core.c 218.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static void event_function_call(struct perf_event *event,
				int (*active)(void *),
				void (*inactive)(void *),
				void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		cpu_function_call(event->cpu, active, data);
		return;
	}

again:
	if (!task_function_call(task, active, data))
		return;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	inactive(data);
	raw_spin_unlock_irq(&ctx->lock);
}

160 161 162 163 164 165 166
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
167 168
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
169 170
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
171

172 173 174 175 176 177 178
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

179 180 181 182 183 184
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
185 186 187 188
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
189
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
190
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
191
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
192

193 194 195
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
196
static atomic_t nr_freq_events __read_mostly;
197
static atomic_t nr_switch_events __read_mostly;
198

P
Peter Zijlstra 已提交
199 200 201 202
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

203
/*
204
 * perf event paranoia level:
205 206
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
207
 *   1 - disallow cpu events for unpriv
208
 *   2 - disallow kernel profiling for unpriv
209
 */
210
int sysctl_perf_event_paranoid __read_mostly = 1;
211

212 213
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
214 215

/*
216
 * max perf event sample rate
217
 */
218 219 220 221 222 223 224 225 226
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
227 228
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
229

230
static void update_perf_cpu_limits(void)
231 232 233 234
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
235
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
236
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
237
}
P
Peter Zijlstra 已提交
238

239 240
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
241 242 243 244
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
245
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
246 247 248 249 250

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
269 270 271

	return 0;
}
272

273 274 275 276 277 278 279
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
280
static DEFINE_PER_CPU(u64, running_sample_length);
281

282
static void perf_duration_warn(struct irq_work *w)
283
{
284
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
285
	u64 avg_local_sample_len;
286
	u64 local_samples_len;
287

288
	local_samples_len = __this_cpu_read(running_sample_length);
289 290 291 292 293
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
294
			avg_local_sample_len, allowed_ns >> 1,
295 296 297 298 299 300 301
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
302
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
303 304
	u64 avg_local_sample_len;
	u64 local_samples_len;
305

P
Peter Zijlstra 已提交
306
	if (allowed_ns == 0)
307 308 309
		return;

	/* decay the counter by 1 average sample */
310
	local_samples_len = __this_cpu_read(running_sample_length);
311 312
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
313
	__this_cpu_write(running_sample_length, local_samples_len);
314 315 316 317 318 319 320 321

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
322
	if (avg_local_sample_len <= allowed_ns)
323 324 325 326 327 328 329 330 331 332
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
333

334 335 336 337 338 339
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
340 341
}

342
static atomic64_t perf_event_id;
343

344 345 346 347
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
348 349 350 351 352
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
353

354
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
355

356
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
357
{
358
	return "pmu";
T
Thomas Gleixner 已提交
359 360
}

361 362 363 364 365
static inline u64 perf_clock(void)
{
	return local_clock();
}

366 367 368 369 370
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
371 372 373 374 375 376
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
393 394 395 396 397 398 399 400
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
417 418 419 420
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
421
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
460 461
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
462
	/*
463 464
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
465
	 */
466
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
467 468
		return;

469
	cgrp = perf_cgroup_from_task(current, event->ctx);
470 471 472 473 474
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
475 476 477
}

static inline void
478 479
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
480 481 482 483
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

484 485 486 487 488 489
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
490 491
		return;

492
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
493
	info = this_cpu_ptr(cgrp->info);
494
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
495 496 497 498 499 500 501 502 503 504 505
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
506
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
526 527
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
528 529 530 531 532 533 534 535 536

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
537 538
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
539 540 541 542 543 544 545 546 547 548 549

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
550
				WARN_ON_ONCE(cpuctx->cgrp);
551 552 553 554
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
555 556
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
557
				 */
558
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
559 560
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
561 562
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
563 564 565 566 567 568
		}
	}

	local_irq_restore(flags);
}

569 570
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
571
{
572 573 574
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

575
	rcu_read_lock();
576 577
	/*
	 * we come here when we know perf_cgroup_events > 0
578 579
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
580
	 */
581
	cgrp1 = perf_cgroup_from_task(task, NULL);
582
	cgrp2 = perf_cgroup_from_task(next, NULL);
583 584 585 586 587 588 589 590

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
591 592

	rcu_read_unlock();
S
Stephane Eranian 已提交
593 594
}

595 596
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
597
{
598 599 600
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

601
	rcu_read_lock();
602 603
	/*
	 * we come here when we know perf_cgroup_events > 0
604 605
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
606
	 */
607 608
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
609 610 611 612 613 614 615 616

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
617 618

	rcu_read_unlock();
S
Stephane Eranian 已提交
619 620 621 622 623 624 625 626
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
627 628
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
629

630
	if (!f.file)
S
Stephane Eranian 已提交
631 632
		return -EBADF;

A
Al Viro 已提交
633
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
634
					 &perf_event_cgrp_subsys);
635 636 637 638
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
652
out:
653
	fdput(f);
S
Stephane Eranian 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

727 728
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
729 730 731
{
}

732 733
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
734 735 736 737 738 739 740 741 742 743 744
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
745 746
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

777 778 779 780 781 782 783 784
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
785
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
786 787 788 789 790 791 792 793 794
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
795 796
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
797
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
798 799 800
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
801

P
Peter Zijlstra 已提交
802
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
803 804
}

805
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
806
{
807
	struct hrtimer *timer = &cpuctx->hrtimer;
808
	struct pmu *pmu = cpuctx->ctx.pmu;
809
	u64 interval;
810 811 812 813 814

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

815 816 817 818
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
819 820 821
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
822

823
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
824

P
Peter Zijlstra 已提交
825 826
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
827
	timer->function = perf_mux_hrtimer_handler;
828 829
}

830
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
831
{
832
	struct hrtimer *timer = &cpuctx->hrtimer;
833
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
834
	unsigned long flags;
835 836 837

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
838
		return 0;
839

P
Peter Zijlstra 已提交
840 841 842 843 844 845 846
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
847

848
	return 0;
849 850
}

P
Peter Zijlstra 已提交
851
void perf_pmu_disable(struct pmu *pmu)
852
{
P
Peter Zijlstra 已提交
853 854 855
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
856 857
}

P
Peter Zijlstra 已提交
858
void perf_pmu_enable(struct pmu *pmu)
859
{
P
Peter Zijlstra 已提交
860 861 862
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
863 864
}

865
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
866 867

/*
868 869 870 871
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
872
 */
873
static void perf_event_ctx_activate(struct perf_event_context *ctx)
874
{
875
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
876

877
	WARN_ON(!irqs_disabled());
878

879 880 881 882 883 884 885 886 887 888 889 890
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
891 892
}

893
static void get_ctx(struct perf_event_context *ctx)
894
{
895
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 897
}

898 899 900 901 902 903 904 905 906
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

907
static void put_ctx(struct perf_event_context *ctx)
908
{
909 910 911
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
912 913
		if (ctx->task)
			put_task_struct(ctx->task);
914
		call_rcu(&ctx->rcu_head, free_ctx);
915
	}
916 917
}

P
Peter Zijlstra 已提交
918 919 920 921 922 923 924
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
979 980
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
981 982 983 984 985 986 987 988 989 990 991 992
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
993
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001 1002
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1003 1004 1005 1006 1007 1008
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1009 1010 1011 1012 1013 1014 1015
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1016 1017 1018 1019 1020 1021 1022
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1023
{
1024 1025 1026 1027 1028
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1029
		ctx->parent_ctx = NULL;
1030
	ctx->generation++;
1031 1032

	return parent_ctx;
1033 1034
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1057
/*
1058
 * If we inherit events we want to return the parent event id
1059 1060
 * to userspace.
 */
1061
static u64 primary_event_id(struct perf_event *event)
1062
{
1063
	u64 id = event->id;
1064

1065 1066
	if (event->parent)
		id = event->parent->id;
1067 1068 1069 1070

	return id;
}

1071
/*
1072
 * Get the perf_event_context for a task and lock it.
1073 1074 1075
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1076
static struct perf_event_context *
P
Peter Zijlstra 已提交
1077
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1078
{
1079
	struct perf_event_context *ctx;
1080

P
Peter Zijlstra 已提交
1081
retry:
1082 1083 1084
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1085
	 * part of the read side critical section was irqs-enabled -- see
1086 1087 1088
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1089
	 * side critical section has interrupts disabled.
1090
	 */
1091
	local_irq_save(*flags);
1092
	rcu_read_lock();
P
Peter Zijlstra 已提交
1093
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1094 1095 1096 1097
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1098
		 * perf_event_task_sched_out, though the
1099 1100 1101 1102 1103 1104
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1105
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1106
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1107
			raw_spin_unlock(&ctx->lock);
1108
			rcu_read_unlock();
1109
			local_irq_restore(*flags);
1110 1111
			goto retry;
		}
1112 1113

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1114
			raw_spin_unlock(&ctx->lock);
1115 1116
			ctx = NULL;
		}
1117 1118
	}
	rcu_read_unlock();
1119 1120
	if (!ctx)
		local_irq_restore(*flags);
1121 1122 1123 1124 1125 1126 1127 1128
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1129 1130
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1131
{
1132
	struct perf_event_context *ctx;
1133 1134
	unsigned long flags;

P
Peter Zijlstra 已提交
1135
	ctx = perf_lock_task_context(task, ctxn, &flags);
1136 1137
	if (ctx) {
		++ctx->pin_count;
1138
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1139 1140 1141 1142
	}
	return ctx;
}

1143
static void perf_unpin_context(struct perf_event_context *ctx)
1144 1145 1146
{
	unsigned long flags;

1147
	raw_spin_lock_irqsave(&ctx->lock, flags);
1148
	--ctx->pin_count;
1149
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1163 1164 1165
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1166 1167 1168 1169

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1170 1171 1172
	return ctx ? ctx->time : 0;
}

1173 1174
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1175
 * The caller of this function needs to hold the ctx->lock.
1176 1177 1178 1179 1180 1181 1182 1183 1184
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1196
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1197 1198
	else if (ctx->is_active)
		run_end = ctx->time;
1199 1200 1201 1202
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1203 1204 1205 1206

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1207
		run_end = perf_event_time(event);
1208 1209

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1210

1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1225 1226 1227 1228 1229 1230 1231 1232 1233
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1234
/*
1235
 * Add a event from the lists for its context.
1236 1237
 * Must be called with ctx->mutex and ctx->lock held.
 */
1238
static void
1239
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1240
{
P
Peter Zijlstra 已提交
1241 1242
	lockdep_assert_held(&ctx->lock);

1243 1244
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1245 1246

	/*
1247 1248 1249
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1250
	 */
1251
	if (event->group_leader == event) {
1252 1253
		struct list_head *list;

1254 1255 1256
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1257 1258
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1259
	}
P
Peter Zijlstra 已提交
1260

1261
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1262 1263
		ctx->nr_cgroups++;

1264 1265 1266
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1267
		ctx->nr_stat++;
1268 1269

	ctx->generation++;
1270 1271
}

J
Jiri Olsa 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1281
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1297
		nr += nr_siblings;
1298 1299 1300 1301 1302 1303 1304
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1305
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1306 1307 1308 1309 1310 1311 1312
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1313 1314 1315 1316 1317 1318
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1319 1320 1321
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1322 1323 1324
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1325 1326 1327
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1328 1329 1330
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1331 1332 1333
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1345 1346 1347 1348 1349 1350
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1351 1352 1353 1354 1355 1356
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1357 1358 1359
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1360 1361 1362 1363 1364 1365 1366 1367 1368
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1369
	event->id_header_size = size;
1370 1371
}

P
Peter Zijlstra 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1393 1394
static void perf_group_attach(struct perf_event *event)
{
1395
	struct perf_event *group_leader = event->group_leader, *pos;
1396

P
Peter Zijlstra 已提交
1397 1398 1399 1400 1401 1402
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1403 1404 1405 1406 1407
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1408 1409
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1410 1411 1412 1413 1414 1415
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1416 1417 1418 1419 1420

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1421 1422
}

1423
/*
1424
 * Remove a event from the lists for its context.
1425
 * Must be called with ctx->mutex and ctx->lock held.
1426
 */
1427
static void
1428
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1429
{
1430
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1431 1432 1433 1434

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1435 1436 1437 1438
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1439
		return;
1440 1441 1442

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1443
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1444
		ctx->nr_cgroups--;
1445 1446 1447 1448
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1449 1450
		cpuctx = __get_cpu_context(ctx);
		/*
1451 1452
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1453 1454 1455 1456
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1457

1458 1459
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1460
		ctx->nr_stat--;
1461

1462
	list_del_rcu(&event->event_entry);
1463

1464 1465
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1466

1467
	update_group_times(event);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1478 1479

	ctx->generation++;
1480 1481
}

1482
static void perf_group_detach(struct perf_event *event)
1483 1484
{
	struct perf_event *sibling, *tmp;
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1501
		goto out;
1502 1503 1504 1505
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1506

1507
	/*
1508 1509
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1510
	 * to whatever list we are on.
1511
	 */
1512
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1513 1514
		if (list)
			list_move_tail(&sibling->group_entry, list);
1515
		sibling->group_leader = sibling;
1516 1517 1518

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1519 1520

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1521
	}
1522 1523 1524 1525 1526 1527

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1569 1570 1571 1572 1573 1574
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1575 1576 1577
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1578
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1579
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1580 1581
}

1582 1583
static void
event_sched_out(struct perf_event *event,
1584
		  struct perf_cpu_context *cpuctx,
1585
		  struct perf_event_context *ctx)
1586
{
1587
	u64 tstamp = perf_event_time(event);
1588
	u64 delta;
P
Peter Zijlstra 已提交
1589 1590 1591 1592

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1593 1594 1595 1596 1597 1598 1599 1600
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1601
		delta = tstamp - event->tstamp_stopped;
1602
		event->tstamp_running += delta;
1603
		event->tstamp_stopped = tstamp;
1604 1605
	}

1606
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1607
		return;
1608

1609 1610
	perf_pmu_disable(event->pmu);

1611 1612 1613 1614
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1615
	}
1616
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1617
	event->pmu->del(event, 0);
1618
	event->oncpu = -1;
1619

1620
	if (!is_software_event(event))
1621
		cpuctx->active_oncpu--;
1622 1623
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1624 1625
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1626
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1627
		cpuctx->exclusive = 0;
1628

1629 1630 1631
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1632
	perf_pmu_enable(event->pmu);
1633 1634
}

1635
static void
1636
group_sched_out(struct perf_event *group_event,
1637
		struct perf_cpu_context *cpuctx,
1638
		struct perf_event_context *ctx)
1639
{
1640
	struct perf_event *event;
1641
	int state = group_event->state;
1642

1643
	event_sched_out(group_event, cpuctx, ctx);
1644 1645 1646 1647

	/*
	 * Schedule out siblings (if any):
	 */
1648 1649
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1650

1651
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1652 1653 1654
		cpuctx->exclusive = 0;
}

