8386
	ctx = find_get_context(pmu, task, event);
8387 8388
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8389
		goto err_alloc;
8390 8391
	}

8392 8393 8394 8395 8396
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8397 8398 8399 8400 8401
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8402
	/*
8403
	 * Look up the group leader (we will attach this event to it):
8404
	 */
8405
	if (group_leader) {
8406
		err = -EINVAL;
8407 8408

		/*
I
Ingo Molnar 已提交
8409 8410 8411 8412
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8413
			goto err_context;
8414 8415 8416 8417 8418

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8419 8420 8421
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8422
		 */
8423
		if (move_group) {
8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8437 8438 8439 8440 8441 8442
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8443 8444 8445
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8446
		if (attr.exclusive || attr.pinned)
8447
			goto err_context;
8448 8449 8450 8451 8452
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8453
			goto err_context;
8454
	}
T
Thomas Gleixner 已提交
8455

8456 8457
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8458 8459
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8460
		goto err_context;
8461
	}
8462

8463
	if (move_group) {
P
Peter Zijlstra 已提交
8464
		gctx = group_leader->ctx;
8465 8466 8467 8468 8469
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8470 8471 8472 8473 8474
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8475 8476 8477 8478 8479 8480 8481
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8482

8483 8484 8485
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8486

8487 8488 8489
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8490 8491 8492 8493
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8494
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8495

8496 8497
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8498
			perf_remove_from_context(sibling, false);
8499 8500 8501
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8502 8503 8504 8505
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8506
		synchronize_rcu();
P
Peter Zijlstra 已提交
8507

8508 8509 8510 8511 8512 8513 8514 8515 8516 8517
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8518 8519
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8520
			perf_event__state_init(sibling);
8521
			perf_install_in_context(ctx, sibling, sibling->cpu);
8522 8523
			get_ctx(ctx);
		}
8524 8525 8526 8527 8528 8529 8530 8531 8532

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8533

8534 8535 8536 8537 8538 8539
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8540 8541
	}

8542 8543 8544 8545 8546 8547 8548 8549 8550
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8551
	perf_install_in_context(ctx, event, event->cpu);
8552
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8553

8554
	if (move_group)
P
Peter Zijlstra 已提交
8555
		mutex_unlock(&gctx->mutex);
8556
	mutex_unlock(&ctx->mutex);
8557

8558 8559
	put_online_cpus();

8560
	event->owner = current;
P
Peter Zijlstra 已提交
8561

8562 8563 8564
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8565

8566 8567 8568 8569 8570 8571
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8572
	fdput(group);
8573 8574
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8575

8576 8577 8578 8579 8580 8581
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8582
err_context:
8583
	perf_unpin_context(ctx);
8584
	put_ctx(ctx);
8585
err_alloc:
8586
	free_event(event);
8587
err_cpus:
8588
	put_online_cpus();
8589
err_task:
P
Peter Zijlstra 已提交
8590 8591
	if (task)
		put_task_struct(task);
8592
err_group_fd:
8593
	fdput(group);
8594 8595
err_fd:
	put_unused_fd(event_fd);
8596
	return err;
T
Thomas Gleixner 已提交
8597 8598
}

8599 8600 8601 8602 8603
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8604
 * @task: task to profile (NULL for percpu)
8605 8606 8607
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8608
				 struct task_struct *task,
8609 8610
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8611 8612
{
	struct perf_event_context *ctx;
8613
	struct perf_event *event;
8614
	int err;
8615

8616 8617 8618
	/*
	 * Get the target context (task or percpu):
	 */
8619

8620
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8621
				 overflow_handler, context, -1);
8622 8623 8624 8625
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8626

8627 8628 8629
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8630 8631
	account_event(event);

8632
	ctx = find_get_context(event->pmu, task, event);
8633 8634
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8635
		goto err_free;
8636
	}
8637 8638 8639

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8640 8641 8642 8643 8644 8645 8646 8647
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8648
	perf_install_in_context(ctx, event, cpu);
8649
	perf_unpin_context(ctx);
8650 8651 8652 8653
	mutex_unlock(&ctx->mutex);

	return event;