1655 1656 1657 1658 1659
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
static void ___perf_remove_from_context(void *info)
{
	struct remove_event *re = info;
	struct perf_event *event = re->event;
	struct perf_event_context *ctx = event->ctx;

	if (re->detach_group)
		perf_group_detach(event);
	list_del_event(event, ctx);
}

T
Thomas Gleixner 已提交
1671
/*
1672
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1673
 *
1674
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1675 1676
 * remove it from the context list.
 */
1677
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1678
{
1679 1680
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1681
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1682
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1683

1684
	raw_spin_lock(&ctx->lock);
1685
	event_sched_out(event, cpuctx, ctx);
1686 1687
	if (re->detach_group)
		perf_group_detach(event);
1688
	list_del_event(event, ctx);
1689 1690 1691 1692
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1693
	raw_spin_unlock(&ctx->lock);
1694 1695

	return 0;
T
Thomas Gleixner 已提交
1696 1697 1698
}

/*
1699
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1700
 *
1701
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1702
 * call when the task is on a CPU.
1703
 *
1704 1705
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1706 1707
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1708
 * When called from perf_event_exit_task, it's OK because the
1709
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1710
 */
1711
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1712
{
1713
	struct perf_event_context *ctx = event->ctx;
1714 1715 1716 1717
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1718

1719 1720
	lockdep_assert_held(&ctx->mutex);

1721 1722
	event_function_call(event, __perf_remove_from_context,
			    ___perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1723 1724
}

1725
/*
1726
 * Cross CPU call to disable a performance event
1727
 */
1728
int __perf_event_disable(void *info)
1729
{
1730 1731
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1732
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1733 1734

	/*
1735 1736
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1737 1738 1739
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1740
	 */
1741
	if (ctx->task && cpuctx->task_ctx != ctx)
1742
		return -EINVAL;
1743

1744
	raw_spin_lock(&ctx->lock);
1745 1746

	/*
1747
	 * If the event is on, turn it off.
1748 1749
	 * If it is in error state, leave it in error state.
	 */
1750
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1751
		update_context_time(ctx);
S
Stephane Eranian 已提交
1752
		update_cgrp_time_from_event(event);
1753 1754 1755
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1756
		else
1757 1758
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1759 1760
	}

1761
	raw_spin_unlock(&ctx->lock);
1762 1763

	return 0;
1764 1765
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
void ___perf_event_disable(void *info)
{
	struct perf_event *event = info;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
	}
}

1780
/*
1781
 * Disable a event.
1782
 *
1783 1784
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1785
 * remains valid.  This condition is satisifed when called through
1786 1787 1788 1789
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1790
 * is the current context on this CPU and preemption is disabled,
1791
 * hence we can't get into perf_event_task_sched_out for this context.
1792
 */
P
Peter Zijlstra 已提交
1793
static void _perf_event_disable(struct perf_event *event)
1794
{
1795
	struct perf_event_context *ctx = event->ctx;
1796

1797
	raw_spin_lock_irq(&ctx->lock);
1798
	if (event->state <= PERF_EVENT_STATE_OFF) {
1799
		raw_spin_unlock_irq(&ctx->lock);
1800
		return;
1801
	}
1802
	raw_spin_unlock_irq(&ctx->lock);
1803 1804 1805

	event_function_call(event, __perf_event_disable,
			    ___perf_event_disable, event);
1806
}
P
Peter Zijlstra 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1820
EXPORT_SYMBOL_GPL(perf_event_disable);
1821

S
Stephane Eranian 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1857 1858 1859
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1860
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1861

1862
static int
1863
event_sched_in(struct perf_event *event,
1864
		 struct perf_cpu_context *cpuctx,
1865
		 struct perf_event_context *ctx)
1866
{
1867
	u64 tstamp = perf_event_time(event);
1868
	int ret = 0;
1869

1870 1871
	lockdep_assert_held(&ctx->lock);

1872
	if (event->state <= PERF_EVENT_STATE_OFF)
1873 1874
		return 0;

1875
	event->state = PERF_EVENT_STATE_ACTIVE;
1876
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1888 1889 1890 1891 1892
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1893 1894
	perf_pmu_disable(event->pmu);

1895 1896
	perf_set_shadow_time(event, ctx, tstamp);

1897 1898
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1899
	if (event->pmu->add(event, PERF_EF_START)) {
1900 1901
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1902 1903
		ret = -EAGAIN;
		goto out;
1904 1905
	}

1906 1907
	event->tstamp_running += tstamp - event->tstamp_stopped;

1908
	if (!is_software_event(event))
1909
		cpuctx->active_oncpu++;
1910 1911
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1912 1913
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1914

1915
	if (event->attr.exclusive)
1916 1917
		cpuctx->exclusive = 1;

1918 1919 1920
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1921 1922 1923 1924
out:
	perf_pmu_enable(event->pmu);

	return ret;
1925 1926
}

1927
static int
1928
group_sched_in(struct perf_event *group_event,
1929
	       struct perf_cpu_context *cpuctx,
1930
	       struct perf_event_context *ctx)
1931
{
1932
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1933
	struct pmu *pmu = ctx->pmu;
1934 1935
	u64 now = ctx->time;
	bool simulate = false;
1936

1937
	if (group_event->state == PERF_EVENT_STATE_OFF)
1938 1939
		return 0;

1940
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1941

1942
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1943
		pmu->cancel_txn(pmu);
1944
		perf_mux_hrtimer_restart(cpuctx);
1945
		return -EAGAIN;
1946
	}
1947 1948 1949 1950

	/*
	 * Schedule in siblings as one group (if any):
	 */
1951
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1952
		if (event_sched_in(event, cpuctx, ctx)) {
1953
			partial_group = event;
1954 1955 1956 1957
			goto group_error;
		}
	}

1958
	if (!pmu->commit_txn(pmu))
1959
		return 0;
1960

1961 1962 1963 1964
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1975
	 */
1976 1977
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1978 1979 1980 1981 1982 1983 1984 1985
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1986
	}
1987
	event_sched_out(group_event, cpuctx, ctx);
1988

P
Peter Zijlstra 已提交
1989
	pmu->cancel_txn(pmu);
1990

1991
	perf_mux_hrtimer_restart(cpuctx);
1992

1993 1994 1995
	return -EAGAIN;
}

1996
/*
1997
 * Work out whether we can put this event group on the CPU now.
1998
 */
1999
static int group_can_go_on(struct perf_event *event,
2000 2001 2002 2003
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2004
	 * Groups consisting entirely of software events can always go on.
2005
	 */
2006
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2007 2008 2009
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2010
	 * events can go on.
2011 2012 2013 2014 2015
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2016
	 * events on the CPU, it can't go on.
2017
	 */
2018
	if (event->attr.exclusive && cpuctx->active_oncpu)
2019 2020 2021 2022 2023 2024 2025 2026
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2027 2028
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2029
{
2030 2031
	u64 tstamp = perf_event_time(event);

2032
	list_add_event(event, ctx);
2033
	perf_group_attach(event);
2034 2035 2036
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2037 2038
}

2039 2040
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2041 2042 2043 2044 2045
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2046

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
static void ___perf_install_in_context(void *info)
{
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;

	/*
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
	 */
	add_event_to_ctx(event, ctx);
}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
{
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
}

T
Thomas Gleixner 已提交
2082
/*
2083
 * Cross CPU call to install and enable a performance event
2084 2085
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2086
 */
2087
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2088
{
2089 2090
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2091
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2092 2093 2094
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2095
	perf_ctx_lock(cpuctx, task_ctx);
2096
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2097 2098

	/*
2099
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2100
	 */
2101
	if (task_ctx)
2102
		task_ctx_sched_out(cpuctx, task_ctx);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2117 2118
		task = task_ctx->task;
	}
2119

2120
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2121

2122
	update_context_time(ctx);
S
Stephane Eranian 已提交
2123 2124 2125 2126 2127 2128
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2129

2130
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2131

2132
	/*
2133
	 * Schedule everything back in
2134
	 */
2135
	perf_event_sched_in(cpuctx, task_ctx, task);
2136 2137 2138

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2139 2140

	return 0;
T
Thomas Gleixner 已提交
2141 2142 2143
}

/*
2144
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2145 2146
 */
static void
2147 2148
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2149 2150
			int cpu)
{
2151 2152
	lockdep_assert_held(&ctx->mutex);

2153
	event->ctx = ctx;
2154 2155
	if (event->cpu != -1)
		event->cpu = cpu;
2156

2157 2158
	event_function_call(event, __perf_install_in_context,
			    ___perf_install_in_context, event);
T
Thomas Gleixner 已提交
2159 2160
}

2161
/*
2162
 * Put a event into inactive state and update time fields.
2163 2164 2165 2166 2167 2168
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2169
static void __perf_event_mark_enabled(struct perf_event *event)
2170
{
2171
	struct perf_event *sub;
2172
	u64 tstamp = perf_event_time(event);
2173

2174
	event->state = PERF_EVENT_STATE_INACTIVE;
2175
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2176
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2177 2178
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2179
	}
2180 2181
}

2182
/*
2183
 * Cross CPU call to enable a performance event
2184
 */
2185
static int __perf_event_enable(void *info)
2186
{
2187 2188 2189
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2190
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2191
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2192

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2203
		return -EINVAL;
2204

2205 2206
	perf_ctx_lock(cpuctx, task_ctx);
	WARN_ON_ONCE(&cpuctx->ctx != ctx && task_ctx != ctx);
2207
	update_context_time(ctx);
2208

2209
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2210
		goto unlock;
S
Stephane Eranian 已提交
2211 2212 2213 2214

	/*
	 * set current task's cgroup time reference point
	 */
2215
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2216

2217
	__perf_event_mark_enabled(event);
2218

S
Stephane Eranian 已提交
2219 2220 2221
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2222
		goto unlock;
S
Stephane Eranian 已提交
2223
	}
2224

2225
	/*
2226
	 * If the event is in a group and isn't the group leader,
2227
	 * then don't put it on unless the group is on.
2228
	 */
2229
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2230
		goto unlock;
2231

2232
	ctx_resched(cpuctx, task_ctx);
2233

P
Peter Zijlstra 已提交
2234
unlock:
2235
	perf_ctx_unlock(cpuctx, task_ctx);
2236 2237

	return 0;
2238 2239
}

2240 2241 2242 2243 2244
void ___perf_event_enable(void *info)
{
	__perf_event_mark_enabled((struct perf_event *)info);
}

2245
/*
2246
 * Enable a event.
2247
 *
2248 2249
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2250
 * remains valid.  This condition is satisfied when called through
2251 2252
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2253
 */
P
Peter Zijlstra 已提交
2254
static void _perf_event_enable(struct perf_event *event)
2255
{
2256
	struct perf_event_context *ctx = event->ctx;
2257

2258 2259 2260
	raw_spin_lock_irq(&ctx->lock);
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
		raw_spin_unlock_irq(&ctx->lock);
2261 2262 2263 2264
		return;
	}

	/*
2265
	 * If the event is in error state, clear that first.
2266 2267 2268 2269
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2270
	 */
2271 2272
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2273
	raw_spin_unlock_irq(&ctx->lock);
2274

2275 2276
	event_function_call(event, __perf_event_enable,
			    ___perf_event_enable, event);
2277
}
P
Peter Zijlstra 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2290
EXPORT_SYMBOL_GPL(perf_event_enable);
2291

P
Peter Zijlstra 已提交
2292
static int _perf_event_refresh(struct perf_event *event, int refresh)
2293
{
2294
	/*
2295
	 * not supported on inherited events
2296
	 */
2297
	if (event->attr.inherit || !is_sampling_event(event))
2298 2299
		return -EINVAL;

2300
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2301
	_perf_event_enable(event);
2302 2303

	return 0;
2304
}
P
Peter Zijlstra 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2320
EXPORT_SYMBOL_GPL(perf_event_refresh);
2321

2322 2323 2324
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2325
{
2326
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2327 2328 2329
	struct perf_event *event;

	lockdep_assert_held(&ctx->lock);
2330

2331
	ctx->is_active &= ~event_type;
2332
	if (likely(!ctx->nr_events))
2333 2334
		return;

2335
	update_context_time(ctx);
S
Stephane Eranian 已提交
2336
	update_cgrp_time_from_cpuctx(cpuctx);
2337
	if (!ctx->nr_active)
2338
		return;
2339

P
Peter Zijlstra 已提交
2340
	perf_pmu_disable(ctx->pmu);
2341
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2342 2343
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2344
	}
2345

2346
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2347
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2348
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2349
	}
P
Peter Zijlstra 已提交
2350
	perf_pmu_enable(ctx->pmu);
2351 2352
}

2353
/*
2354 2355 2356 2357 2358 2359
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2360
 */
2361 2362
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2363
{
2364 2365 2366
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2389 2390
}

2391 2392
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2393 2394 2395
{
	u64 value;

2396
	if (!event->attr.inherit_stat)
2397 2398 2399
		return;

	/*
2400
	 * Update the event value, we cannot use perf_event_read()
2401 2402
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2403
	 * we know the event must be on the current CPU, therefore we
2404 2405
	 * don't need to use it.
	 */
2406 2407
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2408 2409
		event->pmu->read(event);
		/* fall-through */
2410

2411 2412
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2413 2414 2415 2416 2417 2418 2419
		break;

	default:
		break;
	}

	/*
2420
	 * In order to keep per-task stats reliable we need to flip the event
2421 2422
	 * values when we flip the contexts.
	 */
2423 2424 2425
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2426

2427 2428
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2429

2430
	/*
2431
	 * Since we swizzled the values, update the user visible data too.
2432
	 */
2433 2434
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2435 2436
}

2437 2438
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2439
{
2440
	struct perf_event *event, *next_event;
2441 2442 2443 2444

	if (!ctx->nr_stat)
		return;

2445 2446
	update_context_time(ctx);

2447 2448
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2449

2450 2451
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2452

2453 2454
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2455

2456
		__perf_event_sync_stat(event, next_event);
2457

2458 2459
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2460 2461 2462
	}
}

2463 2464
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2465
{
P
Peter Zijlstra 已提交
2466
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2467
	struct perf_event_context *next_ctx;
2468
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2469
	struct perf_cpu_context *cpuctx;
2470
	int do_switch = 1;
T
Thomas Gleixner 已提交
2471

P
Peter Zijlstra 已提交
2472 2473
	if (likely(!ctx))
		return;
2474

P
Peter Zijlstra 已提交
2475 2476
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2477 2478
		return;

2479
	rcu_read_lock();
P
Peter Zijlstra 已提交
2480
	next_ctx = next->perf_event_ctxp[ctxn];
2481 2482 2483 2484 2485 2486 2487
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2488
	if (!parent && !next_parent)
2489 2490 2491
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2492 2493 2494 2495 2496 2497 2498 2499 2500
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2501 2502
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2503
		if (context_equiv(ctx, next_ctx)) {
2504 2505
			/*
			 * XXX do we need a memory barrier of sorts
2506
			 * wrt to rcu_dereference() of perf_event_ctxp
2507
			 */
P
Peter Zijlstra 已提交
2508 2509
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2510 2511
			ctx->task = next;
			next_ctx->task = task;
2512 2513 2514

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2515
			do_switch = 0;
2516

2517
			perf_event_sync_stat(ctx, next_ctx);
2518
		}
2519 2520
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2521
	}
2522
unlock:
2523
	rcu_read_unlock();
2524

2525
	if (do_switch) {
2526
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2527
		task_ctx_sched_out(cpuctx, ctx);
2528
		raw_spin_unlock(&ctx->lock);
2529
	}
T
Thomas Gleixner 已提交
2530 2531
}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2582 2583 2584
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2599 2600
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2601 2602 2603
{
	int ctxn;

2604 2605 2606
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2607 2608 2609
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2610 2611
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2612 2613 2614 2615 2616 2617

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2618
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2619
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2620 2621
}

2622 2623
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2624
{
2625 2626
	if (!cpuctx->task_ctx)
		return;
2627 2628 2629 2630

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2631
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2632 2633 2634
	cpuctx->task_ctx = NULL;
}

2635 2636 2637 2638 2639 2640 2641
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2642 2643
}

2644
static void
2645
ctx_pinned_sched_in(struct perf_event_context *ctx,
2646
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2647
{
2648
	struct perf_event *event;
T
Thomas Gleixner 已提交
2649

2650 2651
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2652
			continue;
2653
		if (!event_filter_match(event))
2654 2655
			continue;

S
Stephane Eranian 已提交
2656 2657 2658 2659
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2660
		if (group_can_go_on(event, cpuctx, 1))
2661
			group_sched_in(event, cpuctx, ctx);
2662 2663 2664 2665 2666

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2667 2668 2669
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2670
		}
2671
	}
2672 2673 2674 2675
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2676
		      struct perf_cpu_context *cpuctx)
2677 2678 2679
{
	struct perf_event *event;
	int can_add_hw = 1;
2680

2681 2682 2683
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2684
			continue;
2685 2686
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2687
		 * of events:
2688
		 */
2689
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2690 2691
			continue;

S
Stephane Eranian 已提交
2692 2693 2694 2695
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2696
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2697
			if (group_sched_in(event, cpuctx, ctx))
2698
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2699
		}
T
Thomas Gleixner 已提交
2700
	}
2701 2702 2703 2704 2705
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2706 2707
	     enum event_type_t event_type,
	     struct task_struct *task)
2708
{
2709
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2710 2711 2712
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2713

2714
	ctx->is_active |= event_type;
2715
	if (likely(!ctx->nr_events))
2716
		return;
2717

S
Stephane Eranian 已提交
2718 2719
	now = perf_clock();
	ctx->timestamp = now;
2720
	perf_cgroup_set_timestamp(task, ctx);
2721 2722 2723 2724
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2725
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2726
		ctx_pinned_sched_in(ctx, cpuctx);
2727 2728

	/* Then walk through the lower prio flexible groups */
2729
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2730
		ctx_flexible_sched_in(ctx, cpuctx);
2731 2732
}

2733
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2734 2735
			     enum event_type_t event_type,
			     struct task_struct *task)
2736 2737 2738
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2739
	ctx_sched_in(ctx, cpuctx, event_type, task);
2740 2741
}

S
Stephane Eranian 已提交
2742 2743
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2744
{
P
Peter Zijlstra 已提交
2745
	struct perf_cpu_context *cpuctx;
2746

P
Peter Zijlstra 已提交
2747
	cpuctx = __get_cpu_context(ctx);
2748 2749 2750
	if (cpuctx->task_ctx == ctx)
		return;

2751
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2752
	perf_pmu_disable(ctx->pmu);
2753 2754 2755 2756 2757 2758 2759
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2760 2761
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2762

2763 2764
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2765 2766
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2767 2768
}

P
Peter Zijlstra 已提交
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2780 2781
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2782 2783 2784 2785
{
	struct perf_event_context *ctx;
	int ctxn;

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2796 2797 2798 2799 2800
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2801
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2802
	}
2803

2804 2805 2806
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2807 2808
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2809 2810
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2838
#define REDUCE_FLS(a, b)		\
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2878 2879 2880
	if (!divisor)
		return dividend;

2881 2882 2883
	return div64_u64(dividend, divisor);
}

2884 2885 2886
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2887
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2888
{
2889
	struct hw_perf_event *hwc = &event->hw;
2890
	s64 period, sample_period;
2891 2892
	s64 delta;

2893
	period = perf_calculate_period(event, nsec, count);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2904

2905
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2906 2907 2908
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2909
		local64_set(&hwc->period_left, 0);
2910 2911 2912

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2913
	}
2914 2915
}

2916 2917 2918 2919 2920 2921 2922
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2923
{
2924 2925
	struct perf_event *event;
	struct hw_perf_event *hwc;
2926
	u64 now, period = TICK_NSEC;
2927
	s64 delta;
2928

2929 2930 2931 2932 2933 2934
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2935 2936
		return;

2937
	raw_spin_lock(&ctx->lock);
2938
	perf_pmu_disable(ctx->pmu);
2939

2940
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2941
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2942 2943
			continue;

2944
		if (!event_filter_match(event))
2945 2946
			continue;

2947 2948
		perf_pmu_disable(event->pmu);

2949
		hwc = &event->hw;
2950

2951
		if (hwc->interrupts == MAX_INTERRUPTS) {
2952
			hwc->interrupts = 0;
2953
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2954
			event->pmu->start(event, 0);
2955 2956
		}

2957
		if (!event->attr.freq || !event->attr.sample_freq)
2958
			goto next;
2959

2960 2961 2962 2963 2964
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2965
		now = local64_read(&event->count);
2966 2967
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2968

2969 2970 2971
		/*
		 * restart the event
		 * reload only if value has changed
2972 2973 2974
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2975
		 */
2976
		if (delta > 0)
2977
			perf_adjust_period(event, period, delta, false);
2978 2979

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2980 2981
	next:
		perf_pmu_enable(event->pmu);
2982
	}
2983

2984
	perf_pmu_enable(ctx->pmu);
2985
	raw_spin_unlock(&ctx->lock);
2986 2987
}

2988
/*
2989
 * Round-robin a context's events:
2990
 */
2991
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2992
{
2993 2994 2995 2996 2997 2998
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2999 3000
}

3001
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3002
{
P
Peter Zijlstra 已提交
3003
	struct perf_event_context *ctx = NULL;
3004
	int rotate = 0;
3005

3006 3007 3008 3009
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3010

P
Peter Zijlstra 已提交
3011
	ctx = cpuctx->task_ctx;
3012 3013 3014 3015
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3016

3017
	if (!rotate)
3018 3019
		goto done;

3020
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3021
	perf_pmu_disable(cpuctx->ctx.pmu);
3022

3023 3024 3025
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3026

3027 3028 3029
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3030

3031
	perf_event_sched_in(cpuctx, ctx, current);
3032

3033 3034
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3035
done:
3036 3037

	return rotate;
3038 3039
}

3040 3041 3042
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3043
	if (atomic_read(&nr_freq_events) ||
3044
	    __this_cpu_read(perf_throttled_count))
3045
		return false;
3046 3047
	else
		return true;
3048 3049 3050
}
#endif

3051 3052
void perf_event_task_tick(void)
{
3053 3054
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3055
	int throttled;
3056

3057 3058
	WARN_ON(!irqs_disabled());

3059 3060 3061
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3062
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3063
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3064 3065
}

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3076
	__perf_event_mark_enabled(event);
3077 3078 3079 3080

	return 1;
}

3081
/*
3082
 * Enable all of a task's events that have been marked enable-on-exec.
3083 3084
 * This expects task == current.
 */
3085
static void perf_event_enable_on_exec(int ctxn)
3086
{
3087
	struct perf_event_context *ctx, *clone_ctx = NULL;
3088
	struct perf_cpu_context *cpuctx;
3089
	struct perf_event *event;
3090 3091 3092 3093
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3094
	ctx = current->perf_event_ctxp[ctxn];
3095
	if (!ctx || !ctx->nr_events)
3096 3097
		goto out;

3098 3099 3100 3101
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3102 3103

	/*
3104
	 * Unclone and reschedule this context if we enabled any event.
3105
	 */
3106
	if (enabled) {
3107
		clone_ctx = unclone_ctx(ctx);
3108 3109 3110
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3111

P
Peter Zijlstra 已提交
3112
out:
3113
	local_irq_restore(flags);
3114 3115 3116

	if (clone_ctx)
		put_ctx(clone_ctx);
3117 3118
}

3119 3120 3121 3122 3123
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3124 3125
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3126 3127 3128
	rcu_read_unlock();
}

3129 3130 3131
struct perf_read_data {
	struct perf_event *event;
	bool group;
3132
	int ret;
3133 3134
};

T
Thomas Gleixner 已提交
3135
/*
3136
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3137
 */
3138
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3139
{
3140 3141
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3142
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3143
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3144
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3145

3146 3147 3148 3149
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3150 3151
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3152 3153 3154 3155
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3156
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3157
	if (ctx->is_active) {
3158
		update_context_time(ctx);
S
Stephane Eranian 已提交
3159 3160
		update_cgrp_time_from_event(event);
	}
3161

3162
	update_event_times(event);
3163 3164
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3165

3166 3167 3168
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3169
		goto unlock;
3170 3171 3172 3173 3174
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3175 3176 3177

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3178 3179 3180 3181 3182
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3183
			sub->pmu->read(sub);
3184
		}
3185
	}
3186 3187

	data->ret = pmu->commit_txn(pmu);
3188 3189

unlock:
3190
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3191 3192
}

P
Peter Zijlstra 已提交
3193 3194
static inline u64 perf_event_count(struct perf_event *event)
{
3195 3196 3197 3198
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3199 3200
}

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3254
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3255
{
3256 3257
	int ret = 0;

T
Thomas Gleixner 已提交
3258
	/*
3259 3260
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3261
	 */
3262
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3263 3264 3265
		struct perf_read_data data = {
			.event = event,
			.group = group,
3266
			.ret = 0,
3267
		};
3268
		smp_call_function_single(event->oncpu,
3269
					 __perf_event_read, &data, 1);
3270
		ret = data.ret;
3271
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3272 3273 3274
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3275
		raw_spin_lock_irqsave(&ctx->lock, flags);
3276 3277 3278 3279 3280
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3281
		if (ctx->is_active) {
3282
			update_context_time(ctx);
S
Stephane Eranian 已提交
3283 3284
			update_cgrp_time_from_event(event);
		}
3285 3286 3287 3288
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3289
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3290
	}
3291 3292

	return ret;
T
Thomas Gleixner 已提交
3293 3294
}

3295
/*
3296
 * Initialize the perf_event context in a task_struct:
3297
 */
3298
static void __perf_event_init_context(struct perf_event_context *ctx)
3299
{
3300
	raw_spin_lock_init(&ctx->lock);
3301
	mutex_init(&ctx->mutex);
3302
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3303 3304
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3305 3306
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3307
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3323
	}
3324 3325 3326
	ctx->pmu = pmu;

	return ctx;
3327 3328
}

3329 3330 3331 3332 3333
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3334 3335

	rcu_read_lock();
3336
	if (!vpid)
T
Thomas Gleixner 已提交
3337 3338
		task = current;
	else
3339
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3340 3341 3342 3343 3344 3345 3346 3347
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3348 3349 3350 3351
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3352 3353 3354 3355 3356 3357 3358
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3359 3360 3361
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3362
static struct perf_event_context *
3363 3364
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3365
{
3366
	struct perf_event_context *ctx, *clone_ctx = NULL;
3367
	struct perf_cpu_context *cpuctx;
3368
	void *task_ctx_data = NULL;
3369
	unsigned long flags;
P
Peter Zijlstra 已提交
3370
	int ctxn, err;
3371
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3372

3373
	if (!task) {
3374
		/* Must be root to operate on a CPU event: */
3375
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3376 3377 3378
			return ERR_PTR(-EACCES);

		/*
3379
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3380 3381 3382
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3383
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3384 3385
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3386
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3387
		ctx = &cpuctx->ctx;
3388
		get_ctx(ctx);
3389
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3390 3391 3392 3393

		return ctx;
	}

P
Peter Zijlstra 已提交
3394 3395 3396 3397 3398
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3399 3400 3401 3402 3403 3404 3405 3406
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3407
retry:
P
Peter Zijlstra 已提交
3408
	ctx = perf_lock_task_context(task, ctxn, &flags);
3409
	if (ctx) {
3410
		clone_ctx = unclone_ctx(ctx);
3411
		++ctx->pin_count;
3412 3413 3414 3415 3416

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3417
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3418 3419 3420

		if (clone_ctx)
			put_ctx(clone_ctx);
3421
	} else {
3422
		ctx = alloc_perf_context(pmu, task);
3423 3424 3425
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3426

3427 3428 3429 3430 3431
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3442
		else {
3443
			get_ctx(ctx);
3444
			++ctx->pin_count;
3445
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3446
		}
3447 3448 3449
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3450
			put_ctx(ctx);
3451 3452 3453 3454

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3455 3456 3457
		}
	}

3458
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3459
	return ctx;
3460

P
Peter Zijlstra 已提交
3461
errout:
3462
	kfree(task_ctx_data);
3463
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3464 3465
}

L
Li Zefan 已提交
3466
static void perf_event_free_filter(struct perf_event *event);
3467
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3468

3469
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3470
{
3471
	struct perf_event *event;
P
Peter Zijlstra 已提交
3472

3473 3474 3475
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3476
	perf_event_free_filter(event);
3477
	kfree(event);
P
Peter Zijlstra 已提交
3478 3479
}

3480 3481
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3482

3483
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3484
{
3485 3486 3487 3488 3489 3490
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3491

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3505 3506
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3507 3508 3509 3510
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3511 3512 3513 3514 3515 3516 3517
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3518

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3604 3605
static void __free_event(struct perf_event *event)
{
3606
	if (!event->parent) {
3607 3608
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3609
	}
3610

3611 3612
	perf_event_free_bpf_prog(event);

3613 3614 3615 3616 3617 3618
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3619 3620
	if (event->pmu) {
		exclusive_event_destroy(event);
3621
		module_put(event->pmu->module);
3622
	}
3623

3624 3625
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3626 3627

static void _free_event(struct perf_event *event)
3628
{
3629
	irq_work_sync(&event->pending);
3630

3631
	unaccount_event(event);
3632

3633
	if (event->rb) {
3634 3635 3636 3637 3638 3639 3640
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3641
		ring_buffer_attach(event, NULL);
3642
		mutex_unlock(&event->mmap_mutex);
3643 3644
	}

S
Stephane Eranian 已提交
3645 3646 3647
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3648
	__free_event(event);
3649 3650
}

P
Peter Zijlstra 已提交
3651 3652 3653 3654 3655
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3656
{
P
Peter Zijlstra 已提交
3657 3658 3659 3660 3661 3662
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3663

P
Peter Zijlstra 已提交
3664
	_free_event(event);
T
Thomas Gleixner 已提交
3665 3666
}

3667
/*
3668
 * Remove user event from the owner task.
3669
 */
3670
static void perf_remove_from_owner(struct perf_event *event)
3671
{
P
Peter Zijlstra 已提交
3672
	struct task_struct *owner;
3673