8654 8655 8656
err_free:
	free_event(event);
err:
8657
	return ERR_PTR(err);
8658
}
8659
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8660

8661 8662 8663 8664 8665 8666 8667 8668 8669 8670
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8671 8672 8673 8674 8675
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8676 8677
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8678
		perf_remove_from_context(event, false);
8679
		unaccount_event_cpu(event, src_cpu);
8680
		put_ctx(src_ctx);
8681
		list_add(&event->migrate_entry, &events);
8682 8683
	}

8684 8685 8686
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8687 8688
	synchronize_rcu();

8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8713 8714
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8715 8716
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8717
		account_event_cpu(event, dst_cpu);
8718 8719 8720 8721
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8722
	mutex_unlock(&src_ctx->mutex);
8723 8724 8725
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8726
static void sync_child_event(struct perf_event *child_event,
8727
			       struct task_struct *child)
8728
{
8729
	struct perf_event *parent_event = child_event->parent;
8730
	u64 child_val;
8731

8732 8733
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8734

P
Peter Zijlstra 已提交
8735
	child_val = perf_event_count(child_event);
8736 8737 8738 8739

	/*
	 * Add back the child's count to the parent's count:
	 */
8740
	atomic64_add(child_val, &parent_event->child_count);
8741 8742 8743 8744
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8745 8746

	/*
8747
	 * Remove this event from the parent's list
8748
	 */
8749 8750 8751 8752
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8753

8754 8755 8756 8757 8758 8759
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8760
	/*
8761
	 * Release the parent event, if this was the last
8762 8763
	 * reference to it.
	 */
8764
	put_event(parent_event);
8765 8766
}

8767
static void
8768 8769
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8770
			 struct task_struct *child)
8771
{
8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8785

8786
	/*
8787
	 * It can happen that the parent exits first, and has events
8788
	 * that are still around due to the child reference. These
8789
	 * events need to be zapped.
8790
	 */
8791
	if (child_event->parent) {
8792 8793
		sync_child_event(child_event, child);
		free_event(child_event);
8794 8795 8796
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8797
	}
8798 8799
}

P
Peter Zijlstra 已提交
8800
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8801
{
8802
	struct perf_event *child_event, *next;
8803
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8804
	unsigned long flags;
8805

P
Peter Zijlstra 已提交
8806
	if (likely(!child->perf_event_ctxp[ctxn])) {
8807
		perf_event_task(child, NULL, 0);
8808
		return;
P
Peter Zijlstra 已提交
8809
	}
8810

8811
	local_irq_save(flags);
8812 8813 8814 8815 8816 8817
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8818
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8819 8820 8821

	/*
	 * Take the context lock here so that if find_get_context is
8822
	 * reading child->perf_event_ctxp, we wait until it has
8823 8824
	 * incremented the context's refcount before we do put_ctx below.
	 */
8825
	raw_spin_lock(&child_ctx->lock);
8826
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8827
	child->perf_event_ctxp[ctxn] = NULL;
8828

8829 8830 8831
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8832
	 * the events from it.
8833
	 */
8834
	clone_ctx = unclone_ctx(child_ctx);
8835
	update_context_time(child_ctx);
8836
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8837

8838 8839
	if (clone_ctx)
		put_ctx(clone_ctx);
8840

P
Peter Zijlstra 已提交
8841
	/*
8842 8843 8844
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8845
	 */
8846
	perf_event_task(child, child_ctx, 0);
8847

8848 8849 8850
	/*
	 * We can recurse on the same lock type through:
	 *
8851 8852
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8853 8854
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8855 8856 8857
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8858
	mutex_lock(&child_ctx->mutex);
8859

8860
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8861
		__perf_event_exit_task(child_event, child_ctx, child);
8862

8863 8864 8865
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8866 8867
}

P
Peter Zijlstra 已提交
8868 8869 8870 8871 8872
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8873
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8874 8875
	int ctxn;

P
Peter Zijlstra 已提交
8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8891 8892 8893 8894
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8907
	put_event(parent);
8908