P
Peter Zijlstra 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3715 3716 3717 3718
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3719
	struct perf_event_context *ctx;
3720 3721 3722 3723 3724 3725

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3726

P
Peter Zijlstra 已提交
3727 3728 3729 3730 3731 3732 3733
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3734
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3735 3736 3737 3738
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3739 3740
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3741
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3742
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3743 3744

	_free_event(event);
3745 3746
}

P
Peter Zijlstra 已提交
3747 3748 3749 3750 3751 3752 3753
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3754 3755 3756
/*
 * Called when the last reference to the file is gone.
 */
3757 3758 3759 3760
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3761 3762
}

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3799
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3800
{
3801
	struct perf_event *child;
3802 3803
	u64 total = 0;

3804 3805 3806
	*enabled = 0;
	*running = 0;

3807
	mutex_lock(&event->child_mutex);
3808

3809
	(void)perf_event_read(event, false);
3810 3811
	total += perf_event_count(event);

3812 3813 3814 3815 3816 3817
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3818
		(void)perf_event_read(child, false);
3819
		total += perf_event_count(child);
3820 3821 3822
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3823
	mutex_unlock(&event->child_mutex);
3824 3825 3826

	return total;
}
3827
EXPORT_SYMBOL_GPL(perf_event_read_value);
3828

3829
static int __perf_read_group_add(struct perf_event *leader,
3830
					u64 read_format, u64 *values)
3831
{
3832 3833
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3834
	int ret;
P
Peter Zijlstra 已提交
3835

3836 3837 3838
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3839

3840 3841 3842 3843 3844 3845 3846 3847 3848
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3849

3850 3851 3852 3853 3854 3855 3856 3857 3858
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3859 3860
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3861

3862 3863 3864 3865 3866
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3867 3868

	return 0;
3869
}
3870

3871 3872 3873 3874 3875
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3876
	int ret;
3877
	u64 *values;
3878

3879
	lockdep_assert_held(&ctx->mutex);
3880

3881 3882 3883
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3884

3885 3886 3887 3888 3889 3890 3891
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3892

3893 3894 3895 3896 3897 3898 3899 3900 3901
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3902

3903
	mutex_unlock(&leader->child_mutex);
3904

3905
	ret = event->read_size;
3906 3907
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3908
	goto out;
3909

3910 3911 3912
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3913
	kfree(values);
3914
	return ret;
3915 3916
}

3917
static int perf_read_one(struct perf_event *event,
3918 3919
				 u64 read_format, char __user *buf)
{
3920
	u64 enabled, running;
3921 3922 3923
	u64 values[4];
	int n = 0;

3924 3925 3926 3927 3928
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3929
	if (read_format & PERF_FORMAT_ID)
3930
		values[n++] = primary_event_id(event);
3931 3932 3933 3934 3935 3936 3937

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3951
/*
3952
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3953 3954
 */
static ssize_t
3955
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3956
{
3957
	u64 read_format = event->attr.read_format;
3958
	int ret;
T
Thomas Gleixner 已提交
3959

3960
	/*
3961
	 * Return end-of-file for a read on a event that is in
3962 3963 3964
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3965
	if (event->state == PERF_EVENT_STATE_ERROR)
3966 3967
		return 0;

3968
	if (count < event->read_size)
3969 3970
		return -ENOSPC;

3971
	WARN_ON_ONCE(event->ctx->parent_ctx);
3972
	if (read_format & PERF_FORMAT_GROUP)
3973
		ret = perf_read_group(event, read_format, buf);
3974
	else
3975
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3976

3977
	return ret;
T
Thomas Gleixner 已提交
3978 3979 3980 3981 3982
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3983
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3984 3985
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3986

P
Peter Zijlstra 已提交
3987
	ctx = perf_event_ctx_lock(event);
3988
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
3989 3990 3991
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3992 3993 3994 3995
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3996
	struct perf_event *event = file->private_data;
3997
	struct ring_buffer *rb;
3998
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3999

4000
	poll_wait(file, &event->waitq, wait);
4001

4002
	if (is_event_hup(event))
4003
		return events;
P
Peter Zijlstra 已提交
4004

4005
	/*
4006 4007
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4008 4009
	 */
	mutex_lock(&event->mmap_mutex);
4010 4011
	rb = event->rb;
	if (rb)
4012
		events = atomic_xchg(&rb->poll, 0);
4013
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4014 4015 4016
	return events;
}

P
Peter Zijlstra 已提交
4017
static void _perf_event_reset(struct perf_event *event)
4018
{
4019
	(void)perf_event_read(event, false);
4020
	local64_set(&event->count, 0);
4021
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4022 4023
}

4024
/*
4025 4026 4027 4028
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4029
 */
4030 4031
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4032
{
4033
	struct perf_event *child;
P
Peter Zijlstra 已提交
4034

4035
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4036

4037 4038 4039
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4040
		func(child);
4041
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4042 4043
}

4044 4045
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4046
{
4047 4048
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4049

P
Peter Zijlstra 已提交
4050 4051
	lockdep_assert_held(&ctx->mutex);

4052
	event = event->group_leader;
4053

4054 4055
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4056
		perf_event_for_each_child(sibling, func);
4057 4058
}

4059 4060
struct period_event {
	struct perf_event *event;
4061
	u64 value;
4062
};
4063

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
static void ___perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	u64 value = pe->value;

	if (event->attr.freq) {
		event->attr.sample_freq = value;
	} else {
		event->attr.sample_period = value;
		event->hw.sample_period = value;
	}

	local64_set(&event->hw.period_left, 0);
}

4080 4081 4082 4083 4084 4085 4086
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4087

4088
	raw_spin_lock(&ctx->lock);
4089 4090
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4091
	} else {
4092 4093
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4094
	}
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4108
	raw_spin_unlock(&ctx->lock);
4109

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	pe.value = value;

4132 4133
	event_function_call(event, __perf_event_period,
			    ___perf_event_period, &pe);
4134

4135
	return 0;
4136 4137
}

4138 4139
static const struct file_operations perf_fops;

4140
static inline int perf_fget_light(int fd, struct fd *p)
4141
{
4142 4143 4144
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4145

4146 4147 4148
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4149
	}
4150 4151
	*p = f;
	return 0;
4152 4153 4154 4155
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4156
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4157
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4158

P
Peter Zijlstra 已提交
4159
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4160
{
4161
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4162
	u32 flags = arg;
4163 4164

	switch (cmd) {
4165
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4166
		func = _perf_event_enable;
4167
		break;
4168
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4169
		func = _perf_event_disable;
4170
		break;
4171
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4172
		func = _perf_event_reset;
4173
		break;
P
Peter Zijlstra 已提交
4174

4175
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4176
		return _perf_event_refresh(event, arg);
4177

4178 4179
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4180

4181 4182 4183 4184 4185 4186 4187 4188 4189
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4190
	case PERF_EVENT_IOC_SET_OUTPUT:
4191 4192 4193
	{
		int ret;
		if (arg != -1) {
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4204 4205 4206
		}
		return ret;
	}
4207

L
Li Zefan 已提交
4208 4209 4210
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4211 4212 4213
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4214
	default:
P
Peter Zijlstra 已提交
4215
		return -ENOTTY;
4216
	}
P
Peter Zijlstra 已提交
4217 4218

	if (flags & PERF_IOC_FLAG_GROUP)
4219
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4220
	else
4221
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4222 4223

	return 0;
4224 4225
}

P
Peter Zijlstra 已提交
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4259
int perf_event_task_enable(void)
4260
{
P
Peter Zijlstra 已提交
4261
	struct perf_event_context *ctx;
4262
	struct perf_event *event;
4263

4264
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4265 4266 4267 4268 4269
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4270
	mutex_unlock(&current->perf_event_mutex);
4271 4272 4273 4274

	return 0;
}

4275
int perf_event_task_disable(void)
4276
{
P
Peter Zijlstra 已提交
4277
	struct perf_event_context *ctx;
4278
	struct perf_event *event;
4279

4280
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4281 4282 4283 4284 4285
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4286
	mutex_unlock(&current->perf_event_mutex);
4287 4288 4289 4290

	return 0;
}

4291
static int perf_event_index(struct perf_event *event)
4292
{
P
Peter Zijlstra 已提交
4293 4294 4295
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4296
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4297 4298
		return 0;

4299
	return event->pmu->event_idx(event);
4300 4301
}

4302
static void calc_timer_values(struct perf_event *event,
4303
				u64 *now,
4304 4305
				u64 *enabled,
				u64 *running)
4306
{
4307
	u64 ctx_time;
4308

4309 4310
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4311 4312 4313 4314
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4330 4331
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4332 4333 4334 4335 4336

unlock:
	rcu_read_unlock();
}

4337 4338
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4339 4340 4341
{
}

4342 4343 4344 4345 4346
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4347
void perf_event_update_userpage(struct perf_event *event)
4348
{
4349
	struct perf_event_mmap_page *userpg;
4350
	struct ring_buffer *rb;
4351
	u64 enabled, running, now;
4352 4353

	rcu_read_lock();
4354 4355 4356 4357
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4358 4359 4360 4361 4362 4363 4364 4365 4366
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4367
	calc_timer_values(event, &now, &enabled, &running);
4368

4369
	userpg = rb->user_page;
4370 4371 4372 4373 4374
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4375
	++userpg->lock;
4376
	barrier();
4377
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4378
	userpg->offset = perf_event_count(event);
4379
	if (userpg->index)
4380
		userpg->offset -= local64_read(&event->hw.prev_count);
4381

4382
	userpg->time_enabled = enabled +
4383
			atomic64_read(&event->child_total_time_enabled);
4384

4385
	userpg->time_running = running +
4386
			atomic64_read(&event->child_total_time_running);
4387

4388
	arch_perf_update_userpage(event, userpg, now);
4389

4390
	barrier();
4391
	++userpg->lock;
4392
	preempt_enable();
4393
unlock:
4394
	rcu_read_unlock();
4395 4396
}

4397 4398 4399
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4400
	struct ring_buffer *rb;
4401 4402 4403 4404 4405 4406 4407 4408 4409
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4410 4411
	rb = rcu_dereference(event->rb);
	if (!rb)
4412 4413 4414 4415 4416
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4417
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4432 4433 4434
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4435
	struct ring_buffer *old_rb = NULL;
4436 4437
	unsigned long flags;

4438 4439 4440 4441 4442 4443
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4444

4445 4446 4447 4448
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4449

4450 4451
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4452
	}
4453

4454
	if (rb) {
4455 4456 4457 4458 4459
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4476 4477 4478 4479 4480 4481 4482 4483
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4484 4485 4486 4487
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4488 4489 4490
	rcu_read_unlock();
}

4491
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4492
{
4493
	struct ring_buffer *rb;
4494

4495
	rcu_read_lock();
4496 4497 4498 4499
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4500 4501 4502
	}
	rcu_read_unlock();

4503
	return rb;
4504 4505
}

4506
void ring_buffer_put(struct ring_buffer *rb)
4507
{
4508
	if (!atomic_dec_and_test(&rb->refcount))
4509
		return;
4510

4511
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4512

4513
	call_rcu(&rb->rcu_head, rb_free_rcu);
4514 4515 4516 4517
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4518
	struct perf_event *event = vma->vm_file->private_data;
4519

4520
	atomic_inc(&event->mmap_count);
4521
	atomic_inc(&event->rb->mmap_count);
4522

4523 4524 4525
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4526 4527
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4528 4529
}

4530 4531 4532 4533 4534 4535 4536 4537
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4538 4539
static void perf_mmap_close(struct vm_area_struct *vma)
{
4540
	struct perf_event *event = vma->vm_file->private_data;
4541

4542
	struct ring_buffer *rb = ring_buffer_get(event);
4543 4544 4545
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4546

4547 4548 4549
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4564 4565 4566
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4567
		goto out_put;
4568

4569
	ring_buffer_attach(event, NULL);
4570 4571 4572
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4573 4574
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4575

4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4592

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4604 4605 4606
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4607
		mutex_unlock(&event->mmap_mutex);
4608
		put_event(event);
4609

4610 4611 4612 4613 4614
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4615
	}
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4631
out_put:
4632
	ring_buffer_put(rb); /* could be last */
4633 4634
}

4635
static const struct vm_operations_struct perf_mmap_vmops = {
4636
	.open		= perf_mmap_open,
4637
	.close		= perf_mmap_close, /* non mergable */
4638 4639
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4640 4641 4642 4643
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4644
	struct perf_event *event = file->private_data;
4645
	unsigned long user_locked, user_lock_limit;
4646
	struct user_struct *user = current_user();
4647
	unsigned long locked, lock_limit;
4648
	struct ring_buffer *rb = NULL;
4649 4650
	unsigned long vma_size;
	unsigned long nr_pages;
4651
	long user_extra = 0, extra = 0;
4652
	int ret = 0, flags = 0;
4653

4654 4655 4656
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4657
	 * same rb.
4658 4659 4660 4661
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4662
	if (!(vma->vm_flags & VM_SHARED))
4663
		return -EINVAL;
4664 4665

	vma_size = vma->vm_end - vma->vm_start;
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4726

4727
	/*
4728
	 * If we have rb pages ensure they're a power-of-two number, so we
4729 4730
	 * can do bitmasks instead of modulo.
	 */
4731
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4732 4733
		return -EINVAL;

4734
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4735 4736
		return -EINVAL;

4737
	WARN_ON_ONCE(event->ctx->parent_ctx);
4738
again:
4739
	mutex_lock(&event->mmap_mutex);
4740
	if (event->rb) {
4741
		if (event->rb->nr_pages != nr_pages) {
4742
			ret = -EINVAL;
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4756 4757 4758
		goto unlock;
	}

4759
	user_extra = nr_pages + 1;
4760 4761

accounting:
4762
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4763 4764 4765 4766 4767 4768

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4769
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4770

4771 4772
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4773

4774
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4775
	lock_limit >>= PAGE_SHIFT;
4776
	locked = vma->vm_mm->pinned_vm + extra;
4777

4778 4779
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4780 4781 4782
		ret = -EPERM;
		goto unlock;
	}
4783

4784
	WARN_ON(!rb && event->rb);
4785

4786
	if (vma->vm_flags & VM_WRITE)
4787
		flags |= RING_BUFFER_WRITABLE;
4788

4789
	if (!rb) {
4790 4791 4792
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4793

4794 4795 4796 4797
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4798

4799 4800 4801
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4802

4803
		ring_buffer_attach(event, rb);
4804

4805 4806 4807
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4808 4809
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4810 4811 4812
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4813

4814
unlock:
4815 4816 4817 4818
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4819
		atomic_inc(&event->mmap_count);
4820 4821 4822 4823
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4824
	mutex_unlock(&event->mmap_mutex);
4825

4826 4827 4828 4829
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4830
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4831
	vma->vm_ops = &perf_mmap_vmops;
4832

4833 4834 4835
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4836
	return ret;
4837 4838
}

P
Peter Zijlstra 已提交
4839 4840
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4841
	struct inode *inode = file_inode(filp);
4842
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4843 4844 4845
	int retval;

	mutex_lock(&inode->i_mutex);
4846
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4847 4848 4849 4850 4851 4852 4853 4854
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4855
static const struct file_operations perf_fops = {
4856
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4857 4858 4859
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4860
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4861
	.compat_ioctl		= perf_compat_ioctl,
4862
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4863
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4864 4865
};

4866
/*
4867
 * Perf event wakeup
4868 4869 4870 4871 4872
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4873 4874 4875 4876 4877 4878 4879 4880
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4881
void perf_event_wakeup(struct perf_event *event)
4882
{
4883
	ring_buffer_wakeup(event);
4884

4885
	if (event->pending_kill) {
4886
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4887
		event->pending_kill = 0;
4888
	}
4889 4890
}

4891
static void perf_pending_event(struct irq_work *entry)
4892
{
4893 4894
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4895 4896 4897 4898 4899 4900 4901
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4902

4903 4904 4905
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4906 4907
	}

4908 4909 4910
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4911
	}
4912 4913 4914

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4915 4916
}

4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4953
static void perf_sample_regs_user(struct perf_regs *regs_user,
4954 4955
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4956
{
4957 4958
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4959
		regs_user->regs = regs;
4960 4961
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4962 4963 4964
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4965 4966 4967
	}
}

4968 4969 4970 4971 4972 4973 4974 4975
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5071 5072 5073
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5087
		data->time = perf_event_clock(event);
5088

5089
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5101 5102 5103
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5128 5129 5130

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5131 5132
}

5133 5134 5135
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5136 5137 5138 5139 5140
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5141
static void perf_output_read_one(struct perf_output_handle *handle,
5142 5143
				 struct perf_event *event,
				 u64 enabled, u64 running)
5144
{
5145
	u64 read_format = event->attr.read_format;
5146 5147 5148
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5149
	values[n++] = perf_event_count(event);
5150
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5151
		values[n++] = enabled +
5152
			atomic64_read(&event->child_total_time_enabled);
5153 5154
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5155
		values[n++] = running +
5156
			atomic64_read(&event->child_total_time_running);
5157 5158
	}
	if (read_format & PERF_FORMAT_ID)
5159
		values[n++] = primary_event_id(event);
5160

5161
	__output_copy(handle, values, n * sizeof(u64));
5162 5163 5164
}

/*
5165
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5166 5167
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5168 5169
			    struct perf_event *event,
			    u64 enabled, u64 running)
5170
{
5171 5172
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5173 5174 5175 5176 5177 5178
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5179
		values[n++] = enabled;
5180 5181

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5182
		values[n++] = running;
5183

5184
	if (leader != event)
5185 5186
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5187
	values[n++] = perf_event_count(leader);
5188
	if (read_format & PERF_FORMAT_ID)
5189
		values[n++] = primary_event_id(leader);
5190

5191
	__output_copy(handle, values, n * sizeof(u64));
5192

5193
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5194 5195
		n = 0;

5196 5197
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5198 5199
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5200
		values[n++] = perf_event_count(sub);
5201
		if (read_format & PERF_FORMAT_ID)
5202
			values[n++] = primary_event_id(sub);
5203

5204
		__output_copy(handle, values, n * sizeof(u64));
5205 5206 5207
	}
}

5208 5209 5210
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5211
static void perf_output_read(struct perf_output_handle *handle,
5212
			     struct perf_event *event)
5213
{
5214
	u64 enabled = 0, running = 0, now;
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5226
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5227
		calc_timer_values(event, &now, &enabled, &running);
5228

5229
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5230
		perf_output_read_group(handle, event, enabled, running);
5231
	else
5232
		perf_output_read_one(handle, event, enabled, running);
5233 5234
}

5235 5236 5237
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5238
			struct perf_event *event)
5239 5240 5241 5242 5243
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5244 5245 5246
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5272
		perf_output_read(handle, event);
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5283
			__output_copy(handle, data->callchain, size);
5284 5285 5286 5287 5288 5289 5290 5291
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5292 5293 5294 5295 5296 5297 5298 5299 5300
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5312

5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5347

5348
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5349 5350 5351
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5352
	}
A
Andi Kleen 已提交
5353 5354 5355

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5356 5357 5358

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5359

A
Andi Kleen 已提交
5360 5361 5362
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5393 5394 5395 5396
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5397
			 struct perf_event *event,
5398
			 struct pt_regs *regs)
5399
{
5400
	u64 sample_type = event->attr.sample_type;
5401

5402
	header->type = PERF_RECORD_SAMPLE;
5403
	header->size = sizeof(*header) + event->header_size;
5404 5405 5406

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5407

5408
	__perf_event_header__init_id(header, data, event);
5409

5410
	if (sample_type & PERF_SAMPLE_IP)
5411 5412
		data->ip = perf_instruction_pointer(regs);

5413
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5414
		int size = 1;
5415

5416
		data->callchain = perf_callchain(event, regs);
5417 5418 5419 5420 5421

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5422 5423
	}

5424
	if (sample_type & PERF_SAMPLE_RAW) {
5425 5426 5427 5428 5429 5430 5431
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5432
		header->size += round_up(size, sizeof(u64));
5433
	}
5434 5435 5436 5437 5438 5439 5440 5441 5442

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5443

5444
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5445 5446
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5447

5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5471
						     data->regs_user.regs);
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5499
}
5500

5501 5502 5503
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5504 5505 5506
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5507

5508 5509 5510
	/* protect the callchain buffers */
	rcu_read_lock();

5511
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5512

5513
	if (perf_output_begin(&handle, event, header.size))
5514
		goto exit;
5515

5516
	perf_output_sample(&handle, &header, data, event);
5517

5518
	perf_output_end(&handle);
5519 5520 5521

exit:
	rcu_read_unlock();
5522 5523
}

5524
/*
5525
 * read event_id
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5536
perf_event_read_event(struct perf_event *event,
5537 5538 5539
			struct task_struct *task)
{
	struct perf_output_handle handle;
5540
	struct perf_sample_data sample;
5541
	struct perf_read_event read_event = {
5542
		.header = {
5543
			.type = PERF_RECORD_READ,
5544
			.misc = 0,
5545
			.size = sizeof(read_event) + event->read_size,
5546
		},
5547 5548
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5549
	};
5550
	int ret;
5551

5552
	perf_event_header__init_id(&read_event.header, &sample, event);
5553
	ret = perf_output_begin(&handle, event, read_event.header.size);
5554 5555 5556
	if (ret)
		return;

5557
	perf_output_put(&handle, read_event);
5558
	perf_output_read(&handle, event);
5559
	perf_event__output_id_sample(event, &handle, &sample);
5560

5561 5562 5563
	perf_output_end(&handle);
}

5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5578
		output(event, data);
5579 5580 5581
	}
}

J
Jiri Olsa 已提交
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5593
static void
5594
perf_event_aux(perf_event_aux_output_cb output, void *data,
5595 5596 5597 5598 5599 5600 5601
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5613 5614 5615 5616 5617
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5618
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5619 5620 5621 5622 5623
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5624
			perf_event_aux_ctx(ctx, output, data);
5625 5626 5627 5628 5629 5630
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5631
/*
P
Peter Zijlstra 已提交
5632 5633
 * task tracking -- fork/exit
 *
5634
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5635 5636
 */

P
Peter Zijlstra 已提交
5637
struct perf_task_event {
5638
	struct task_struct		*task;
5639
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5640 5641 5642 5643 5644 5645

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5646 5647
		u32				tid;
		u32				ptid;
5648
		u64				time;
5649
	} event_id;
P
Peter Zijlstra 已提交
5650 5651
};

5652 5653
static int perf_event_task_match(struct perf_event *event)
{
5654 5655 5656
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5657 5658
}

5659
static void perf_event_task_output(struct perf_event *event,
5660
				   void *data)
P
Peter Zijlstra 已提交
5661
{
5662
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5663
	struct perf_output_handle handle;
5664
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5665
	struct task_struct *task = task_event->task;
5666
	int ret, size = task_event->event_id.header.size;
5667

5668 5669 5670
	if (!perf_event_task_match(event))
		return;

5671
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5672

5673
	ret = perf_output_begin(&handle, event,
5674
				task_event->event_id.header.size);
5675
	if (ret)
5676
		goto out;
P
Peter Zijlstra 已提交
5677

5678 5679
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5680

5681 5682
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5683

5684 5685
	task_event->event_id.time = perf_event_clock(event);

5686
	perf_output_put(&handle, task_event->event_id);
5687

5688 5689
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5690
	perf_output_end(&handle);
5691 5692
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5693 5694
}

5695 5696
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5697
			      int new)
P
Peter Zijlstra 已提交
5698
{
P
Peter Zijlstra 已提交
5699
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5700

5701 5702 5703
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5704 5705
		return;

P
Peter Zijlstra 已提交
5706
	task_event = (struct perf_task_event){
5707 5708
		.task	  = task,
		.task_ctx = task_ctx,
5709
		.event_id    = {
P
Peter Zijlstra 已提交
5710
			.header = {
5711
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5712
				.misc = 0,
5713
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5714
			},
5715 5716
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5717 5718
			/* .tid  */
			/* .ptid */
5719
			/* .time */
P
Peter Zijlstra 已提交
5720 5721 5722
		},
	};

5723
	perf_event_aux(perf_event_task_output,
5724 5725
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5726 5727
}

5728
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5729
{
5730
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5731 5732
}

5733 5734 5735 5736 5737
/*
 * comm tracking
 */

struct perf_comm_event {
5738 5739
	struct task_struct	*task;
	char			*comm;
5740 5741 5742 5743 5744 5745 5746
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5747
	} event_id;
5748 5749
};

5750 5751 5752 5753 5754
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5755
static void perf_event_comm_output(struct perf_event *event,
5756
				   void *data)
5757
{
5758
	struct perf_comm_event *comm_event = data;
5759
	struct perf_output_handle handle;
5760
	struct perf_sample_data sample;
5761
	int size = comm_event->event_id.header.size;
5762 5763
	int ret;

5764 5765 5766
	if (!perf_event_comm_match(event))
		return;

5767 5768
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5769
				comm_event->event_id.header.size);
5770 5771

	if (ret)
5772
		goto out;
5773

5774 5775
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5776

5777
	perf_output_put(&handle, comm_event->event_id);
5778
	__output_copy(&handle, comm_event->comm,
5779
				   comm_event->comm_size);
5780 5781 5782

	perf_event__output_id_sample(event, &handle, &sample);

5783
	perf_output_end(&handle);
5784 5785
out:
	comm_event->event_id.header.size = size;
5786 5787
}

5788
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5789
{
5790
	char comm[TASK_COMM_LEN];
5791 5792
	unsigned int size;

5793
	memset(comm, 0, sizeof(comm));
5794
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5795
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5796 5797 5798 5799

	comm_event->comm = comm;
	comm_event->comm_size = size;

5800
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5801

5802
	perf_event_aux(perf_event_comm_output,
5803 5804
		       comm_event,
		       NULL);
5805 5806
}

5807
void perf_event_comm(struct task_struct *task, bool exec)
5808
{
5809 5810
	struct perf_comm_event comm_event;

5811
	if (!atomic_read(&nr_comm_events))
5812
		return;
5813

5814
	comm_event = (struct perf_comm_event){
5815
		.task	= task,
5816 5817
		/* .comm      */
		/* .comm_size */
5818
		.event_id  = {
5819
			.header = {
5820
				.type = PERF_RECORD_COMM,
5821
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5822 5823 5824 5825
				/* .size */
			},
			/* .pid */
			/* .tid */
5826 5827 5828
		},
	};

5829
	perf_event_comm_event(&comm_event);
5830 5831
}

5832 5833 5834 5835 5836
/*
 * mmap tracking
 */

struct perf_mmap_event {
5837 5838 5839 5840
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5841 5842 5843
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5844
	u32			prot, flags;
5845 5846 5847 5848 5849 5850 5851 5852 5853

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5854
	} event_id;
5855 5856
};

5857 5858 5859 5860 5861 5862 5863 5864
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5865
	       (executable && (event->attr.mmap || event->attr.mmap2));
5866 5867
}

5868
static void perf_event_mmap_output(struct perf_event *event,
5869
				   void *data)
5870
{
5871
	struct perf_mmap_event *mmap_event = data;
5872
	struct perf_output_handle handle;
5873
	struct perf_sample_data sample;
5874
	int size = mmap_event->event_id.header.size;
5875
	int ret;
5876

5877 5878 5879
	if (!perf_event_mmap_match(event, data))
		return;

5880 5881 5882 5883 5884
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5885
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5886 5887
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5888 5889
	}

5890 5891
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5892
				mmap_event->event_id.header.size);
5893
	if (ret)
5894
		goto out;
5895

5896 5897
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5898

5899
	perf_output_put(&handle, mmap_event->event_id);
5900 5901 5902 5903 5904 5905

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5906 5907
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5908 5909
	}

5910
	__output_copy(&handle, mmap_event->file_name,
5911
				   mmap_event->file_size);
5912 5913 5914

	perf_event__output_id_sample(event, &handle, &sample);

5915
	perf_output_end(&handle);
5916 5917
out:
	mmap_event->event_id.header.size = size;
5918 5919
}

5920
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5921
{
5922 5923
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5924 5925
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5926
	u32 prot = 0, flags = 0;
5927 5928 5929
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5930
	char *name;
5931

5932
	if (file) {
5933 5934
		struct inode *inode;
		dev_t dev;
5935

5936
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5937
		if (!buf) {
5938 5939
			name = "//enomem";
			goto cpy_name;
5940
		}
5941
		/*
5942
		 * d_path() works from the end of the rb backwards, so we
5943 5944 5945
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5946
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5947
		if (IS_ERR(name)) {
5948 5949
			name = "//toolong";
			goto cpy_name;
5950
		}
5951 5952 5953 5954 5955 5956
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5979
		goto got_name;
5980
	} else {
5981 5982 5983 5984 5985 5986
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5987
		name = (char *)arch_vma_name(vma);
5988 5989
		if (name)
			goto cpy_name;
5990

5991
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5992
				vma->vm_end >= vma->vm_mm->brk) {
5993 5994
			name = "[heap]";
			goto cpy_name;
5995 5996
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5997
				vma->vm_end >= vma->vm_mm->start_stack) {
5998 5999
			name = "[stack]";
			goto cpy_name;
6000 6001
		}

6002 6003
		name = "//anon";
		goto cpy_name;
6004 6005
	}

6006 6007 6008
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6009
got_name:
6010 6011 6012 6013 6014 6015 6016 6017
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6018 6019 6020

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6021 6022 6023 6024
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6025 6026
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6027

6028 6029 6030
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6031
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6032

6033
	perf_event_aux(perf_event_mmap_output,
6034 6035
		       mmap_event,
		       NULL);
6036

6037 6038 6039
	kfree(buf);
}

6040
void perf_event_mmap(struct vm_area_struct *vma)
6041
{
6042 6043
	struct perf_mmap_event mmap_event;