P
Peter Zijlstra 已提交
8909
	raw_spin_lock_irq(&ctx->lock);
8910
	perf_group_detach(event);
8911
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8912
	raw_spin_unlock_irq(&ctx->lock);
8913 8914 8915
	free_event(event);
}

8916
/*
P
Peter Zijlstra 已提交
8917
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8918
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8919 8920 8921
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8922
 */
8923
void perf_event_free_task(struct task_struct *task)
8924
{
P
Peter Zijlstra 已提交
8925
	struct perf_event_context *ctx;
8926
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8927
	int ctxn;
8928

P
Peter Zijlstra 已提交
8929 8930 8931 8932
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8933

P
Peter Zijlstra 已提交
8934
		mutex_lock(&ctx->mutex);
8935
again:
P
Peter Zijlstra 已提交
8936 8937 8938
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8939

P
Peter Zijlstra 已提交
8940 8941 8942
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8943

P
Peter Zijlstra 已提交
8944 8945 8946
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8947

P
Peter Zijlstra 已提交
8948
		mutex_unlock(&ctx->mutex);
8949

P
Peter Zijlstra 已提交
8950 8951
		put_ctx(ctx);
	}
8952 8953
}

8954 8955 8956 8957 8958 8959 8960 8961
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8998
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8999
	struct perf_event *child_event;
9000
	unsigned long flags;
P
Peter Zijlstra 已提交
9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
9013
					   child,
P
Peter Zijlstra 已提交
9014
					   group_leader, parent_event,
9015
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
9016 9017
	if (IS_ERR(child_event))
		return child_event;
9018

9019 9020
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9021 9022 9023 9024
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
9025 9026 9027 9028 9029 9030 9031
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9032
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9049 9050
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9051

9052 9053 9054 9055
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9056
	perf_event__id_header_size(child_event);
9057

P
Peter Zijlstra 已提交
9058 9059 9060
	/*
	 * Link it up in the child's context:
	 */
9061
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9062
	add_event_to_ctx(child_event, child_ctx);
9063
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9097 9098 9099 9100 9101
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9102
		   struct task_struct *child, int ctxn,
9103 9104 9105
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9106
	struct perf_event_context *child_ctx;
9107 9108 9109 9110

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9111 9112
	}

9113
	child_ctx = child->perf_event_ctxp[ctxn];
9114 9115 9116 9117 9118 9119 9120
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9121

9122
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9123 9124
		if (!child_ctx)
			return -ENOMEM;
9125

P
Peter Zijlstra 已提交
9126
		child->perf_event_ctxp[ctxn] = child_ctx;
9127 9128 9129 9130 9131 9132 9133 9134 9135
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9136 9137
}

9138
/*
9139
 * Initialize the perf_event context in task_struct
9140
 */
9141
static int perf_event_init_context(struct task_struct *child, int ctxn)
9142
{
9143
	struct perf_event_context *child_ctx, *parent_ctx;
9144 9145
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9146
	struct task_struct *parent = current;
9147
	int inherited_all = 1;
9148
	unsigned long flags;
9149
	int ret = 0;
9150

P
Peter Zijlstra 已提交
9151
	if (likely(!parent->perf_event_ctxp[ctxn]))
9152 9153
		return 0;

9154
	/*
9155 9156
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9157
	 */
P
Peter Zijlstra 已提交
9158
	parent_ctx = perf_pin_task_context(parent, ctxn);
9159 9160
	if (!parent_ctx)
		return 0;
9161

9162 9163 9164 9165 9166 9167 9168
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9169 9170 9171 9172
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9173
	mutex_lock(&parent_ctx->mutex);
9174 9175 9176 9177 9178

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9179
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9180 9181
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9182 9183 9184
		if (ret)
			break;
	}
9185

9186 9187 9188 9189 9190 9191 9192 9193 9194
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9195
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9196 9197
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9198
		if (ret)
9199
			break;
9200 9201
	}

9202 9203 9204
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9205
	child_ctx = child->perf_event_ctxp[ctxn];
9206

9207
	if (child_ctx && inherited_all) {
9208 9209 9210
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9211 9212 9213
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9214
		 */
P
Peter Zijlstra 已提交
9215
		cloned_ctx = parent_ctx->parent_ctx;
9216 9217
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9218
			child_ctx->parent_gen = parent_ctx->parent_gen;
9219 9220 9221 9222 9223
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9224 9225
	}

P
Peter Zijlstra 已提交
9226
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9227
	mutex_unlock(&parent_ctx->mutex);
9228

9229
	perf_unpin_context(parent_ctx);
9230
	put_ctx(parent_ctx);
9231

9232
	return ret;
9233 9234
}

P
Peter Zijlstra 已提交
9235 9236 9237 9238 9239 9240 9241
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9242 9243 9244 9245
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9246 9247
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9248 9249
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9250
			return ret;
P
Peter Zijlstra 已提交
9251
		}
P
Peter Zijlstra 已提交
9252 9253 9254 9255 9256
	}

	return 0;
}

9257 9258
static void __init perf_event_init_all_cpus(void)
{
9259
	struct swevent_htable *swhash;
9260 9261 9262
	int cpu;

	for_each_possible_cpu(cpu) {
9263 9264
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9265
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9266 9267 9268
	}
}

9269
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9270
{
P
Peter Zijlstra 已提交
9271
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9272

9273
	mutex_lock(&swhash->hlist_mutex);
9274
	swhash->online = true;
9275
	if (swhash->hlist_refcount > 0) {
9276 9277
		struct swevent_hlist *hlist;

9278 9279 9280
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9281
	}
9282
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9283 9284
}

9285
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9286
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9287
{
9288
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9289
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9290

P
Peter Zijlstra 已提交
9291
	rcu_read_lock();
9292 9293
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9294
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9295
}
P
Peter Zijlstra 已提交
9296 9297 9298 9299 9300 9301 9302 9303 9304

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9305
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9306 9307 9308 9309 9310 9311 9312 9313

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9314
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9315
{
9316
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9317

P
Peter Zijlstra 已提交
9318 9319
	perf_event_exit_cpu_context(cpu);

9320
	mutex_lock(&swhash->hlist_mutex);
9321
	swhash->online = false;
9322 9323
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9324 9325
}
#else
9326
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9327 9328
#endif

P
Peter Zijlstra 已提交
9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9349
static int
T
Thomas Gleixner 已提交
9350 9351 9352 9353
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9354
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9355 9356

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9357
	case CPU_DOWN_FAILED:
9358
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9359 9360
		break;

P
Peter Zijlstra 已提交
9361
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9362
	case CPU_DOWN_PREPARE:
9363
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9364 9365 9366 9367 9368 9369 9370 9371
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9372
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9373
{
9374 9375
	int ret;

P
Peter Zijlstra 已提交
9376 9377
	idr_init(&pmu_idr);

9378
	perf_event_init_all_cpus();
9379
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9380 9381 9382
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9383 9384
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9385
	register_reboot_notifier(&perf_reboot_notifier);
9386 9387 9388

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9389 9390 9391

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9392 9393 9394 9395 9396 9397 9398

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9399
}
P
Peter Zijlstra 已提交
9400

9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9440 9441

#ifdef CONFIG_CGROUP_PERF
9442 9443
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9444 9445 9446
{
	struct perf_cgroup *jc;

9447
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9460
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9461
{
9462 9463
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9464 9465 9466 9467 9468 9469 9470
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9471
	rcu_read_lock();
S
Stephane Eranian 已提交
9472
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9473
	rcu_read_unlock();
S
Stephane Eranian 已提交
9474 9475 9476
	return 0;
}

9477 9478
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9479
{
9480 9481
	struct task_struct *task;

9482
	cgroup_taskset_for_each(task, tset)
9483
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9484 9485
}

9486
struct cgroup_subsys perf_event_cgrp_subsys = {
9487 9488
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9489
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9490 9491
};
#endif /* CONFIG_CGROUP_PERF */