6044
	if (!atomic_read(&nr_mmap_events))
6045 6046 6047
		return;

	mmap_event = (struct perf_mmap_event){
6048
		.vma	= vma,
6049 6050
		/* .file_name */
		/* .file_size */
6051
		.event_id  = {
6052
			.header = {
6053
				.type = PERF_RECORD_MMAP,
6054
				.misc = PERF_RECORD_MISC_USER,
6055 6056 6057 6058
				/* .size */
			},
			/* .pid */
			/* .tid */
6059 6060
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6061
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6062
		},
6063 6064 6065 6066
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6067 6068
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6069 6070
	};

6071
	perf_event_mmap_event(&mmap_event);
6072 6073
}

A
Alexander Shishkin 已提交
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6226 6227 6228 6229
/*
 * IRQ throttle logging
 */

6230
static void perf_log_throttle(struct perf_event *event, int enable)
6231 6232
{
	struct perf_output_handle handle;
6233
	struct perf_sample_data sample;
6234 6235 6236 6237 6238
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6239
		u64				id;
6240
		u64				stream_id;
6241 6242
	} throttle_event = {
		.header = {
6243
			.type = PERF_RECORD_THROTTLE,
6244 6245 6246
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6247
		.time		= perf_event_clock(event),
6248 6249
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6250 6251
	};

6252
	if (enable)
6253
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6254

6255 6256 6257
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6258
				throttle_event.header.size);
6259 6260 6261 6262
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6263
	perf_event__output_id_sample(event, &handle, &sample);
6264 6265 6266
	perf_output_end(&handle);
}

6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6303
/*
6304
 * Generic event overflow handling, sampling.
6305 6306
 */

6307
static int __perf_event_overflow(struct perf_event *event,
6308 6309
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6310
{
6311 6312
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6313
	u64 seq;
6314 6315
	int ret = 0;

6316 6317 6318 6319 6320 6321 6322
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6323 6324 6325 6326 6327 6328 6329 6330 6331
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6332 6333
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6334
			tick_nohz_full_kick();
6335 6336
			ret = 1;
		}
6337
	}
6338

6339
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6340
		u64 now = perf_clock();
6341
		s64 delta = now - hwc->freq_time_stamp;
6342

6343
		hwc->freq_time_stamp = now;
6344

6345
		if (delta > 0 && delta < 2*TICK_NSEC)
6346
			perf_adjust_period(event, delta, hwc->last_period, true);
6347 6348
	}

6349 6350
	/*
	 * XXX event_limit might not quite work as expected on inherited
6351
	 * events
6352 6353
	 */

6354 6355
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6356
		ret = 1;
6357
		event->pending_kill = POLL_HUP;
6358 6359
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6360 6361
	}

6362
	if (event->overflow_handler)
6363
		event->overflow_handler(event, data, regs);
6364
	else
6365
		perf_event_output(event, data, regs);
6366

6367
	if (*perf_event_fasync(event) && event->pending_kill) {
6368 6369
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6370 6371
	}

6372
	return ret;
6373 6374
}

6375
int perf_event_overflow(struct perf_event *event,
6376 6377
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6378
{
6379
	return __perf_event_overflow(event, 1, data, regs);
6380 6381
}

6382
/*
6383
 * Generic software event infrastructure
6384 6385
 */

6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6397
/*
6398 6399
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6400 6401 6402 6403
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6404
u64 perf_swevent_set_period(struct perf_event *event)
6405
{
6406
	struct hw_perf_event *hwc = &event->hw;
6407 6408 6409 6410 6411
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6412 6413

again:
6414
	old = val = local64_read(&hwc->period_left);
6415 6416
	if (val < 0)
		return 0;
6417

6418 6419 6420
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6421
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6422
		goto again;
6423

6424
	return nr;
6425 6426
}

6427
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6428
				    struct perf_sample_data *data,
6429
				    struct pt_regs *regs)
6430
{
6431
	struct hw_perf_event *hwc = &event->hw;
6432
	int throttle = 0;
6433

6434 6435
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6436

6437 6438
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6439

6440
	for (; overflow; overflow--) {
6441
		if (__perf_event_overflow(event, throttle,
6442
					    data, regs)) {
6443 6444 6445 6446 6447 6448
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6449
		throttle = 1;
6450
	}
6451 6452
}

P
Peter Zijlstra 已提交
6453
static void perf_swevent_event(struct perf_event *event, u64 nr,
6454
			       struct perf_sample_data *data,
6455
			       struct pt_regs *regs)
6456
{
6457
	struct hw_perf_event *hwc = &event->hw;
6458

6459
	local64_add(nr, &event->count);
6460

6461 6462 6463
	if (!regs)
		return;

6464
	if (!is_sampling_event(event))
6465
		return;
6466

6467 6468 6469 6470 6471 6472
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6473
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6474
		return perf_swevent_overflow(event, 1, data, regs);
6475

6476
	if (local64_add_negative(nr, &hwc->period_left))
6477
		return;
6478

6479
	perf_swevent_overflow(event, 0, data, regs);
6480 6481
}

6482 6483 6484
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6485
	if (event->hw.state & PERF_HES_STOPPED)
6486
		return 1;
P
Peter Zijlstra 已提交
6487

6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6499
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6500
				enum perf_type_id type,
L
Li Zefan 已提交
6501 6502 6503
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6504
{
6505
	if (event->attr.type != type)
6506
		return 0;
6507

6508
	if (event->attr.config != event_id)
6509 6510
		return 0;

6511 6512
	if (perf_exclude_event(event, regs))
		return 0;
6513 6514 6515 6516

	return 1;
}

6517 6518 6519 6520 6521 6522 6523
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6524 6525
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6526
{
6527 6528 6529 6530
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6531

6532 6533
/* For the read side: events when they trigger */
static inline struct hlist_head *
6534
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6535 6536
{
	struct swevent_hlist *hlist;
6537

6538
	hlist = rcu_dereference(swhash->swevent_hlist);
6539 6540 6541
	if (!hlist)
		return NULL;

6542 6543 6544 6545 6546
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6547
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6558
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6559 6560 6561 6562 6563
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6564 6565 6566
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6567
				    u64 nr,
6568 6569
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6570
{
6571
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6572
	struct perf_event *event;
6573
	struct hlist_head *head;
6574

6575
	rcu_read_lock();
6576
	head = find_swevent_head_rcu(swhash, type, event_id);
6577 6578 6579
	if (!head)
		goto end;

6580
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6581
		if (perf_swevent_match(event, type, event_id, data, regs))
6582
			perf_swevent_event(event, nr, data, regs);
6583
	}
6584 6585
end:
	rcu_read_unlock();
6586 6587
}

6588 6589
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6590
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6591
{
6592
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6593

6594
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6595
}
I
Ingo Molnar 已提交
6596
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6597

6598
inline void perf_swevent_put_recursion_context(int rctx)
6599
{
6600
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6601

6602
	put_recursion_context(swhash->recursion, rctx);
6603
}
6604

6605
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6606
{
6607
	struct perf_sample_data data;
6608

6609
	if (WARN_ON_ONCE(!regs))
6610
		return;
6611

6612
	perf_sample_data_init(&data, addr, 0);
6613
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6626 6627

	perf_swevent_put_recursion_context(rctx);
6628
fail:
6629
	preempt_enable_notrace();
6630 6631
}

6632
static void perf_swevent_read(struct perf_event *event)
6633 6634 6635
{
}

P
Peter Zijlstra 已提交
6636
static int perf_swevent_add(struct perf_event *event, int flags)
6637
{
6638
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6639
	struct hw_perf_event *hwc = &event->hw;
6640 6641
	struct hlist_head *head;

6642
	if (is_sampling_event(event)) {
6643
		hwc->last_period = hwc->sample_period;
6644
		perf_swevent_set_period(event);
6645
	}
6646

P
Peter Zijlstra 已提交
6647 6648
	hwc->state = !(flags & PERF_EF_START);

6649
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6650
	if (WARN_ON_ONCE(!head))
6651 6652 6653
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6654
	perf_event_update_userpage(event);
6655

6656 6657 6658
	return 0;
}

P
Peter Zijlstra 已提交
6659
static void perf_swevent_del(struct perf_event *event, int flags)
6660
{
6661
	hlist_del_rcu(&event->hlist_entry);
6662 6663
}

P
Peter Zijlstra 已提交
6664
static void perf_swevent_start(struct perf_event *event, int flags)
6665
{
P
Peter Zijlstra 已提交
6666
	event->hw.state = 0;
6667
}
I
Ingo Molnar 已提交
6668

P
Peter Zijlstra 已提交
6669
static void perf_swevent_stop(struct perf_event *event, int flags)
6670
{
P
Peter Zijlstra 已提交
6671
	event->hw.state = PERF_HES_STOPPED;
6672 6673
}

6674 6675
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6676
swevent_hlist_deref(struct swevent_htable *swhash)
6677
{
6678 6679
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6680 6681
}

6682
static void swevent_hlist_release(struct swevent_htable *swhash)
6683
{
6684
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6685

6686
	if (!hlist)
6687 6688
		return;

6689
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6690
	kfree_rcu(hlist, rcu_head);
6691 6692 6693 6694
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6695
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6696

6697
	mutex_lock(&swhash->hlist_mutex);
6698

6699 6700
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6701

6702
	mutex_unlock(&swhash->hlist_mutex);
6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6715
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6716 6717
	int err = 0;

6718 6719
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6720 6721 6722 6723 6724 6725 6726
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6727
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6728
	}
6729
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6730
exit:
6731
	mutex_unlock(&swhash->hlist_mutex);
6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6752
fail:
6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6763
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6764

6765 6766 6767
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6768

6769 6770
	WARN_ON(event->parent);

6771
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6772 6773 6774 6775 6776
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6777
	u64 event_id = event->attr.config;
6778 6779 6780 6781

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6782 6783 6784 6785 6786 6787
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6788 6789 6790 6791 6792 6793 6794 6795 6796
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6797
	if (event_id >= PERF_COUNT_SW_MAX)
6798 6799 6800 6801 6802 6803 6804 6805 6806
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6807
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6808 6809 6810 6811 6812 6813 6814
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6815
	.task_ctx_nr	= perf_sw_context,
6816

6817 6818
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6819
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6820 6821 6822 6823
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6824 6825 6826
	.read		= perf_swevent_read,
};

6827 6828
#ifdef CONFIG_EVENT_TRACING

6829 6830 6831 6832 6833
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6834 6835 6836 6837
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6838 6839 6840 6841 6842 6843 6844 6845 6846
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6847 6848
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6849 6850 6851 6852
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6853 6854 6855 6856 6857 6858 6859 6860 6861
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6862 6863
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6864 6865
{
	struct perf_sample_data data;
6866 6867
	struct perf_event *event;

6868 6869 6870 6871 6872
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6873
	perf_sample_data_init(&data, addr, 0);
6874 6875
	data.raw = &raw;

6876
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6877
		if (perf_tp_event_match(event, &data, regs))
6878
			perf_swevent_event(event, count, &data, regs);
6879
	}
6880

6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6906
	perf_swevent_put_recursion_context(rctx);
6907 6908 6909
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6910
static void tp_perf_event_destroy(struct perf_event *event)
6911
{
6912
	perf_trace_destroy(event);
6913 6914
}

6915
static int perf_tp_event_init(struct perf_event *event)
6916
{
6917 6918
	int err;

6919 6920 6921
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6922 6923 6924 6925 6926 6927
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6928 6929
	err = perf_trace_init(event);
	if (err)
6930
		return err;
6931

6932
	event->destroy = tp_perf_event_destroy;
6933

6934 6935 6936 6937
	return 0;
}

static struct pmu perf_tracepoint = {
6938 6939
	.task_ctx_nr	= perf_sw_context,

6940
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6941 6942 6943 6944
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6945 6946 6947 6948 6949
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6950
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6951
}
L
Li Zefan 已提交
6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

6986 6987
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
6988 6989 6990 6991 6992 6993
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

6994
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7019
#else
L
Li Zefan 已提交
7020

7021
static inline void perf_tp_register(void)
7022 7023
{
}
L
Li Zefan 已提交
7024 7025 7026 7027 7028 7029 7030 7031 7032 7033

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7034 7035 7036 7037 7038 7039 7040 7041
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7042
#endif /* CONFIG_EVENT_TRACING */
7043

7044
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7045
void perf_bp_event(struct perf_event *bp, void *data)
7046
{
7047 7048 7049
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7050
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7051

P
Peter Zijlstra 已提交
7052
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7053
		perf_swevent_event(bp, 1, &sample, regs);
7054 7055 7056
}
#endif

7057 7058 7059
/*
 * hrtimer based swevent callback
 */
7060

7061
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7062
{
7063 7064 7065 7066 7067
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7068

7069
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7070 7071 7072 7073

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7074
	event->pmu->read(event);
7075

7076
	perf_sample_data_init(&data, 0, event->hw.last_period);
7077 7078 7079
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7080
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7081
			if (__perf_event_overflow(event, 1, &data, regs))
7082 7083
				ret = HRTIMER_NORESTART;
	}
7084

7085 7086
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7087

7088
	return ret;
7089 7090
}

7091
static void perf_swevent_start_hrtimer(struct perf_event *event)
7092
{
7093
	struct hw_perf_event *hwc = &event->hw;
7094 7095 7096 7097
	s64 period;

	if (!is_sampling_event(event))
		return;
7098

7099 7100 7101 7102
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7103

7104 7105 7106 7107
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7108 7109
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7110
}
7111 7112

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7113
{
7114 7115
	struct hw_perf_event *hwc = &event->hw;

7116
	if (is_sampling_event(event)) {
7117
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7118
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7119 7120 7121

		hrtimer_cancel(&hwc->hrtimer);
	}
7122 7123
}

P
Peter Zijlstra 已提交
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7144
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7145 7146 7147 7148
		event->attr.freq = 0;
	}
}

7149 7150 7151 7152 7153
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7154
{
7155 7156 7157
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7158
	now = local_clock();
7159 7160
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7161 7162
}

P
Peter Zijlstra 已提交
7163
static void cpu_clock_event_start(struct perf_event *event, int flags)
7164
{
P
Peter Zijlstra 已提交
7165
	local64_set(&event->hw.prev_count, local_clock());
7166 7167 7168
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7169
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7170
{
7171 7172 7173
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7174

P
Peter Zijlstra 已提交
7175 7176 7177 7178
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7179
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7180 7181 7182 7183 7184 7185 7186 7187 7188

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7189 7190 7191 7192
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7193

7194 7195 7196 7197 7198 7199 7200 7201
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7202 7203 7204 7205 7206 7207
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7208 7209
	perf_swevent_init_hrtimer(event);

7210
	return 0;
7211 7212
}

7213
static struct pmu perf_cpu_clock = {
7214 7215
	.task_ctx_nr	= perf_sw_context,

7216 7217
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7218
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7219 7220 7221 7222
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7223 7224 7225 7226 7227 7228 7229 7230
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7231
{
7232 7233
	u64 prev;
	s64 delta;
7234

7235 7236 7237 7238
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7239

P
Peter Zijlstra 已提交
7240
static void task_clock_event_start(struct perf_event *event, int flags)
7241
{
P
Peter Zijlstra 已提交
7242
	local64_set(&event->hw.prev_count, event->ctx->time);
7243 7244 7245
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7246
static void task_clock_event_stop(struct perf_event *event, int flags)
7247 7248 7249
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7250 7251 7252 7253 7254 7255
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7256
	perf_event_update_userpage(event);
7257

P
Peter Zijlstra 已提交
7258 7259 7260 7261 7262 7263
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7264 7265 7266 7267
}

static void task_clock_event_read(struct perf_event *event)
{
7268 7269 7270
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7271 7272 7273 7274 7275

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7276
{
7277 7278 7279 7280 7281 7282
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7283 7284 7285 7286 7287 7288
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7289 7290
	perf_swevent_init_hrtimer(event);

7291
	return 0;
L
Li Zefan 已提交
7292 7293
}

7294
static struct pmu perf_task_clock = {
7295 7296
	.task_ctx_nr	= perf_sw_context,

7297 7298
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7299
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7300 7301 7302 7303
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7304 7305
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7306

P
Peter Zijlstra 已提交
7307
static void perf_pmu_nop_void(struct pmu *pmu)
7308 7309
{
}
L
Li Zefan 已提交
7310

7311 7312 7313 7314
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7315
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7316
{
P
Peter Zijlstra 已提交
7317
	return 0;
L
Li Zefan 已提交
7318 7319
}

7320
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7321 7322

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7323
{
7324 7325 7326 7327 7328
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7329
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7330 7331
}

P
Peter Zijlstra 已提交
7332 7333
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7334 7335 7336 7337 7338 7339 7340
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7341 7342 7343
	perf_pmu_enable(pmu);
	return 0;
}
7344

P
Peter Zijlstra 已提交
7345
static void perf_pmu_cancel_txn(struct pmu *pmu)
7346
{
7347 7348 7349 7350 7351 7352 7353
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7354
	perf_pmu_enable(pmu);
7355 7356
}

7357 7358
static int perf_event_idx_default(struct perf_event *event)
{
7359
	return 0;
7360 7361
}

P
Peter Zijlstra 已提交
7362 7363 7364 7365
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7366
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7367
{
P
Peter Zijlstra 已提交
7368
	struct pmu *pmu;
7369

P
Peter Zijlstra 已提交
7370 7371
	if (ctxn < 0)
		return NULL;
7372

P
Peter Zijlstra 已提交
7373 7374 7375 7376
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7377

P
Peter Zijlstra 已提交
7378
	return NULL;
7379 7380
}

7381
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7382
{
7383 7384 7385 7386 7387 7388 7389
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7390 7391
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7392 7393 7394 7395 7396 7397
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7398

P
Peter Zijlstra 已提交
7399
	mutex_lock(&pmus_lock);
7400
	/*
P
Peter Zijlstra 已提交
7401
	 * Like a real lame refcount.
7402
	 */
7403 7404 7405
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7406
			goto out;
7407
		}
P
Peter Zijlstra 已提交
7408
	}
7409

7410
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7411 7412
out:
	mutex_unlock(&pmus_lock);
7413
}
P
Peter Zijlstra 已提交
7414
static struct idr pmu_idr;
7415

P
Peter Zijlstra 已提交
7416 7417 7418 7419 7420 7421 7422
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7423
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7424

7425 7426 7427 7428 7429 7430 7431 7432 7433 7434
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7435 7436
static DEFINE_MUTEX(mux_interval_mutex);

7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7456
	mutex_lock(&mux_interval_mutex);
7457 7458 7459
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7460 7461
	get_online_cpus();
	for_each_online_cpu(cpu) {
7462 7463 7464 7465
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7466 7467
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7468
	}
7469 7470
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7471 7472 7473

	return count;
}
7474
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7475

7476 7477 7478 7479
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7480
};
7481
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7482 7483 7484 7485

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7486
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7502
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7523
static struct lock_class_key cpuctx_mutex;
7524
static struct lock_class_key cpuctx_lock;
7525

7526
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7527
{
P
Peter Zijlstra 已提交
7528
	int cpu, ret;
7529

7530
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7531 7532 7533 7534
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7535

P
Peter Zijlstra 已提交
7536 7537 7538 7539 7540 7541
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7542 7543 7544
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7545 7546 7547 7548 7549
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7550 7551 7552 7553 7554 7555
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7556
skip_type:
P
Peter Zijlstra 已提交
7557 7558 7559
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7560

W
Wei Yongjun 已提交
7561
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7562 7563
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7564
		goto free_dev;
7565

P
Peter Zijlstra 已提交
7566 7567 7568 7569
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7570
		__perf_event_init_context(&cpuctx->ctx);
7571
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7572
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7573
		cpuctx->ctx.pmu = pmu;
7574

7575
		__perf_mux_hrtimer_init(cpuctx, cpu);
7576

7577
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7578
	}
7579

P
Peter Zijlstra 已提交
7580
got_cpu_context:
P
Peter Zijlstra 已提交
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7592
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7593 7594
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7595
		}
7596
	}
7597

P
Peter Zijlstra 已提交
7598 7599 7600 7601 7602
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7603 7604 7605
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7606
	list_add_rcu(&pmu->entry, &pmus);
7607
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7608 7609
	ret = 0;
unlock:
7610 7611
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7612
	return ret;
P
Peter Zijlstra 已提交
7613

P
Peter Zijlstra 已提交
7614 7615 7616 7617
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7618 7619 7620 7621
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7622 7623 7624
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7625
}
7626
EXPORT_SYMBOL_GPL(perf_pmu_register);
7627

7628
void perf_pmu_unregister(struct pmu *pmu)
7629
{
7630 7631 7632
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7633

7634
	/*
P
Peter Zijlstra 已提交
7635 7636
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7637
	 */
7638
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7639
	synchronize_rcu();
7640

P
Peter Zijlstra 已提交
7641
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7642 7643
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7644 7645
	device_del(pmu->dev);
	put_device(pmu->dev);
7646
	free_pmu_context(pmu);
7647
}
7648
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7649

7650 7651
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7652
	struct perf_event_context *ctx = NULL;
7653 7654 7655 7656
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7657 7658

	if (event->group_leader != event) {
7659 7660 7661 7662 7663 7664
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7665 7666 7667
		BUG_ON(!ctx);
	}

7668 7669
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7670 7671 7672 7673

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7674 7675 7676 7677 7678 7679
	if (ret)
		module_put(pmu->module);

	return ret;
}

7680
static struct pmu *perf_init_event(struct perf_event *event)
7681 7682 7683
{
	struct pmu *pmu = NULL;
	int idx;
7684
	int ret;
7685 7686

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7687 7688 7689 7690

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7691
	if (pmu) {
7692
		ret = perf_try_init_event(pmu, event);
7693 7694
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7695
		goto unlock;
7696
	}
P
Peter Zijlstra 已提交
7697

7698
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7699
		ret = perf_try_init_event(pmu, event);
7700
		if (!ret)
P
Peter Zijlstra 已提交
7701
			goto unlock;
7702

7703 7704
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7705
			goto unlock;
7706
		}
7707
	}
P
Peter Zijlstra 已提交
7708 7709
	pmu = ERR_PTR(-ENOENT);
unlock:
7710
	srcu_read_unlock(&pmus_srcu, idx);
7711

7712
	return pmu;
7713 7714
}

7715 7716 7717 7718 7719 7720 7721 7722 7723
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7724 7725
static void account_event(struct perf_event *event)
{
7726 7727 7728
	if (event->parent)
		return;

7729 7730 7731 7732 7733 7734 7735 7736
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7737 7738 7739 7740
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7741 7742 7743 7744
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7745
	if (has_branch_stack(event))
7746
		static_key_slow_inc(&perf_sched_events.key);
7747
	if (is_cgroup_event(event))
7748
		static_key_slow_inc(&perf_sched_events.key);
7749 7750

	account_event_cpu(event, event->cpu);
7751 7752
}

T
Thomas Gleixner 已提交
7753
/*
7754
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7755
 */
7756
static struct perf_event *
7757
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7758 7759 7760
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7761
		 perf_overflow_handler_t overflow_handler,
7762
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7763
{
P
Peter Zijlstra 已提交
7764
	struct pmu *pmu;
7765 7766
	struct perf_event *event;
	struct hw_perf_event *hwc;
7767
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7768

7769 7770 7771 7772 7773
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7774
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7775
	if (!event)
7776
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7777

7778
	/*
7779
	 * Single events are their own group leaders, with an
7780 7781 7782
	 * empty sibling list:
	 */
	if (!group_leader)
7783
		group_leader = event;
7784

7785 7786
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7787

7788 7789 7790
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7791
	INIT_LIST_HEAD(&event->rb_entry);
7792
	INIT_LIST_HEAD(&event->active_entry);
7793 7794
	INIT_HLIST_NODE(&event->hlist_entry);

7795

7796
	init_waitqueue_head(&event->waitq);
7797
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7798

7799
	mutex_init(&event->mmap_mutex);
7800

7801
	atomic_long_set(&event->refcount, 1);
7802 7803 7804 7805 7806
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7807

7808
	event->parent		= parent_event;
7809

7810
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7811
	event->id		= atomic64_inc_return(&perf_event_id);
7812

7813
	event->state		= PERF_EVENT_STATE_INACTIVE;
7814

7815 7816 7817
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7818 7819 7820
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7821
		 */
7822
		event->hw.target = task;
7823 7824
	}

7825 7826 7827 7828
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7829
	if (!overflow_handler && parent_event) {
7830
		overflow_handler = parent_event->overflow_handler;
7831 7832
		context = parent_event->overflow_handler_context;
	}
7833

7834
	event->overflow_handler	= overflow_handler;
7835
	event->overflow_handler_context = context;
7836

J
Jiri Olsa 已提交
7837
	perf_event__state_init(event);
7838

7839
	pmu = NULL;
7840

7841
	hwc = &event->hw;
7842
	hwc->sample_period = attr->sample_period;
7843
	if (attr->freq && attr->sample_freq)
7844
		hwc->sample_period = 1;
7845
	hwc->last_period = hwc->sample_period;
7846

7847
	local64_set(&hwc->period_left, hwc->sample_period);
7848

7849
	/*
7850
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7851
	 */
7852
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7853
		goto err_ns;
7854 7855 7856

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7857

7858 7859 7860 7861 7862 7863
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7864
	pmu = perf_init_event(event);
7865
	if (!pmu)
7866 7867
		goto err_ns;
	else if (IS_ERR(pmu)) {
7868
		err = PTR_ERR(pmu);
7869
		goto err_ns;
I
Ingo Molnar 已提交
7870
	}
7871

7872 7873 7874 7875
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7876
	if (!event->parent) {
7877 7878
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7879
			if (err)
7880
				goto err_per_task;
7881
		}
7882
	}
7883

7884
	return event;
7885

7886 7887 7888
err_per_task:
	exclusive_event_destroy(event);

7889 7890 7891
err_pmu:
	if (event->destroy)
		event->destroy(event);
7892
	module_put(pmu->module);
7893
err_ns:
7894 7895
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7896 7897 7898 7899 7900
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7901 7902
}

7903 7904
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7905 7906
{
	u32 size;
7907
	int ret;
7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7932 7933 7934
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7935 7936
	 */
	if (size > sizeof(*attr)) {
7937 7938 7939
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7940

7941 7942
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7943

7944
		for (; addr < end; addr++) {
7945 7946 7947 7948 7949 7950
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7951
		size = sizeof(*attr);
7952 7953 7954 7955 7956 7957
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7958
	if (attr->__reserved_1)
7959 7960 7961 7962 7963 7964 7965 7966
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7995 7996
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7997 7998
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7999
	}
8000

8001
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8002
		ret = perf_reg_validate(attr->sample_regs_user);
8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8021

8022 8023
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8024 8025 8026 8027 8028 8029 8030 8031 8032
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8033 8034
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8035
{
8036
	struct ring_buffer *rb = NULL;
8037 8038
	int ret = -EINVAL;

8039
	if (!output_event)
8040 8041
		goto set;

8042 8043
	/* don't allow circular references */
	if (event == output_event)
8044 8045
		goto out;

8046 8047 8048 8049 8050 8051 8052
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8053
	 * If its not a per-cpu rb, it must be the same task.
8054 8055 8056 8057
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8058 8059 8060 8061 8062 8063
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8064 8065 8066 8067 8068 8069 8070
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8071
set:
8072
	mutex_lock(&event->mmap_mutex);
8073 8074 8075
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8076

8077
	if (output_event) {
8078 8079 8080
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8081
			goto unlock;
8082 8083
	}

8084
	ring_buffer_attach(event, rb);
8085

8086
	ret = 0;
8087 8088 8089
unlock:
	mutex_unlock(&event->mmap_mutex);

8090 8091 8092 8093
out:
	return ret;
}

P
Peter Zijlstra 已提交
8094 8095 8096 8097 8098 8099 8100 8101 8102
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8140
/**
8141
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8142
 *
8143
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8144
 * @pid:		target pid
I
Ingo Molnar 已提交
8145
 * @cpu:		target cpu
8146
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8147
 */
8148 8149
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8150
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8151
{
8152 8153
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8154
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8155
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8156
	struct file *event_file = NULL;
8157
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8158
	struct task_struct *task = NULL;
8159
	struct pmu *pmu;
8160
	int event_fd;
8161
	int move_group = 0;
8162
	int err;
8163
	int f_flags = O_RDWR;
8164
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8165

8166
	/* for future expandability... */
S
Stephane Eranian 已提交
8167
	if (flags & ~PERF_FLAG_ALL)
8168 8169
		return -EINVAL;

8170 8171 8172
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8173

8174 8175 8176 8177 8178
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8179
	if (attr.freq) {
8180
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8181
			return -EINVAL;
8182 8183 8184
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8185 8186
	}

S
Stephane Eranian 已提交
8187 8188 8189 8190 8191 8192 8193 8194 8195
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8196 8197 8198 8199
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8200 8201 8202
	if (event_fd < 0)
		return event_fd;

8203
	if (group_fd != -1) {
8204 8205
		err = perf_fget_light(group_fd, &group);
		if (err)
8206
			goto err_fd;
8207
		group_leader = group.file->private_data;
8208 8209 8210 8211 8212 8213
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8214
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8215 8216 8217 8218 8219 8220 8221
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8222 8223 8224 8225 8226 8227
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8228 8229
	get_online_cpus();

8230 8231 8232
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8233
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8234
				 NULL, NULL, cgroup_fd);
8235 8236
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8237
		goto err_cpus;
8238 8239
	}

8240 8241 8242 8243 8244 8245 8246
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8247 8248
	account_event(event);

8249 8250 8251 8252 8253
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8254

8255 8256 8257 8258 8259 8260
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8283 8284 8285 8286

	/*
	 * Get the target context (task or percpu):
	 */
8287
	ctx = find_get_context(pmu, task, event);
8288 8289
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8290
		goto err_alloc;
8291 8292
	}

8293 8294 8295 8296 8297
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8298 8299 8300 8301 8302
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8303
	/*
8304
	 * Look up the group leader (we will attach this event to it):
8305
	 */
8306
	if (group_leader) {
8307
		err = -EINVAL;
8308 8309

		/*
I
Ingo Molnar 已提交
8310 8311 8312 8313
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8314
			goto err_context;
8315 8316 8317 8318 8319

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8320 8321 8322
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8323
		 */
8324
		if (move_group) {
8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8338 8339 8340 8341 8342 8343
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8344 8345 8346
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8347
		if (attr.exclusive || attr.pinned)
8348
			goto err_context;
8349 8350 8351 8352 8353
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8354
			goto err_context;
8355
	}
T
Thomas Gleixner 已提交
8356

8357 8358
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8359 8360
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8361
		goto err_context;
8362
	}
8363

8364
	if (move_group) {
P
Peter Zijlstra 已提交
8365
		gctx = group_leader->ctx;
8366 8367 8368 8369 8370
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8371 8372 8373 8374 8375
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8376 8377 8378 8379 8380 8381 8382
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8383

8384 8385 8386
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8387

8388 8389 8390
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8391 8392 8393 8394
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8395
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8396

8397 8398
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8399
			perf_remove_from_context(sibling, false);
8400 8401 8402
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8403 8404 8405 8406
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8407
		synchronize_rcu();
P
Peter Zijlstra 已提交
8408

8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8419 8420
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8421
			perf_event__state_init(sibling);
8422
			perf_install_in_context(ctx, sibling, sibling->cpu);
8423 8424
			get_ctx(ctx);
		}
8425 8426 8427 8428 8429 8430 8431 8432 8433

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8434

8435 8436 8437 8438 8439 8440
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8441 8442
	}

8443 8444 8445 8446 8447 8448 8449 8450 8451
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8452
	perf_install_in_context(ctx, event, event->cpu);
8453
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8454

8455
	if (move_group)
P
Peter Zijlstra 已提交
8456
		mutex_unlock(&gctx->mutex);
8457
	mutex_unlock(&ctx->mutex);
8458

8459 8460
	put_online_cpus();

8461
	event->owner = current;
P
Peter Zijlstra 已提交
8462

8463 8464 8465
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8466

8467 8468 8469 8470 8471 8472
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8473
	fdput(group);
8474 8475
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8476

8477 8478 8479 8480 8481 8482
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8483
err_context:
8484
	perf_unpin_context(ctx);
8485
	put_ctx(ctx);
8486
err_alloc:
8487
	free_event(event);
8488
err_cpus:
8489
	put_online_cpus();
8490
err_task:
P
Peter Zijlstra 已提交
8491 8492
	if (task)
		put_task_struct(task);
8493
err_group_fd:
8494
	fdput(group);
8495 8496
err_fd:
	put_unused_fd(event_fd);
8497
	return err;
T
Thomas Gleixner 已提交
8498 8499
}

8500 8501 8502 8503 8504
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8505
 * @task: task to profile (NULL for percpu)
8506 8507 8508
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8509
				 struct task_struct *task,
8510 8511
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8512 8513
{
	struct perf_event_context *ctx;
8514
	struct perf_event *event;
8515
	int err;
8516

8517 8518 8519
	/*
	 * Get the target context (task or percpu):
	 */
8520

8521
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8522
				 overflow_handler, context, -1);
8523 8524 8525 8526
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8527

8528 8529 8530
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8531 8532
	account_event(event);

8533
	ctx = find_get_context(event->pmu, task, event);
8534 8535
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8536
		goto err_free;
8537
	}
8538 8539 8540

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8541 8542 8543 8544 8545 8546 8547 8548
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8549
	perf_install_in_context(ctx, event, cpu);
8550
	perf_unpin_context(ctx);
8551 8552 8553 8554
	mutex_unlock(&ctx->mutex);

	return event;

8555 8556 8557
err_free:
	free_event(event);
err:
8558
	return ERR_PTR(err);
8559
}
8560
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8561

8562 8563 8564 8565 8566 8567 8568 8569 8570 8571
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8572 8573 8574 8575 8576
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8577 8578
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8579
		perf_remove_from_context(event, false);
8580
		unaccount_event_cpu(event, src_cpu);
8581
		put_ctx(src_ctx);
8582
		list_add(&event->migrate_entry, &events);
8583 8584
	}

8585 8586 8587
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8588 8589
	synchronize_rcu();

8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8614 8615
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8616 8617
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8618
		account_event_cpu(event, dst_cpu);
8619 8620 8621 8622
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8623
	mutex_unlock(&src_ctx->mutex);
8624 8625 8626
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8627
static void sync_child_event(struct perf_event *child_event,
8628
			       struct task_struct *child)
8629
{
8630
	struct perf_event *parent_event = child_event->parent;
8631
	u64 child_val;
8632

8633 8634
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8635

P
Peter Zijlstra 已提交
8636
	child_val = perf_event_count(child_event);
8637 8638 8639 8640

	/*
	 * Add back the child's count to the parent's count:
	 */
8641
	atomic64_add(child_val, &parent_event->child_count);
8642 8643 8644 8645
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8646 8647

	/*
8648
	 * Remove this event from the parent's list
8649
	 */
8650 8651 8652 8653
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8654

8655 8656 8657 8658 8659 8660
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8661
	/*
8662
	 * Release the parent event, if this was the last
8663 8664
	 * reference to it.
	 */
8665
	put_event(parent_event);
8666 8667
}

8668
static void
8669 8670
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8671
			 struct task_struct *child)
8672
{
8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8686

8687
	/*
8688
	 * It can happen that the parent exits first, and has events
8689
	 * that are still around due to the child reference. These
8690
	 * events need to be zapped.
8691
	 */
8692
	if (child_event->parent) {
8693 8694
		sync_child_event(child_event, child);
		free_event(child_event);
8695 8696 8697
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8698
	}
8699 8700
}

P
Peter Zijlstra 已提交
8701
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8702
{
8703
	struct perf_event *child_event, *next;
8704
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8705
	unsigned long flags;
8706

J
Jiri Olsa 已提交
8707
	if (likely(!child->perf_event_ctxp[ctxn]))
8708 8709
		return;

8710
	local_irq_save(flags);
8711 8712 8713 8714 8715 8716
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8717
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8718 8719 8720

	/*
	 * Take the context lock here so that if find_get_context is
8721
	 * reading child->perf_event_ctxp, we wait until it has
8722 8723
	 * incremented the context's refcount before we do put_ctx below.
	 */
8724
	raw_spin_lock(&child_ctx->lock);
8725
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
P
Peter Zijlstra 已提交
8726
	child->perf_event_ctxp[ctxn] = NULL;
8727

8728 8729 8730
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8731
	 * the events from it.
8732
	 */
8733
	clone_ctx = unclone_ctx(child_ctx);
8734
	update_context_time(child_ctx);
8735
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8736

8737 8738
	if (clone_ctx)
		put_ctx(clone_ctx);
8739

P
Peter Zijlstra 已提交
8740
	/*
8741 8742 8743
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8744
	 */
8745
	perf_event_task(child, child_ctx, 0);
8746

8747 8748 8749
	/*
	 * We can recurse on the same lock type through:
	 *
8750 8751
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8752 8753
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8754 8755 8756
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8757
	mutex_lock(&child_ctx->mutex);
8758

8759
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8760
		__perf_event_exit_task(child_event, child_ctx, child);
8761

8762 8763 8764
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8765 8766
}

P
Peter Zijlstra 已提交
8767 8768 8769 8770 8771
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8772
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8773 8774
	int ctxn;

P
Peter Zijlstra 已提交
8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8790 8791
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8792 8793 8794 8795 8796 8797 8798 8799

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8800 8801
}

8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8814
	put_event(parent);
8815

P
Peter Zijlstra 已提交
8816
	raw_spin_lock_irq(&ctx->lock);
8817
	perf_group_detach(event);
8818
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8819
	raw_spin_unlock_irq(&ctx->lock);
8820 8821 8822
	free_event(event);
}

8823
/*
P
Peter Zijlstra 已提交
8824
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8825
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8826 8827 8828
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8829
 */
8830
void perf_event_free_task(struct task_struct *task)
8831
{
P
Peter Zijlstra 已提交
8832
	struct perf_event_context *ctx;
8833
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8834
	int ctxn;
8835

P
Peter Zijlstra 已提交
8836 8837 8838 8839
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8840

P
Peter Zijlstra 已提交
8841
		mutex_lock(&ctx->mutex);
8842
again:
P
Peter Zijlstra 已提交
8843 8844 8845
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8846

P
Peter Zijlstra 已提交
8847 8848 8849
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8850

P
Peter Zijlstra 已提交
8851 8852 8853
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8854

P
Peter Zijlstra 已提交
8855
		mutex_unlock(&ctx->mutex);
8856

P
Peter Zijlstra 已提交
8857 8858
		put_ctx(ctx);
	}
8859 8860
}

8861 8862 8863 8864 8865 8866 8867 8868
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8905
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8906
	struct perf_event *child_event;
8907
	unsigned long flags;
P
Peter Zijlstra 已提交
8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8920
					   child,
P
Peter Zijlstra 已提交
8921
					   group_leader, parent_event,
8922
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8923 8924
	if (IS_ERR(child_event))
		return child_event;
8925

8926 8927
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8928 8929 8930 8931
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8932 8933 8934 8935 8936 8937 8938
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8939
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8956 8957
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8958

8959 8960 8961 8962
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8963
	perf_event__id_header_size(child_event);
8964

P
Peter Zijlstra 已提交
8965 8966 8967
	/*
	 * Link it up in the child's context:
	 */
8968
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8969
	add_event_to_ctx(child_event, child_ctx);
8970
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9004 9005 9006 9007 9008
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9009
		   struct task_struct *child, int ctxn,
9010 9011 9012
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9013
	struct perf_event_context *child_ctx;
9014 9015 9016 9017

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9018 9019
	}

9020
	child_ctx = child->perf_event_ctxp[ctxn];
9021 9022 9023 9024 9025 9026 9027
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9028

9029
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9030 9031
		if (!child_ctx)
			return -ENOMEM;
9032

P
Peter Zijlstra 已提交
9033
		child->perf_event_ctxp[ctxn] = child_ctx;
9034 9035 9036 9037 9038 9039 9040 9041 9042
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9043 9044
}

9045
/*
9046
 * Initialize the perf_event context in task_struct
9047
 */
9048
static int perf_event_init_context(struct task_struct *child, int ctxn)
9049
{
9050
	struct perf_event_context *child_ctx, *parent_ctx;
9051 9052
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9053
	struct task_struct *parent = current;
9054
	int inherited_all = 1;
9055
	unsigned long flags;
9056
	int ret = 0;
9057

P
Peter Zijlstra 已提交
9058
	if (likely(!parent->perf_event_ctxp[ctxn]))
9059 9060
		return 0;

9061
	/*
9062 9063
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9064
	 */
P
Peter Zijlstra 已提交
9065
	parent_ctx = perf_pin_task_context(parent, ctxn);
9066 9067
	if (!parent_ctx)
		return 0;
9068

9069 9070 9071 9072 9073 9074 9075
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9076 9077 9078 9079
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9080
	mutex_lock(&parent_ctx->mutex);
9081 9082 9083 9084 9085

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9086
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9087 9088
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9089 9090 9091
		if (ret)
			break;
	}
9092

9093 9094 9095 9096 9097 9098 9099 9100 9101
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9102
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9103 9104
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9105
		if (ret)
9106
			break;
9107 9108
	}

9109 9110 9111
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9112
	child_ctx = child->perf_event_ctxp[ctxn];
9113

9114
	if (child_ctx && inherited_all) {
9115 9116 9117
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9118 9119 9120
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9121
		 */
P
Peter Zijlstra 已提交
9122
		cloned_ctx = parent_ctx->parent_ctx;
9123 9124
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9125
			child_ctx->parent_gen = parent_ctx->parent_gen;
9126 9127 9128 9129 9130
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9131 9132
	}

P
Peter Zijlstra 已提交
9133
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9134
	mutex_unlock(&parent_ctx->mutex);
9135

9136
	perf_unpin_context(parent_ctx);
9137
	put_ctx(parent_ctx);
9138

9139
	return ret;
9140 9141
}

P
Peter Zijlstra 已提交
9142 9143 9144 9145 9146 9147 9148
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9149 9150 9151 9152
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9153 9154
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9155 9156
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9157
			return ret;
P
Peter Zijlstra 已提交
9158
		}
P
Peter Zijlstra 已提交
9159 9160 9161 9162 9163
	}

	return 0;
}

9164 9165
static void __init perf_event_init_all_cpus(void)
{
9166
	struct swevent_htable *swhash;
9167 9168 9169
	int cpu;

	for_each_possible_cpu(cpu) {
9170 9171
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9172
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9173 9174 9175
	}
}

9176
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9177
{
P
Peter Zijlstra 已提交
9178
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9179

9180
	mutex_lock(&swhash->hlist_mutex);
9181
	if (swhash->hlist_refcount > 0) {
9182 9183
		struct swevent_hlist *hlist;

9184 9185 9186
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9187
	}
9188
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9189 9190
}

9191
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9192
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9193
{
9194
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9195
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9196

P
Peter Zijlstra 已提交
9197
	rcu_read_lock();
9198 9199
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9200
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9201
}
P
Peter Zijlstra 已提交
9202 9203 9204 9205 9206 9207 9208 9209 9210

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9211
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9212 9213 9214 9215 9216 9217 9218 9219

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9220
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9221
{
P
Peter Zijlstra 已提交
9222
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9223 9224
}
#else
9225
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9226 9227
#endif

P
Peter Zijlstra 已提交
9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9248
static int
T
Thomas Gleixner 已提交
9249 9250 9251 9252
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9253
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9254 9255

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9256
	case CPU_DOWN_FAILED:
9257
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9258 9259
		break;

P
Peter Zijlstra 已提交
9260
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9261
	case CPU_DOWN_PREPARE:
9262
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9263 9264 9265 9266 9267 9268 9269 9270
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9271
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9272
{
9273 9274
	int ret;

P
Peter Zijlstra 已提交
9275 9276
	idr_init(&pmu_idr);

9277
	perf_event_init_all_cpus();
9278
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9279 9280 9281
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9282 9283
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9284
	register_reboot_notifier(&perf_reboot_notifier);
9285 9286 9287

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9288 9289 9290

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9291 9292 9293 9294 9295 9296 9297

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9298
}
P
Peter Zijlstra 已提交
9299

9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9339 9340

#ifdef CONFIG_CGROUP_PERF
9341 9342
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9343 9344 9345
{
	struct perf_cgroup *jc;

9346
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9359
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9360
{
9361 9362
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9363 9364 9365 9366 9367 9368 9369
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9370
	rcu_read_lock();
S
Stephane Eranian 已提交
9371
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9372
	rcu_read_unlock();
S
Stephane Eranian 已提交
9373 9374 9375
	return 0;
}

9376
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9377
{
9378
	struct task_struct *task;
9379
	struct cgroup_subsys_state *css;
9380

9381
	cgroup_taskset_for_each(task, css, tset)
9382
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9383 9384
}

9385
struct cgroup_subsys perf_event_cgrp_subsys = {
9386 9387
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9388
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9389 9390
};
#endif /* CONFIG_CGROUP_PERF */